[go: up one dir, main page]

TWI835335B - Interactive heart rate variability analysis parameter model and index generation system - Google Patents

Interactive heart rate variability analysis parameter model and index generation system Download PDF

Info

Publication number
TWI835335B
TWI835335B TW111138322A TW111138322A TWI835335B TW I835335 B TWI835335 B TW I835335B TW 111138322 A TW111138322 A TW 111138322A TW 111138322 A TW111138322 A TW 111138322A TW I835335 B TWI835335 B TW I835335B
Authority
TW
Taiwan
Prior art keywords
heart rate
parameter model
analysis parameter
indicator
interactive
Prior art date
Application number
TW111138322A
Other languages
Chinese (zh)
Other versions
TW202416289A (en
Inventor
劉方正
Original Assignee
高登智慧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高登智慧科技股份有限公司 filed Critical 高登智慧科技股份有限公司
Priority to TW111138322A priority Critical patent/TWI835335B/en
Application granted granted Critical
Publication of TWI835335B publication Critical patent/TWI835335B/en
Publication of TW202416289A publication Critical patent/TW202416289A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The invention discloses an interactive heart rate variability analysis parameter model and index generation system, and a customizable index and index interval according to the parameter combination. The interactive heart rate variability analysis parameter model and index generation system includes an input unit, a processing unit and a display unit. The input unit receives a physiological data related to a degree of change in heart rate. The processing unit is connected to the input unit. The processing unit executes an application program to generate an analytical parametric model with at least one median from the plurality of physiological data. The application calculates parameters from the physiological data, such as at least one of a standard deviation of the heartbeat distance (SDNN), a low frequency (LF), a high frequency (HF), or a very low frequency (VLF). The application uses the data of at least one of the heartbeat interval standard deviation, low frequency, high frequency and very low frequency to generate a corresponding complex index. Among them, the analytical parameter model is based on the physiological data of a specific population. The display unit is connected to the processing unit to display project indicators related to the parameters.

Description

互動式心率變異分析參數模型及指標產生系統Interactive heart rate variability analysis parameter model and indicator generation system

本發明是關於心率變異的技術領域,是一種互動式心率變異分析參數模型及指標產生系統,以協助醫生(或專家)建立不同國家或不同種族之分析參數模型及協助醫生(或專家)   經臨床問診所自訂之自律神經相關指標。The present invention relates to the technical field of heart rate variability. It is an interactive heart rate variability analysis parameter model and index generation system to assist doctors (or experts) in establishing analysis parameter models of different countries or different races and to assist doctors (or experts) through clinical Ask about the autonomic nervous system-related indicators customized by the clinic.

現代人生活壓力過大,長期壓力累積會使身體釋放過多的類固醇、腎上腺素,因而傷害自律神經系統(Autonomic nervous system, ANS),使得系統中的交感神經及副交感神經失衡,而出現暈眩、胸悶、心悸、頭痛、煩躁、過度緊張焦慮等症狀,醫學上稱為「自律神經失調」;自律神經失調是用來形容難以用生理原因去解釋身體的症狀,按照現行的醫學定義來說,自律神經失調是屬於一種症狀相對輕微的精神性疾病,且根據最近的醫學研究指出,歐美地區大約有三成而台灣地區則有二成以上的比例人口曾經受到自律神經失調所帶來的痛苦,目前普遍名詞為「亞健康」;亞健康是指生理或心理是處於健康與疾病之間的模糊地帶,是一種動態變化,若不加以理會則可能會發展為疾病,若適時改善則可恢復到健康狀態。Modern people's lives are too stressful. Long-term accumulation of stress will cause the body to release too much steroids and adrenaline, thus damaging the autonomic nervous system (ANS), causing an imbalance of the sympathetic and parasympathetic nerves in the system, leading to dizziness and chest tightness. Symptoms such as heart palpitations, headaches, irritability, excessive tension and anxiety are medically called "autonomic nervous system disorders"; autonomic nervous system disorders are used to describe physical symptoms that are difficult to explain by physiological reasons. According to the current medical definition, autonomic nervous system disorders Disorder is a mental illness with relatively mild symptoms. According to recent medical research, about 30% of the population in Europe and the United States and more than 20% of the population in Taiwan have suffered from the pain caused by autonomic nervous system disorder. It is currently a common term It is called "sub-health"; sub-health refers to the physical or psychological state that is in the fuzzy zone between health and disease. It is a dynamic change. If ignored, it may develop into a disease. If it is improved in time, it can be restored to a healthy state.

傳統上,心率變異分析(Heart rate variability, HRV)是一種量測連續心跳速率變化程度的方法,HRV測量因具有非侵入性、快速方便等優點,為當前評估自律神經功能正常與否的常見方法。該量測方法也被廣泛應用在心理或生理壓力的評估,其最常用以計算的方式為心電圖(electrocardiogram,ECG)中的每個心搏週期(heart cycle)可以劃分為多個波的總和,即P、Q、R、S及T,心電圖的另一個重要特徵是心搏週期的持續時間,這些基於 RR 間隔的長度(即連續 R 峰之間的距離)測量,並且通常通過測量個體的心臟(心率,HR)和變異性的變數進行匯總,成為一組數列,再進一步計算與分析;目前臨床使用的自律神經檢測儀,就是運用心率變異來分析自律神經平衡的狀態。Traditionally, heart rate variability (HRV) analysis is a method of measuring the degree of changes in continuous heart rate. HRV measurement is a common method to evaluate whether the autonomic nervous system function is normal or not because it is non-invasive, fast and convenient. . This measurement method is also widely used in the assessment of psychological or physiological stress. The most commonly used calculation method is that each heart cycle (heart cycle) in the electrocardiogram (ECG) can be divided into the sum of multiple waves. namely P, Q, R, S and T. Another important feature of the electrocardiogram is the duration of the cardiac cycle. These are measured based on the length of the RR interval (i.e. the distance between consecutive R peaks) and are usually measured by measuring the individual heart ( The variables of heart rate (HR) and variability are summarized into a set of numbers, which are then further calculated and analyzed. The autonomic nervous system detector currently used clinically uses heart rate variability to analyze the state of autonomic nervous system balance.

中華民國專利公開公告號第TW202211868A號專利案所揭露之判定一疲憊指數之方法和設備,主要包含接收生理信號; 基於該等生理信號來產生複數個心率變異性參數;及基於該複數個心率變異性參數來判定該疲憊指數,但其僅能顯示疲憊指數,且並無能夠讓專家可以將相關的參數透過本專利來自定義指標。The method and equipment for determining a fatigue index disclosed in the Republic of China Patent Publication No. TW202211868A mainly include receiving physiological signals; generating a plurality of heart rate variability parameters based on the physiological signals; and based on the plurality of heart rate variability parameters. Parameters can be used to determine the fatigue index, but it can only display the fatigue index, and does not allow experts to use relevant parameters to customize the index through this patent.

中華民國專利公開公告號第TWI670046B號專利案所揭露之一種同時用於心理壓力指數檢查和血壓檢查的測量裝置和方法。當測量裝置進入心理壓力測量模式,泵單元對氣囊單元進行變速加壓,壓力傳感單元的壓力信號確定為脈衝信號時,微處理器單元將控制泵單元停止加壓並測量脈搏信號以計算心理壓力指數;並根據心理壓力指數,根據一段時間內每個脈衝間隔的數據,計算正常與正常RR間期的標準差(SDNN)與連續RR間期的均方根差(RMSSD)的比值,雖能簡單判斷自律神經平衡,但無法收集人群數據產生該人群各年齡的分析參數模型,可使受測者得知自己在同年齡同性別的比較狀況,例如受測者的SDNN是在中位數之上或之下。The Republic of China Patent Publication Announcement No. TWI670046B discloses a measuring device and method for both psychological stress index examination and blood pressure examination. When the measuring device enters the psychological pressure measurement mode, the pump unit performs variable-speed pressurization of the air bag unit, and when the pressure signal of the pressure sensing unit is determined to be a pulse signal, the microprocessor unit will control the pump unit to stop pressurizing and measure the pulse signal to calculate the psychological pressure. Stress index; and according to the psychological stress index, based on the data of each pulse interval within a period of time, calculate the ratio of the standard deviation of normal and normal RR intervals (SDNN) and the root mean square difference (RMSSD) of consecutive RR intervals, although It can simply judge the autonomic nervous system balance, but it cannot collect population data to generate an analysis parameter model for each age of the population. It can allow the subjects to know their comparative status at the same age and gender. For example, the subject's SDNN is at the median. above or below.

有鑑於此,本發明係提供一種互動式心率變異分析參數模型及指標產生系統,以解決先前技術的缺失。In view of this, the present invention provides an interactive heart rate variability analysis parameter model and index generation system to solve the deficiencies of the previous technology.

本發明之第一目的係提供一種互動式心率變異分析參數模型及指標產生系統及可依參數自定義指標及其指標區間,係一種根據特定組群之生理數據量化心律變異分析數值以建立參數模型並通過互動式介面定義相關健康指標。其中,特定組群可以是亞健康族與青少年等,於此不限制。就亞健康族而言,亞健康族可以藉由本發明從亞健康族之長時間運動過程所產生的SDNN (Standard deviation of NN intervals)獲得改善的目的,且使得相應的各項指標也能達到進一步的改善;以及,就青少年而言,青少年可以藉由本發明及早發現例如憂鬱且能夠達到預防治療的功效。The first purpose of the present invention is to provide an interactive heart rate variability analysis parameter model and an index generation system that can customize indicators and index intervals according to parameters. It is a method to quantify the heart rate variability analysis values based on the physiological data of a specific group to establish a parameter model. and define relevant health indicators through an interactive interface. Among them, the specific group may be sub-healthy people, teenagers, etc., and is not limited thereto. As far as sub-healthy people are concerned, sub-healthy people can use the present invention to achieve the goal of improving the SDNN (Standard deviation of NN intervals) generated from the long-term exercise process of sub-healthy people, and enable the corresponding indicators to further achieve Improvement; and, as far as teenagers are concerned, teenagers can detect depression early through the present invention and achieve preventive and therapeutic effects.

為達上述目的或其他目的,本發明係提供一種互動式心率變異分析參數模型及指標產生系統;互動式心率變異分析參數模型及指標產生系統包含一輸入單元、一處理單元與一顯示單元;輸入單元係接收相關於一心跳速率變化程度的一生理數據。處理單元係連接輸入單元。處理單元執行一應用程序,以將生理數據產生具有至少一中位數的一分析參數模型且應用程序自生理數據演算出該等參數,如一心跳間距標準差(SDNN)、一低頻(LF)、一高頻(HF)或超低頻(VLF)之至少一者。應用程序將該等參數之至少一者的數據比對分析參數模型的中位數,以產生相應的複數指標。其中,分析參數模型係建立於一特定群體的生理數據;顯示單元係連接處理單元,以顯示相關於該等參數的項目指標。In order to achieve the above objects or other objects, the present invention provides an interactive heart rate variability analysis parameter model and index generation system; the interactive heart rate variability analysis parameter model and index generation system include an input unit, a processing unit and a display unit; input The unit receives physiological data related to a degree of change in heart rate. The processing unit is connected to the input unit. The processing unit executes an application program to generate an analytical parameter model with at least a median from the physiological data, and the application program calculates the parameters from the physiological data, such as a standard deviation of beat intervals (SDNN), a low frequency (LF), At least one of a high frequency (HF) or a very low frequency (VLF). The application compares the data of at least one of the parameters to the median of the parameter model to generate the corresponding complex indicator. Among them, the analysis parameter model is established based on the physiological data of a specific group; the display unit is connected to the processing unit to display project indicators related to these parameters.

進一步,更包含擷取單元,係連接該輸入單元,該擷取單元供擷取心臟的該生理數據,其中該擷取單元在一預定時間內取得該心跳速率變化程度。Further, it further includes an acquisition unit connected to the input unit, and the acquisition unit is used to acquire the physiological data of the heart, wherein the acquisition unit acquires the heart rate change degree within a predetermined time.

進一步,其中該心跳速率變化程度係基於心率變異分析的方法所取得。Further, the degree of change in the heart rate is obtained based on a heart rate variability analysis method.

進一步,其中該應用程序提供複數該分析參數模型,且該等分析參數模型具有相應的中位數,根據該等參數之至少一者產生相應的該項目指標,又該項目指標藉閥值在該等項目指標界定其指標區間。Further, the application provides a plurality of the analysis parameter models, and the analysis parameter models have corresponding medians, and the corresponding project indicators are generated according to at least one of the parameters, and the project indicators are based on the threshold value at the and other project indicators to define their indicator ranges.

進一步,該應用程序更包含一使用者介面,醫生可藉由該使用者介面挑選個別或複數項目指標,該項目指標為心力狀況、體力狀況、心情穩定度、壓力緊張度、心裡疲勞度與身體疲勞度、壓力累積度、長期壓力、日夜睡眠狀態、夢境品質與睡眠深淺之至少一者,或醫生可依參數組合自定義指標及其指標區間。Furthermore, the application also includes a user interface through which doctors can select individual or multiple project indicators. The project indicators are mental status, physical status, emotional stability, stress, mental fatigue and physical health. At least one of fatigue, stress accumulation, long-term stress, day and night sleep status, dream quality and sleep depth, or the doctor can customize the indicator and its indicator range based on a combination of parameters.

進一步,其中該應用程序更包含自定義指標模塊,係自該等參數中選擇一個或是多個以建立自定義指標,且該自定義指標也提供自訂閥值在該自定義指標界定其指標區間。Furthermore, the application further includes a custom indicator module, which selects one or more of the parameters to create a custom indicator, and the custom indicator also provides a custom threshold to define its indicator. interval.

進一步,其中該應用程序更包含調整模塊,以調整該閥值,更包含警示模塊,在該應用程序將該心跳間距標準差、該低頻、該高頻與該超低頻的參數比對該分析參數模型的該中位數之後,該參數與該中位數不相同時,該警示模塊產生警告訊息。Further, the application further includes an adjustment module to adjust the threshold, and a warning module. The application compares the parameters of the heartbeat interval standard deviation, the low frequency, the high frequency and the ultra-low frequency to the analysis parameters. After the median of the model, when the parameter is different from the median, the warning module generates a warning message.

相較於習知技術,本發明提供一種互動式心率變異分析參數模型及指標產生系統及可自定義指標及其指標區間,能夠讓專家可以收集特定人群之心率變異,可定義各參數之中位數(排除極端值)並進一步依參數組合來自定義指標。Compared with the prior art, the present invention provides an interactive heart rate variability analysis parameter model and an indicator generation system, as well as customizable indicators and their indicator intervals, which allows experts to collect the heart rate variability of specific groups of people and define the median of each parameter. number (excluding extreme values) and further customize the indicator according to the combination of parameters.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後:In order to fully understand the purpose, characteristics and effects of the present invention, the present invention is described in detail through the following specific embodiments and the accompanying drawings, as follows:

於本發明中,係使用「一」或「一個」來描述本文所述的單元、元件和組件。此舉只是為了方便說明,並且對本發明之範疇提供一般性的意義。因此,除非很明顯地另指他意,否則此種描述應理解為包括一個、至少一個,且單數也同時包括複數。In the present invention, “a” or “an” is used to describe the units, elements and components described herein. This is done for convenience of explanation only and to provide a general sense of the scope of the invention. Accordingly, unless it is obvious otherwise, such description should be understood to include one, at least one, and the singular also includes the plural.

於本文中,用語「包含」、「包括」、「具有」、「含有」或其他任何類似用語意欲涵蓋非排他性的包括物。舉例而言,含有複數要件的一元件、結構、製品或裝置不僅限於本文所列出的此等要件而已,而是可以包括未明確列出但卻是該元件、結構、製品或裝置通常固有的其他要件。除此之外,除非有相反的明確說明,用語「或」是指涵括性的「或」,而不是指排他性的「或」。As used herein, the terms “includes,” “includes,” “has,” “contains,” or any other similar term are intended to cover a non-exclusive inclusion. For example, an element, structure, article or device containing plural elements is not limited to the elements listed herein, but may include elements not expressly listed but that are generally inherent to the element, structure, article or device. Other requirements. Otherwise, unless expressly stated to the contrary, the term "or" means an inclusive "or" and not an exclusive "or".

請參考圖1,係本發明一實施例之互動式心率變異分析參數模型及指標產生系統的方塊圖。在圖1中,互動式心率變異分析參數模型及指標產生系統10包含一輸入單元12、一處理單元14與一顯示單元16。Please refer to FIG. 1 , which is a block diagram of an interactive heart rate variability analysis parameter model and index generation system according to an embodiment of the present invention. In FIG. 1 , the interactive heart rate variability analysis parameter model and index generation system 10 includes an input unit 12 , a processing unit 14 and a display unit 16 .

請參考圖2,係本發明另一實施例之互動式心率變異分析參數模型及指標產生系統的方塊圖;該輸入單元12係接收相關於一心跳速率變化程度的一生理數據BD;於此,心跳速率變化程度係基於心率變異分析的方法所取得。Please refer to Figure 2, which is a block diagram of an interactive heart rate variability analysis parameter model and index generation system according to another embodiment of the present invention; the input unit 12 receives a physiological data BD related to a heart rate variation degree; here, The degree of change in heart rate is obtained based on the method of heart rate variability analysis.

於另一實施例中,輸入單元12可以透過擷取單元18自受試者擷取其心臟的生理數據BD,例如擷取單元18可以包含電極片、放大電路、訊號處理電路、類比數位轉換電路等,其中擷取單元18可以藉由電極片取得受試者相應的肌電訊號;值得注意的是,心跳速率變化程度也可以基於心率變異分析的方法所取得,例如心率變異分析計算方式主要是分析藉由心電圖或脈搏量測所得到的心跳與心跳間隔的時間序列,例如藉由心電圖中的R波峰,藉由量測兩R波峰之間的時間間隔,再來利用離散傅立葉變換將心跳間隔的時間序列轉換為頻域,以功率頻譜密度或是頻譜分佈的方式表現,而一般心率變異訊號的頻譜分析,需使用200次至500次連續心跳間期穩定記錄表現,因此需要一記錄時間例如2分鐘;心跳間期頻譜頻率出現在1Hz以下,並主要可於0到0.4Hz的範圍內找到數個波峰。In another embodiment, the input unit 12 can acquire the physiological data BD of the subject's heart through the acquisition unit 18. For example, the acquisition unit 18 may include electrode pads, amplification circuits, signal processing circuits, and analog-to-digital conversion circuits. Etc., the acquisition unit 18 can obtain the subject's corresponding electromyographic signal through the electrode pads; it is worth noting that the degree of change in the heart rate can also be obtained based on the heart rate variability analysis method. For example, the heart rate variability analysis calculation method is mainly Analyze the time series of heartbeats and heartbeat intervals obtained through electrocardiogram or pulse measurement, such as the R wave peak in the electrocardiogram, by measuring the time interval between two R wave peaks, and then using the discrete Fourier transform to convert the heartbeat interval The time series is converted into the frequency domain and expressed in the form of power spectrum density or spectrum distribution. Generally, spectrum analysis of heart rate variability signals requires stable recording performance of 200 to 500 consecutive heartbeat intervals, so a recording time is required, such as 2 minutes; the frequency of the heartbeat interval spectrum appears below 1Hz, and several peaks can mainly be found in the range of 0 to 0.4Hz.

處理單元14連接輸入單元12;處理單元14執行一應用程序APP,以將特定群體的各年齡之生理數據BD經去除極端值計算並產出具有至少一中位數MD的一分析參數模型AIM。應用程序APP自生理數據BD演算出複數參數,如一心跳間距標準差(SDNN)、一低頻(LF)、一高頻(HF)或一超低頻(VLF)或其上述數據之組合,例如低頻(LF)與高頻(HF)的比值(LF/HF)、高頻(HF)加低頻(LF)之中低頻(LF)所佔之百分比(LF%)等,其中該心跳間距標準差於臨床意義可代表為自律神經整體活性的高低,該低頻之頻段的範圍可以在0.04 Hz至0.15 Hz並於臨床意義可代表為交感神經及副交感神經之活性,該高頻之頻段的範圍可以在0.15 Hz至0.4 Hz並於臨床意義可代表為副交感神經之活性,該超低頻之頻段的範圍所使用的頻率為≦0.04 Hz,而低頻(LF)與高頻(HF)的比值(LF/HF) 於臨床意義可代表為自律神經活性平衡;值得注意的是,分析參數模型AIM與中位數MD的數量可以是一個或是多個,應用程序APP可以自多個分析參數模型AIM選擇出一個或是多個模型,且每一分析參數模型AIM都有其對應的中位數MD,且中位數MD還可以根據該等參數PT而不同;於此,分析參數模型AIM係根據特定群體的該生理數據BD所建立的,其中該特定群體可以是100位運動員、50位65歲以上的老年人、20位30歲到50歲的青壯年、30位小學生等,例如取用50位18歲男生之LF,經專家依其臨床診斷的並藉由一使用者介面UI去除極端值計算後以幫助醫生產生該等18歲男生之分析參數模型AIM,其中最重要的是中位數MD。The processing unit 14 is connected to the input unit 12; the processing unit 14 executes an application program APP to calculate and generate an analytical parameter model AIM with at least a median MD by removing extreme values from the physiological data BD of each age of a specific group. The application APP calculates complex parameters from the physiological data BD, such as a standard deviation of heartbeat intervals (SDNN), a low frequency (LF), a high frequency (HF) or a very low frequency (VLF) or a combination of the above data, such as low frequency ( The ratio of LF) to high frequency (HF) (LF/HF), the percentage of low frequency (LF) in high frequency (HF) plus low frequency (LF) (LF%), etc., among which the standard deviation of the heartbeat interval is clinically The significance can be represented by the overall activity of the autonomic nervous system. The low-frequency frequency band can range from 0.04 Hz to 0.15 Hz. The clinical significance can be represented by the activity of the sympathetic and parasympathetic nerves. The high-frequency frequency band can range from 0.15 Hz. to 0.4 Hz and can represent the activity of parasympathetic nerves in clinical significance. The frequency used in the ultra-low frequency range is ≦0.04 Hz, and the ratio of low frequency (LF) to high frequency (HF) (LF/HF) is The clinical significance can be represented by the balance of autonomic nervous system activity; it is worth noting that the number of analysis parameter models AIM and median MD can be one or more, and the application APP can select one or more from multiple analysis parameter models AIM Multiple models, and each analysis parameter model AIM has its corresponding median MD, and the median MD can also be different according to the parameters PT; here, the analysis parameter model AIM is based on the physiological characteristics of a specific group. Established by data BD, the specific group can be 100 athletes, 50 elderly people over 65 years old, 20 young adults aged 30 to 50, 30 primary school students, etc. For example, use 50 18-year-old boys LF is calculated by experts based on their clinical diagnosis and removing extreme values through a user interface UI to help doctors generate the analytical parameter model AIM of these 18-year-old boys, the most important of which is the median MD.

於另一實施例中,處理單元14執行應用程序APP,根據該等參數PT之至少一者比對該分析參數模型AIM產生相應的項目指標IDX及其指標區間,醫生可用該使用者介面UI挑選個別或複數項目指標IDX或自定義指標M1及其指標區間,例如項目指標IDX可以為心力狀況、體力狀況、心情穩定度、壓力緊張度、心裡疲勞度與身體疲勞度、壓力累積度、長期壓力、日夜睡眠狀態、夢境品質與睡眠深淺之至少一者,或醫生可依參數組合自定義指標及其指標區間;又項目指標IDX藉閥值VL在項目指標IDX界定其指標區間,以一情境進行說明,該項目指標IDX其中之一的”心力狀況”採計該心跳間距標準差(SDNN),若該分析參數模型AIM的中位數定義為“正常”,則高於中位數MD約10個百分比以上可於該閥值VL上顯示為”心煩易怒”,低於中位數MD約10個百分比以下可於該閥值VL上顯示為”心灰意冷”。In another embodiment, the processing unit 14 executes the application APP, and compares the analysis parameter model AIM with at least one of the parameters PT to generate the corresponding project index IDX and its index interval, and the doctor can use the user interface UI to select Individual or multiple project indicators IDX or custom indicators M1 and their indicator ranges. For example, project indicators IDX can be mental status, physical status, mood stability, stress tension, mental fatigue and physical fatigue, stress accumulation, and long-term stress. , at least one of day and night sleep state, dream quality and sleep depth, or the doctor can customize the indicator and its indicator range according to the parameter combination; the project indicator IDX uses the threshold VL to define its indicator range in the project indicator IDX, and is carried out in a situation Note that "cardiac status", one of the project indicators IDX, measures the standard deviation of the heartbeat distance (SDNN). If the median of the analysis parameter model AIM is defined as "normal", it will be about 10 higher than the median MD. A percentage above the median MD can be displayed as "upset and irritable" on the threshold VL, and a value below about 10 percentage points below the median MD can be displayed as "frustrated" on the threshold VL.

於另一實施例中,該應用程序APP更包含自定義指標模塊M1,係自該等參數PT中選擇一個或是多個以建立自定義指標M1,且該自定義指標模塊M1也提供自訂閥值在該自定義指標界定其指標區間,醫生可用該使用者介面UI自定義指標及該指標區間,例如於該自定義指標模塊M1設定自定義指標為”心力狀況”,並從該等參數PT選擇心跳間距標準差(SDNN),若該分析參數模型AIM的中位數定義為“正常”,則高於中位數MD約15個百分比以上可於自訂之閥值VL上設定顯示為”心煩易怒”,低於中位數MD約15個百分比以下可於自訂之閥值VL上設定顯示為”心灰意冷”。In another embodiment, the application APP further includes a custom indicator module M1, which selects one or more parameters PT to create a custom indicator M1, and the custom indicator module M1 also provides customized The threshold defines the indicator range in the custom indicator. The doctor can use the user interface UI to customize the indicator and the indicator range. For example, in the custom indicator module M1, set the custom indicator to "cardiac status", and use these parameters to PT selects the standard deviation of heartbeat intervals (SDNN). If the median of the analysis parameter model AIM is defined as "normal", then it is about 15 percentage points higher than the median MD and can be set on the custom threshold VL to display as "Upset and irritable", which is about 15 percentage points lower than the median MD, can be set on the customized threshold VL to be displayed as "frustrated".

於另一實施例中,該應用程序APP更包含調整模塊M2,以調整該閥值VL,更包含警示模塊M3,在該應用程序APP將該心跳間距標準差、該低頻、該高頻或該超低頻的參數比對該分析參數模型AIM的該中位數MD之後,該參數與該中位數MD不相同時,該警示模塊M3產生警告訊息。In another embodiment, the application APP further includes an adjustment module M2 to adjust the threshold VL, and a warning module M3. In the application APP, the standard deviation of the heartbeat interval, the low frequency, the high frequency or the After the ultra-low frequency parameters are compared with the median MD of the analysis parameter model AIM, when the parameter is different from the median MD, the warning module M3 generates a warning message.

顯示單元16係連接處理單元14,以顯示相關於該等參數PT的項目指標IDX。The display unit 16 is connected to the processing unit 14 to display the project index IDX related to the parameters PT.

請參考圖3,係本發明一實施例之互動式心率變異分析參數模型及指標產生系統的閥值示意圖,其中該閥值VL可以圖式表示,例如扇型、圓形、三角形等,並可以區分項目指標IDX所界定之其指標區間,例如"心力狀況”是項目指標IDX,當該閥值VL顯示”心煩易怒”,則指針將位於紅色區間。Please refer to Figure 3, which is a threshold diagram of an interactive heart rate variability analysis parameter model and indicator generation system according to an embodiment of the present invention. The threshold VL can be represented graphically, such as a fan shape, a circle, a triangle, etc., and can Distinguish the indicator range defined by the project indicator IDX. For example, "mental state" is the project indicator IDX. When the threshold VL displays "upset and irritable", the pointer will be in the red range.

於另一實施例中,一青年男性之該心跳間距標準差(SDNN)顯示53.2、其下方顯示該青年男性與該特定族群之SDNN相差之倍數例如1.95,並於顯示單元16顯示該項目指標IDX及該閥值VL,例如於該項目指標IDX之”心力狀況”顯示該閥值VL為”正常範圍”,則指針將位於藍色區段。In another embodiment, the standard deviation of heartbeat intervals (SDNN) of a young male is displayed as 53.2, and below it is displayed a multiple of the difference between the young male and the SDNN of the specific ethnic group, such as 1.95, and the project indicator IDX is displayed on the display unit 16 And the threshold VL. For example, if the "mental status" of the project indicator IDX shows that the threshold VL is "normal range", the pointer will be in the blue section.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。The present invention has been disclosed above with preferred embodiments. However, those skilled in the art should understand that the embodiments are only used to illustrate the present invention and should not be interpreted as limiting the scope of the present invention. It should be noted that any changes and substitutions that are equivalent to this embodiment should be considered to be within the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope of the patent application.

10:互動式心率變異分析參數模型及指標產生系統10: Interactive heart rate variability analysis parameter model and indicator generation system

12:輸入單元12:Input unit

14:處理單元14: Processing unit

16:顯示單元16:Display unit

18:擷取單元18: Capture unit

APP:應用程序APP: application

BD:生理數據BD: physiological data

MD:中位數MD: median

AIM:分析參數模型AIM: Analytical Parametric Model

PT:參數PT: parameters

IDX:項目指標IDX: project indicator

VL:閥值VL: threshold

UI:使用者介面UI: User interface

M1:自定義指標模塊M1: Custom indicator module

M2:調整模塊M2: Adjustment module

M3:警示模塊M3: Alert module

圖1係本發明一實施例之互動式心率變異分析參數模型及指標產生系統的方塊圖; 圖2係本發明另一實施例之互動式心率變異分析參數模型及指標產生系統的方塊圖; 圖3係本發明另一實施例之互動式心率變異分析參數模型及指標產生系統的閥值示意圖。 Figure 1 is a block diagram of an interactive heart rate variability analysis parameter model and index generation system according to an embodiment of the present invention; Figure 2 is a block diagram of an interactive heart rate variability analysis parameter model and index generation system according to another embodiment of the present invention; Figure 3 is a threshold diagram of an interactive heart rate variability analysis parameter model and index generation system according to another embodiment of the present invention.

10:互動式心率變異分析參數模型及指標產生系統 10: Interactive heart rate variability analysis parameter model and indicator generation system

12:輸入單元 12:Input unit

14:處理單元 14: Processing unit

16:顯示單元 16:Display unit

Claims (8)

一種互動式心率變異分析參數模型及指標產生系統,係包含:輸入單元,係接收相關於心跳速率變化程度的生理數據;處理單元,係連接該輸入單元,該處理單元執行一應用程序,以將特定群體的各年齡之生理數據經計算並產出具有至少一中位數的分析參數模型,該應用程序自該生理數據演算出複數的參數,如心跳間距標準差(SDNN)、低頻(LF)與高頻(HF)、VLF(超低頻)或組合之至少一者,又該應用程序協助專家將該心跳間距標準差、該低頻、該高頻與該超低頻等之至少一者的參數比對該分析參數模型的該中位數以產生相應的複數指標及其指標區間,其中該分析參數模型係建立於特定群體的該生理數據;顯示單元,係連接該處理單元,以顯示相關於該等參數的項目指標,其中該處理單元執行該應用程序,讓該分析參數根據該等參數之至少一者產生相應的該項目指標,又該項目指標藉由閥值在該等項目指標界定其指標區間,該應用程序更包含一使用者介面,醫生可藉由該使用者介面挑選個別或複數項目指標,且該醫生可依參數組合自定義指標及其指標區間,又該項目指標為心力狀況、體力狀況、心情穩定度、壓力緊張度、心裡疲勞度與身體疲勞度、壓力累積度、長期壓力、日夜睡眠狀態、夢境品質與睡眠深淺之至少一者。 An interactive heart rate variability analysis parameter model and index generation system includes: an input unit that receives physiological data related to the degree of change in heart rate; a processing unit that is connected to the input unit, and the processing unit executes an application program to The physiological data of each age group of a specific group is calculated and an analytical parameter model with at least a median is generated. The application calculates complex parameters from the physiological data, such as standard deviation of heartbeat intervals (SDNN), low frequency (LF) and at least one of high frequency (HF), VLF (very low frequency) or a combination, and the application assists experts to compare parameters of at least one of the standard deviation of the heartbeat interval, the low frequency, the high frequency and the ultra-low frequency, etc. The median of the analysis parameter model is used to generate corresponding complex indicators and their index intervals, wherein the analysis parameter model is established based on the physiological data of a specific group; the display unit is connected to the processing unit to display information related to the Project indicators of such parameters, wherein the processing unit executes the application program to allow the analysis parameter to generate a corresponding project indicator based on at least one of the parameters, and the project indicator defines its indicator among the project indicators through a threshold interval, the application also includes a user interface through which the doctor can select individual or multiple project indicators, and the doctor can customize the indicators and their indicator ranges based on the parameter combination, and the project indicators are heart rate, At least one of physical condition, mood stability, stress intensity, mental fatigue and physical fatigue, stress accumulation, long-term stress, day and night sleep status, dream quality and sleep depth. 如請求項1所述之互動式心率變異分析參數模型及指標產生系統,更包含擷取單元,係連接該輸入單元,該擷取單元供擷取心臟的該生理數據。 The interactive heart rate variability analysis parameter model and index generation system as described in claim 1 further includes an acquisition unit connected to the input unit, and the acquisition unit is used to acquire the physiological data of the heart. 如請求項2所述之互動式心率變異分析參數模型及指標產生系統,其中該擷取單元在一預定時間內取得該心跳速率變化程度。 The interactive heart rate variability analysis parameter model and index generation system as described in claim 2, wherein the acquisition unit acquires the heart rate variation degree within a predetermined time. 如請求項1或2所述之互動式心率變異分析參數模型及指標產生系統,其中該心跳速率變化程度係基於心率變異分析的方法所取得。 The interactive heart rate variability analysis parameter model and index generation system as described in claim 1 or 2, wherein the heart rate variation degree is obtained based on the heart rate variability analysis method. 如請求項1所述之互動式心率變異分析參數模型及指標產生系統,其中該應用程序提供複數該分析參數模型,且該等分析參數模型具有相應的中位數。 The interactive heart rate variability analysis parameter model and indicator generation system as described in claim 1, wherein the application provides a plurality of the analysis parameter models, and the analysis parameter models have corresponding medians. 如請求項1所述之互動式心率變異分析參數模型及指標產生系統,其中該應用程序更包含自定義指標模塊,係自該等參數中選擇一個或是多個以建立自定義指標,且該自定義指標也提供自訂閥值以在該自定義指標界定其指標區間。 The interactive heart rate variability analysis parameter model and indicator generation system as described in request item 1, wherein the application further includes a custom indicator module, which selects one or more from the parameters to create a custom indicator, and the Custom indicators also provide custom thresholds to define the indicator range within the custom indicator. 如請求項1所述之互動式心率變異分析參數模型及指標產生系統,其中該應用程序更包含調整模塊,以調整該閥值。 The interactive heart rate variability analysis parameter model and indicator generation system as described in claim 1, wherein the application further includes an adjustment module to adjust the threshold. 如請求項1所述之互動式心率變異分析參數模型及指標產生系統,其中該應用程序更包含警示模塊,在該應用程序將該心跳間距標準差、該低頻、該高頻與該超低頻的參數比對該分析參數模型的該中位數之後,該參數與該中位數不相同時,該警示模塊產生警告訊息。 The interactive heart rate variability analysis parameter model and indicator generation system as described in request item 1, wherein the application further includes a warning module, and the application program combines the standard deviation of the heartbeat interval, the low frequency, the high frequency and the ultra-low frequency. After the parameter is compared with the median of the analysis parameter model, when the parameter is different from the median, the warning module generates a warning message.
TW111138322A 2022-10-10 2022-10-10 Interactive heart rate variability analysis parameter model and index generation system TWI835335B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111138322A TWI835335B (en) 2022-10-10 2022-10-10 Interactive heart rate variability analysis parameter model and index generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111138322A TWI835335B (en) 2022-10-10 2022-10-10 Interactive heart rate variability analysis parameter model and index generation system

Publications (2)

Publication Number Publication Date
TWI835335B true TWI835335B (en) 2024-03-11
TW202416289A TW202416289A (en) 2024-04-16

Family

ID=91269716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138322A TWI835335B (en) 2022-10-10 2022-10-10 Interactive heart rate variability analysis parameter model and index generation system

Country Status (1)

Country Link
TW (1) TWI835335B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174205A1 (en) * 2009-01-08 2010-07-08 Simon Christopher Wegerif Method, System and Software Product for the Measurement of Heart Rate Variability
CN110384482A (en) * 2019-06-26 2019-10-29 广州视源电子科技股份有限公司 Electrocardiosignal classification method and device, computer equipment and storage medium
CN113133752A (en) * 2020-02-25 2021-07-20 上海鼎博医疗科技有限公司 Psychological assessment method, system, device and medium based on heart rate variability analysis
CN114680857A (en) * 2020-12-30 2022-07-01 王励 Parameter determination method, parameter determination device, storage medium, and electronic apparatus
CN114767112A (en) * 2021-01-22 2022-07-22 中国移动通信有限公司研究院 Emotion recognition method and device and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174205A1 (en) * 2009-01-08 2010-07-08 Simon Christopher Wegerif Method, System and Software Product for the Measurement of Heart Rate Variability
CN110384482A (en) * 2019-06-26 2019-10-29 广州视源电子科技股份有限公司 Electrocardiosignal classification method and device, computer equipment and storage medium
CN113133752A (en) * 2020-02-25 2021-07-20 上海鼎博医疗科技有限公司 Psychological assessment method, system, device and medium based on heart rate variability analysis
CN114680857A (en) * 2020-12-30 2022-07-01 王励 Parameter determination method, parameter determination device, storage medium, and electronic apparatus
CN114767112A (en) * 2021-01-22 2022-07-22 中国移动通信有限公司研究院 Emotion recognition method and device and electronic equipment

Also Published As

Publication number Publication date
TW202416289A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
US9265430B2 (en) Method, system and software product for the measurement of heart rate variability
Khandoker et al. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea
JP4753881B2 (en) Apparatus and signal processing method for monitoring, detecting and classifying sleep disordered breathing derived from electrocardiogram
US20030093002A1 (en) Function indicator for autonomic nervous system based on phonocardiogram
US20120136226A1 (en) Pulse Oximetry For Determining Heart Rate Variability As A Measure Of Susceptibility To Stress
CN103445767B (en) The full-automatic autonomic nervous function detector of sensor monitoring interactive controlling
JP2002528146A (en) Anesthesia depth monitor
US20140288446A1 (en) Apparatus for Monitoring Physiological Condition
KR102561888B1 (en) Anxiety disorder monitoring system, and method for determining anxiety disorder in the same
JP2021503354A (en) Methods and devices for monitoring the effectiveness of physical activity, especially sports activities
GB2469547A (en) Measurement of heart rate variability
KR101771835B1 (en) Method for inter-sleep analysis based on biomedical signal
Reanaree et al. Stress and office-syndrome detection using EEG, HRV and hand movement
Gandhi et al. Mental stress assessment-a comparison between HRV based and respiration based techniques
TW201733525A (en) Measuring device and method for both psychology stress index inspection and blood pressure inspection by defining psychology stress index as ratio of SDNN to RMSSD to quantify psychology stress level degree and using blood pressure measuring device to realize inspection of psychology stress index
CN117918809A (en) Interactive heart rate variability analysis parameter model and index generation system
TWI835335B (en) Interactive heart rate variability analysis parameter model and index generation system
RU2248745C1 (en) Method and device for studying functional state of brain
Tseng et al. A method of measuring sleep quality by using PPG
Farhan et al. Linear analysis of ECG data variability to assess the autonomic nervous system in two different body positions
TWM651434U (en) Early warning system for autonomic dysfunction
Chang Portable obstructive sleep apnea screening system using overnight ECG and a PDA-based wireless transmission system
Kumar et al. Innovative Pulse Monitoring: Exploring Auscultation-Based Diagnostic Technique
Wang et al. Analysis of autonomic nervous system based on HRV
Suma et al. Pulse Rate Variability for Detection of Autonomic Tone of an Individual