TWI831603B - Tool remaining life prediction method based on current information and system thereof - Google Patents
Tool remaining life prediction method based on current information and system thereof Download PDFInfo
- Publication number
- TWI831603B TWI831603B TW112104128A TW112104128A TWI831603B TW I831603 B TWI831603 B TW I831603B TW 112104128 A TW112104128 A TW 112104128A TW 112104128 A TW112104128 A TW 112104128A TW I831603 B TWI831603 B TW I831603B
- Authority
- TW
- Taiwan
- Prior art keywords
- tool
- remaining life
- training
- accuracy
- data set
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 192
- 238000012545 processing Methods 0.000 claims abstract description 94
- 238000012795 verification Methods 0.000 claims description 142
- 239000000463 material Substances 0.000 claims description 102
- 235000019589 hardness Nutrition 0.000 claims description 45
- 238000003754 machining Methods 0.000 claims description 22
- 230000011218 segmentation Effects 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000002790 cross-validation Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Images
Landscapes
- Numerical Control (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本發明是關於一種刀具剩餘壽命預測方法及其系統,特別是關於一種以電流資訊為基礎之刀具剩餘壽命預測方法及其系統。The present invention relates to a tool remaining life prediction method and its system, and in particular to a tool remaining life prediction method and its system based on current information.
機械產業為奠定整個社會向上蓬勃發展基石,如今保留著完整且強韌的工具機以及精密機械零件的供應鏈。可是隨著人民薪資以及教育水準的提高,大多數人對工廠環境與日夜輪班制度工作都會再三考慮,對於許多進行機械加工的生廠商而言,目前都遇到了營運成本上揚以及人力短缺的窘境,因此推行工業4.0智慧製造,降低廠區內員工人數發展,而無人工廠為目前機械產業的整體趨勢,且監控刀具磨耗狀況推估加工品質與加工異常情況為進行智慧製造極其重要的一環,因無人工廠若忽視加工品質非常容易生產出大量廢品或是整修件,導致無謂的時間與成本浪費,對公司營運產生相當的負面影響。綜上所述,進行刀具磨耗監控主要可以帶來三大好處,第一好處是工件加工品質提升,第二好處是加工效率的提高,第三好處是營運成本降低。The machinery industry has laid the foundation for the vigorous development of the entire society and today retains a complete and strong supply chain of machine tools and precision machinery parts. However, with the improvement of people's wages and education levels, most people will think twice about the factory environment and day and night shift system. For many manufacturers that perform mechanical processing, they are currently encountering the dilemma of rising operating costs and manpower shortages. Therefore, Industry 4.0 smart manufacturing is promoted to reduce the number of employees in the factory. Unmanned factories are the overall trend in the current machinery industry, and monitoring tool wear and estimating processing quality and processing abnormalities is an extremely important part of smart manufacturing. Because unmanned factories If the processing quality is ignored, it is very easy to produce a large number of scrap products or repair parts, resulting in unnecessary waste of time and cost, and a considerable negative impact on the company's operations. To sum up, tool wear monitoring can bring three main benefits. The first benefit is to improve the quality of workpiece processing, the second benefit is to improve processing efficiency, and the third benefit is to reduce operating costs.
刀具磨耗與工件加工品質息息相關,因刀具磨耗增加會造成切削阻力顯著上升,導致加工後工件尺寸變動範圍以及加工面表面粗糙度相應增加,最終對加工品質造成影響。現今加工製程經常使用至少多把刀(不同目的之刀具)進行加工,而刀具嚴重磨耗時則是會明顯增加以材料移除為目的之粗加工刀具斷裂的風險,當粗加工刀具斷裂後其加工預留量將會遠大於刀具斷裂前,造成接續加工之刀具因預留量太大發生連鎖反應一齊斷裂或發生插刀。精加工刀具嚴重磨耗或斷裂則是會造成加工精度不良等風險,因此刀具嚴重磨耗或斷裂會對機台稼動率產生顯著影響,技術人員需停止生產、換刀、對刀及整修工件。而目前關於刀具磨耗的管控方法,主要為參照技術人員長久以來的經驗法則,並且人員為了要減少加工中的風險與意外狀況,技術人員常會以過去經驗為指標,訂定出加工某一固定的工件數後便統一進行刀具更換之動作,或者在與下一班的同事交接的過程中,對於刀具的使用情況難以用量化的方式清楚說明,導致下一班的人員在開始加工前一律更換新刀,上述之情況在無形中也會浪費許多堪用的刀具。由此可知,目前市場上缺乏一種僅需少量數據訓練、成本低廉、符合效益且具有一定準確度的以電流資訊為基礎之刀具剩餘壽命預測方法及其系統,故相關研究者均在尋求其解決之道。Tool wear is closely related to the processing quality of the workpiece. Increased tool wear will cause a significant increase in cutting resistance, resulting in a corresponding increase in the size variation range of the workpiece after processing and the surface roughness of the machined surface, ultimately affecting the processing quality. Today's machining processes often use at least multiple knives (tools for different purposes) for processing. When the tools are severely worn, it will significantly increase the risk of roughing tool breakage for the purpose of material removal. When the roughing tool breaks, it will be processed. The reserved amount will be much larger than before the tool breaks, causing the subsequent processing tools to break all together or insert the tool due to a chain reaction due to the excessive reserved amount. Severe wear or breakage of finishing tools will lead to risks such as poor machining accuracy. Therefore, severe wear or breakage of finishing tools will have a significant impact on the machine utilization rate. Technicians need to stop production, change tools, set tools, and repair workpieces. The current management and control methods for tool wear mainly refer to the long-standing rules of experience of technicians. In order to reduce risks and accidents during processing, technicians often use past experience as an indicator to develop a fixed process for processing. After the number of workpieces, the tool replacement action is carried out uniformly, or during the handover process with colleagues on the next shift, it is difficult to clearly explain the use of the tools in a quantitative way, resulting in the personnel on the next shift replacing new ones before starting processing. Knives, the above situation will virtually waste many useful knives. It can be seen that there is currently a lack of a tool remaining life prediction method and system based on current information that requires only a small amount of data training, is low-cost, cost-effective, and has a certain degree of accuracy, so relevant researchers are looking for solutions. way.
因此,本發明的目的在於提供一種以電流資訊為基礎之刀具剩餘壽命預測方法及其系統,其可透過電流增加倍率以及廣義迴歸類神經網路(General Regression Neural Network;GRNN)訓練預測刀具於不同材料及不同情境下的剩餘壽命模型,以使用少量的數據便可訓練出符合效益的情境模型,且能準確地預測出刀具的剩餘壽命,進而解決習知的模型建立法則需要大量實驗數據、預測須依據人員經驗法則以及成本過高的問題。Therefore, the purpose of the present invention is to provide a method and system for predicting the remaining life of a tool based on current information, which can predict the tool life at different times through current increase rate and General Regression Neural Network (GRNN) training. Materials and remaining life models under different scenarios can use a small amount of data to train a cost-effective scenario model and accurately predict the remaining life of the tool, thus solving the conventional model building rules that require a large amount of experimental data and predictions. Must be based on personnel rules of thumb and excessive cost issues.
依據本發明的方法態樣的一實施方式提供一種以電流資訊為基礎之刀具剩餘壽命預測方法,其用以預測一刀具之一剩餘壽命,並包含以下步驟:一數據取得步驟、一數據正規化步驟、一數據分割步驟及一情境模型訓練驗證步驟。數據取得步驟包含驅動一運算處理器取得來自一記憶體之複數刀具加工數據,此些刀具加工數據包含一電流增加倍率。電流增加倍率為一即時負載電流與一新刀初始負載電流之一比值。數據正規化步驟包含驅動運算處理器正規化此些刀具加工數據而產生複數正規化刀具加工數據,以使此些正規化刀具加工數據之間的一大小尺度相同。數據分割步驟包含驅動運算處理器將此些正規化刀具加工數據分割為一訓練數據組與一驗證數據組。情境模型訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部與訓練數據組之一部分訓練一第一刀具剩餘壽命模型與一第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型與第二刀具剩餘壽命模型而產生一第一準確度與一第二準確度,並比較第一準確度與第二準確度以決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。An embodiment of the method aspect of the present invention provides a method for predicting the remaining life of a tool based on current information, which is used to predict the remaining life of a tool and includes the following steps: a data acquisition step, and data normalization steps, a data segmentation step and a scenario model training and verification step. The data acquisition step includes driving an arithmetic processor to acquire a plurality of tool processing data from a memory, and the tool processing data includes a current increase rate. The current increase rate is a ratio of an immediate load current to a new knife's initial load current. The data normalization step includes driving the computing processor to normalize the tool processing data to generate plural normalized tool processing data, so that a size scale between the normalized tool processing data is the same. The data segmentation step includes driving the computing processor to segment the normalized tool machining data into a training data group and a verification data group. The scenario model training and verification step includes driving the computing processor to train a first tool remaining life model and a second tool remaining life model using all of the training data set and a part of the training data set, and using the verification data set to verify the first trained tool remaining life model. The tool remaining life model and the second tool remaining life model generate a first accuracy and a second accuracy, and the first accuracy and the second accuracy are compared to determine whether to use the second tool remaining life model to predict the tool remaining life. lifespan.
藉此,本發明的以電流資訊為基礎之刀具剩餘壽命預測方法可透過電流增加倍率以及GRNN訓練預測刀具於不同材料及不同情境下的剩餘壽命模型,以使用少量的數據便可訓練出符合效益的情境模型,且能準確地預測出刀具的剩餘壽命。In this way, the tool remaining life prediction method based on current information of the present invention can predict the remaining life model of the tool under different materials and different situations through current increase rate and GRNN training, so that a cost-effective model can be trained using a small amount of data. situation model and can accurately predict the remaining life of the tool.
前述實施方式的其他實施例如下:前述此些刀具加工數據更包含一刀具使用時間、一當下時間加工電流斜率趨勢、一加工切寬及至少一加工材料硬度。電流增加倍率用以判斷剩餘壽命之終點。Other examples of the aforementioned embodiments are as follows: the aforementioned tool processing data further include a tool usage time, a current slope trend of the machining current, a processing cutting width and at least a hardness of the processing material. The current increase rate is used to determine the end of the remaining life.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一者之全部數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set Part of it is all the data of one of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一者之一部分數據混合此些材料之其餘者之全部數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set A portion of the data that is part of one of these materials is mixed with all the data of the rest of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一中後期數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set Part of it is the middle and later data of one of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
依據本發明的結構態樣的一實施方式提供一種以電流資訊為基礎之刀具剩餘壽命預測系統,其用以預測一刀具之一剩餘壽命,並包含一記憶體與一運算處理器。記憶體儲存複數刀具加工數據,此些刀具加工數據包含一電流增加倍率,電流增加倍率為一即時負載電流與一新刀初始負載電流之一比值。運算處理器電性連接記憶體並接收此些刀具加工數據,運算處理器經配置以實施包含以下步驟之操作:一數據正規化步驟、一數據分割步驟及一情境模型訓練驗證步驟。數據正規化步驟包含正規化此些刀具加工數據而產生複數正規化刀具加工數據,以使此些正規化刀具加工數據之間的一大小尺度相同。數據分割步驟包含將此些正規化刀具加工數據分割為一訓練數據組與一驗證數據組。情境模型訓練驗證步驟包含使用訓練數據組之全部與訓練數據組之一部分訓練一第一刀具剩餘壽命模型與一第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型與第二刀具剩餘壽命模型而產生一第一準確度與一第二準確度,並比較第一準確度與第二準確度以決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。An embodiment of the structural aspect of the present invention provides a tool remaining life prediction system based on current information, which is used to predict the remaining life of a tool and includes a memory and a computing processor. The memory stores a plurality of tool processing data. The tool processing data includes a current increase rate. The current increase rate is a ratio of an immediate load current and a new tool initial load current. The computing processor is electrically connected to the memory and receives the tool machining data. The computing processor is configured to perform an operation including the following steps: a data normalization step, a data segmentation step and a scenario model training and verification step. The data normalization step includes normalizing the tool processing data to generate plural normalized tool processing data, so that a large scale between the normalized tool processing data is the same. The data segmentation step includes segmenting the normalized tool machining data into a training data group and a verification data group. The scenario model training and verification step includes using the entire training data set and a part of the training data set to train a first tool remaining life model and a second tool remaining life model, and using the verification data set to verify the trained first tool remaining life model. and the second tool remaining life model to generate a first accuracy and a second accuracy, and compare the first accuracy and the second accuracy to determine whether to use the second tool remaining life model to predict the remaining life of the tool.
藉此,本發明的以電流資訊為基礎之刀具剩餘壽命預測系統可透過電流增加倍率以及GRNN訓練預測刀具於不同材料及不同情境下的剩餘壽命模型,以使用少量的數據便可訓練出符合效益的情境模型,且能準確地預測出刀具的剩餘壽命。In this way, the tool remaining life prediction system based on current information of the present invention can predict the remaining life model of the tool under different materials and different situations through current increase rate and GRNN training, so that it can train an efficient model using a small amount of data. situation model and can accurately predict the remaining life of the tool.
前述實施方式的其他實施例如下:前述此些刀具加工數據更包含一刀具使用時間、一當下時間加工電流斜率趨勢、一加工切寬及至少一加工材料硬度。電流增加倍率用以判斷剩餘壽命之終點。Other examples of the aforementioned embodiments are as follows: the aforementioned tool processing data further include a tool usage time, a current slope trend of the machining current, a processing cutting width and at least a hardness of the processing material. The current increase rate is used to determine the end of the remaining life.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一者之全部數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set Part of it is all the data of one of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一者之一部分數據混合此些材料之其餘者之全部數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set A portion of the data that is part of one of these materials is mixed with all the data of the rest of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
前述實施方式的其他實施例如下:前述情境模型訓練驗證步驟更包含一第一訓練驗證步驟、一第二訓練驗證步驟及一準確度比較步驟。第一訓練驗證步驟包含驅動運算處理器使用訓練數據組之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組之全部為複數材料之全部數據。第二訓練驗證步驟包含驅動運算處理器使用訓練數據組之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組之部分為此些材料之一中後期數據。準確度比較步驟包含驅動運算處理器比較第一準確度與第二準確度而產生一準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。此至少一加工材料硬度的數量為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。Other examples of the aforementioned implementation are as follows: the aforementioned scenario model training and verification step further includes a first training and verification step, a second training and verification step and an accuracy comparison step. The first training and verification step includes driving the computing processor to use the entire training data set to train the first tool remaining life model, and using the verification data set to verify the trained first tool remaining life model to generate the first accuracy, wherein the training data set All of them are all data of plural materials. The second training and verification step includes driving the computing processor to use part of the training data set to train the second tool remaining life model, and using the verification data set to verify the trained second tool remaining life model to generate the second accuracy, wherein the training data set Part of this is one of the later data of these materials. The accuracy comparison step includes driving the computing processor to compare the first accuracy and the second accuracy to generate an accuracy comparison result, and determine whether to use the second tool remaining life model to predict the remaining life of the tool based on the accuracy comparison result. The number of hardnesses of the at least one processing material is a plurality. The hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other.
以下將參照圖式說明本發明的複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示的;並且重複的元件將可能使用相同的編號表示的。Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. However, it will be understood that these practical details should not limit the invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, for the sake of simplifying the drawings, some commonly used structures and components are shown in the drawings in a simple schematic manner; and repeated components may be represented by the same numbers.
此外,本文中當某一元件(或單元或模組等)「連接」於另一元件,可指所述元件是直接連接於另一元件,亦可指某一元件是間接連接於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中的元件/單元/電路的組合非此領域中的一般周知、常規或習知的組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中的通常知識者輕易完成。In addition, when a certain component (or unit or module, etc.) is "connected" to another component in this article, it may mean that the component is directly connected to the other component, or it may mean that one component is indirectly connected to the other component. , meaning that there are other elements between the said element and another element. When it is stated that an element is "directly connected" to another element, it means that no other elements are interposed between the element and the other element. Terms such as first, second, third, etc. are only used to describe different components without limiting the components themselves. Therefore, the first component can also be renamed the second component. Moreover, the combination of components/units/circuit in this article is not a combination that is generally known, conventional or customary in this field. Whether the component/unit/circuit itself is common knowledge cannot be used to determine whether its combination relationship is easily understood in the technical field. Easily accomplished by the average person with knowledge.
請一併參閱第1圖與第2圖,其中第1圖係繪示本發明的第一實施例的以電流資訊為基礎之刀具剩餘壽命預測方法100的流程示意圖;及第2圖係繪示本發明的第二實施例的以電流資訊為基礎之刀具剩餘壽命預測系統200的示意圖。如圖所示,以電流資訊為基礎之刀具剩餘壽命預測方法100應用於以電流資訊為基礎之刀具剩餘壽命預測系統200上,且用以預測刀具之剩餘壽命。電流資訊包含電流增加倍率122。
Please refer to Figures 1 and 2 together. Figure 1 is a schematic flowchart illustrating the tool remaining
在第1圖中,以電流資訊為基礎之刀具剩餘壽命預測方法100包含以下步驟:數據取得步驟S2、數據正規化步驟S4、數據分割步驟S6及情境模型訓練驗證步驟S8。配合參閱第2圖,數據取得步驟S2包含驅動運算處理器220取得來自記憶體210之複數刀具加工數據120。此些刀具加工數據120包含電流增加倍率122,電流增加倍率122為即時負載電流與新刀初始負載電流之比值。數據正規化步驟S4包含驅動運算處理器220正規化此些刀具加工數據120而產生複數正規化刀具加工數據140,以使此些正規化刀具加工數據140之間的大小尺度相同。數據分割步驟S6包含驅動運算處理器220將此些正規化刀具加工數據140分割為訓練數據組162與驗證數據組164。情境模型訓練驗證步驟S8包含驅動運算處理器220使用訓練數據組162之全部訓練第一刀具剩餘壽命模型,使用訓練數據組162之一部分訓練第二刀具剩餘壽命模型,並使用驗證數據組164驗證訓練後之第一刀具剩餘壽
命模型與第二刀具剩餘壽命模型而產生第一準確度與第二準確度,並比較第一準確度與第二準確度以決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。情境模型訓練驗證步驟S8包含第一情境S82、第二情境S84及第三情境S86。
In Figure 1, the tool remaining
在第2圖中,以電流資訊為基礎之刀具剩餘壽命預測系統200包含記憶體210與運算處理器220。運算處理器220電性連接記憶體210。配合參閱第1圖,記憶體210儲存刀具加工數據120。運算處理器220接收刀具加工數據120,並經配置以實施數據正規化步驟S4、數據分割步驟S6及情境模型訓練驗證步驟S8。藉此,本發明的以電流資訊為基礎之刀具剩餘壽命預測方法100與以電流資訊為基礎之刀具剩餘壽命預測系統200可透過電流增加倍率122以及廣義迴歸類神經網路(General Regression Neural Network;GRNN)訓練預測刀具於不同材料及不同情境下的剩餘壽命模型,以使用少量的數據便可訓練出符合效益的情境模型,且能準確地預測出刀具的剩餘壽命。
In Figure 2, the tool remaining
在前述實施例中,刀具加工數據120可更包含刀具使用時間、當下時間加工電流斜率趨勢、加工切寬及至少一加工材料硬度,此些數據為影響剩餘壽命的參數,亦為模型之輸入,而模型之輸出則為對應的實際剩餘壽命。再者,當電流增加倍率122大於等於臨界壽命門檻倍率時,刀具被判斷已達到臨界壽命,亦即刀具之剩餘壽命為
0;換言之,電流增加倍率122用以判斷剩餘壽命之終點。臨界壽命門檻倍率可大於1.3且小於1.5,其較佳者為1.4。在數據分割步驟S6中,正規化刀具加工數據140可於全部數據範圍內均勻地分割出80%之數據作為訓練數據組162及20%之數據作為驗證數據組164,但本發明不以此為限。此外。記憶體210可為能儲存供運算處理器220執行資訊和指令的隨機存取記憶體(Random Access Memory;RAM)或其它型式的動態儲存裝置,但本發明不以此為限。運算處理器220可為處理器(Processor)、微處理器(Microprocessor)、中央處理器(Central Processing Unit;CPU)、電腦、行動裝置處理器、雲端處理器或其他電子運算處理器,但本發明不以此為限。
In the aforementioned embodiment, the
請一併參閱第1圖至第3圖,其中第3圖係繪示第1圖的情境模型訓練驗證步驟S8應用於第一情境S82的流程示意圖。當應用情境為第一情境S82(數據量充足)時,情境模型訓練驗證步驟S8包含第一訓練驗證步驟S822、第二訓練驗證步驟S824及準確度比較步驟S826。 Please refer to Figures 1 to 3 together. Figure 3 is a schematic flowchart illustrating the application of the situation model training and verification step S8 of Figure 1 to the first situation S82. When the application context is the first context S82 (the amount of data is sufficient), the context model training and verification step S8 includes a first training verification step S822, a second training verification step S824 and an accuracy comparison step S826.
第一訓練驗證步驟S822包含驅動運算處理器220使用訓練數據組162之全部訓練第一刀具剩餘壽命模型,並使用驗證數據組164驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度,其中訓練數據組162之全部為複數材料之全部數據。具體而言,第一訓練驗證步驟S822包含步驟S822a、S822b、S822c,其中步驟S822a係
利用全數據訓練預測三材料基準模型,亦即使用訓練數據組162之全部訓練第一刀具剩餘壽命模型。步驟S822b係利用K等分交叉驗證法尋找模型最佳平滑參數,亦即使用K等分交叉驗證法調整模型平滑參數,以最小化預測誤差。步驟S822c係使用驗證數據預測準確度作為比較基準,亦即使用驗證數據組164驗證訓練後之第一刀具剩餘壽命模型而產生第一準確度。
The first training verification step S822 includes driving the
第二訓練驗證步驟S824包含驅動運算處理器220使用訓練數據組162之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度,其中訓練數據組162之部分為此些材料之一者之全部數據。具體而言,第二訓練驗證步驟S824包含步驟S824a、S824b、S824c,其中步驟S824a係訓練預測特定材料下剩餘壽命預估模型,亦即使用訓練數據組162之部分訓練第二刀具剩餘壽命模型。步驟S824b與步驟S822b相同,不再贅述。步驟S824c係使用驗證數據預測準確度,亦即使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度。
The second training and verification step S824 includes driving the
準確度比較步驟S826係比較兩種方法(即第一訓練驗證步驟S822與第二訓練驗證步驟S824)訓練模型預測準確度;換言之,準確度比較步驟S826包含驅動運算處理器220比較第一準確度與第二準確度而產生準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。
The accuracy comparison step S826 compares the prediction accuracy of the training model of the two methods (ie, the first training verification step S822 and the second training verification step S824); in other words, the accuracy comparison step S826 includes driving the
在一實施例中,K等分交叉驗證法可為10等分交叉驗證法。準確度可為均方根誤差(Root Mean Square Error;RMSE)、平均絕對值誤差百分比(Mean Absolute Percentage Error;MAPE)或其組合。加工材料硬度的數量可為複數,此些加工材料硬度分別對應此些材料,此些加工材料硬度彼此相異。加工材料硬度可包含HRC20、HRC45及HRC55(即三材料),且對應之數據可透過多次重複實驗取得,但本發明不以上述為限。另外,在準確度比較步驟S826中,當準確度比較結果為第一準確度與第二準確度之差值小於等於預設差值時,第二刀具剩餘壽命模型被使用以預測刀具之剩餘壽命。 In one embodiment, the K-equal cross-validation method may be a 10-equal cross-validation method. Accuracy can be Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), or a combination thereof. The number of hardnesses of the processing materials may be a plural number, and the hardnesses of the processing materials respectively correspond to the materials, and the hardnesses of the processing materials are different from each other. The hardness of the processed materials can include HRC20, HRC45 and HRC55 (i.e. three materials), and the corresponding data can be obtained through repeated experiments, but the present invention is not limited to the above. In addition, in the accuracy comparison step S826, when the accuracy comparison result is that the difference between the first accuracy and the second accuracy is less than or equal to the preset difference, the second tool remaining life model is used to predict the remaining life of the tool. .
請一併參閱第1圖至第4圖,其中第4圖係繪示第1圖的情境模型訓練驗證步驟S8應用於第二情境S84的流程示意圖。當應用情境為第二情境S84(目標數據量小相關數據量大)時,情境模型訓練驗證步驟S8包含第一訓練驗證步驟S842、第二訓練驗證步驟S844及準確度比較步驟S846。 Please refer to Figures 1 to 4 together. Figure 4 is a schematic flowchart illustrating the application of the situation model training and verification step S8 of Figure 1 to the second situation S84. When the application context is the second context S84 (the target data volume is small and the relevant data volume is large), the context model training and verification step S8 includes a first training verification step S842, a second training verification step S844 and an accuracy comparison step S846.
第一訓練驗證步驟S842包含步驟S842a、S842b、S842c,第一訓練驗證步驟S842與第3圖之第一訓練驗證步驟S822相同,不再贅述。第二訓練驗證步驟S844包含驅動運算處理器220使用訓練數據組162之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度。具體而言,第二訓練驗證步驟S844包含步驟S844a、
S844b、S844c,其中步驟S844a係減少目標數據量混合相關數據訓練模型,亦即使用訓練數據組162之部分訓練第二刀具剩餘壽命模型,其中訓練數據組162之部分為此些材料之一者(目標數據)之一部分數據混合此些材料之其餘者(相關數據)之全部數據。步驟S844b與步驟S842b相同。步驟S844c係使用驗證數據預測準確度,亦即使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度。
The first training verification step S842 includes steps S842a, S842b, and S842c. The first training verification step S842 is the same as the first training verification step S822 in Figure 3 and will not be described again. The second training and verification step S844 includes driving the
準確度比較步驟S846係比較需多少目標數據其準確度接近基準模型;換言之,準確度比較步驟S846包含驅動運算處理器220比較第一準確度與第二準確度而產生準確度比較結果,並依據準確度比較結果決定是否使用第二刀具剩餘壽命模型預測刀具之剩餘壽命。在一實施例中,此些材料之一者(目標數據)之「一部分」為全部之75%、50%或25%,比較這三種目標數據之準確度,選擇其準確度比較結果符合要求(如大於等於預設準確度門檻值),且用最少目標數據量所訓練出來的第二刀具剩餘壽命模型。
The accuracy comparison step S846 is to compare how much target data is needed so that the accuracy is close to the benchmark model; in other words, the accuracy comparison step S846 includes driving the
請一併參閱第1圖至第5圖,其中第5圖係繪示第1圖的情境模型訓練驗證步驟S8應用於第三情境S86的流程示意圖。當應用情境為第三情境S86(模型專注預測中後期刀具壽命)時,情境模型訓練驗證步驟S8包含第一訓練驗證步驟S862、第二訓練驗證步驟S864及準確度比較步驟S866。 Please refer to Figures 1 to 5 together. Figure 5 is a schematic flowchart illustrating the application of the situation model training and verification step S8 of Figure 1 to the third situation S86. When the application scenario is the third scenario S86 (the model focuses on predicting mid- to late-stage tool life), the scenario model training and verification step S8 includes a first training and verification step S862, a second training and verification step S864, and an accuracy comparison step S866.
第一訓練驗證步驟S862包含步驟S862a、S862b、S862c,第一訓練驗證步驟S862與第3圖之第一訓練驗證步驟S822相同,不再贅述。第二訓練驗證步驟S864包含驅動運算處理器220使用訓練數據組162之部分訓練第二刀具剩餘壽命模型,並使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度。具體而言,第二訓練驗證步驟S864包含步驟S864a、S864b、S864c,其中步驟S864a係刀具壽命中後期全數據訓練模型,亦即使用訓練數據組162之部分訓練第二刀具剩餘壽命模型,其中訓練數據組162之部分為此些材料之中後期數據。上述之中後期數據可為刀具剩餘壽命小於50%的數據,但本發明不以此為限。步驟S864b與步驟S862b相同。步驟S864c係使用驗證數據預測準確度,亦即使用驗證數據組164驗證訓練後之第二刀具剩餘壽命模型而產生第二準確度。藉此,可排除模型預測於刀具壽命前中期不準確之因素,既可增加模型準確度,亦可減少訓練之數據量。
The first training verification step S862 includes steps S862a, S862b, and S862c. The first training verification step S862 is the same as the first training verification step S822 in Figure 3 and will not be described again. The second training and verification step S864 includes driving the
由上述實施方式可知,本發明具有下列優點:其一,透過電流增加倍率可準確地預測出刀具的剩餘壽命。其二,使用GRNN訓練預測刀具於不同材料及不同情境下的剩餘壽命模型,以使用少量的數據便可訓練出符合效益的情境模型,且能準確地預測出刀具的剩餘壽命,進而解決習知的模型建立法則需要大量實驗數據、預測須依據人員經驗法則以及成本過高的問題。 It can be seen from the above embodiments that the present invention has the following advantages: First, the remaining life of the tool can be accurately predicted through the current increase rate. Second, use GRNN to train and predict the remaining life model of tools in different materials and different situations. A cost-effective situation model can be trained using a small amount of data, and the remaining life of the tool can be accurately predicted, thereby solving common problems. Model building rules require a large amount of experimental data, predictions must be based on human experience rules, and the cost is too high.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.
100:以電流資訊為基礎之刀具剩餘壽命預測方法 100: Tool remaining life prediction method based on current information
120:刀具加工數據 120: Tool processing data
122:電流增加倍率 122: Current increase rate
140:正規化刀具加工數據 140: Normalized tool processing data
162:訓練數據組 162:Training data group
164:驗證數據組 164: Verification data group
200:以電流資訊為基礎之刀具剩餘壽命預測系統 200: Tool remaining life prediction system based on current information
210:記憶體 210:Memory
220:運算處理器 220:Arithmetic processor
S2:數據取得步驟 S2: Data acquisition steps
S4:數據正規化步驟 S4: Data normalization steps
S6:數據分割步驟 S6: Data segmentation steps
S8:情境模型訓練驗證步驟 S8: Scenario model training and verification steps
S82:第一情境 S82: First Situation
S822,S842,S862:第一訓練驗證步驟 S822, S842, S862: first training and verification step
S822a,S822b,S822c,S824a,S824b,S824c,S842a,S842b,S842c,S844a,S844b,S844c,S862a,S862b, S862c,S864a,S864b,S864c:步驟 S822a,S822b,S822c,S824a,S824b,S824c,S842a,S842b,S842c,S844a,S844b,S844c,S862a,S862b, S862c, S864a, S864b, S864c: steps
S824,S844,S864:第二訓練驗證步驟 S824, S844, S864: second training and verification step
S826,S846,S866:準確度比較步驟 S826, S846, S866: Accuracy comparison steps
S84:第二情境 S84: The second situation
S86:第三情境 S86: The third situation
第1圖係繪示本發明的第一實施例的以電流資訊為基礎之刀具剩餘壽命預測方法的流程示意圖; 第2圖係繪示本發明的第二實施例的以電流資訊為基礎之刀具剩餘壽命預測系統的示意圖; 第3圖係繪示第1圖的情境模型訓練驗證步驟應用於第一情境的流程示意圖; 第4圖係繪示第1圖的情境模型訓練驗證步驟應用於第二情境的流程示意圖;以及 第5圖係繪示第1圖的情境模型訓練驗證步驟應用於第三情境的流程示意圖。 Figure 1 is a schematic flow chart illustrating a tool remaining life prediction method based on current information according to the first embodiment of the present invention; Figure 2 is a schematic diagram of a tool remaining life prediction system based on current information according to the second embodiment of the present invention; Figure 3 is a schematic flowchart illustrating the application of the scenario model training and verification steps in Figure 1 to the first scenario; Figure 4 is a schematic flow chart illustrating the application of the situation model training and verification steps in Figure 1 to the second situation; and Figure 5 is a schematic flowchart illustrating the application of the scenario model training and verification steps in Figure 1 to the third scenario.
100:以電流資訊為基礎之刀具剩餘壽命預測方法 100: Tool remaining life prediction method based on current information
120:刀具加工數據 120: Tool processing data
122:電流增加倍率 122: Current increase rate
140:正規化刀具加工數據 140: Normalized tool processing data
162:訓練數據組 162:Training data group
164:驗證數據組 164: Verification data group
S2:數據取得步驟 S2: Data acquisition steps
S4:數據正規化步驟 S4: Data normalization steps
S6:數據分割步驟 S6: Data segmentation steps
S8:情境模型訓練驗證步驟 S8: Scenario model training and verification steps
S82:第一情境 S82: First Situation
S84:第二情境 S84: The second situation
S86:第三情境 S86: The third situation
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112104128A TWI831603B (en) | 2023-02-06 | 2023-02-06 | Tool remaining life prediction method based on current information and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112104128A TWI831603B (en) | 2023-02-06 | 2023-02-06 | Tool remaining life prediction method based on current information and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI831603B true TWI831603B (en) | 2024-02-01 |
TW202432299A TW202432299A (en) | 2024-08-16 |
Family
ID=90824585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112104128A TWI831603B (en) | 2023-02-06 | 2023-02-06 | Tool remaining life prediction method based on current information and system thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI831603B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011230206A (en) * | 2010-04-26 | 2011-11-17 | Mitsubishi Electric Corp | Method and apparatus for detecting tool life |
CN106312687A (en) * | 2015-07-01 | 2017-01-11 | 大隈株式会社 | Main spindle load monitoring device for machine tool |
TW201923495A (en) * | 2017-11-16 | 2019-06-16 | 財團法人工業技術研究院 | Detection device for cutting tool wear, detecetion method thereof and compensation method for cutting tool wear |
-
2023
- 2023-02-06 TW TW112104128A patent/TWI831603B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011230206A (en) * | 2010-04-26 | 2011-11-17 | Mitsubishi Electric Corp | Method and apparatus for detecting tool life |
CN106312687A (en) * | 2015-07-01 | 2017-01-11 | 大隈株式会社 | Main spindle load monitoring device for machine tool |
TW201923495A (en) * | 2017-11-16 | 2019-06-16 | 財團法人工業技術研究院 | Detection device for cutting tool wear, detecetion method thereof and compensation method for cutting tool wear |
Also Published As
Publication number | Publication date |
---|---|
TW202432299A (en) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11481630B2 (en) | Machining condition adjustment device and machining condition adjustment system | |
Wang et al. | Big Data enabled Intelligent Immune System for energy efficient manufacturing management | |
Xia et al. | Energy-oriented maintenance decision-making for sustainable manufacturing based on energy saving window | |
TWI625615B (en) | Prediction model building method and associated predicting method and computer software product | |
US20180181105A1 (en) | Tool life estimating device | |
Xia et al. | Lease-oriented opportunistic maintenance for multi-unit leased systems under product-service paradigm | |
Peng et al. | A universal hybrid energy consumption model for CNC machining systems | |
CN110310134B (en) | Customized furniture management tracing method based on coding information association | |
US9189760B2 (en) | System, method and computer readable medium for using performance indicators and predictive analysis for setting manufacturing equipment parameters | |
CN109725606B (en) | Processing condition adjustment device and machine learning device | |
Zhang et al. | Method for process planning optimization with energy efficiency consideration | |
de Farias et al. | Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes | |
Lv et al. | Modelling and analysis for processing energy consumption of mechanism and data integrated machine tool | |
CN110231808A (en) | A kind of production process efficiency is across the intelligent coordinated control system of scale and method | |
Dixit et al. | Identification and modelling of the various factors affecting the productivity of FMS | |
CN119024788A (en) | Resource allocation method, device, electronic equipment and medium for machining production line | |
Yang et al. | Machine condition recognition via hidden semi-Markov model | |
US8155770B2 (en) | Method and apparatus for dispatching workpieces to tools based on processing and performance history | |
Silva et al. | Adaptive control optimisation system for minimising production cost in hard milling operations | |
Ahmad et al. | Maintenance management decision model for preventive maintenance strategy on production equipment | |
TWI831603B (en) | Tool remaining life prediction method based on current information and system thereof | |
Wang et al. | A data-driven method for performance analysis and improvement in production systems with quality inspection | |
CN108491965A (en) | Trend prediction method, device, electronic equipment and the storage medium of stamping equipment | |
Zahraee et al. | Characterization of manufacturing system computer simulation using taguchi method | |
Ma et al. | The method of self-learning based online tool wear monitoring in semi-finishing or finishing working step |