[go: up one dir, main page]

TWI825132B - Method for multi-connectivity - Google Patents

Method for multi-connectivity Download PDF

Info

Publication number
TWI825132B
TWI825132B TW108125810A TW108125810A TWI825132B TW I825132 B TWI825132 B TW I825132B TW 108125810 A TW108125810 A TW 108125810A TW 108125810 A TW108125810 A TW 108125810A TW I825132 B TWI825132 B TW I825132B
Authority
TW
Taiwan
Prior art keywords
channel
trip time
round
base station
round trip
Prior art date
Application number
TW108125810A
Other languages
Chinese (zh)
Other versions
TW202017409A (en
Inventor
林希修
金炳承
崔恩俊
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202017409A publication Critical patent/TW202017409A/en
Application granted granted Critical
Publication of TWI825132B publication Critical patent/TWI825132B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • H04L47/365Dynamic adaptation of the packet size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0847Transmission error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for multi-connectivity between a plurality of base stations and user equipment includes estimating, at the user equipment, a first round trip time (RTT) taken in transmitting first data to a first base station, estimating, at the user equipment, a second RTT taken in transmitting second data to a second base station, and determining a size of the first data which is to be transmitted to the first base station, based on the first RTT and the second RTT.

Description

用於多連接的方法Methods for multiple connections

本發明概念涉及無線通訊,且更具體來說,涉及用於在多連接中分割資料的一種方法及一種裝置。The inventive concept relates to wireless communications, and more particularly, to a method and an apparatus for partitioning data across multiple connections.

在使用者設備與基站之間的無線通訊中,可使用各種技術來以較高的速度發送較大量的資料。舉例來說,多連接可表示其中一個使用者設備與兩個或更多個基站進行通訊的過程。在多連接中,可經由使用者設備與兩個或更多個基站之間的多個通道發送和/或接收資料,且因此資料輸送量可增大且可防止通訊品質因不良品質通道而劣化。為提高多連接的效率,期望將發送資料高效地分佈到多個通道。In wireless communications between user equipment and base stations, various techniques can be used to send larger amounts of data at higher speeds. For example, multi-connection may represent a process in which one user equipment communicates with two or more base stations. In multi-connection, data can be sent and/or received via multiple channels between the user equipment and two or more base stations, and therefore the data throughput can be increased and communication quality can be prevented from being degraded by poor quality channels. . In order to improve the efficiency of multiple connections, it is expected to efficiently distribute the transmission data to multiple channels.

本發明概念提供用於在多連接中高效地分割資料的一種方法及一種裝置。The inventive concept provides a method and an apparatus for efficiently partitioning data in multiple connections.

根據本發明概念的一方面,提供一種用於在多個基站與使用者設備之間實現多連接的方法,所述方法包括:在所述使用者設備處估計向第一基站發送第一資料花費的第一往返時間(round trip time,RTT);在所述使用者設備處估計向第二基站發送第二資料花費的第二往返時間;以及在所述使用者設備處基於所述第一往返時間及所述第二往返時間而確定要向所述第一基站發送的所述第一資料的大小。According to an aspect of the inventive concept, a method for implementing multiple connections between a plurality of base stations and a user equipment is provided, the method comprising: estimating, at the user equipment, a cost of sending a first data to a first base station a first round trip time (RTT); estimating at the user equipment the second round trip time it takes to send the second data to the second base station; and at the user equipment based on the first round trip time time and the second round-trip time to determine the size of the first data to be sent to the first base station.

根據本發明概念的另一方面,提供一種用於在多個基站與使用者設備之間實現多連接的方法,所述方法包括:在所述第一基站處估計從第一基站向所述使用者設備發送第一資料花費的第一往返時間;在所述第一基站處獲得從第二基站向所述使用者設備發送第二資料花費的第二往返時間;以及在所述第一基站處基於所述第一往返時間及所述第二往返時間而確定要從所述第一基站向所述使用者設備發送的所述第一資料的大小。According to another aspect of the inventive concept, a method for implementing multiple connections between multiple base stations and user equipment is provided. The method includes: estimating at the first base station a direction from the first base station to the user equipment. a first round trip time taken by the user equipment to send the first data; obtaining at the first base station a second round trip time taken from the second base station to send the second data to the user equipment; and at the first base station The size of the first data to be sent from the first base station to the user equipment is determined based on the first round trip time and the second round trip time.

根據本發明概念的另一方面,提供一種用於在多個基站與使用者設備之間實現多連接的方法,所述方法包括:估計經由所述多個基站與所述使用者設備之間的多個通道發送資料以及接收確認回應(ACK)花費的多個往返時間(RTT);獲得所述多個通道的各自的通道頻寬;以及基於所述多個往返時間及所述通道頻寬而確定要經由所述多個通道發送的多條分割資料的大小。According to another aspect of the inventive concept, a method for implementing multiple connections between a plurality of base stations and a user equipment is provided, the method comprising: estimating a connection between the plurality of base stations and the user equipment via Multiple round-trip times (RTTs) taken by multiple channels to send data and receive acknowledgment responses (ACKs); obtain respective channel bandwidths of the multiple channels; and based on the multiple round-trip times and the channel bandwidths Determine the size of multiple pieces of segmented data to be sent via the multiple channels.

圖1是示出根據示例性實施例的多連接的圖。詳細來說,圖1是示出多個無線通訊系統的圖,所述多個無線通訊系統包括分別包括使用者設備(user equipment,UE)30及多個基站的第一無線通訊系統RAT1及第二無線通訊系統RAT2,所述多個基站包括第一基站10及第二基站20。FIG. 1 is a diagram illustrating multiple connections according to an exemplary embodiment. In detail, FIG. 1 is a diagram showing multiple wireless communication systems. The multiple wireless communication systems include a first wireless communication system RAT1 and a third wireless communication system RAT1 which respectively include user equipment (UE) 30 and multiple base stations. 2. Wireless communication system RAT2, the plurality of base stations include a first base station 10 and a second base station 20.

在非限制性實施例中,第一無線通訊系統RAT1及第二無線通訊系統RAT2中的每一者可為第五代(5th generation,5G)系統、第五代新無線電(5G new radio,5G NR)系統、長期演進(long term evolution,LTE)系統、碼分多址(code division multiple access,CDMA)系統、全球移動通訊系統(global system for mobile communication,GSM)系統、無線區域網路(wireless local area network,WLAN)系統或另一任意無線通訊系統。在本文中,無線通訊系統可被稱為無線電存取技術(radio access technology,RAT)。In a non-limiting embodiment, each of the first wireless communication system RAT1 and the second wireless communication system RAT2 may be a fifth generation ( 5th generation, 5G) system or a fifth generation new radio (5G new radio, 5G NR) system, long term evolution (LTE) system, code division multiple access (CDMA) system, global system for mobile communication (GSM) system, wireless area network ( wireless local area network (WLAN) system or another any wireless communication system. In this article, the wireless communication system may be called radio access technology (RAT).

第一基站10及第二基站20可基於多連接而與UE 30進行通訊。舉例來說,如圖1所示,UE 30與第一基站10之間可根據第一無線通訊系統RAT1建立第一通道CH1且可經由第一通道CH1與彼此進行通訊。UE 30與第二基站20之間可根據第二無線通訊系統RAT2建立且可經由第二通道CH2與彼此進行通訊。在一些實施例中,第一無線通訊系統RAT1可相同於第二無線通訊系統RAT2。在一些其他實施例中,第一無線通訊系統RAT1可不同於第二無線通訊系統RAT2。在下文中,在示例性實施例中,將主要闡述其中第一無線通訊系統RAT1是5G NR系統(即,第一基站10是5G NR基站)且第二無線通訊系統RAT2是LTE系統(即,第二基站20是LTE基站)的實例。然而,應理解示例性實施例並非僅限於此。The first base station 10 and the second base station 20 can communicate with the UE 30 based on multiple connections. For example, as shown in FIG. 1 , the UE 30 and the first base station 10 can establish a first channel CH1 according to the first wireless communication system RAT1 and can communicate with each other via the first channel CH1. The UE 30 and the second base station 20 may be established according to the second wireless communication system RAT2 and may communicate with each other via the second channel CH2. In some embodiments, the first wireless communication system RAT1 may be the same as the second wireless communication system RAT2. In some other embodiments, the first wireless communication system RAT1 may be different from the second wireless communication system RAT2. In the following, in an exemplary embodiment, it will be mainly explained that the first wireless communication system RAT1 is a 5G NR system (ie, the first base station 10 is a 5G NR base station) and the second wireless communication system RAT2 is an LTE system (ie, the first base station 10 is a 5G NR base station). The second base station 20 is an example of an LTE base station). However, it should be understood that the exemplary embodiments are not limited thereto.

基站(舉例來說,第一基站10和/或第二基站20)可表示固定站且可與UE 30和/或另一基站進行通訊以交換資料及控制資訊。舉例來說,基站可被稱為節點B、演進節點B(evolved node B,eNB)、下一代節點B(generation node B,gNB)、磁區(sector)、網站(site)、基站收發器系統(base transceiver system,BTS)、存取點(access point,AP)、中繼節點(relay node)、遠端無線電頭(remote radio head,RRH)、無線電單元(radio unit,RU)或小小區(small cell)。在本文中,基站或小區可被視為表示由CDMA中的基站控制器(base station controller,BSC)、寬頻碼分多址(wideband code division multiple access,WCDMA)中的節點B、LTE中的eNB或5G NR中的gNB或磁區(網站)實行的功能或所覆蓋的特定區域的綜合含義,且可覆蓋例如以下各種覆蓋區域:巨型小區(mega cell)、微型小區(micro cell)、微微型小區(pico cell)、毫微微型小區(femto cell)、中繼節點、RRH、RU及小小區通訊範圍。A base station (for example, the first base station 10 and/or the second base station 20) may represent a fixed station and may communicate with the UE 30 and/or another base station to exchange data and control information. For example, a base station may be called a node B, an evolved node B (eNB), a next-generation node B (gNB), a sector, a site, or a base transceiver system. (base transceiver system, BTS), access point (access point, AP), relay node (relay node), remote radio head (RRH), radio unit (radio unit, RU) or small cell ( small cells). In this article, a base station or cell can be regarded as represented by a base station controller (BSC) in CDMA, a Node B in wideband code division multiple access (WCDMA), and an eNB in LTE. Or the comprehensive meaning of the functions performed by gNB or magnetic area (website) in 5G NR or the specific area covered, and can cover, for example, the following various coverage areas: mega cell, micro cell, pico Cell (pico cell), femto cell (femto cell), relay node, RRH, RU and small cell communication range.

UE 30可為無線通訊裝置且可為固定的或移動的。另外,UE 30可表示與基站進行通訊的各種裝置以發送或接收資料和/或控制資訊。舉例來說,UE 30可被稱為終端設備、移動站(mobile station,MS)、使用者終端(user terminal,UT)、用戶站(subscriber station,SS)、無線裝置或掌上型裝置。另外,UE 30可支援多連接,且因此,如圖1所示,UE 30可連接到兩個或更多個基站,例如第一基站10及第二基站20。具體來說,如圖1所示,一個UE 30連接到兩個基站(例如,第一基站10及第二基站20)可被稱為雙連接。在下文中,在示例性實施例中,將主要闡述雙連接,但是應理解示例性實施例適用於其中UE 30與三個或更多個基站進行通訊的多連接。UE 30 may be a wireless communication device and may be fixed or mobile. In addition, UE 30 may represent various devices that communicate with the base station to send or receive data and/or control information. For example, the UE 30 may be called a terminal device, a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device or a handheld device. In addition, the UE 30 may support multiple connections, and therefore, as shown in FIG. 1 , the UE 30 may be connected to two or more base stations, such as the first base station 10 and the second base station 20 . Specifically, as shown in FIG. 1 , one UE 30 connecting to two base stations (for example, the first base station 10 and the second base station 20 ) may be called dual connectivity. Hereinafter, in exemplary embodiments, dual connectivity will be mainly explained, but it should be understood that the exemplary embodiments are applicable to multi-connectivity in which the UE 30 communicates with three or more base stations.

第一基站10及第二基站20與UE 30之間的無線通訊網路可共用可用網路資源,且因此,可支援多個用戶。舉例來說,可使用例如以下各種多址方案(multiple access schemes)來經由無線通訊網路傳輸資訊:CDMA、頻分多址(frequency division multiple access,FDMA)、時分多址(time division multiple access,TDMA)、正交頻分多址(orthogonal frequency division multiple access,OFDMA)、單載波頻分多址(single carrier frequency division multiple access,SC-FDMA)、正交頻分複用(Orthogonal Frequency Division Multiplexing,OFDM)-FDMA、OFDM-TDMA及OFDM-CDMA。第一基站10可通過介面IF與第二基站20進行通訊。在一些實施例中,第一基站10可通過兩倍(X2)介面對第二基站20進行存取。在一些其他實施例中,如以下參照圖12所述,第一基站10可經由核心網路來對第二基站20進行存取。The wireless communication network between the first base station 10 and the second base station 20 and the UE 30 can share available network resources, and therefore, can support multiple users. For example, information can be transmitted over a wireless communication network using multiple access schemes such as: CDMA, frequency division multiple access (FDMA), time division multiple access, TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM)-FDMA, OFDM-TDMA and OFDM-CDMA. The first base station 10 can communicate with the second base station 20 through the interface IF. In some embodiments, the first base station 10 can access the second base station 20 through a twice (X2) interface. In some other embodiments, as described below with reference to Figure 12, the first base station 10 may access the second base station 20 via the core network.

在多連接中,可對資料進行分割及發送,且可分別經由第一通道CH1及第二通道CH2來發送資料的分割部分(例如,第一資料及第二資料)。舉例來說,在下行鏈路中,第一基站10及第二基站20可將通過對要向UE 30發送的資料進行分割而獲得的第一資料及第二資料經由第一通道CH1及第二通道CH2分別發送到UE 30。另外,在上行鏈路中,UE 30可將要發送的資料分割成第一資料及第二資料且可將第一資料及第二資料經由第一通道CH1及第二通道CH2分別發送到第一基站10及第二基站20。在下文中,根據示例性實施例,如以下參照圖式所述,UE 30以及第一基站10及第二基站20可基於第一通道CH1及第二通道CH2中的每一者的狀態而高效地分割資料。因此,因對資料進行重新排序導致的延遲可降低,且可向UE 30的用戶提供改善的體驗品質(quality of experience,QoE)。In the multi-connection, the data can be divided and sent, and the divided portions of the data (eg, the first data and the second data) can be sent via the first channel CH1 and the second channel CH2 respectively. For example, in the downlink, the first base station 10 and the second base station 20 may transmit the first data and the second data obtained by dividing the data to be sent to the UE 30 through the first channel CH1 and the second channel. Channel CH2 is sent to UE 30 respectively. In addition, in the uplink, the UE 30 can divide the data to be sent into first data and second data, and can send the first data and the second data to the first base station via the first channel CH1 and the second channel CH2 respectively. 10 and the second base station 20. Hereinafter, according to an exemplary embodiment, as described below with reference to the drawings, the UE 30 and the first and second base stations 10 and 20 may efficiently operate based on the status of each of the first channel CH1 and the second channel CH2. Split data. Therefore, delays caused by reordering data can be reduced, and users of UE 30 can be provided with improved quality of experience (QoE).

圖2是示出根據示例性實施例的圖1所示多連接中的無線協定的結構的圖。FIG. 2 is a diagram illustrating the structure of a wireless protocol in the multi-connection shown in FIG. 1 according to an exemplary embodiment.

如以上參照圖1所述,UE 30'可對第一基站10'及第二基站20'進行存取。在圖2中,可假設第一基站10'是5G NR系統的基站(例如,gNB),且基站20'是LTE系統的基站(例如,eNB)。如圖2所示,UE 30'(或UE 30'的封包資料收斂協定(packet data convergence protocol,PDCP))可支援第一無線通訊系統RAT1(例如,5G NR系統)的無線協定以及第二無線通訊系統RAT2(例如,LTE系統)的無線協定。在下文中,將參照圖1闡述圖2。As described above with reference to FIG. 1, the UE 30' can access the first base station 10' and the second base station 20'. In Figure 2, it can be assumed that the first base station 10' is a base station of the 5G NR system (eg, gNB), and the base station 20' is a base station of the LTE system (eg, eNB). As shown in Figure 2, the UE 30' (or the packet data convergence protocol (PDCP) of the UE 30') can support the wireless protocol of the first wireless communication system RAT1 (for example, the 5G NR system) and the second wireless communication system. Wireless protocol for communication systems RAT2 (e.g. LTE system). In the following, FIG. 2 will be explained with reference to FIG. 1 .

參照圖2,在第一基站10'及UE 30'中的每一者中,第一無線通訊系統RAT1的無線協定可包括物理(physical,PHY)層11及31a、媒體存取控制(medium access control,MAC)12及32a、無線電鏈路控制(radio link control,RLC)13及33a以及PDCP 14及34。PHY層11及31a、MAC 12及32a、RLC 13及33a以及PDCP 14及34中的每一者可基於第一無線通訊系統RAT1的規定來實行其獨特的功能。舉例來說,PHY層11及31a可對MAC 12及32a的資料進行編碼及調變,產生OFDM符號以將所產生的OFDM符號發送到第一通道CH1,對經由第一通道CH1接收的OFDM符號進行解調及解碼,並將資料傳輸到MAC 12及32a。MAC 12及32a可實行包括混合自動重傳請求(hybrid automatic repeat request,HARQ)重發的功能,RLC 13及33a可實行包括自動重傳請求(automatic repeat request,ARQ)的功能,且PDCP 14及34可實行包括重新排序的功能。Referring to Figure 2, in each of the first base station 10' and the UE 30', the wireless protocol of the first wireless communication system RAT1 may include physical (PHY) layers 11 and 31a, medium access control (medium access) control, MAC) 12 and 32a, radio link control (radio link control, RLC) 13 and 33a, and PDCP 14 and 34. Each of the PHY layers 11 and 31a, MAC 12 and 32a, RLC 13 and 33a, and PDCP 14 and 34 can perform its unique function based on the provisions of the first wireless communication system RAT1. For example, the PHY layers 11 and 31a can encode and modulate the data of the MAC 12 and 32a, generate OFDM symbols, and send the generated OFDM symbols to the first channel CH1, and the OFDM symbols received through the first channel CH1 Demodulates and decodes, and transmits the data to MAC 12 and 32a. MAC 12 and 32a can implement functions including hybrid automatic repeat request (HARQ) retransmission, RLC 13 and 33a can implement functions including automatic repeat request (ARQ), and PDCP 14 and 34 implements functionality including reordering.

在第二基站20'及UE 30'中的每一者中,第二無線通訊系統RAT2的無線協定可包括PHY層21及31b、MAC 22及32b、RLC 23及33b以及PDCP 24及34。PHY層21及31b、MAC 22及32b、RLC 23及33b以及PDCP 24及34中的每一者可基於第二無線通訊系統RAT2的規定來實行其獨特的功能。舉例來說,PHY層21及31b可對MAC 22及32b的資料進行編碼及調變,產生OFDM符號以將所產生的OFDM符號發送到第二通道CH2,對經由第二通道CH2接收的OFDM符號進行解調及解碼,並將資料傳輸到MAC 22及32b。MAC 22及32b可實行包括HARQ重發的功能,RLC 23及33b可實行包括ARQ的功能,且PDCP 24及34可實行包括重新排序的功能。In each of the second base station 20' and the UE 30', the wireless protocol of the second wireless communication system RAT2 may include PHY layers 21 and 31b, MAC 22 and 32b, RLC 23 and 33b, and PDCP 24 and 34. Each of the PHY layers 21 and 31b, MAC 22 and 32b, RLC 23 and 33b, and PDCP 24 and 34 can perform its unique function based on the provisions of the second wireless communication system RAT2. For example, the PHY layers 21 and 31b can encode and modulate the data of the MAC 22 and 32b, generate OFDM symbols, and send the generated OFDM symbols to the second channel CH2. Demodulate and decode, and transmit the data to MAC 22 and 32b. MAC 22 and 32b may perform functions including HARQ retransmission, RLC 23 and 33b may perform functions including ARQ, and PDCP 24 and 34 may perform functions including reordering.

PDCP 34在雙連接中可包括分割承載(split bearer)。分割承載可將資料封包分佈到一個PDCP中的多個不同的RLC實體以經由多個通道發送資料,且因此,可表示用於提高資料發送速率(data transmission rate)的資料無線電承載(data radio bearer,DRB)。舉例來說,在上行鏈路中,PDCP 34可將資料封包(或PDCP 服務資料單元(service data unit,SDU))處理成PDCP協定資料單元(protocol data unit,PDU)且可將PDCP PDU傳輸到兩個RLC 實體33a及33b。此處,當傳輸到所述兩個RLC實體33a及33b的PDCP PDU未適當地分佈時(即,當分割資料的大小未得到適當地確定時),在PDCP 34中因重新排序導致的延遲可增加。當因重新排序導致的延遲增加時,在PDCP 34的上部層(例如,應用層(例如,圖3所示35))中可出現延遲,從而使UE 30'的用戶QoE劣化。另外,在下行鏈路中可出現與上述問題相似的問題。PDCP 34 may include split bearer in dual connectivity. Split bearers can distribute data packets to multiple different RLC entities in a PDCP to send data via multiple channels, and therefore, can represent a data radio bearer used to increase the data transmission rate. , DRB). For example, in the uplink, PDCP 34 may process the data packet (or PDCP service data unit (SDU)) into a PDCP protocol data unit (PDU) and may transmit the PDCP PDU to Two RLC entities 33a and 33b. Here, when the PDCP PDUs transmitted to the two RLC entities 33a and 33b are not properly distributed (ie, when the size of the segmented data is not properly determined), the delay caused by the reordering in the PDCP 34 may Increase. When delays due to reordering increase, delays may occur in the upper layers of PDCP 34, such as the application layer (eg, 35 shown in Figure 3), thereby degrading the user QoE of UE 30'. Additionally, problems similar to those described above may occur in the downlink.

圖3是示出根據示例性實施例的UE 30''中的無線協定的結構的圖。詳細來說,圖3示出上行鏈路中的無線協定的結構。在下文中,將參照圖1闡述圖3,且在闡述圖3時,將省略與之前參照圖2提供的說明相同或相似的說明。FIG. 3 is a diagram showing the structure of a wireless protocol in the UE 30'' according to an exemplary embodiment. In detail, Figure 3 shows the structure of the wireless protocol in the uplink. Hereinafter, FIG. 3 will be explained with reference to FIG. 1 , and in explaining FIG. 3 , descriptions that are the same or similar to those previously provided with reference to FIG. 2 will be omitted.

參照圖3,無線協定可包括第一無線通訊系統RAT1的第一PHY層31a'、第一MAC 32a'及第一RLC 33a',且可包括第二無線通訊系統RAT2的第二PHY層31b'、第二MAC 32b'及第二RLC 33b',且PDCP 34'可支援第一無線通訊系統RAT1及第二無線通訊系統RAT2。另外,與PDCP 34'的上部層對應的應用35可向PDCP 34'提供要經由上行鏈路發送的資料封包。Referring to FIG. 3 , the wireless protocol may include a first PHY layer 31a', a first MAC 32a' and a first RLC 33a' of the first wireless communication system RAT1, and may include a second PHY layer 31b' of the second wireless communication system RAT2. , the second MAC 32b' and the second RLC 33b', and the PDCP 34' can support the first wireless communication system RAT1 and the second wireless communication system RAT2. Additionally, an application 35 corresponding to an upper layer of the PDCP 34' may provide the PDCP 34' with data packets to be sent via the uplink.

如以上參照圖2所述,PDCP 34'可確定要經由多連接中的第一通道CH1及第二通道CH2發送的資料(例如,第一資料的大小及第二資料的大小),且因此,可對從應用35提供的資料封包進行分割且可將多條分割資料分別提供到第一RLC(或第一RLC實體)33a'及第二RLC(或第二RLC實體)33b'。舉例來說,根據最近發佈的NR PDCP標準(3GPP TS 38.323 V15.2.0,2018-06),將使由UE 30''實行的資料分割操作造成的PDCP重新排序延遲最小化的手段定義為UE 30''的能力。As described above with reference to FIG. 2, PDCP 34' may determine the data (eg, the size of the first data and the size of the second data) to be sent via the first channel CH1 and the second channel CH2 in the multi-connection, and therefore, The data packet provided from the application 35 may be segmented and multiple pieces of segmented data may be provided to the first RLC (or first RLC entity) 33a' and the second RLC (or second RLC entity) 33b' respectively. For example, according to the recently released NR PDCP standard (3GPP TS 38.323 V15.2.0, 2018-06), the means to minimize the PDCP reordering delay caused by the data splitting operation performed by the UE 30'' is defined as UE 30 ''Ability.

在一些實施例中,可從下部層向PDCP 34'提供多個指示符,且可基於所述多個指示符將資料分佈到第一RLC 33a'及第二RLC 33b'。舉例來說,如圖3所示,可從第一PHY層31a'、第一MAC 32a'及第一RLC 33a'向PDCP 34'提供第一指示符IND1,且可從第二PHY層31b'、第二MAC 32b'及第二RLC 33b'向PDCP 34'提供第二指示符IND2。PDCP 34'可基於第一指示符IND1及第二指示符IND2來檢測第一通道CH1的狀態及第二通道CH2的狀態,且可基於第一通道CH1的狀態及第二通道CH2的狀態將資料分佈到第一RLC 33a'及第二RLC 33b'。以下將參照圖4闡述PDCP 34'的示例性操作。In some embodiments, a plurality of indicators may be provided to the PDCP 34' from lower layers, and data may be distributed to the first RLC 33a' and the second RLC 33b' based on the plurality of indicators. For example, as shown in Figure 3, the first indicator IND1 may be provided to the PDCP 34' from the first PHY layer 31a', the first MAC 32a' and the first RLC 33a', and the first indicator IND1 may be provided from the second PHY layer 31b' , the second MAC 32b' and the second RLC 33b' provide the second indicator IND2 to the PDCP 34'. The PDCP 34' may detect the status of the first channel CH1 and the status of the second channel CH2 based on the first indicator IND1 and the second indicator IND2, and may transfer the data based on the status of the first channel CH1 and the status of the second channel CH2. Distributed to the first RLC 33a' and the second RLC 33b'. Exemplary operations of PDCP 34' will be explained below with reference to FIG. 4 .

圖4是示出根據示例性實施例的用於實現多連接的方法的流程圖。舉例來說,圖4所示方法可由圖3所示PDCP 34'來實行,且如以下參照圖5所述,圖4所示方法可由各種因素觸發。在下文中,將參照圖1及圖3來闡述圖4。4 is a flowchart illustrating a method for implementing multiple connections according to an exemplary embodiment. For example, the method shown in FIG. 4 may be performed by the PDCP 34' shown in FIG. 3, and as described below with reference to FIG. 5, the method shown in FIG. 4 may be triggered by various factors. In the following, FIG. 4 will be explained with reference to FIGS. 1 and 3 .

參照圖4,在中,可實行估計往返時間的操作。往返時間(RTT)可被定義為發送方將資料發送到接收方以及從接收方接收對所發送的資料的回應(例如,確認回應(acknowledgement response,ACK))所花費的時間。文檔“用於聯合路由及速率控制的端對端演算法的穩定性(Stability of end-to-end algorithms for joint routing and rate control)”(F.凱莉(F. Kelly)及T.瓦爾斯(T. Voice),美國電腦協會資料通訊專業組電腦通訊評論(Association for Computing Machinery Special Interest Group on Data Communication Computer Communication Review,ACM SIGCOMM CCR),35,2005)已提出用於使發送控制協議(transmission control protocol,TCP)中的網路效率最大化的方法,且可將所提出的方法表達為以下方程式(1)。發送方可通過以下方程式(1)的∆wp 將對應路徑的擁塞視窗(congestion window)“cwnd”改變:(1)Referring to Figure 4, in , an operation of estimating round trip time may be performed. Round trip time (RTT) can be defined as the time it takes for a sender to send data to a receiver and to receive a response (for example, an acknowledgment response (ACK)) from the receiver for the sent data. Document "Stability of end-to-end algorithms for joint routing and rate control" (F. Kelly and T. Valls) (T. Voice), Association for Computing Machinery Special Interest Group on Data Communication Computer Communication Review (ACM SIGCOMM CCR), 35, 2005) has been proposed to use the transmission control protocol (transmission control protocol (TCP), and the proposed method can be expressed as the following equation (1). The sender can change the congestion window (congestion window) "cwnd" of the corresponding path through Δw p in the following equation (1): (1)

在方程式(1)中,P可表示由單主機形成的路徑的總集合,wi 可表示第i路徑的當前發送視窗,且RTTi 可表示第i路徑的往返時間。在一些實施例中,在多連接中,可基於在方程式(1)中提供的發送視窗的改變而實行資料的分割。在TCP中,可基於網路的業務量而確定往返時間,且因此,發送方可測量發送資料時的時間與接收到ACK時的時間之間的差作為往返時間。另一方面,在多連接中,往返時間可根據通道的狀態而定且可如以下所述進行估計。In equation (1), P may represent the total set of paths formed by a single host, w i may represent the current sending window of the i-th path, and RTT i may represent the round-trip time of the i-th path. In some embodiments, in multiple connections, segmentation of data may be performed based on changes to the send window provided in equation (1). In TCP, the round-trip time can be determined based on the traffic volume of the network, and therefore, the sender can measure the difference between the time when the data is sent and the time when the ACK is received as the round-trip time. On the other hand, in multi-connection, the round trip time can depend on the status of the channel and can be estimated as described below.

為對圖1所示多連接應用方程式(1),可估計分別與第一通道CH1及第二通道CH2對應的第一往返時間RTT1 及第二往返時間RTT2 。舉例來說,如以上參照圖3所述,UE 30''的PDCP 34'可基於從下部層提供的第一指示符ID1而估計第一往返時間RTT1 ,且可基於從下部層提供的第二指示符ID2而估計第二往返時間RTT2 。以下將參照圖6闡述操作S200的實例。To apply equation (1) to the multi-connection shown in Figure 1, the first round trip time RTT 1 and the second round trip time RTT 2 corresponding to the first channel CH1 and the second channel CH2 respectively can be estimated. For example, as described above with reference to FIG. 3 , the PDCP 34 ′ of the UE 30 ″ may estimate the first round trip time RTT 1 based on the first indicator ID1 provided from the lower layer, and may estimate the first round trip time RTT 1 based on the first indicator ID1 provided from the lower layer. The second indicator ID2 is used to estimate the second round trip time RTT 2 . An example of operation S200 will be explained below with reference to FIG. 6 .

在操作S400中,可實行獲得通道頻寬的操作。如圖1所示,在其中UE 30與第一基站10及第二基站20進行通訊的多連接中,UE 30及一個基站(例如,第一基站10或第二基站20)可被視為單跳網路(1-hop network),且方程式(1)的wi 可如在以下方程式(2)中一樣被表達為通道頻寬與往返時間的乘法:(2)In operation S400, an operation of obtaining the channel bandwidth may be performed. As shown in FIG. 1 , in a multi-connection in which the UE 30 communicates with the first base station 10 and the second base station 20 , the UE 30 and one base station (eg, the first base station 10 or the second base station 20 ) may be regarded as a single base station. 1-hop network, and w i of Equation (1) can be expressed as the multiplication of channel bandwidth and round-trip time as in Equation (2) below: (2)

因此,在方程式(1)中,可利用“BWi ×RTTi ”來取代wi ,且在操作S400中,可實行獲得通道頻寬(即,第一通道CH1的第一通道頻寬BW1 以及第二通道CH2的第二通道頻寬BW2 )的操作。舉例來說,第一PHY層31a'及第二PHY層31b'可分別測量第一通道頻寬BW1 及第二通道頻寬BW2 ,PDCP 34'可基於第一指示符IND1中從第一PHY層31a'提供的指示符而獲得第一通道頻寬BW1 ,且可基於第二指示符IND2中從第二PHY層31b'提供的指示符而獲得第二通道頻寬BW2 Therefore , in equation (1), " BW i And the operation of the second channel bandwidth BW 2 ) of the second channel CH2. For example, the first PHY layer 31a' and the second PHY layer 31b' can measure the first channel bandwidth BW 1 and the second channel bandwidth BW 2 respectively, and the PDCP 34' can measure the first channel bandwidth BW 1 and the second channel bandwidth BW 2 based on the first indicator IND1. The first channel bandwidth BW 1 is obtained based on the indicator provided by the PHY layer 31a', and the second channel bandwidth BW2 can be obtained based on the indicator provided from the second PHY layer 31b' in the second indicator IND2.

在操作S600中,可實行確定多條分割資料(例如,第一資料及第二資料)的大小的操作。當第一通道頻寬BW1 及第二通道頻寬BW2 分別對應於第一通道CH1的通道頻寬及第二通道CH2的通道頻寬時,在圖1所示多連接中方程式(1)可被表達為以下方程式(3):(3)In operation S600, an operation of determining sizes of multiple pieces of divided data (eg, first data and second data) may be performed. When the first channel bandwidth BW 1 and the second channel bandwidth BW 2 respectively correspond to the channel bandwidth of the first channel CH1 and the channel bandwidth of the second channel CH2, in the multi-connection shown in Figure 1, equation (1) can be expressed as the following equation (3): (3)

此外,在基於M(其中M是大於一的整數)數目的通道的多連接中,方程式(1)可被表達為以下方程式(4):(4)Furthermore, in multi-connection based on the number of channels M (where M is an integer greater than one), Equation (1) can be expressed as the following Equation (4): (4)

在操作S200中可估計第一往返時間RTT1 及第二往返時間RTT2 ,且在操作S400中可獲得第一通道頻寬BW1 及第二通道頻寬BW2 。因此,在操作S600中,PDCP 34'可基於方程式(3)而計算資料大小的變化(即,∆w),且可將變化∆w反映在對要發送的資料封包進行的分割中。操作S600的實例將在以下參照圖8進行闡述。The first round trip time RTT 1 and the second round trip time RTT 2 may be estimated in operation S200, and the first channel bandwidth BW 1 and the second channel bandwidth BW 2 may be obtained in operation S400. Therefore, in operation S600, the PDCP 34' may calculate the change in data size (ie, Δw) based on equation (3), and may reflect the change Δw in the segmentation of the data packet to be sent. An example of operation S600 will be explained below with reference to FIG. 8 .

圖5是示出根據示例性實施例的用於實現多連接的方法的流程圖。詳細來說,在圖5所示操作S100中可觸發以上參照圖4闡述的實行用於實現多連接的方法,且在實行操作S100之後,可依序實行圖4所示操作S200。另外,在實行圖4所示操作S600之後,可實行圖5所示操作S100。如圖5所示,操作S100可包括操作S120、S140及S160。在一些實施例中,當實行操作S100的操作S120、S140及S160中的至少一者時,所述方法可繼續進行到操作S200。在一些其他實施例中,操作S100可包括操作S120、S140及S160中的僅一些操作。在下文中,將參照圖3闡述圖5。FIG. 5 is a flowchart illustrating a method for implementing multiple connections according to an exemplary embodiment. Specifically, the execution of the method for implementing multiple connections described above with reference to FIG. 4 may be triggered in operation S100 shown in FIG. 5 , and after execution of operation S100 , operation S200 shown in FIG. 4 may be executed sequentially. In addition, after the operation S600 shown in FIG. 4 is performed, the operation S100 shown in FIG. 5 may be performed. As shown in FIG. 5 , operation S100 may include operations S120, S140, and S160. In some embodiments, when at least one of operations S120, S140, and S160 of operation S100 is performed, the method may continue to operation S200. In some other embodiments, operation S100 may include only some of operations S120, S140, and S160. In the following, FIG. 5 will be explained with reference to FIG. 3 .

在操作S120中,可實行接收資料封包的操作。舉例來說,當從與上部層對應的應用35接收到資料封包時,PDCP 34'可觸發圖4所示方法。從應用35接收的資料封包可為要由應用35通過無線通訊發送的資料且可被稱為PDCP SDU,且在一些實施例中,資料封包可包括報頭(header)及淨荷(payload)。In operation S120, an operation of receiving a data packet may be performed. For example, when receiving a data packet from the application 35 corresponding to the upper layer, the PDCP 34' may trigger the method shown in Figure 4. The data packet received from the application 35 may be data to be sent by the application 35 through wireless communication and may be called a PDCP SDU, and in some embodiments, the data packet may include a header and a payload.

在操作S140中,可實行接收ACK的操作。舉例來說,當接收到與RLC確認模式(acknowledge mode,AM)中的RLC PDU對應的ACK時,PDCP 34'可觸發圖4所示方法。在一些實施例中,當接收到預定義數目的ACK時,PDCP 34'可觸發圖4所示方法。另外,在一些實施例中,如以下參照方程式(8)所述,PDCP 34'可基於預定義的週期或另一因素而觸發圖4所示方法,且在此種情形中,可使用所接收的ACK的數目。In operation S140, an operation of receiving ACK may be performed. For example, when receiving an ACK corresponding to an RLC PDU in RLC acknowledgment mode (AM), PDCP 34' may trigger the method shown in Figure 4. In some embodiments, PDCP 34' may trigger the method shown in Figure 4 when a predefined number of ACKs are received. Additionally, in some embodiments, as described below with reference to Equation (8), PDCP 34' may trigger the method shown in Figure 4 based on a predefined period or another factor, and in this case, the received The number of ACKs.

在操作S160中,可實行接收經更新的重發參數的操作。如以下參照圖6所述,在圖4所示操作S200中可基於重發來估計往返時間。無線通訊系統可規定重發參數的值,一些無線通訊系統(例如,5G NR系統)可規定重發參數的值變化,且基站可基於通道狀態而更新重發參數。當重發參數的值變化時,所估計的往返時間可變化,且因此,當從基站接收到經更新的重發參數時,PDCP 34'可觸發圖4所示方法。In operation S160, an operation of receiving updated retransmission parameters may be performed. As described below with reference to FIG. 6 , the round-trip time may be estimated based on retransmissions in operation S200 shown in FIG. 4 . The wireless communication system can specify the value of the retransmission parameter. Some wireless communication systems (eg, 5G NR system) can specify the value change of the retransmission parameter, and the base station can update the retransmission parameter based on the channel status. When the value of the retransmission parameter changes, the estimated round-trip time may change, and therefore, when updated retransmission parameters are received from the base station, PDCP 34' may trigger the method shown in Figure 4.

圖6是示出根據示例性實施例的圖4所示操作S200的流程圖。如以上參照圖4所述,在圖6所示操作S200'中可實行估計往返時間的操作。詳細來說,在圖6所示操作S200'中可估計與一個通道對應的一個往返時間,且可基於多個通道依序地或並行地將圖6所示操作S200'實行多次。如圖6所示,操作S200'可包括操作S220及操作S240。在下文中,將參照圖1及圖3闡述圖6,且將基於圖1所示UE 30是圖3所示UE 30''的假設來闡述估計與第一通道CH1對應的第一往返時間RTT1 的實例。FIG. 6 is a flowchart illustrating operation S200 shown in FIG. 4 according to an exemplary embodiment. As described above with reference to FIG. 4 , the operation of estimating the round trip time may be performed in operation S200 ′ shown in FIG. 6 . Specifically, in operation S200' shown in FIG. 6, a round trip time corresponding to one channel can be estimated, and the operation S200' shown in FIG. 6 can be performed multiple times sequentially or in parallel based on multiple channels. As shown in FIG. 6 , operation S200' may include operation S220 and operation S240. In the following, FIG. 6 will be explained with reference to FIGS. 1 and 3 , and the estimation of the first round trip time RTT 1 corresponding to the first channel CH1 will be explained based on the assumption that the UE 30 shown in FIG. 1 is the UE 30 ″ shown in FIG. 3 instance.

在操作S220中,可實行獲得重發參數的操作。舉例來說,可向PDCP 34'提供從第一基站10提供的第一指示符IND1,第一指示符IND1包括第一重發參數。在一些實施例中,PDCP 34'可將HARQ重發反映在對第一往返時間RTT1 的估計中,且舉例來說,第一重發參數可包括重發週期c1 及最大重發數目N1 。在一些其他實施例中,PDCP 34'可將RLC重發反映在對第一往返時間RTT1 的估計中,且舉例來說,第一重發參數可包括RLC最大重發數目R1In operation S220, an operation of obtaining retransmission parameters may be performed. For example, the PDCP 34' may be provided with a first indicator IND1 provided from the first base station 10, the first indicator IND1 including a first retransmission parameter. In some embodiments, PDCP 34' may reflect HARQ retransmissions in the estimate of the first round trip time RTT 1 , and for example, the first retransmission parameters may include retransmission period c 1 and the maximum number of retransmissions N 1 . In some other embodiments, PDCP 34' may reflect RLC retransmissions in the estimate of the first round trip time RTT1 , and for example, the first retransmission parameter may include an RLC maximum retransmission number R1 .

在操作S240中,可實行計算往返時間的操作。舉例來說,PDCP 34'可基於在操作S220中獲得的重發參數來計算第一往返時間RTT1 ,第一往返時間RTT1 用於在方程式(3)中計算資料大小的變化∆w。在一些實施例中,PDCP 34'可計算往返時間,所述往返時間包括由第一MAC 32a'提供的HARQ重發。在一些實施例中,PDCP 34'可計算往返時間,所述往返時間還包括由第一RLC 33a'提供的RLC重發。以下將參照圖7A及圖7B闡述操作S240的實例。In operation S240, an operation of calculating the round trip time may be performed. For example, the PDCP 34' may calculate the first round trip time RTT 1 based on the retransmission parameter obtained in operation S220, and the first round trip time RTT 1 is used to calculate the change in data size Δw in equation (3). In some embodiments, PDCP 34' may calculate the round-trip time including HARQ retransmissions provided by the first MAC 32a'. In some embodiments, PDCP 34' may calculate a round trip time that also includes RLC retransmissions provided by the first RLC 33a'. An example of operation S240 will be described below with reference to FIGS. 7A and 7B.

圖7A及圖7B是示出根據示例性實施例的圖6所示操作S240的流程圖。7A and 7B are flowcharts illustrating operation S240 shown in FIG. 6 according to an exemplary embodiment.

在圖7A所示操作S240a及圖7B所示操作S240b中可實行如以上參照圖6闡述的計算第一往返時間RTT1 的操作。在闡述圖7A及圖7B所示實施例時將省略重複說明。將參照圖1及圖3闡述圖7A及圖7B,且將闡述基於圖1所示UE 30是圖3所示UE 30''的假設估計與第一通道CH1對應的第一往返時間RTT1 的實例。The operation of calculating the first round trip time RTT 1 as explained above with reference to FIG. 6 may be performed in operation S240a shown in FIG. 7A and operation S240b shown in FIG. 7B. When describing the embodiment shown in FIG. 7A and FIG. 7B , repeated description will be omitted. 7A and 7B will be explained with reference to FIGS. 1 and 3 , and the estimation of the first round trip time RTT 1 corresponding to the first channel CH1 based on the assumption that the UE 30 shown in FIG. 1 is the UE 30 ″ shown in FIG. 3 will be explained. Example.

參照圖7A,操作S240a可包括操作S242a及操作S244a,且在操作S242a中可實行計算包括HARQ重發的往返時間的操作。舉例來說,PDCP 34'可如在以下方程式(5)中一樣使用區塊錯誤率BLER計算包括HARQ重發的第一往返時間RTTS1(5)Referring to FIG. 7A , operation S240a may include operations S242a and S244a, and in operation S242a, an operation of calculating a round-trip time including HARQ retransmission may be performed. For example, PDCP 34' may calculate the first round trip time RTT S1 including HARQ retransmission using the block error rate BLER as in equation (5) below: (5)

在方程式(5)中,第一區塊錯誤率BLER1 可表示在第一通道CH1中測量的區塊錯誤率。在一些實施例中,PDCP 34'可從第一指示符IND1中由第一PHY層31a'提供的指示符獲得第一區塊錯誤率BLER1In equation (5), the first block error rate BLER 1 may represent the block error rate measured in the first channel CH1. In some embodiments, the PDCP 34' may obtain the first block error rate BLER1 from the indicator provided by the first PHY layer 31a' in the first indicator IND1.

第一傳播延遲p1 可表示在第一通道CH1中出現的傳播延遲。在一些實施例中,PDCP 34'可從第一MAC 32a'獲得第一傳播延遲p1 。舉例來說,第一基站10可將專用隨機存取前導(dedicated random access preamble)分配到UE 30'',且當UE 30''不包含用於首先存取第一基站10或用於將訊號發送到第一基站10的無線資源時,UE 30''可基於隨機存取前導來實行隨機存取過程(random access procedure,RACH)。第一基站10可使用隨機存取前導(或探測參考訊號(sounding reference signal,SRS))來測量UE 30''的發送時間,計算校正時序值,並向UE 30''通知所計算的校正時序值。從第一基站10提供到UE 30''的校正時序值(即,時序提前值)可被稱為時序提前命令(timing advance command,TAC),且可在MAC層中對TAC進行處理。因此,UE 30''的第一MAC 32a'可基於TAC產生第一傳播延遲p1 且可向PDCP 34'提供第一傳播延遲p1 作為第一指示符IND1中的一者。The first propagation delay p 1 may represent the propagation delay occurring in the first channel CH1. In some embodiments, PDCP 34' may obtain first propagation delay p 1 from first MAC 32a'. For example, the first base station 10 may allocate a dedicated random access preamble to the UE 30'', and when the UE 30'' does not include a preamble for first accessing the first base station 10 or for transmitting the signal When sending to the radio resources of the first base station 10, the UE 30'' may perform a random access procedure (RACH) based on the random access preamble. The first base station 10 may use the random access preamble (or sounding reference signal (SRS)) to measure the transmission time of the UE 30'', calculate the correction timing value, and notify the UE 30'' of the calculated correction timing. value. The corrected timing value (ie, timing advance value) provided from the first base station 10 to the UE 30 ″ may be called a timing advance command (TAC), and the TAC may be processed in the MAC layer. Therefore, the first MAC 32a' of the UE 30' may generate the first propagation delay p 1 based on the TAC and may provide the first propagation delay p 1 to the PDCP 34' as one of the first indicators IND1.

在一些實施例中,在計算包括HARQ重發的第一往返時間RTTS1 的過程中可省略第一傳播延遲p1 。舉例來說,在方程式(5)中,第一傳播延遲p1 可具有比‘n1×c1’小的值,且因此,可如在以下方程式(6)中一樣計算包括HARQ重發的第一往返時間RTTS1 。在此種情形中,在圖6所示操作S220中可省略從第一MAC 32a'獲得第一傳播延遲p1 作為第一重發參數的操作。(6)In some embodiments, the first propagation delay p 1 may be omitted in the calculation of the first round trip time RTT S1 including HARQ retransmission. For example, in Equation (5), the first propagation delay p 1 may have a smaller value than 'n1×c1', and therefore, the first propagation delay including HARQ retransmission may be calculated as in Equation (6) below. Round trip time RTT S1 . In this case, the operation of obtaining the first propagation delay p 1 as the first retransmission parameter from the first MAC 32a' may be omitted in operation S220 shown in FIG. 6 . (6)

在一些實施例中,在RLC未確認模式(unacknowledge mode,UM)中PDCP 34'可將第一往返時間RTTS1 確定為第一傳播延遲p1 。舉例來說,當將第一區塊錯誤率BLER1 近似地維持為零時,可設定RLC UM,且PDCP 34'可將第一往返時間RTTS1 確定為第一傳播延遲p1 。另外,在一些其他實施例中,PDCP 34'可每隔第一傳播延遲p1 (即,第一往返時間RTTS1 )便反映變化∆w。In some embodiments, the PDCP 34' may determine the first round trip time RTT S1 as the first propagation delay p 1 in RLC unacknowledged mode (UM). For example, when maintaining the first block error rate BLER 1 approximately at zero, RLC UM may be set, and PDCP 34' may determine the first round trip time RTT S1 as the first propagation delay p 1 . Additionally, in some other embodiments, PDCP 34' may reflect changes Δw every first propagation delay p 1 (ie, first round trip time RTT S1 ).

應理解,包括HARQ重發且對應於第二通道CH2的第二往返時間RTTS2 相似地基於方程式(5)和/或方程式(6)來計算。It should be understood that the second round trip time RTT S2 including HARQ retransmission and corresponding to the second channel CH2 is similarly calculated based on Equation (5) and/or Equation (6).

在操作S244a中,可實行計算包括RLC重發的往返時間的操作。舉例來說,PDCP 34'可如在以下方程式(7)中一樣計算包括RLC重發的第一往返時間RTTT1(7)In operation S244a, an operation of calculating a round trip time including RLC retransmission may be performed. For example, PDCP 34' may calculate the first round trip time RTT T1 including RLC retransmission as in equation (7) below: (7)

在圖7A所示實施例中,PDCP 34'可使用基於方程式(7)計算的第一往返時間RTTT1 作為方程式(3)的資料變化∆w。另外,應理解,包括HARQ重發且對應於第二通道CH2的第二往返時間RTTS2 相似地基於方程式(7)來計算。In the embodiment shown in FIG. 7A , the PDCP 34' may use the first round trip time RTT T1 calculated based on Equation (7) as the data change Δw of Equation (3). In addition, it should be understood that the second round trip time RTT S2 including HARQ retransmission and corresponding to the second channel CH2 is similarly calculated based on equation (7).

參照圖7B,操作S240b可包括操作S242b、操作S243b及操作S244b。與圖7A所示操作S240a相比,圖7B所示操作S240b還可包括操作S243b。相似於圖7A所示操作S242a,在操作S242b中可實行計算包括HARQ重發的往返時間的操作。因此,可計算分別包括HARQ重發的第一往返時間RTTS1 及第二往返時間RTTS2Referring to FIG. 7B , operation S240b may include operation S242b, operation S243b, and operation S244b. Compared with operation S240a shown in FIG. 7A , operation S240b shown in FIG. 7B may further include operation S243b. Similar to operation S242a shown in FIG. 7A, an operation of calculating a round-trip time including HARQ retransmission may be performed in operation S242b. Therefore, the first round trip time RTT S1 and the second round trip time RTT S2 respectively including HARQ retransmission can be calculated.

在操作S243b中,可實行將區塊錯誤率BLER與預定義的第一閾值THR1進行比較的操作。舉例來說,在計算第一往返時間RTTS1 的過程中,可將第一區塊錯誤率BLER1 與預定義的第一閾值THR1進行比較,且如圖7B所示,當第一區塊錯誤率BLER1 小於第一閾值THR1時,操作S240b可結束。另一方面,當第一區塊錯誤率BLER1 等於或大於第一閾值THR1時,可實行操作S244b,且在操作S244b中可實行計算包括RLC重發的第一往返時間RTTT1 的操作。In operation S243b, an operation of comparing the block error rate BLER with the predefined first threshold THR1 may be performed. For example, in the process of calculating the first round trip time RTT S1 , the first block error rate BLER 1 can be compared with the predefined first threshold THR1, and as shown in Figure 7B, when the first block error When the rate BLER1 is less than the first threshold THR1, operation S240b may end. On the other hand, when the first block error rate BLER1 is equal to or greater than the first threshold THR1, operation S244b may be performed, and in operation S244b, an operation of calculating the first round trip time RTT T1 including the RLC retransmission may be performed.

因此,在圖7B所示實施例中,當第一區塊錯誤率BLER1 小於第一閾值THR1時,可將方程式(5)或方程式(6)的包括HARQ重發的第一往返時間RTTS1 確定為最終第一往返時間RTT1 。另一方面,當第一區塊錯誤率BLER1 等於或大於第一閾值THR1時,可將包括RLC重發的第一往返時間RTTT1 確定為最終第一往返時間RTT1 。在其中區塊錯誤率低的狀態中,出現RLC重發的可能性可為低的,且因此,在圖7B所示實施例中,可省略操作S244b(例如,基於方程式(7)的計算)。Therefore, in the embodiment shown in FIG. 7B , when the first block error rate BLER 1 is less than the first threshold THR1 , the first round trip time RTT S1 including HARQ retransmission of equation (5) or equation (6) can be It is determined as the final first round trip time RTT 1 . On the other hand, when the first block error rate BLER 1 is equal to or greater than the first threshold THR1 , the first round trip time RTT T1 including the RLC retransmission may be determined as the final first round trip time RTT 1 . In a state where the block error rate is low, the likelihood of an RLC retransmission may be low, and therefore, in the embodiment shown in FIG. 7B , operation S244b (eg, calculation based on Equation (7)) may be omitted .

圖8是示出根據示例性實施例的圖4所示操作S600的流程圖。如以上參照圖4所述,在圖8所示操作S600'中可實行確定多條分割資料(例如,第一資料及第二資料)的大小的操作。如圖8所示,操作S600'可包括操作S620及操作S640。在下文中,將參照圖3及圖4闡述圖8。FIG. 8 is a flowchart illustrating operation S600 shown in FIG. 4 according to an exemplary embodiment. As described above with reference to FIG. 4 , in operation S600 ′ shown in FIG. 8 , an operation of determining the sizes of multiple pieces of divided data (eg, first data and second data) may be performed. As shown in FIG. 8 , operation S600' may include operation S620 and operation S640. In the following, FIG. 8 will be explained with reference to FIGS. 3 and 4 .

在操作S620中,可實行計算資料大小的變化的操作。舉例來說,可基於通過操作S200獲得的往返時間及通過操作S400獲得的通道頻寬而如在方程式(3)中一樣計算資料大小的變化∆w。在一些實施例中,變化∆w可相同地適用於多個通道。In operation S620, an operation of calculating changes in data size may be performed. For example, the change in data size Δw may be calculated as in equation (3) based on the round trip time obtained through operation S200 and the channel bandwidth obtained through operation S400. In some embodiments, the variation Δw may apply equally to multiple channels.

在一些實施例中,當每次出現ACK時均不計算資料大小的變化時,可如在以下方程式(8)中一樣計算與第一通道CH1對應的資料大小的變化∆w1(8)In some embodiments, when the change in data size is not calculated every time an ACK occurs, the change in data size Δw 1 corresponding to the first channel CH1 can be calculated as in the following equation (8): (8)

在方程式(8)中,NACK1 可表示經由第一通道CH1從第一基站10接收的ACK的數目。舉例來說,PDCP 34'可基於方程式(8)而計算RLC AM中的資料大小的變化∆w1 。相似地,可使用表示經由第二通道CH2從第二基站20接收的ACK的數目的NACK2 來計算與第二通道CH2對應的資料大小的變化∆w2In Equation (8), N ACK1 may represent the number of ACKs received from the first base station 10 via the first channel CH1. For example, the PDCP 34' may calculate the change in data size Δw 1 in the RLC AM based on Equation (8). Similarly, the change Δw 2 in the data size corresponding to the second channel CH2 may be calculated using N ACK2 , which represents the number of ACKs received from the second base station 20 via the second channel CH2 .

在基於M數目通道的多連接中,可如在以下方程式(9)中一樣計算與第i通道CHi對應的資料大小的變化∆wi(9)In a multi-connection based on M number of channels, the change Δw i corresponding to the data size of the i-th channel CHi can be calculated as in the following equation (9): (9)

在操作S640中,可實行改變資料大小的操作。舉例來說,PDCP 34'可將通過操作S620計算的變化∆w加到在多個通道中設定的資料大小以改變資料大小。在一些實施例中,當變化∆w相同地適用於所述多個通道時,可將相同的變化∆w加到在所述多個通道中設定的資料大小。舉例來說,在具有足夠的品質的通道中可極少出現重發,且因此,即使當變化∆w具有負值時,仍可經由與具有較低品質的通道相比具有足夠的品質(或通道狀態)的通道來發送大量資料。另外,在具有不良品質的通道中可頻繁出現重發,且因此,即使當變化∆w具有正值時,仍可經由與具有足夠的品質的通道相比具有較低品質的通道來發送少量資料。In operation S640, an operation of changing the data size may be performed. For example, the PDCP 34' may add the change Δw calculated by operation S620 to the data size set in multiple channels to change the data size. In some embodiments, when the change Δw applies equally to the multiple channels, the same change Δw may be added to the data size set in the multiple channels. For example, retransmissions may occur rarely in channels with sufficient quality, and therefore, even when the variation Δw has a negative value, a channel with sufficient quality (or channel status) channel to send large amounts of data. In addition, retransmissions can occur frequently in channels with poor quality, and therefore, even when the variation Δw has a positive value, a small amount of data can still be sent via a channel with lower quality compared to a channel with sufficient quality .

圖9A及圖9B是示出根據示例性實施例的圖8所示操作S640的流程圖。詳細來說,圖9A所示操作S640a及圖9B所示操作S640b可分別包括阻斷經由具有不良通道狀態的通道發送資料的操作S644a及S644b。如以下參照圖8所述,在圖9A所示操作S640a及圖9B所示操作S640b中可實行改變資料大小的操作。在下文中,在闡述圖9A及圖9B時將省略重複說明,且將參照圖3闡述圖9A及圖9B。9A and 9B are flowcharts illustrating operation S640 shown in FIG. 8 according to an exemplary embodiment. In detail, operation S640a shown in FIG. 9A and operation S640b shown in FIG. 9B may respectively include operations S644a and S644b of blocking data transmission via a channel with a bad channel status. As described below with reference to FIG. 8, the operation of changing the data size may be performed in operation S640a shown in FIG. 9A and operation S640b shown in FIG. 9B. Hereinafter, repeated description will be omitted when explaining FIGS. 9A and 9B , and FIGS. 9A and 9B will be explained with reference to FIG. 3 .

參照圖9A,操作S640a可包括操作S641a到S646a,且在操作S641a中可實行起始化操作。舉例來說,如圖9A所示,可將表示通道的索引的變數i設定成1。在圖9A所示實施例中,可確定要經由M數目的通道發送的多條資料的大小,且因此,變數i可具有值“1到M”。Referring to FIG. 9A, operation S640a may include operations S641a to S646a, and an initialization operation may be performed in operation S641a. For example, as shown in FIG. 9A , the variable i representing the index of the channel may be set to 1. In the embodiment shown in FIG. 9A, the sizes of the plurality of pieces of data to be sent via M number of channels may be determined, and therefore, the variable i may have a value of "1 to M".

在操作S642a中,可實行將第i通道的區塊錯誤率BLERi 與預定義的第二閾值THR2進行比較的操作。如圖9A所示,當第i通道的區塊錯誤率BLERi 大於第二閾值THR2時,可實行操作S644a,且在操作S644a中可實行將資料大小確定為零的操作。另一方面,當第i通道的區塊錯誤率BLERi 等於或小於第二閾值THR2時,可實行操作S643a,且在操作S643a中可實行將資料大小的變化反映在資料分佈中的操作。因此,當通道的區塊錯誤率BLER高時,PDCP 34'可阻斷經由對應的通道發送資料。In operation S642a, an operation of comparing the block error rate BLER i of the i-th channel with the predefined second threshold THR2 may be performed. As shown in FIG. 9A , when the block error rate BLER i of the i-th channel is greater than the second threshold THR2, operation S644a may be performed, and in operation S644a, the operation of determining the data size to zero may be performed. On the other hand, when the block error rate BLER i of the i-th channel is equal to or less than the second threshold THR2, operation S643a may be performed, and in operation S643a, the operation of reflecting the change in the data size in the data distribution may be performed. Therefore, when the block error rate BLER of a channel is high, the PDCP 34' can block sending data through the corresponding channel.

在操作S645a中,可實行將變數i與M進行比較的操作。如圖9A所示,當變數i不與M匹配時(即,當變數i小於M時),在操作S646a中可將變數i增加一,且可再次實行操作S642a。另一方面,當變數i與M匹配時(即,當與所述M個通道對應的資料大小被全部確定出時),操作S640a可結束。In operation S645a, an operation of comparing the variable i with M may be performed. As shown in FIG. 9A, when variable i does not match M (ie, when variable i is less than M), variable i may be increased by one in operation S646a, and operation S642a may be performed again. On the other hand, when the variable i matches M (that is, when the data sizes corresponding to the M channels are all determined), operation S640a may end.

參照圖9B,操作S640b可包括操作S641b到S646b。在圖9B所示操作S641b及S643b到S646b中的一些操作中可實行與在圖9A所示操作S641a及S643a到S646a中的一些操作中實行的操作相似的操作。Referring to FIG. 9B, operation S640b may include operations S641b to S646b. Operations similar to operations performed in some of the operations S641a and S643a to S646a shown in FIG. 9A may be performed in some of the operations S641b and S643b to S646b shown in FIG. 9B.

在操作S642b中,可實行將預定義的閾值THR3與在第i通道中出現否定非確認回應(negative unacknowledge response,NACK)的比率NACK%進行比較的操作。如圖9B所示,當在第i通道中出現NACK的比率NACK%高於閾值THR3時,可實行操作S644b,且當在第i通道中出現NACK的比率NACK%等於或低於閾值THR3時,可實行操作S643b。因此,當通道的NACK比率NACK%高時,PDCP 34'可阻斷經由對應的通道發送資料。In operation S642b, an operation of comparing the predefined threshold THR3 with the rate NACK% of a negative unacknowledge response (NACK) occurring in the i-th channel may be performed. As shown in FIG. 9B , when the rate NACK% of NACK occurring in the i-th channel is higher than the threshold THR3, operation S644b may be performed, and when the rate NACK% of NACK occurring in the i-th channel is equal to or lower than the threshold THR3, Operation S643b can be performed. Therefore, when the NACK ratio NACK% of a channel is high, PDCP 34' may block sending data through the corresponding channel.

圖10是示出根據示例性實施例的UE 100的方塊圖。如以上參照圖1所述,圖10所示UE 100可支援多連接且可實行與兩個或更多個基站進行的無線通訊。如圖10所示,UE 100可包括天線110、收發器120、資料處理器130、記憶體140及主處理器150。在圖10中獨立地示出UE 100的元件,但在一些實施例中,可將兩個或更多個元件實施為一個實體(例如,半導體晶片)。Figure 10 is a block diagram illustrating a UE 100 according to an exemplary embodiment. As described above with reference to FIG. 1 , the UE 100 shown in FIG. 10 can support multiple connections and can perform wireless communication with two or more base stations. As shown in FIG. 10 , the UE 100 may include an antenna 110, a transceiver 120, a data processor 130, a memory 140 and a main processor 150. The elements of UE 100 are shown independently in Figure 10, but in some embodiments, two or more elements may be implemented as one entity (eg, a semiconductor wafer).

天線110可從基站接收射頻(radio frequency,RF)訊號,或者可將射頻訊號發送到基站。在一些實施例中,天線110可被配置成包括多個天線的天線陣列且可支援多輸入多輸出(multiple input multiple output,MIMO)及波束形成。The antenna 110 may receive radio frequency (RF) signals from the base station, or may transmit RF signals to the base station. In some embodiments, the antenna 110 may be configured as an antenna array including multiple antennas and may support multiple input multiple output (MIMO) and beamforming.

收發器120可對天線110與資料處理器130之間的訊號進行處理。舉例來說,收發器120可包括雙路複用器、交換機、濾波器、多工器及放大器。另外,收發器120可對經由天線110接收的射頻訊號進行處理以產生接收訊號RX且可將接收訊號RX提供到資料處理器130。另外,收發器120可對從資料處理器130提供的發送訊號TX進行處理以產生射頻訊號且可將所產生的射頻訊號提供到天線110。在一些實施例中,收發器120可被稱為射頻積體電路(radio frequency integrated circuit,RFIC)。The transceiver 120 can process signals between the antenna 110 and the data processor 130 . For example, transceiver 120 may include dual multiplexers, switches, filters, multiplexers, and amplifiers. In addition, the transceiver 120 may process the radio frequency signal received through the antenna 110 to generate the received signal RX and may provide the received signal RX to the data processor 130 . In addition, the transceiver 120 may process the transmission signal TX provided from the data processor 130 to generate a radio frequency signal and may provide the generated radio frequency signal to the antenna 110 . In some embodiments, the transceiver 120 may be referred to as a radio frequency integrated circuit (RFIC).

資料處理器130可對從主處理器150接收的資料封包PKT進行處理以產生發送訊號TX,對從收發器120接收的接收訊號RX進行處理以產生資料封包PKT,並將所產生的資料封包PKT提供到主處理器150。資料處理器130可實行與無線協定結構中的至少一個層對應的操作。舉例來說,資料處理器130可被稱為通訊協議且可實行圖3所示第一PHY層31a'及第二PHY層31b'、第一MAC 32a'及第二MAC 32b'、第一RLC 33a'及第二RLC 33b'以及PDCP 34'的功能。在一些實施例中,資料處理器130可包括硬體、包括處理單元以及包括硬體與處理單元的組合,硬體包括基於邏輯組合設計的邏輯區塊,處理單元包括軟體及用於執行軟體的至少一個核心(或至少一個處理器)。舉例來說,資料處理器130可包括分別與圖3所示第一PHY層31a'及第二PHY層31b'、第一MAC 32a'及第二MAC 32b'、第一RLC 33a'及第二RLC 33b'以及PDCP 34'對應的硬體區塊和/或軟體區塊。根據以上參照圖式闡述的示例性實施例的方法以及所述方法中所包括的至少一個操作可由資料處理器130來實行。在一些實施例中,基站(例如,圖1所示10和/或20)可具有與圖10所示UE 100的結構相似的結構,且基站中所包括的資料處理器可實行用於實現雙連接的方法以及所述方法中所包括的至少一個操作。The data processor 130 may process the data packet PKT received from the main processor 150 to generate the transmit signal TX, process the receive signal RX received from the transceiver 120 to generate the data packet PKT, and convert the generated data packet PKT provided to main processor 150. The data processor 130 may perform operations corresponding to at least one layer in the wireless protocol architecture. For example, the data processor 130 may be called a communication protocol and may implement the first PHY layer 31a' and the second PHY layer 31b', the first MAC 32a' and the second MAC 32b', and the first RLC shown in Figure 3 33a' and the functions of the second RLC 33b' and PDCP 34'. In some embodiments, the data processor 130 may include hardware, a processing unit, and a combination of hardware and processing units. The hardware includes logical blocks designed based on logical combinations. The processing unit includes software and a processor for executing the software. At least one core (or at least one processor). For example, the data processor 130 may include the first PHY layer 31a' and the second PHY layer 31b', the first MAC 32a' and the second MAC 32b', the first RLC 33a' and the second PHY layer shown in FIG. 3 respectively. The hardware blocks and/or software blocks corresponding to RLC 33b' and PDCP 34'. The method according to the exemplary embodiments set forth above with reference to the drawings and at least one operation included in the method may be performed by the data processor 130 . In some embodiments, a base station (eg, 10 and/or 20 shown in FIG. 1) may have a structure similar to that of the UE 100 shown in FIG. 10, and a data processor included in the base station may be implemented to implement dual A method of connection and at least one operation included in said method.

記憶體140可儲存由資料處理器130進行的處理的過程所需的資料、可儲存訊號和/或資料。在一些實施例中,記憶體140可儲存由資料處理器130執行的軟體(即,一系列指令)。The memory 140 may store data required for the processing performed by the data processor 130 and may store signals and/or data. In some embodiments, memory 140 may store software (ie, a sequence of instructions) executed by data processor 130 .

主處理器150可包括至少一個核心(或處理器)。另外,主處理器150可將要通過無線通訊發送的資料封包PKT傳輸到資料處理器130且可基於從資料處理器130提供的資料封包PKT而接收從基站發送的資料。主處理器150可控制UE 100的操作,且可產生資料封包PKT或可基於所接收的資料封包PKT實行操作。The main processor 150 may include at least one core (or processor). In addition, the main processor 150 may transmit the data packet PKT to be sent through wireless communication to the data processor 130 and may receive data sent from the base station based on the data packet PKT provided from the data processor 130 . The main processor 150 may control the operation of the UE 100 and may generate data packets PKT or may perform operations based on the received data packets PKT.

圖11A及圖11B是示出根據示例性實施例的用於相對於時間流實現多連接的方法的圖。詳細來說,圖11A及圖11B是示出用於在下行鏈路中實現多連接的方法的實例的圖。在一些實施例中,連接到UE的基站中的一者可實行用於多連接的資料的分割,且以下將參照圖11A及圖11B闡述其中第一基站10a及10b(即5G NR系統的基站(例如,gNB))實行用於多連接的資料的分割的實例。然而,應理解示例性實施例並非僅限於此。在下文中,將參照圖1闡述圖11A及圖11B,且可假設圖1所示第一基站10、第二基站20及UE 30對應於圖11A所示第一基站10a、第二基站20a及UE 30a且對應於圖11B所示第一基站10b、第二基站20b及UE 30b。在闡述圖11A及圖11B時將省略重複說明。11A and 11B are diagrams illustrating a method for implementing multiple connections with respect to time streams according to an exemplary embodiment. In detail, FIGS. 11A and 11B are diagrams illustrating an example of a method for implementing multiple connections in downlink. In some embodiments, one of the base stations connected to the UE may perform segmentation of data for multiple connections, and the first base stations 10a and 10b (i.e., the base stations of the 5G NR system) will be described below with reference to FIGS. 11A and 11B (e.g., gNB)) implements an instance of partitioning of data for multiple connections. However, it should be understood that the exemplary embodiments are not limited thereto. In the following, FIGS. 11A and 11B will be explained with reference to FIG. 1 , and it can be assumed that the first base station 10 , the second base station 20 and the UE 30 shown in FIG. 1 correspond to the first base station 10 a , the second base station 20 a and the UE shown in FIG. 11A 30a and corresponds to the first base station 10b, the second base station 20b and the UE 30b shown in Figure 11B. When describing FIGS. 11A and 11B , repeated description will be omitted.

參照圖11A,可由與UE 30a一起建立第二通道CH2的第二基站20a來估計與第二通道CH2對應的第二往返時間RTT2 ,且可將所估計的第二往返時間RTT2 從第二基站20a提供到第一基站10a。Referring to FIG. 11A , the second round trip time RTT 2 corresponding to the second channel CH2 may be estimated by the second base station 20a that establishes the second channel CH2 together with the UE 30a, and the estimated second round trip time RTT 2 may be derived from the second The base station 20a provides the first base station 10a.

在操作S11a中,第一基站10a可估計第一往返時間RTT1 。第一基站10a可與UE 30a一起建立第一通道CH1,且因此,如以上參照圖式所述,第一基站10a可採用與由UE 30a估計第一往返時間RTT1 的方式相似的方式來估計第一往返時間RTT1 。另外,在操作S12a中,第一基站10a可獲得第一通道頻寬BW1In operation S11a, the first base station 10a may estimate the first round trip time RTT 1 . The first base station 10a may establish the first channel CH1 with the UE 30a, and therefore, as described above with reference to the figures, the first base station 10a may estimate the first round trip time RTT 1 in a manner similar to the manner in which the first round trip time RTT 1 is estimated by the UE 30a The first round trip time RTT 1 . In addition, in operation S12a, the first base station 10a may obtain the first channel bandwidth BW 1 .

在操作S13a中,第二基站20a可估計第二往返時間RTT2 。第二基站20a可與UE 30a一起建立第二通道CH2,且因此,如以上參照圖式所述,第二基站20a可採用與由UE 30a估計第二往返時間RTT2 的方式相似的方式來估計第二往返時間RTT2 。另外,在操作S14a中,第二基站20a可獲得第二通道頻寬BW2In operation S13a, the second base station 20a may estimate the second round trip time RTT 2 . The second base station 20a may establish the second channel CH2 with the UE 30a, and therefore, as described above with reference to the figures, the second base station 20a may estimate the second round trip time RTT 2 in a manner similar to the manner in which the second round trip time RTT 2 is estimated by the UE 30a The second round trip time RTT 2 . In addition, in operation S14a, the second base station 20a may obtain the second channel bandwidth BW 2 .

在操作S15a中,第二基站20a可將第二往返時間RTT2 及第二通道頻寬BW2 提供到第一基站10a。舉例來說,如以上參照圖1所述,第二基站20a可將第二往返時間RTT2 及第二通道頻寬BW2 經由介面IF提供到第一基站10a。In operation S15a, the second base station 20a may provide the second round trip time RTT 2 and the second channel bandwidth BW 2 to the first base station 10a. For example, as described above with reference to FIG. 1 , the second base station 20a may provide the second round trip time RTT 2 and the second channel bandwidth BW 2 to the first base station 10a via the interface IF.

在操作S16a中,第一基站10a可計算資料大小。舉例來說,在操作S11a到S15a中第一基站10a可收集關於第一通道CH1及第二通道CH2的資訊且可基於所收集的資訊如在方程式(3)中一樣計算資料大小的變化∆w。第一基站10a可將資料大小的變化∆w反映在對要從第一基站10a發送到UE 30a的第一資料的大小以及對要從第二基站20a發送到UE 30a的第二資料的大小的計算中。In operation S16a, the first base station 10a may calculate the data size. For example, in operations S11a to S15a, the first base station 10a may collect information about the first channel CH1 and the second channel CH2 and may calculate the change in data size Δw based on the collected information as in equation (3) . The first base station 10a may reflect the change in data size Δw in the size of the first data to be sent from the first base station 10a to the UE 30a and to the size of the second data to be sent from the second base station 20a to the UE 30a. Calculating.

在操作S17a中,第一基站10a可基於第一資料的所計算的大小而將第一資料經由第一通道CH1發送到UE 30a。另外,在操作S18a中,第一基站10a可將第二資料提供到第二基站20a。在操作S19a中,第二基站20a可將從第一基站10a提供的第二資料經由第二通道CH2發送到UE 30a。In operation S17a, the first base station 10a may transmit the first material to the UE 30a via the first channel CH1 based on the calculated size of the first material. In addition, in operation S18a, the first base station 10a may provide the second data to the second base station 20a. In operation S19a, the second base station 20a may transmit the second material provided from the first base station 10a to the UE 30a via the second channel CH2.

參照圖11B,與UE 30b一起建立第二通道CH2的第二基站20b可向第一基站10b提供關於第二通道CH2的資訊,且第一基站10b可基於關於第二通道CH2的資訊而估計第二往返時間RTT2Referring to FIG. 11B , the second base station 20b that establishes the second channel CH2 together with the UE 30b may provide information about the second channel CH2 to the first base station 10b, and the first base station 10b may estimate the second channel CH2 based on the information about the second channel CH2. 2. Round trip time RTT 2 .

在操作S11b中,第一基站10b可估計第一往返時間RTT1 ,且在操作S12b中,第一基站10b可獲得第一通道頻寬BW1In operation S11b, the first base station 10b may estimate the first round trip time RTT 1 , and in operation S12b, the first base station 10b may obtain the first channel bandwidth BW 1 .

在操作S13b中,第二基站20b可將第二通道資訊提供到第一基站10b。舉例來說,如以上參照圖式所述,第二基站20b可向第一基站10b提供用於估計第二往返時間RTT2 的資訊(例如,與第二通道CH2對應的第二重發參數)以及用於計算資料大小的變化∆w的資訊(例如,包括第二通道頻寬BW2 的第二通道資訊)。在一些實施例中,第二基站20b可向第一基站10b提供與第二通道CH2對應的傳播延遲(即,第二傳播延遲p2 )。In operation S13b, the second base station 20b may provide the second channel information to the first base station 10b. For example, as described above with reference to the figures, the second base station 20b may provide the first base station 10b with information for estimating the second round trip time RTT 2 (for example, the second retransmission parameter corresponding to the second channel CH2) and information used to calculate the change in data size Δw (e.g., second channel information including second channel bandwidth BW 2 ). In some embodiments, the second base station 20b may provide the first base station 10b with the propagation delay corresponding to the second channel CH2 (ie, the second propagation delay p 2 ).

在操作S14b中,第一基站10b可估計第二往返時間RTT2 。舉例來說,第一基站10b可基於在操作S13b中提供的第二通道資訊使用方程式(5)、方程式(6)和/或方程式(7)來估計第二往返時間RTT2In operation S14b, the first base station 10b may estimate the second round trip time RTT 2 . For example, the first base station 10b may use Equation (5), Equation (6) and/or Equation (7) to estimate the second round trip time RTT 2 based on the second channel information provided in operation S13b.

在操作S15b中,第一基站10b可計算資料大小。在操作S16b中,第一基站10b可基於第一資料的所計算的大小而將第一資料經由第一通道CH1發送到UE 30b。另外,在操作S17b中,第一基站10b可將第二資料提供到第二基站20b。在操作S18b中,第二基站20b可將從第一基站10b提供的第二資料經由第二通道CH2發送到UE 30b。In operation S15b, the first base station 10b may calculate the data size. In operation S16b, the first base station 10b may transmit the first material to the UE 30b via the first channel CH1 based on the calculated size of the first material. In addition, in operation S17b, the first base station 10b may provide the second data to the second base station 20b. In operation S18b, the second base station 20b may transmit the second material provided from the first base station 10b to the UE 30b via the second channel CH2.

圖12是示出根據示例性實施例的多連接的圖。詳細來說,圖12示出包括連接到基站(例如,第一基站及第二基站)40及50的核心(例如,第一核心及第二核心)70及80的結構。在下文中,在闡述圖12時,將闡述與圖1重複的說明。FIG. 12 is a diagram illustrating multiple connections according to an exemplary embodiment. In detail, FIG. 12 shows a structure including cores (eg, first core and second core) 70 and 80 connected to base stations (eg, first base station and second base station) 40 and 50. Hereinafter, when explaining FIG. 12 , description repeated with FIG. 1 will be explained.

參照圖12,UE 60可經由第一通道CH1對第一基站40進行存取且可經由第二通道CH2對第二基站50進行存取。第一基站40可對第一核心70進行存取,且第二基站50可對第二核心80進行存取。舉例來說,第一基站40可為5G NR系統的基站,且第二基站50可為LTE系統的基站。在此種情形中,第二核心80可被稱為演進封包核心(evolved packet core,EPC)。Referring to FIG. 12 , the UE 60 may access the first base station 40 via the first channel CH1 and may access the second base station 50 via the second channel CH2. The first base station 40 can access the first core 70 and the second base station 50 can access the second core 80 . For example, the first base station 40 may be a base station of a 5G NR system, and the second base station 50 may be a base station of an LTE system. In this case, the second core 80 may be called an evolved packet core (EPC).

第一核心70及第二核心80可對通用網際網路協議(Internet protocol,IP)錨90進行存取,且通用IP錨90可為網路實體且可實行對從資料網路傳輸到一個UE 60的資料進行路由的功能。在一些實施例中,通用IP錨90可在多連接中實行資料的分割,且以下將參照圖13A及圖13B闡述相關實施例。The first core 70 and the second core 80 can access a common Internet protocol (IP) anchor 90, and the common IP anchor 90 can be a network entity and can perform data network transmission to a UE. 60 data for routing function. In some embodiments, the universal IP anchor 90 can perform data segmentation across multiple connections, and related embodiments will be described below with reference to FIGS. 13A and 13B.

圖13A及圖13B是示出根據示例性實施例的用於相對於時間流實現多連接的方法的圖。詳細來說,圖13A及圖13B示出用於在下行鏈路中實現多連接的方法的實例。在一些實施例中,通用IP錨90a及90b可實行用於多連接的資料的分割,且以下將參照圖13A及圖13B闡述其中將資料分佈到5G NR系統的第一基站40a及40b以及LTE系統的第二基站50a及50b的實例。然而,應理解示例性實施例並非僅限於此。13A and 13B are diagrams illustrating a method for implementing multiple connections with respect to time streams according to an exemplary embodiment. In detail, FIGS. 13A and 13B illustrate an example of a method for implementing multiple connections in downlink. In some embodiments, universal IP anchors 90a and 90b may implement partitioning of data for multiple connections, and distribution of data to the first base stations 40a and 40b of the 5G NR system and LTE will be described below with reference to Figures 13A and 13B Example of second base stations 50a and 50b of the system. However, it should be understood that the exemplary embodiments are not limited thereto.

參照圖13A,通用IP錨90a可基於從第一基站40a及第二基站50a提供的往返時間及通道頻寬而對資料進行分割。在操作S21a中,第一基站40a可向通用IP錨90a提供分別與第一通道CH1對應的第一往返時間RTT1 及第一通道頻寬BW1 。在操作S22a中,第二基站50a可向通用IP錨90a提供分別與第二通道CH2對應的第二往返時間RTT2 及第二通道頻寬BW2 。舉例來說,第一基站40a及第二基站50a可基於方程式(5)、方程式(6)和/或方程式(7)分別計算第一往返時間RTT1 及第二往返時間RTT2Referring to FIG. 13A, the universal IP anchor 90a may segment the data based on the round trip time and channel bandwidth provided from the first base station 40a and the second base station 50a. In operation S21a, the first base station 40a may provide the first round trip time RTT 1 and the first channel bandwidth BW 1 respectively corresponding to the first channel CH1 to the universal IP anchor 90a. In operation S22a, the second base station 50a may provide the universal IP anchor 90a with the second round trip time RTT 2 and the second channel bandwidth BW 2 respectively corresponding to the second channel CH2. For example, the first base station 40a and the second base station 50a may respectively calculate the first round trip time RTT 1 and the second round trip time RTT 2 based on equation (5), equation (6) and/or equation (7).

在操作S23a中,通用IP錨90a可基於從第一基站40a及第二基站50a提供的往返時間及通道頻寬而計算多條分割資料的大小。舉例來說,通用IP錨90a可基於方程式(3)而計算資料大小的變化∆w,且可將資料大小的變化∆w反映在對要經由第一通道CH1發送的第一資料的大小以及對要經由第二通道CH2發送的第二資料的大小的計算中。隨後,在操作S24a中,通用IP錨90a可將第一資料提供到第一基站40a,且在操作S25a中,通用IP錨90a可將第二資料提供到第二基站50a。In operation S23a, the universal IP anchor 90a may calculate the sizes of the plurality of pieces of segmented data based on the round-trip time and channel bandwidth provided from the first base station 40a and the second base station 50a. For example, the universal IP anchor 90a may calculate the change in data size Δw based on equation (3), and may reflect the change in data size Δw in the size of the first data to be sent via the first channel CH1 and the change in the data size Δw. The size of the second data to be sent via the second channel CH2 is being calculated. Subsequently, in operation S24a, the universal IP anchor 90a may provide the first material to the first base station 40a, and in operation S25a, the universal IP anchor 90a may provide the second material to the second base station 50a.

參照圖13B,通用IP錨90b可基於從第一基站40b及第二基站50b中的每一者提供的通道資訊而對資料進行分割。在操作S21b中,第一基站40b可向通用IP錨90b提供與第一通道CH1對應的第一通道資訊。在操作S22b中,第二基站50b可向通用IP錨90b提供與第二通道CH2對應的第二通道資訊。舉例來說,第一通道資訊可包括第一重發參數及第一通道頻寬,且第二通道資訊可包括第二重發參數及第二通道頻寬。Referring to Figure 13B, universal IP anchor 90b may segment data based on channel information provided from each of first base station 40b and second base station 50b. In operation S21b, the first base station 40b may provide the first channel information corresponding to the first channel CH1 to the universal IP anchor 90b. In operation S22b, the second base station 50b may provide the second channel information corresponding to the second channel CH2 to the universal IP anchor 90b. For example, the first channel information may include a first retransmission parameter and a first channel bandwidth, and the second channel information may include a second retransmission parameter and a second channel bandwidth.

在操作S23b中,通用IP錨90b可估計往返時間。舉例來說,通用IP錨90b可基於第一通道資訊及第二通道資訊使用方程式(5)、方程式(6)和/或方程式(7)來估計第一往返時間RTT1 及第二往返時間RTT2 。在操作S24b中,通用IP錨90b可計算多條分割資料的大小。舉例來說,通用IP錨90b可基於方程式(3)而計算資料大小的變化∆w,且可將資料大小的變化∆w反映在對要經由第一通道CH1發送的第一資料的大小以及對要經由第二通道CH2發送的第二資料的大小的計算中。在操作S25b中,通用IP錨90b可將第一資料提供到第一基站40b,且在操作S26b中,通用IP錨90b可將第二資料提供到第二基站50b。In operation S23b, the universal IP anchor 90b may estimate the round-trip time. For example, the universal IP anchor 90b may use equation (5), equation (6), and/or equation (7) to estimate the first round trip time RTT 1 and the second round trip time RTT based on the first channel information and the second channel information. 2 . In operation S24b, the universal IP anchor 90b may calculate the sizes of the plurality of divided data. For example, the universal IP anchor 90b may calculate the change in data size Δw based on Equation (3), and may reflect the change in data size Δw in the size of the first data to be sent via the first channel CH1 and the change in the data size Δw. The size of the second data to be sent via the second channel CH2 is being calculated. In operation S25b, the universal IP anchor 90b may provide the first material to the first base station 40b, and in operation S26b, the universal IP anchor 90b may provide the second material to the second base station 50b.

儘管已參照本發明概念的實施例具體示出並闡述了本發明概念,然而應理解,在不背離以上權利要求書的精神及範圍的條件下,可在本文中作出形式及細節上的各種改變。While the inventive concepts have been particularly shown and described with reference to embodiments thereof, it will be understood that various changes in form and details may be made herein without departing from the spirit and scope of the following claims. .

10、10'、10a、10b、40a、40b:第一基站 11、21、31a、31b:物理層 12、22、32a、32b:媒體存取控制 13、23、33a、33b:無線電鏈路控制 14、24、34、34':封包資料收斂協定 20、20'、20a、20b、50a、50b:第二基站 30、30'、30''、30a、30b、60、100:使用者設備 31a':第一物理層 31b':第二物理層 32a':第一媒體存取控制 32b':第二媒體存取控制 33a':第一無線電鏈路控制 33b':第二無線電鏈路控制 35:應用 40:基站/第一基站 50:基站/第二基站 70:核心/第一核心 80:核心/第二核心 90、90a、90b:通用網際網路協議錨 110:天線 120:收發器 130:資料處理器 140:記憶體 150:主處理器 CH1:第一通道 CH2:第二通道 IF:介面 IND1:第一指示符 IND2:第二指示符 PKT:資料封包 RAT1:第一無線通訊系統 RAT2:第二無線通訊系統 RX:接收訊號 TX:發送訊號 S11a、S11b、S12a、S12b、S13a、S13b、S14a、S14b、S15a、S15b、S16a、S16b、S17a、S17b、S18a、S18b、S19a、S21a、S21b、S22a、S22b、S23a、S23b、S24a、S24b、S25a、S25b、S26b、S100、S120、S140、S160、S200、S200'、S220、S240、S240a、S240b、S242a、S242b、S243b、S244a、S244b、S400、S600、S600'、S620、S640、S640a、S640b、S641a、S641b、S642a、S642b、S643a、S643b、S644a、S644b、S645a、S645b、S646a、S646b:操作10, 10', 10a, 10b, 40a, 40b: the first base station 11, 21, 31a, 31b: physical layer 12, 22, 32a, 32b: Media access control 13, 23, 33a, 33b: Radio link control 14, 24, 34, 34': Packet data convergence protocol 20, 20', 20a, 20b, 50a, 50b: second base station 30, 30', 30'', 30a, 30b, 60, 100: User equipment 31a': First physical layer 31b': Second physical layer 32a': First media access control 32b': Second media access control 33a': First radio link control 33b': Second radio link control 35:Application 40: Base station/first base station 50: Base station/second base station 70:Core/First Core 80:Core/Second Core 90, 90a, 90b: Common Internet Protocol Anchors 110:Antenna 120: Transceiver 130:Data processor 140:Memory 150: Main processor CH1: first channel CH2: Second channel IF:interface IND1: first indicator IND2: Second indicator PKT: data packet RAT1: The first wireless communication system RAT2: The second wireless communication system RX: receive signal TX: send signal S11a, S11b, S12a, S12b, S13a, S13b, S14a, S14b, S15a, S15b, S16a, S16b, S17a, S17b, S18a, S18b, S19a, S21a, S21b, S22a, S22b, S23a, S23b, S24a, S24b , S25a, S25b, S26b, S100, S120, S140, S160, S200, S200', S220, S240, S240a, S240b, S242a, S242b, S243b, S244a, S244b, S400, S600, S600', S620, S640, S640a、 S640b, S641a, S641b, S642a, S642b, S643a, S643b, S644a, S644b, S645a, S645b, S646a, S646b: Operation

結合附圖閱讀以下詳細說明,將會更清楚地理解本發明概念的實施例,在附圖中: 圖1是示出根據示例性實施例的多連接的圖。 圖2是示出根據示例性實施例的圖1所示多連接中的無線協定的結構的圖。 圖3是示出根據示例性實施例的使用者設備中的無線協定的結構的圖。 圖4是示出根據示例性實施例的用於實現多連接的方法的流程圖。 圖5是示出根據示例性實施例的用於實現多連接的方法的流程圖。 圖6是示出根據示例性實施例的圖4所示操作S200的流程圖。 圖7A及圖7B是示出根據示例性實施例的圖6所示操作S240的流程圖。 圖8是示出根據示例性實施例的圖4所示操作S600的流程圖。 圖9A及圖9B是示出根據示例性實施例的圖8所示操作S640的流程圖。 圖10是示出根據示例性實施例的使用者設備的方塊圖。 圖11A及圖11B是示出根據示例性實施例的用於相對於時間流實現多連接的方法的圖。 圖12是示出根據示例性實施例的多連接的圖。 圖13A及圖13B是示出根據示例性實施例的用於相對於時間流實現多連接的方法的圖。Embodiments of the inventive concept will be more clearly understood by reading the following detailed description in conjunction with the accompanying drawings, in which: FIG. 1 is a diagram illustrating multiple connections according to an exemplary embodiment. FIG. 2 is a diagram illustrating the structure of a wireless protocol in the multi-connection shown in FIG. 1 according to an exemplary embodiment. FIG. 3 is a diagram illustrating the structure of a wireless protocol in a user equipment according to an exemplary embodiment. 4 is a flowchart illustrating a method for implementing multiple connections according to an exemplary embodiment. FIG. 5 is a flowchart illustrating a method for implementing multiple connections according to an exemplary embodiment. FIG. 6 is a flowchart illustrating operation S200 shown in FIG. 4 according to an exemplary embodiment. 7A and 7B are flowcharts illustrating operation S240 shown in FIG. 6 according to an exemplary embodiment. FIG. 8 is a flowchart illustrating operation S600 shown in FIG. 4 according to an exemplary embodiment. 9A and 9B are flowcharts illustrating operation S640 shown in FIG. 8 according to an exemplary embodiment. Figure 10 is a block diagram illustrating user equipment according to an exemplary embodiment. 11A and 11B are diagrams illustrating a method for implementing multiple connections with respect to time streams according to an exemplary embodiment. FIG. 12 is a diagram illustrating multiple connections according to an exemplary embodiment. 13A and 13B are diagrams illustrating a method for implementing multiple connections with respect to time streams according to an exemplary embodiment.

S200、S400、S600:操作 S200, S400, S600: Operation

Claims (17)

一種用於在多個基站與使用者設備之間通過多個通道實現多連接的方法,所述方法包括:估計在所述使用者設備處的第一往返時間,其中所述第一往返時間為用於通過第一通道發送資料及接收確認回應所花費的預期時間;估計在所述使用者設備處的第二往返時間,其中所述第二往返時間為用於通過第二通道發送資料及接收確認回應所花費的預期時間;在所述使用者設備處基於所述第一往返時間及所述第二往返時間而確定通過所述第一通道發送的上行鏈路資料的大小;獲得與所述第一通道對應的第一通道頻寬;以及獲得與所述第二通道對應的第二通道頻寬,其中確定所述上行鏈路資料的所述大小包括基於所述第一往返時間、所述第二往返時間、所述第一通道頻寬及所述第二通道頻寬而獲得所述上行鏈路資料的所述大小,其中確定所述上行鏈路資料的所述大小包括基於在以下方程式中表達的變化Δw而改變所述上行鏈路資料的所述大小:
Figure 108125810-A0305-02-0033-1
其中所述RTT1、所述RTT2、所述BW1及所述BW2分別是所述第一往返時間、所述第二往返時間、所述第一通道頻寬及所述第二通道頻寬。
A method for implementing multiple connections through multiple channels between multiple base stations and user equipment, the method comprising: estimating a first round trip time at the user equipment, wherein the first round trip time is The expected time it takes to send data and receive an acknowledgment through the first channel; estimate the second round-trip time at the user equipment, where the second round-trip time is the time it takes to send data and receive the acknowledgment through the second channel The expected time it takes for acknowledgment response; determining, at the user equipment, the size of the uplink data sent through the first channel based on the first round-trip time and the second round-trip time; obtaining and a first channel bandwidth corresponding to the first channel; and obtaining a second channel bandwidth corresponding to the second channel, wherein determining the size of the uplink data includes based on the first round trip time, the The second round trip time, the first channel bandwidth and the second channel bandwidth are used to obtain the size of the uplink data, wherein determining the size of the uplink data includes based on the following equation: The change in expression Δw changes the size of the uplink data:
Figure 108125810-A0305-02-0033-1
The RTT 1 , the RTT 2 , the BW 1 and the BW 2 are respectively the first round trip time, the second round trip time, the first channel bandwidth and the second channel frequency. wide.
如申請專利範圍第1項所述的方法,其中估計所述第一往返時間包括:獲得與所述第一通道對應的重發參數;以及基於所述重發參數而獲得所述第一往返時間。 The method as described in claim 1, wherein estimating the first round-trip time includes: obtaining a retransmission parameter corresponding to the first channel; and obtaining the first round-trip time based on the retransmission parameter. . 如申請專利範圍第2項所述的方法,其中所述重發參數包括重發週期c1及最大重發數目N1,且獲得所述第一往返時間包括獲得在以下方程式中表達的RTTS1
Figure 108125810-A0305-02-0034-2
其中所述BLER1及所述p1分別是與所述第一通道中的區塊錯誤率及訊號移動時間。
The method as described in item 2 of the patent application, wherein the retransmission parameters include a retransmission period c 1 and a maximum retransmission number N 1 , and obtaining the first round trip time includes obtaining the RTT S1 expressed in the following equation :
Figure 108125810-A0305-02-0034-2
The BLER 1 and the p 1 are respectively the block error rate and the signal movement time in the first channel.
如申請專利範圍第3項所述的方法,其中所述重發參數更包括無線電鏈路控制實體的最大重發數目R1,且獲得所述第一往返時間包括獲得在以下方程式中表達的RTTT1作為所述第一往返時間:
Figure 108125810-A0305-02-0034-3
The method as described in item 3 of the patent application, wherein the retransmission parameter further includes a maximum retransmission number R 1 of the radio link control entity, and obtaining the first round trip time includes obtaining the RTT expressed in the following equation T1 as the first round trip time:
Figure 108125810-A0305-02-0034-3
如申請專利範圍第3項所述的方法,其中獲得所述第一往返時間包括回應於所述BLER1小於第一閾值而將所述RTTS1確定為所述第一往返時間。 The method of claim 3, wherein obtaining the first round-trip time includes determining the RTT S1 as the first round-trip time in response to the BLER 1 being less than a first threshold. 如申請專利範圍第3項所述的方法,其中確定所述上行鏈路資料的所述大小包括回應於所述BLER1大於第二閾值而將所述上行鏈路資料的所述大小確定為零。 The method of claim 3, wherein determining the size of the uplink data includes determining the size of the uplink data to zero in response to the BLER 1 being greater than a second threshold. . 如申請專利範圍第2項所述的方法,其中獲得所述重發參數包括獲得與所述第一通道對應的經更新的重發參數,且獲得所述第一往返時間包括基於所述經更新的重發參數而獲得所述第一往返時間。 The method according to claim 2, wherein obtaining the retransmission parameter includes obtaining an updated retransmission parameter corresponding to the first channel, and obtaining the first round-trip time includes obtaining the first round-trip time based on the updated retransmission parameter. The retransmission parameters are used to obtain the first round trip time. 如申請專利範圍第1項所述的方法,其中所述方法是在封包資料收斂協定層中實行的。 The method described in item 1 of the patent application, wherein the method is implemented in the packet data convergence protocol layer. 如申請專利範圍第1項所述的方法,其中確定所述上行鏈路資料的所述大小包括回應於通過所述第二通道的否定非確認的比率大於第三閾值而將所述上行鏈路資料的所述大小確定為零。 The method of claim 1, wherein determining the size of the uplink data includes reducing the uplink data in response to a rate of negative non-acknowledgments through the second channel being greater than a third threshold. The stated size of the data is determined to be zero. 如申請專利範圍第1項所述的方法,更包括基於所述第一往返時間及所述第二往返時間而確定通過所述第二通道發送的上行鏈路資料的大小。 The method described in claim 1 further includes determining the size of the uplink data sent through the second channel based on the first round trip time and the second round trip time. 如申請專利範圍第1項所述的方法,其中所述使用者設備通過所述第一通道與第一基站通訊且通過所述第二通道與第二基站通訊,以及所述第一基站與所述第二基站基於相同的無線電存取技術而與所述使用者設備進行通訊。 The method as described in item 1 of the patent application, wherein the user equipment communicates with the first base station through the first channel and communicates with the second base station through the second channel, and the first base station communicates with the first base station through the first channel and the second base station through the second channel. The second base station communicates with the user equipment based on the same radio access technology. 如申請專利範圍第1項所述的方法,其中所述使用者設備通過所述第一通道與第一基站通訊且通過所述第二通道與第二基站通訊,以及所述第一基站與所述第二基站基於不同的無線電存取技術而 與所述使用者設備進行通訊。 The method as described in item 1 of the patent application, wherein the user equipment communicates with the first base station through the first channel and communicates with the second base station through the second channel, and the first base station communicates with the first base station through the first channel and the second base station through the second channel. The second base station is based on a different radio access technology. Communicate with the user equipment. 一種用於在多個基站與使用者設備之間通過多個通道實現多連接的方法,所述方法包括:估計在第一基站處的第一往返時間,其中所述第一往返時間為用於通過第一通道發送資料及接收確認回應所花費的預期時間;獲得在第一基站處的第二往返時間,其中所述第二往返時間為用於通過第二通道發送資料及接收確認回應所花費的預期時間;在第一基站處基於所述第一往返時間及所述第二往返時間而確定要從所述第一基站向所述使用者設備發送的下行鏈路資料的大小;獲得與所述第一通道對應的第一通道頻寬;以及獲得與所述第二通道對應的第二通道頻寬,其中確定所述下行鏈路資料的所述大小包括基於所述第一往返時間、所述第二往返時間、所述第一通道頻寬及所述第二通道頻寬而獲得所述下行鏈路資料的所述大小,其中確定所述下行鏈路資料的所述大小包括基於在以下方程式中表達的變化Δw而改變所述下行鏈路資料的所述大小:
Figure 108125810-A0305-02-0036-4
其中所述RTT1、所述RTT2、所述BW1、所述BW2及所述NACK1分別是所述第一往返時間、所述第二往返時間、所述第一通道頻寬、所述第二通道頻寬及從通過所述第一通道接收的確認回 應的數目。
A method for implementing multiple connections through multiple channels between multiple base stations and user equipment, the method comprising: estimating a first round trip time at a first base station, wherein the first round trip time is for The expected time it takes to send data through the first channel and receive the acknowledgment response; obtain the second round-trip time at the first base station, where the second round-trip time is the time it takes to send data through the second channel and receive the acknowledgment response. the expected time; determining at the first base station based on the first round-trip time and the second round-trip time the size of the downlink data to be sent from the first base station to the user equipment; obtaining the a first channel bandwidth corresponding to the first channel; and obtaining a second channel bandwidth corresponding to the second channel, wherein determining the size of the downlink data includes based on the first round trip time, the The second round trip time, the first channel bandwidth and the second channel bandwidth are used to obtain the size of the downlink data, wherein determining the size of the downlink data includes based on the following The change in Δw expressed in the equation changes the size of the downlink data:
Figure 108125810-A0305-02-0036-4
The RTT 1 , the RTT 2 , the BW 1 , the BW 2 and the N ACK1 are respectively the first round trip time, the second round trip time, the first channel bandwidth, the The second channel bandwidth and the number of acknowledgment responses received through the first channel.
如申請專利範圍第13項所述的方法,其中獲得所述第二往返時間包括從第二基站接收由所述第二基站估計的所述第二往返時間。 The method of claim 13, wherein obtaining the second round-trip time includes receiving from a second base station the second round-trip time estimated by the second base station. 如申請專利範圍第13項所述的方法,其中獲得所述第二往返時間包括:從第二基站接收關於所述第二通道的通道資訊;以及基於所述通道資訊而估計所述第二往返時間。 The method of claim 13, wherein obtaining the second round trip time includes: receiving channel information about the second channel from a second base station; and estimating the second round trip based on the channel information. time. 一種用於在多個基站與使用者設備之間通過多個通道實現多連接的方法,所述方法包括:估計在所述使用者設備處的第一往返時間,其中所述第一往返時間為用於通過第一通道發送資料及接收確認回應所花費的預期時間;估計在所述使用者設備處的第二往返時間,其中所述第二往返時間為用於通過第二通道發送資料及接收確認回應所花費的預期時間;獲得所述第一通道及所述第二通道的通道頻寬;以及在所述使用者設備處基於所述第一往返時間及所述第二往返時間及所述第一通道及所述第二通道的所述通道頻寬而確定要經由所述第一通道及所述第二通道發送的上行鏈路資料的大小,其中確定所述上行鏈路資料的所述大小包括基於在以下方程式中表達的變化Δw而改變所述上行鏈路資料的所述大小:
Figure 108125810-A0305-02-0038-5
其中所述RTT1、所述RTT2、所述BW1及所述BW2分別是所述第一往返時間、所述第二往返時間、所述第一通道的所述通道頻寬及所述第二通道的所述通道頻寬。
A method for implementing multiple connections through multiple channels between multiple base stations and user equipment, the method comprising: estimating a first round trip time at the user equipment, wherein the first round trip time is The expected time it takes to send data and receive an acknowledgment through the first channel; estimate the second round-trip time at the user equipment, where the second round-trip time is the time it takes to send data and receive the acknowledgment through the second channel The expected time it takes to confirm the response; obtain the channel bandwidth of the first channel and the second channel; and based on the first round-trip time and the second round-trip time at the user equipment and the The channel bandwidth of the first channel and the second channel determines the size of the uplink data to be sent via the first channel and the second channel, wherein the size of the uplink data is determined. Sizing includes changing the size of the uplink data based on a change Δw expressed in the following equation:
Figure 108125810-A0305-02-0038-5
The RTT 1 , the RTT 2 , the BW 1 and the BW 2 are respectively the first round trip time, the second round trip time, the channel bandwidth of the first channel and the The channel bandwidth of the second channel.
一種用於在多個基站與使用者設備之間通過多個通道實現多連接的方法,所述方法包括:估計在所述使用者設備處的第一往返時間,其中所述第一往返時間為用於通過第一通道發送資料及接收確認回應所花費的預期時間;估計在所述使用者設備處的第二往返時間,其中所述第二往返時間為用於通過第二通道發送資料及接收確認回應所花費的預期時間;以及在所述使用者設備處基於所述第一往返時間及所述第二往返時間而確定通過所述第一通道發送的上行鏈路資料的大小,其中估計所述第一往返時間包括:獲得與所述第一通道對應的重發參數;以及基於所述重發參數而獲得所述第一往返時間,其中所述重發參數包括重發週期c1及最大重發數目N1,且獲得所述第一往返時間包括獲得在以下方程式中表達的RTTS1
Figure 108125810-A0305-02-0038-6
其中所述BLER1及所述p1分別是與所述第一通道中的區塊錯誤率及訊號移動時間。
A method for implementing multiple connections through multiple channels between multiple base stations and user equipment, the method comprising: estimating a first round trip time at the user equipment, wherein the first round trip time is The expected time it takes to send data and receive an acknowledgment through the first channel; estimate the second round-trip time at the user equipment, where the second round-trip time is the time it takes to send data and receive the acknowledgment through the second channel an expected time for acknowledgment response; and determining, at the user equipment, a size of uplink data sent through the first channel based on the first round trip time and the second round trip time, where the estimated The first round trip time includes: obtaining a retransmission parameter corresponding to the first channel; and obtaining the first round trip time based on the retransmission parameter, wherein the retransmission parameter includes a retransmission period c 1 and a maximum The number of retransmissions is N 1 , and obtaining the first round trip time includes obtaining the RTT S1 expressed in the following equation:
Figure 108125810-A0305-02-0038-6
The BLER 1 and the p 1 are respectively the block error rate and the signal movement time in the first channel.
TW108125810A 2018-10-16 2019-07-22 Method for multi-connectivity TWI825132B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180123273A KR102665409B1 (en) 2018-10-16 2018-10-16 Method and apparatus for splitting data in multi-connectivity
KR10-2018-0123273 2018-10-16

Publications (2)

Publication Number Publication Date
TW202017409A TW202017409A (en) 2020-05-01
TWI825132B true TWI825132B (en) 2023-12-11

Family

ID=69954403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125810A TWI825132B (en) 2018-10-16 2019-07-22 Method for multi-connectivity

Country Status (5)

Country Link
US (2) US11349739B2 (en)
KR (1) KR102665409B1 (en)
DE (1) DE102019115114B4 (en)
SG (1) SG10201907824RA (en)
TW (1) TWI825132B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159972B2 (en) 2018-10-31 2021-10-26 Qualcomm Incorporated Handling of radio frequency front-end group delays for round trip time estimation
US10848256B2 (en) * 2018-11-08 2020-11-24 Qualcomm Incorporated Group delay calibration for carrier aggregation / multi-radio access technology
US11178107B2 (en) * 2019-09-30 2021-11-16 Michael Schloss System and method for detecting surreptitious packet rerouting
US11729736B2 (en) * 2020-08-06 2023-08-15 Samsung Electronics Co., Ltd. Time adjustment during handover

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201132146A (en) * 2009-05-29 2011-09-16 Interdigital Patent Holdings Communication access technology management
US20140293899A1 (en) * 2013-03-26 2014-10-02 Samsung Electronics Co., Ltd. Method and apparatus for selecting modulation and coding selection (mcs) level in wireless mobile communication system
US20160119840A1 (en) * 2013-06-21 2016-04-28 Panasonic Intellectual Property Corporation Of America Uplink switching of communication links for mobile stations in dual connectivity
US20170188248A1 (en) * 2015-06-12 2017-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes for evaluating a connection
WO2017140361A1 (en) * 2016-02-18 2017-08-24 Nokia Solutions And Networks Oy Uplink selection for wireless network based on network cell weight and link-specific weight for wireless links
WO2017164141A1 (en) * 2016-03-23 2017-09-28 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
US20180279262A1 (en) * 2017-03-23 2018-09-27 Ofinno Technologies, Llc Packet duplication in a wireless device and wireless network

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417733B2 (en) * 2004-01-15 2010-02-17 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Transmission method and apparatus
JP4924285B2 (en) 2007-08-23 2012-04-25 日本電気株式会社 Communication apparatus, communication system, transfer efficiency improvement method, and transfer efficiency improvement program
EP2320592B1 (en) * 2009-11-06 2013-05-29 Fujitsu Limited An uplink H-ARQ signalling mechanism in a wireless communication system
US8972541B2 (en) * 2010-02-12 2015-03-03 Alcatel Lucent Method and apparatus providing access network aware presence to applications
WO2011136705A1 (en) 2010-04-26 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Method for setting and adjusting a parameter dependent on a round trip time
EP2408152B1 (en) 2010-07-16 2013-11-27 BlackBerry Limited Methods and apparatus for use in communicating data packets within a data packet window having a size that is set based on quality of service (qos) parameters
KR101598621B1 (en) 2012-10-09 2016-03-02 주식회사 케이티 apparatus for receiving contents by dividing through multiple networks and method thereof
CN103959875A (en) 2012-10-19 2014-07-30 华为技术有限公司 Communication method and device
KR20140061109A (en) * 2012-11-13 2014-05-21 (주)씨디네트웍스 Method and apparatus for file synchronization
KR101425300B1 (en) 2013-01-04 2014-07-31 경희대학교 산학협력단 Method for managing width of window in multi-path TCP
US9558056B2 (en) * 2013-07-28 2017-01-31 OpsClarity Inc. Organizing network performance metrics into historical anomaly dependency data
KR20150016473A (en) 2013-08-02 2015-02-12 한국전자통신연구원 Method for scheduling and transmitting of uplink
KR20150020018A (en) 2013-08-14 2015-02-25 삼성전자주식회사 Method and apparatus for transmitting and receiving a data using a plurality of carriers in mobilre communication system
KR102173084B1 (en) * 2013-08-23 2020-11-02 삼성전자주식회사 Method and apparatus for transmitting and receiving data packets in a wireless communication system
US20150089382A1 (en) 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US9918251B2 (en) * 2013-12-31 2018-03-13 Qualcomm Incorporated Techniques for dynamically splitting bearers between various radio access technologies (RATs)
CN104170341B (en) 2014-01-29 2017-09-08 华为技术有限公司 A kind of data transmission method, equipment and system
US9838282B2 (en) * 2014-05-09 2017-12-05 Telefonaktiebolaget Lm Ericsson (Publ) PDCP and flow control for split bearer
CN111954266B (en) 2014-06-23 2024-04-09 北京三星通信技术研究有限公司 Data distribution method and device for split bearing in double connection
CN104468030B (en) 2014-08-26 2018-06-05 上海华为技术有限公司 A kind of data transmission method, user equipment and base station
KR20170095354A (en) * 2014-12-18 2017-08-22 후아웨이 테크놀러지 컴퍼니 리미티드 Wireless data transmission method, network side device, user equipment, and system
US20160226708A1 (en) * 2015-01-30 2016-08-04 Linkedin Corporation Assigning client devices to point-of-presence centers
US11432223B2 (en) 2015-07-08 2022-08-30 Nokia Solutions And Networks Oy Methods and apparatuses for selecting a first base station or a second base station to transmit a packet data unit (PDU) to a user equipment (UE)
US20170070940A1 (en) * 2015-09-03 2017-03-09 Qualcomm Incorporated Systems and Methods for Managing Carrier Transmission After a Tune-Away
KR20170050024A (en) 2015-10-29 2017-05-11 삼성에스디에스 주식회사 Apparatus and method for sending/receiving data
KR102111029B1 (en) 2016-06-17 2020-05-14 주식회사 케이티 Apparatus for multinet aggregation transmission, and packet scheduling method thereof
US10218484B2 (en) * 2016-09-27 2019-02-26 Qualcomm Incorporated Enhanced transmission acknowledgment delivery and processing
KR102324214B1 (en) 2017-01-06 2021-11-12 삼성전자 주식회사 Method and apparatus for accelerating data process of double connection in next generation mobile communication system
US11394595B2 (en) * 2017-04-04 2022-07-19 Lg Electronics Inc. Method for measuring distance in wireless communication system and device therefor
US10856296B2 (en) * 2017-06-28 2020-12-01 Qualcomm Incorporated Techniques and apparatuses for determining channels for frequency hopping in an unlicensed radio frequency spectrum band
CN111213334B (en) * 2017-08-11 2022-08-05 瑞典爱立信有限公司 Method for autonomous uplink transmission and retransmission
US11470569B2 (en) * 2017-11-21 2022-10-11 Qualcomm Incorporated Uplink transmissions without uplink timing control and measurement
US11362921B2 (en) * 2017-12-19 2022-06-14 Qualcomm Incorporated Systems and methods for multiple round trip time (RTT) estimation in wireless networks
US11606705B2 (en) * 2018-10-05 2023-03-14 Qualcomm Incorporated System and methods for rapid round-trip-time measurement distribution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201132146A (en) * 2009-05-29 2011-09-16 Interdigital Patent Holdings Communication access technology management
US20140293899A1 (en) * 2013-03-26 2014-10-02 Samsung Electronics Co., Ltd. Method and apparatus for selecting modulation and coding selection (mcs) level in wireless mobile communication system
US20160119840A1 (en) * 2013-06-21 2016-04-28 Panasonic Intellectual Property Corporation Of America Uplink switching of communication links for mobile stations in dual connectivity
US20170188248A1 (en) * 2015-06-12 2017-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes for evaluating a connection
WO2017140361A1 (en) * 2016-02-18 2017-08-24 Nokia Solutions And Networks Oy Uplink selection for wireless network based on network cell weight and link-specific weight for wireless links
WO2017164141A1 (en) * 2016-03-23 2017-09-28 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
US20180279262A1 (en) * 2017-03-23 2018-09-27 Ofinno Technologies, Llc Packet duplication in a wireless device and wireless network

Also Published As

Publication number Publication date
DE102019115114B4 (en) 2025-07-17
CN111065128A (en) 2020-04-24
US20200120009A1 (en) 2020-04-16
KR20200042740A (en) 2020-04-24
US11349739B2 (en) 2022-05-31
US20220286374A1 (en) 2022-09-08
KR102665409B1 (en) 2024-05-10
US12250134B2 (en) 2025-03-11
DE102019115114A1 (en) 2020-04-16
SG10201907824RA (en) 2020-05-28
TW202017409A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
US11831558B2 (en) Efficient discard mechanism in small cell deployment
TWI825132B (en) Method for multi-connectivity
CN107852660B (en) Method and apparatus for selecting a first base station or a second base station to transmit a Packet Data Unit (PDU) to a User Equipment (UE)
US10440614B2 (en) Interruptions in wireless communications
US10342060B2 (en) Inter-eNB Carrier Aggregation
EP2232732B1 (en) Multi-fa personal subscriber terminal and method of ordering protocol data unit thereof
JP2017516395A (en) Method and apparatus for improved multi-carrier communication
Abed et al. Improvement of TCP Congestion Window over LTE-Advanced Networks
EP2890179B1 (en) Method, apparatus and computer program for data transfer
CN111065128B (en) Method for multiple connections
US20210127301A1 (en) Application Notifications from Network for Throughput and Flow Control Adaptation
WO2019146563A1 (en) Communication device, communication system, communication method, and program
EP3031282B1 (en) Retransmission of protocol data unit via alternate transmission path for dual connectivity wireless network
JP2009224834A (en) Communication apparatus, communication system, window size adjusting method and program
Winbjörk TCP Optimized for Wireless Access