TWI823256B - Light color coordinate estimation system and deep learning method thereof - Google Patents
Light color coordinate estimation system and deep learning method thereof Download PDFInfo
- Publication number
- TWI823256B TWI823256B TW111105511A TW111105511A TWI823256B TW I823256 B TWI823256 B TW I823256B TW 111105511 A TW111105511 A TW 111105511A TW 111105511 A TW111105511 A TW 111105511A TW I823256 B TWI823256 B TW I823256B
- Authority
- TW
- Taiwan
- Prior art keywords
- color coordinate
- light source
- light
- neural network
- neurons
- Prior art date
Links
- 238000013135 deep learning Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013528 artificial neural network Methods 0.000 claims abstract description 51
- 238000004364 calculation method Methods 0.000 claims abstract description 40
- 230000004044 response Effects 0.000 claims abstract description 12
- 230000003595 spectral effect Effects 0.000 claims abstract description 12
- 210000002569 neuron Anatomy 0.000 claims description 88
- 210000000225 synapse Anatomy 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 30
- 230000006870 function Effects 0.000 claims description 25
- 238000010606 normalization Methods 0.000 claims description 16
- 230000005284 excitation Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 238000002310 reflectometry Methods 0.000 description 6
- 230000001537 neural effect Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001069810 Homo sapiens Psoriasis susceptibility 1 candidate gene 2 protein Proteins 0.000 description 1
- 102100034249 Psoriasis susceptibility 1 candidate gene 2 protein Human genes 0.000 description 1
- 101000881196 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Sporulation-specific protein Proteins 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
本發明涉及一種光源的顏色座標估計系統及其深度學習方法,特別是涉及一種基於神經網路架構的光源顏色座標估計系統及其深度學習方法。The present invention relates to a light source color coordinate estimation system and a deep learning method thereof, and in particular to a light source color coordinate estimation system based on a neural network architecture and a deep learning method thereof.
不同的顏色座標分別表示不同色溫及其顏色特性。目前取得光源的顏色座標的方式,是透過感測器取得光源的RGB數值,接著RGB數值乘上轉換矩陣,藉此計算顏色座標數值。Different color coordinates represent different color temperatures and their color characteristics respectively. The current method of obtaining the color coordinates of a light source is to obtain the RGB values of the light source through a sensor, and then multiply the RGB values by a conversion matrix to calculate the color coordinate values.
然而,RGB值轉換為顏色座標會產生誤差。此外,有一些光源的表面比較光亮,其具有較高的反射率,而有一些光源的表面比較粗糙,其具有較低的反射率。光源表面的反射率的差異以及光源發射的光束強度的差異,也會導致顏色座標的計算誤差。However, the conversion of RGB values into color coordinates can produce errors. In addition, some light sources have brighter surfaces with higher reflectivity, while some light sources have rougher surfaces with lower reflectivity. Differences in reflectivity of the light source surface and differences in the intensity of the beam emitted by the light source can also lead to errors in the calculation of color coordinates.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種基於深度學習的光源顏色座標估計系統及其深度學習方法。The technical problem to be solved by the present invention is to provide a deep learning-based light source color coordinate estimation system and its deep learning method in view of the shortcomings of the existing technology.
為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種光源顏色座標估計系統,包括多個光偵測器、一正規化計算電路、以及一神經網路。該些光偵測器在接受光源發射的光束後具各自的光譜響應,其中光譜響應包含一個或多個偵測波段及對應於該些偵測波段的多個能量積分值。正規化計算電路電性連接於該些光偵測器,將該些能量積分值分別除以該些能量積分值之中的最大者以計算出多個正規化能量積分值。神經網路的輸入端電性連接於正規化計算電路,神經網路包含有多個神經元,該些神經元之間透過多個神經鍵相連接,每一神經鍵具有一權重值,至少部分的神經元包含一激勵函數,神經網路的輸入端接收該些正規化能量積分值且該些正規化能量積分值透過該些激勵函數以及該些權重值之運算轉變為估計顏色座標,神經網路的輸出端輸出估計顏色座標。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a light source color coordinate estimation system, which includes a plurality of light detectors, a normalized calculation circuit, and a neural network. The light detectors have respective spectral responses after receiving the light beam emitted by the light source, where the spectral response includes one or more detection bands and multiple energy integrated values corresponding to the detection bands. The normalized calculation circuit is electrically connected to the light detectors, and divides the energy integrated values by the maximum of the energy integrated values to calculate a plurality of normalized energy integrated values. The input end of the neural network is electrically connected to the normalized computing circuit. The neural network includes multiple neurons, which are connected through multiple synapses. Each synapse has a weight value, at least partially The neurons include an excitation function. The input end of the neural network receives the normalized energy integral values and the normalized energy integral values are converted into estimated color coordinates through the operation of the excitation functions and the weight values. The neural network The output terminal of the path outputs the estimated color coordinates.
為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種光源顏色座標估計系統的深度學習方法,包括:提供多個不同的光源,並依序對該些光源執行深度學習程序,其中深度學習程序包含:透過多個光偵測器分別取得光源中多個不同偵測波段的多個能量積分值;透過正規化計算電路將所有能量積分值分別除以所有能量積分值之中的最大者以計算出多個正規化能量積分值;透過神經網路接收該些正規化能量積分值,其中神經網路包含多個激勵函數以及多個權重值;根據神經網路的該些激勵函數以及該些權重值的計算將該些該些正規化能量積分值轉變為估計顏色座標;計算估計顏色座標與光源的預設顏色座標之間的顏色座標誤差;以及根據神經網路的倒傳遞演算法以及座標誤差去調整神經網路的至少一權重值。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a deep learning method for a light source color coordinate estimation system, which includes: providing a plurality of different light sources, and executing a deep learning program on these light sources in sequence. , the deep learning program includes: obtaining multiple energy integral values of multiple different detection bands in the light source through multiple light detectors; dividing all energy integral values by all energy integral values through a normalized calculation circuit to calculate multiple normalized energy integral values; receive these normalized energy integral values through the neural network, where the neural network includes multiple excitation functions and multiple weight values; according to the excitations of the neural network The calculation of the function and the weight values converts the normalized energy integral values into estimated color coordinates; calculates the color coordinate error between the estimated color coordinates and the preset color coordinates of the light source; and based on the back-propagation calculation of the neural network method and coordinate error to adjust at least one weight value of the neural network.
在一實施例中,所有光偵測器的該些偵測波段的總和較佳涵蓋整個可見光區域(380nm~700nm),該輸入層包含多個輸入層神經元,該些輸入層神經元的數量相同於光偵測器的數量,該些輸入層神經元分別取得該些正規化能量積分值。In one embodiment, the sum of the detection bands of all light detectors preferably covers the entire visible light region (380nm~700nm), the input layer includes a plurality of input layer neurons, and the number of the input layer neurons Same as the number of light detectors, the input layer neurons obtain the normalized energy integral values respectively.
本發明的其中一有益效果在於,本發明所提供的光源顏色座標估計系統及其深度學習方法,由於神經網路對於不同光偵測器的感應差異進行深度學習,取得不同光偵測器的正規化能量積分值,其中所有光偵測器的光譜響應的總和較佳涵蓋了整個可見光區域(380nm~700nm)。因此,神經網路具有較高的抗干擾能力,使得所估計出的顏色座標具有較高的準確度。再者,正規化計算電路是光源每發射一次光束,就會對多個光偵測器數值進行正規化處理。如此一來,各光偵測器偵測的能量積分值不會因為光源發出的光束的強度或者光源的表面的反射率的影響而被弱化,也使得所估計出的顏色座標具有較高的準確度。One of the beneficial effects of the present invention is that the light source color coordinate estimation system and its deep learning method provided by the present invention can obtain the normal results of different light detectors because the neural network performs deep learning on the induction differences of different light detectors. The integrated energy value, in which the sum of the spectral responses of all light detectors preferably covers the entire visible light region (380nm~700nm). Therefore, the neural network has a high anti-interference ability, making the estimated color coordinates highly accurate. Furthermore, the normalization calculation circuit normalizes the values of multiple light detectors every time the light source emits a beam. In this way, the integrated energy value detected by each light detector will not be weakened by the intensity of the light beam emitted by the light source or the reflectivity of the surface of the light source, which also makes the estimated color coordinates more accurate. Spend.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only for reference and illustration and are not used to limit the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“光源顏色座標估計系統及其深度學習方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。The following is a specific embodiment to illustrate the implementation of the "light source color coordinate estimation system and its deep learning method" disclosed in the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only simple schematic illustrations and are not depictions based on actual dimensions, as is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the scope of the present invention.
應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as “first”, “second” and “third” may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are primarily used to distinguish one component from another component or one signal from another signal. In addition, the term "or" used in this article shall include any one or combination of more of the associated listed items depending on the actual situation.
[第一實施例][First Embodiment]
圖1為本發明第一實施例的光源顏色座標估計系統的功能方塊圖。參閱圖1所示,光源顏色座標估計系統100包括多個光偵測器1A-1F、一正規化計算電路2以及一神經網路3,該些光偵測器1A-1F分別具有一個或多個偵測波段,以偵測一光源S所發出的一光束中對應於不同偵測波段下的能量積分值,其中該些偵測波段的總和較佳涵蓋了整個可見光區域(380nm~700nm)。該些光偵測器1A~1F分別電性連接於正規化計算電路2,而正規化計算電路2更電性連接於神經網路3,至於神經網路3輸出第一估計顏色座標數值x以及第二估計顏色座標y,而第一估計顏色座標數值x以及第二估計顏色座標數值組成一個估計顏色座標(x, y),經由估計顏色座標(x, y)可得知光源發光的顏色。FIG. 1 is a functional block diagram of a light source color coordinate estimation system according to the first embodiment of the present invention. Referring to Figure 1, the light source color
圖2為圖1的該些光偵測器1A~1F的光譜響應圖。如圖2所示,橫軸的單位為波長(nm),縱軸的單位為光能量,曲線SPR1~SPR6分別表示該些光偵測器1A-1F的六個光譜響應,各光譜響應反應出為光偵測器在光束照射下的偵測波段以及能量強度。該些光偵測器的該些偵測波段皆不相同,即任兩個光偵測器的偵測波段可部分重疊但不可完全一致,以盡可能地增加感測範圍的多樣性。該些光偵測器1A-1F之每一個進行將所對應的偵測波段內的光能量進行加總以獲得出對應的能量積分值。如圖2所示,該些偵測波段的總和例示為380nm至730nm,涵蓋了可見光區域(380nm~700nm),避免在可見光波段中具有空乏區而使偵測結果不準確。FIG. 2 is a spectral response diagram of the
關於光偵測器1A-1F的實施態樣,舉例來說,採用硬體裝置來實現,硬體裝置包含電路板、二極體、金屬半場效電晶體(MOS)、雙載子接面電晶體(BJT)、電阻、電感、電容的任何組合。或者,也可透過韌體來實現,編輯硬體語言(例如VHDL)並將硬體語言燒錄於微控制器(MCU)或現場可程式化邏輯閘陣列(FPGA)。或者,可透過軟體來實現,例如編輯C語言來實現。Regarding the implementation of the
再參閱圖1,正規化計算電路2包含六個輸入端21A~21F、一中央處理電路23、一非揮發性記憶體25(Non-Volatile Memory)以及六個輸出端27A~27F,六個輸入端21A~21F分別電性連接於該些光偵測器1A~1F,中央處理電路23電性連接於六個輸入端21A~21F、非揮發性記憶體25以及六個輸出端27A~27F。正規化計算電路2透過六個輸入端21A~21F分別取得六個不同的能量積分值。非揮發性記憶體25為唯讀記憶體(ROM)、快閃記憶體(Flash memory)或非揮發性隨機存取記憶體(RVRAM)且儲存有正規化演算法。關於正規化演算法,係從N個不同數值中找出最大值者,接著將N個數值分別除以最大值者以計算出N個正規化數值。Referring again to Figure 1, the normalized
在本實施例中,中央處理電路23讀取並執行儲存於非揮發性記憶體25的正規化演算法,以便對六個能量積分值進行正規化處理,其先六個能量積分值中找出最大值者,接著將六個能量積分值分別除以最大值者以計算出六個正規化能量積分值。In this embodiment, the
至於正規化計算電路2的實施態樣,舉例來說,採用硬體裝置來實現,硬體裝置包含電路板、二極體、金屬半場效電晶體(MOS)、雙載子接面電晶體(BJT)、電阻、電感、電容的任何組合。或者,也可透過韌體來實現,編輯硬體語言(例如VHDL)並將硬體語言燒錄於微控制器(MCU)或現場可程式化邏輯閘陣列(FPGA)。或者,可透過軟體來實現,例如編輯C語言來實現。As for the implementation of the normalized
正規化計算電路2的正規化處理,至少產生以下有利功效:正規化計算電路2是光源S每發射一次光束,就會對多個光偵測器偵測到的能量積分值進行正規化處理。如此一來,光偵測器的能量積分值不會因為光源發出的光束強度的不同或者光源表面的反射率的不同而被弱化。The normalization processing of the
再參閱圖1,神經網路3包含一輸入層31、第一隱藏層33、第二隱藏層35以及一輸出層37,輸入層31在本實施例中包含有六個輸入層神經元,正規化計算電路2的六個輸出端27A~27F分別與輸入層31的六個輸入層神經元相連接,使得輸入層31的六個輸入層神經元分別取得六個正規化能量積分值。Referring again to Figure 1, the
第一隱藏層33在本實施例包含有八個隱藏層神經元,輸入層31的每一個輸入層神經元經由八條神經鍵與第一隱藏層33的八個隱藏層神經元相連接,因此輸入層31與第一隱藏層33之間總共經由四十八條神經鍵相連接,且四十八條神經鍵的每一條都具有特定的權重值。因此,輸入層31的每一輸入層神經元的輸出數值分別乘以八個權重值後分別傳送至第一隱藏層33的八個隱藏層神經元。第一隱藏層33的每一隱藏層神經元使用預設的激勵函數(activity function)對輸入數值進行運算以產生輸出數值,而激勵函數(activity function)例如為sigmoid函數或者relu函數,但不以此為限。In this embodiment, the first hidden
關於輸入層31與第一隱藏層33之間的演算,舉例來說,輸入層31的六個輸入層神經元分別經由六條神經鍵與第一隱藏層33的第一個隱藏層神經元相連接,且這六條神經鍵的權重值分別為w1~w6,輸入層31的六個輸入層神經元的輸出數值分別為x1~x6,此時第一隱藏層33的第一個隱藏層神經元的輸入端所接收的輸入數值y1= x1*w1+x2*w2+x3*w3+x4*w4+x5*w5+x6*w6,第一隱藏層33的第一個隱藏層神經元使用的激勵函數為
,而
。因此,第一隱藏層33的第一個隱藏層神經元的輸出數值
。根據以上舉例的計算式,同理可推知第一隱藏層33的另外七個隱藏層神經元的輸出數值。
Regarding the calculation between the
第二隱藏層35在本實施例包含有四個隱藏層神經元,第一隱藏層33的每一個隱藏層神經元經由四條神經鍵與第二隱藏層35的四個隱藏層神經元相連接,因此第一隱藏層33與第二隱藏層35之間總共經由三十二條神經鍵相連接,且三十二條神經鍵的每一條具有特定的權重值。因此,第一隱藏層33的每一隱藏層神經元的輸出數值先分別乘以四個權重值後分別傳送至第二隱藏層35的四個隱藏層神經元。第二隱藏層35的每一隱藏層神經元使用預設的激勵函數(activity function)對輸入數值進行運算以產生輸出數值。The second
關於第一隱藏層33與第二隱藏層35之間的演算,舉例來說,第一隱藏層33的八個隱藏層神經元分別經由八條神經鍵與第二隱藏層35的第一個隱藏層神經元相連接,且這八條神經鍵的權重值分別為w7~w14,第一隱藏層33的八個隱藏層神經元的輸出數值分別為x7~x14,此時第二隱藏層35的第一個隱藏層神經元的輸入端所接收的輸入數值y2= x7*w7+x8*w8+x9*w9+x10*w10+x11*w11+x12*w12+x13*w13+x14*w14,第二隱藏層35的第一個隱藏層神經元使用的激勵函數為
,而
。因此,第二隱藏層35的第一個隱藏層神經元的輸出數值為
。根據以上舉例的計算式,同理可推知第二隱藏層35的另外三個隱藏層神經元所產生的輸出數值。
Regarding the calculation between the first hidden
輸出層37在本實施例包含二個輸出層神經元,第二隱藏層35的每一個隱藏層神經元經由二條神經鍵與輸出層37的二個輸出層神經元相連接,因此第二隱藏層35與輸出層37之間總共經由八條神經鍵相連接,且八條神經鍵的每一條具有特定的權重值。因此,第二隱藏層35的每一個隱藏層神經元的輸出數值先分別乘以兩個權重值後,分別傳送至輸出層37的二個輸出層神經元。輸出層37的每一個輸出層神經元使用的激勵函數(activity function)對輸入數值進行運算以產生輸出數值。輸出層37的二個輸出層神經元分別輸出第一估計顏色座標數值x以及第二估計顏色座標數值y。In this embodiment, the
關於第二隱藏層35與輸出層37之間的演算,舉例來說,第二隱藏層35的四個隱藏層神經元分別經由四條神經鍵與輸出層37的第一個輸出層神經元相連接,且四條神經鏈的權重值分別為w15~w18,第二隱藏層35的四個隱藏層神經元的輸出數值分別為x15~x18,此時輸出層37的第一個輸出層神經元的輸入端所接收的輸入數值y3= x15*w15+x16*w16+x17*w17+x18*w18,輸出層37的第一個輸出層神經元所使用的激勵函數為
,而
。因此,輸出層37的第一個輸出層神經元的輸出數值為
。根據以上舉例的計算式,同理可推知輸出層37的另一個輸出層神經元的輸出數值。
Regarding the calculation between the second hidden
至於神經網路3的實施態樣,舉例來說,採用硬體裝置來實現,硬體裝置包含電路板、二極體、金屬半場效電晶體(MOS)、雙載子接面電晶體(BJT)、電阻、電感、電容的任何組合。或者,也可透過韌體來實現,編輯硬體語言(例如VHDL)並將硬體語言燒錄於微控制器(MCU)或現場可程式化邏輯閘陣列(FPGA)。或者,可透過軟體來實現,例如編輯C語言來實現。As for the implementation of
[第二實施例][Second Embodiment]
圖3為本發明第二實施例的光源顏色座標估計系統的功能方塊圖。圖3的第二實施例的光源顏色座標估計系統200與圖1的第一實施例的光源顏色座標估計系統100之間的差異在於,光源顏色座標估計系統200包含有八個光偵測器1A-1H,正規化計算電路2包含八個輸入端21A~21H,八個輸入端21A~21H分別電性連接於該些光偵測器1A~1H,中央處理電路23電性連接於八個輸入端21A~21H。中央處理電路23讀取並執行儲存於非揮發性記憶體25的正規化演算法,以便對八個光偵測器所偵測到的八個能量積分值進行正規化處理,其先從八個能量積分值中找出最大值者,接著將八個能量積分值分別中除以最大值者以計算出八個正規化能量積分值。神經網路3的輸入層31包含有八個神經元,正規化計算電路2的八個輸出端27A~27H分別與輸入層31的八個神經元相連接,使得輸入層31的八個輸入層神經元分別取得八個正規化能量積分值。FIG. 3 is a functional block diagram of a light source color coordinate estimation system according to the second embodiment of the present invention. The difference between the light source color coordinate
[第三實施例][Third Embodiment]
圖4為本發明第三實施例的光源顏色座標估計系統的功能方塊圖。圖4的第三實施例的光源顏色座標估計系統300與圖1的第一實施例的光源顏色座標估計系統100之間的差異在於,光源顏色座標估計系統300的第一隱藏層33的隱藏層神經元的數量變更為五個以及第二隱藏層35的隱藏層神經元的數量變更為三個。第一隱藏層33的每一個隱藏層神經元經由六條神經鍵與輸入層31的六個隱藏層神經元相連接,連接於第一隱藏層33與輸入層31之間的神經鍵數量總共有三十條,且每一條神經鍵具有特定的權重值。第二隱藏層35的每一個隱藏層神經元經由五條神經鍵與第一隱藏層33的五個隱藏層神經元相連接,連接於第一隱藏層33與第二隱藏層35之間的神經鍵數量總共有十五條,且每一條神經鍵具有特定的權重值。FIG. 4 is a functional block diagram of a light source color coordinate estimation system according to the third embodiment of the present invention. The difference between the light source color coordinate
[第四實施例][Fourth Embodiment]
圖5為本發明第四實施例的光源顏色座標估計系統的功能方塊圖。圖5的第四實施例的光源顏色座標估計系統400與圖1的第一實施例的光源顏色座標估計系統100之間的差異在於,神經網路3除了包含輸入層31、第一隱藏層33、第二隱藏層35以及輸出層37之外,還包含一第三隱藏層39。第三隱藏層39介於第二隱藏層35與輸出層37之間,第三隱藏層39包含有四個隱藏層神經元,第二隱藏層35的每一個隱藏層神經元經由四條神經鍵與第三隱藏層39的四個隱藏層神經元相連接,連接於第二隱藏層35與第三隱藏層39之間的神經鍵數量總共有十六條,且每一條神經鍵具有特定的權重值。第三隱藏層39的每一個隱藏層神經元經由二條神經鍵與輸出層37的兩個輸出層神經元相連接,連接於第三隱藏層39與輸出層37之間的神經鍵數量總共有八條,且每一條神經鍵具有特定的權重值。FIG. 5 is a functional block diagram of a light source color coordinate estimation system according to the fourth embodiment of the present invention. The difference between the light source color coordinate
經由圖1、圖3、圖4及圖5的光源顏色座標估計系統的實施例可知,偵測器的數量、隱藏層的神經元數量、隱藏層的數量以及神經元使用的激勵函數,可根據使用上的需求以及所估計出的顏色座標的準確度進行適度的調整,並不以上述的實施例為限。It can be seen from the embodiments of the light source color coordinate estimation system in Figures 1, 3, 4 and 5 that the number of detectors, the number of neurons in the hidden layer, the number of hidden layers and the excitation functions used by the neurons can be determined according to Moderate adjustments can be made based on usage requirements and the accuracy of the estimated color coordinates, and are not limited to the above embodiment.
圖6為本發明第一實施例的光源顏色座標估計系統的深度學習方法,如圖6所示,在步驟S601,提供多個不同的光源,並依序對該些光源執行深度學習程序。舉例來說,當光源的數量有十個,每一個光源對光源顏色座標估計系統發射一光束,使得光源顏色座標估計系統取得一筆訓練資料。所有光源的數量有十個時,光源顏色座標系統總共取得十筆訓練資料,總共進行十次深度學習。至於深度學習程序至少包含以下步驟:Figure 6 shows the deep learning method of the light source color coordinate estimation system according to the first embodiment of the present invention. As shown in Figure 6, in step S601, multiple different light sources are provided, and deep learning procedures are executed on these light sources in sequence. For example, when there are ten light sources, each light source emits a light beam to the light source color coordinate estimation system, so that the light source color coordinate estimation system obtains a piece of training data. When the number of all light sources is ten, the light source color coordinate system obtains a total of ten training data and performs a total of ten deep learning. As for the deep learning program, it contains at least the following steps:
在步驟S603,透過多個光偵測器分別具有不同的偵測波段,以偵測光源發射的光束中分別對應於該些偵測波段的多個能量積分值,而該些偵測波段之總和較佳涵蓋整個可見光區域(380nm~700nm)。舉例來說,該些光偵測器的數量有五個,該些光偵測器分別對應到紅光、綠光、藍光、黃光以及紫光的偵測波段,這些偵測波段部分重疊並且在總和後可涵蓋整個可見光區域(380nm~700nm)。In step S603, multiple light detectors each having different detection wavebands are used to detect multiple energy integral values corresponding to the detection wavebands in the light beam emitted by the light source, and the sum of the detection wavebands is Best to cover the entire visible light region (380nm~700nm). For example, there are five light detectors, and the light detectors respectively correspond to the detection wavebands of red light, green light, blue light, yellow light and purple light. These detection wavebands partially overlap and are in The sum can cover the entire visible light region (380nm~700nm).
在步驟S605,透過正規化計算電路2將每一能量積分值除以所有能量積分值之中的最大者以計算出多個正規化能量積分值。舉例來說,在偵測波段為紅光、綠光、藍光、黃光以及紫光的光偵測器中,以對應於紫光的能量積分值為最大值,正規化計算電路將對應於紅光、綠光、藍光、黃光以及紫光的光偵測器的能量積分值分別除以紫光的能量積分值,以分別計算出五筆正規化能量積分值。In step S605, the normalized
在步驟S607,透過神經網路3接收所有正規化能量積分值,其中神經網路3包含多個激勵函數以及多個權重值。In step S607, all normalized energy integral values are received through the
在步驟S609,根據神經網路3的該些激勵函數以及該些權重值的計算以便將該些正規化能量積分值轉變為估計顏色座標;In step S609, the normalized energy integral values are converted into estimated color coordinates according to the calculation of the activation functions and the weight values of the
在步驟S611,計算估計顏色座標與光源的預設顏色座標之間的顏色座標誤差。舉例來說,光源顏色座標估計系統所計算出的估計顏色座標x以及估計顏色座標y分別為0.3以及0.2,至於光源的預設顏色座標x以及預設顏色座標y分別為0.25以及0.15。x軸顏色座標誤差為-0.5,而y軸顏色座標誤差為-0.05。In step S611, the color coordinate error between the estimated color coordinates and the preset color coordinates of the light source is calculated. For example, the estimated color coordinate x and estimated color coordinate y calculated by the light source color coordinate estimation system are 0.3 and 0.2 respectively, and the preset color coordinate x and preset color coordinate y of the light source are 0.25 and 0.15 respectively. The x-axis color coordinate error is -0.5, while the y-axis color coordinate error is -0.05.
在步驟S613,根據神經網路3的倒傳遞演算法(Back propagation)以及顏色座標誤差去調整神經網路3的權重值。舉例來說,神經網路的輸入層、隱藏層以及輸出層分別具有i個神經元、j個神經元以及k個神經元,
為輸出層的估計值,
為目標值,E為誤差函數,其中E=
。倒傳遞演算法是透過調整連接於輸入層與隱藏層的各神經鏈的權重值
以及連接於隱藏層與輸出層之間的各神經鏈的權重值
使誤差函數E最小化,連接於輸入層與隱藏層之間的各神經鏈的權重值調整公式為:
,連接於隱藏層與輸出層之間的各神經鏈的權重值調整公式為:
,其中
輸入層的神經元個數、隱藏層的神經元個數、隱藏層的數量以及學習率
的設定都會影響神經網路的訓練效果。
In step S613, the weight value of the
圖7為本發明第二實施例的光源顏色座標估計系統的深度學習方法,圖7的深度學習方法相較於圖6的深度學習方法差異在於,圖7的深度學習方法更包括步驟S715,至於圖7的步驟S701~S713相同於圖6的步驟S601~S613。關於步驟S715,每一光源執行完畢深度學習程序之後,判斷該些顏色座標誤差是否位於預設的誤差收斂區間內,當該些顏色座標誤差之一沒有位於誤差收斂區間內,提供另外多個不同的光源去執行深度學習程序。舉例來說,原本準備二十個不同光源對光源顏色座標估計系統進行深度學習訓練,而預設的誤差收斂區間為-2%~2%,當有一個光源的顏色座標誤差的百分率位於誤差收斂區間之外時,另外準備不同於原本的二十個光源的其他光源對光源顏色座標估計系統進行深度學習訓練。Figure 7 shows the deep learning method of the light source color coordinate estimation system according to the second embodiment of the present invention. The difference between the deep learning method of Figure 7 and the deep learning method of Figure 6 is that the deep learning method of Figure 7 further includes step S715. As for Steps S701 to S713 in Figure 7 are the same as steps S601 to S613 in Figure 6 . Regarding step S715, after each light source completes the deep learning process, it determines whether the color coordinate errors are within the preset error convergence interval. When one of the color coordinate errors is not within the error convergence interval, multiple different color coordinate errors are provided. light source to execute deep learning programs. For example, twenty different light sources were originally prepared for deep learning training of the light source color coordinate estimation system, and the preset error convergence interval is -2%~2%. When the percentage of the color coordinate error of a light source is within the error convergence range When outside the interval, other light sources different from the original twenty light sources are prepared to perform deep learning training on the light source color coordinate estimation system.
當該些顏色座標誤差位為於誤差收斂區間內時,完成深度學習程序。在完成深度學習程序之後,可提供一測試光源且測試光源發出測試光束,訓練完畢的光源顏色座標估計系統取得測試光束且產生測試光束的估計顏色座標,且所計算出的測試光束的估計顏色座標與測試光源的實記顏色座標之間的誤差位於-2%~2%內,符合使用上的需求。When the color coordinate errors are within the error convergence interval, the deep learning process is completed. After completing the deep learning program, a test light source can be provided and the test light source emits a test beam. The trained light source color coordinate estimation system obtains the test beam and generates the estimated color coordinate of the test beam, and the calculated estimated color coordinate of the test beam The error with the actual recorded color coordinates of the test light source is within -2%~2%, which meets the requirements for use.
圖8A~圖8B分別為光源顏色座標估計系統針對多個不同光源所產生的x軸顏色座標誤差關係圖以及y軸顏色座標誤差關係圖。如圖8A~圖8B所示,總共有二十個不同的光源,二十個光源依序對光源顏色座標估計系統發射一次光束,每一個光源所發出的光束都有預設的x軸顏色座標以及y軸顏色座標,光源顏色座標估計系統所計算出二十筆x軸估計顏色座標將與預設的二十筆x軸顏色座標相比較以產生如圖8A所示的二十筆x軸顏色座標誤差百分率,其分佈於-5%~5%,符合實際使用的標準。同理,光源顏色座標估計系統所計算出二十筆y軸估計顏色座標將與預設的二十筆y軸顏色座標相比較以產生如圖8B所示的二十筆y軸顏色座標誤差百分率,其分佈於-5%~5%,符合實際使用的標準。8A to 8B respectively show the x-axis color coordinate error relationship diagram and the y-axis color coordinate error relationship diagram generated by the light source color coordinate estimation system for multiple different light sources. As shown in Figure 8A~Figure 8B, there are a total of twenty different light sources. The twenty light sources sequentially emit a beam of light to the light source color coordinate estimation system. The beam emitted by each light source has a preset x-axis color coordinate. As well as the y-axis color coordinate, the twenty x-axis estimated color coordinates calculated by the light source color coordinate estimation system will be compared with the preset twenty x-axis color coordinates to generate twenty x-axis colors as shown in Figure 8A The coordinate error percentage is distributed between -5% and 5%, which is in line with the standards of actual use. In the same way, the twenty y-axis estimated color coordinates calculated by the light source color coordinate estimation system will be compared with the preset twenty y-axis color coordinates to generate the twenty y-axis color coordinate error percentages as shown in Figure 8B , which is distributed between -5% and 5%, in line with the standards of actual use.
圖9為本發明的光源顏色座標估計系統的第一種使用狀態示意圖。如圖9所示,該些光偵測器1A~1F設置於用戶裝置T1,而用戶裝置T1例如為用戶的行動裝置、筆記型電腦、穿戴裝置等。正規化計算電路2以及神經網路3設置於遠端主機T2,而遠端主機T2例如為服務端的伺服器或者雲端電腦。用戶裝置T1通訊連接於遠端主機T2,如此的配置,係將光源顏色座標估計系統中較為複雜的演算分配給遠端主機T2的硬體來處理。Figure 9 is a schematic diagram of the first usage state of the light source color coordinate estimation system of the present invention. As shown in FIG. 9 , the
圖10為本發明的光源顏色座標估計系統的第二種使用狀態的示意圖。如圖10所示,該些光偵測器1A~1F、正規化計算電路2以及神經網路3設置於系統晶片T3中,而系統晶片T3可設置於用戶的行動裝置、筆記型電腦、穿戴裝置等。Figure 10 is a schematic diagram of the second usage state of the light source color coordinate estimation system of the present invention. As shown in Figure 10, the
[實施例的有益效果][Beneficial effects of the embodiment]
本發明的其中一有益效果在於,本發明所提供的光源顏色座標估計系統及其深度學習方法,由於神經網路對於不同光偵測器的感應差異進行深度學習,該些光偵測器分別具有不同的偵測波段,而該些偵測波段的總和較佳涵蓋整個可見光區域(380nm~700nm)。因此,神經網路具有較高的抗干擾能力,使得所估計出的顏色座標具有較高的準確度。再者,正規化計算電路是光源每發射一次光束,就會對多個能量積分值進行正規化處理。如此一來,每個光偵測器的能量積分值不會因為光源發出的光束的強度或者光源的表面的反射率的影響而被弱化,也使得所估計出的顏色座標具有較高的準確度。再者,由於神經網路直接估計顏色座標,避免了RGB值轉換為顏色座標時所產生的誤差。One of the beneficial effects of the present invention is that in the light source color coordinate estimation system and its deep learning method provided by the present invention, since the neural network performs deep learning on the induction differences of different light detectors, these light detectors respectively have Different detection wavebands, and the sum of these detection wavebands preferably covers the entire visible light region (380nm~700nm). Therefore, the neural network has a high anti-interference ability, making the estimated color coordinates highly accurate. Furthermore, the normalization calculation circuit normalizes multiple energy integrated values every time the light source emits a beam. In this way, the energy integrated value of each light detector will not be weakened by the intensity of the light beam emitted by the light source or the reflectivity of the surface of the light source, which also makes the estimated color coordinates more accurate. . Furthermore, since the neural network directly estimates color coordinates, errors caused by converting RGB values into color coordinates are avoided.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred and feasible embodiments of the present invention, and do not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
100、200、300、400:光源顏色座標估計系統
1A~1H:光偵測器
2:正規化計算電路
21A~21H:輸入端
23:中央處理電路
25:非揮發性記憶體
27A~27H:輸出端
3:神經網路
31:輸入層
33:第一隱藏層
35:第二隱藏層
37:輸出層
39:第三隱藏層
x:第一估計顏色座標數值
y:第二估計顏色座標數值
S:光源
T1:用戶裝置
T2:遠端主機
T3:系統晶片
S601~S613:步驟
S701~S715:步驟
100, 200, 300, 400: Light source color coordinate
圖1為本發明第一實施例的光源顏色座標估計系統的功能方塊圖。FIG. 1 is a functional block diagram of a light source color coordinate estimation system according to the first embodiment of the present invention.
圖2為圖1的六個光偵測器的光譜響應與波長的關係圖。FIG. 2 is a plot of spectral response versus wavelength for the six photodetectors of FIG. 1 .
圖3為本發明第二實施例的光源顏色座標估計系統的功能方塊圖。FIG. 3 is a functional block diagram of a light source color coordinate estimation system according to the second embodiment of the present invention.
圖4為本發明第三實施例的光源顏色座標估計系統的功能方塊圖。FIG. 4 is a functional block diagram of a light source color coordinate estimation system according to the third embodiment of the present invention.
圖5為本發明第四實施例的光源顏色座標估計系統的功能方塊圖。FIG. 5 is a functional block diagram of a light source color coordinate estimation system according to the fourth embodiment of the present invention.
圖6為本發明第一實施例的光源顏色座標估計系統的深度學習方法。Figure 6 shows the deep learning method of the light source color coordinate estimation system according to the first embodiment of the present invention.
圖7為本發明第二實施例的光源顏色座標估計系統的深度學習方法。Figure 7 shows the deep learning method of the light source color coordinate estimation system according to the second embodiment of the present invention.
圖8A~圖8B分別為光源顏色座標估計系統的x軸顏色座標誤差分布圖以及y軸顏色座標誤差分布圖。Figures 8A and 8B respectively show the x-axis color coordinate error distribution chart and the y-axis color coordinate error distribution chart of the light source color coordinate estimation system.
圖9為本發明的光源顏色座標估計系統的第一種使用狀態的示意圖。Figure 9 is a schematic diagram of the first usage state of the light source color coordinate estimation system of the present invention.
圖10為本發明的光源顏色座標估計系統的第二種使用狀態的示意圖。Figure 10 is a schematic diagram of the second usage state of the light source color coordinate estimation system of the present invention.
100:光源顏色座標估計系統 100:Light source color coordinate estimation system
1A~1F:光偵測器 1A~1F: Light detector
2:正規化計算電路 2: Normalized calculation circuit
21A~21F:輸入端 21A~21F: Input terminal
23:中央處理電路 23:Central processing circuit
25:非揮發性記憶體 25:Non-volatile memory
27A~27F:輸出端 27A~27F: Output terminal
3:神經網路 3: Neural Network
31:輸入層 31:Input layer
33:第一隱藏層 33: First hidden layer
35:第二隱藏層 35:Second hidden layer
37:輸出層 37:Output layer
x:第一估計顏色座標數值 x: first estimated color coordinate value
y:第二估計顏色座標數值 y: second estimated color coordinate value
S:光源 S: light source
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105511A TWI823256B (en) | 2022-02-16 | 2022-02-16 | Light color coordinate estimation system and deep learning method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105511A TWI823256B (en) | 2022-02-16 | 2022-02-16 | Light color coordinate estimation system and deep learning method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202334894A TW202334894A (en) | 2023-09-01 |
TWI823256B true TWI823256B (en) | 2023-11-21 |
Family
ID=88927501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111105511A TWI823256B (en) | 2022-02-16 | 2022-02-16 | Light color coordinate estimation system and deep learning method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI823256B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI375544B (en) * | 2009-09-16 | 2012-11-01 | Univ Chang Gung | |
CN112683923A (en) * | 2019-10-17 | 2021-04-20 | 神讯电脑(昆山)有限公司 | Method for screening surface form of object based on artificial neural network |
-
2022
- 2022-02-16 TW TW111105511A patent/TWI823256B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI375544B (en) * | 2009-09-16 | 2012-11-01 | Univ Chang Gung | |
CN112683923A (en) * | 2019-10-17 | 2021-04-20 | 神讯电脑(昆山)有限公司 | Method for screening surface form of object based on artificial neural network |
Also Published As
Publication number | Publication date |
---|---|
TW202334894A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4216474B2 (en) | Image processing apparatus color calibration method using light emitting diodes or other spectral light sources | |
US9996674B2 (en) | Web site providing cosmetic and nutrition regimen from color images | |
TW201630564A (en) | Light detecting device and image reconstruction method using the same | |
JP6829529B2 (en) | Methods and related devices for determining the reflectance of an object | |
JP2000502270A (en) | Method and apparatus for facilitating compatibility between a pulse oximeter and a sensor probe | |
JP2002022537A (en) | Color recognition device | |
CN109059987A (en) | A kind of method, device and mobile terminal for calibrating optical sensor | |
US10746599B2 (en) | System and method for spectral interpolation using multiple illumination sources | |
JP2009150791A (en) | Photometric device for illuminant | |
TWI823256B (en) | Light color coordinate estimation system and deep learning method thereof | |
CN113616201A (en) | PPG sensor, physiological parameter sensor and intelligent wearable equipment | |
TWI547265B (en) | Optical respiration rate detection device and detection method thereof | |
CN113175993A (en) | Correction and calibration of spectral sensor output | |
CN106264532A (en) | Optical respiration rate detection device and detection method thereof | |
WO2017181961A1 (en) | Detection method and detection device for individual minimal erythema dose | |
CN116659670A (en) | Light source color coordinate estimation system and deep learning method thereof | |
US20240115171A1 (en) | Methods and apparatus for training and calibrating a spectral sensor | |
WO2014205705A1 (en) | Light sensor array device | |
CN115079091A (en) | Passive visible light positioning method, system, cascade transceiver, equipment and medium | |
JP2007078502A (en) | Photometric device of light emitter | |
WO2024029172A1 (en) | Sensor, method for manufacturing sensor, and information processing method | |
CN114569102B (en) | Method and device for measuring biological characteristic parameters | |
JP2012177551A (en) | Spectral measurement device, measurement system, and spectral measurement method | |
CN118356166A (en) | Method and device for detecting physical sign, method and device for calibrating physical sign detection device | |
US20240219235A1 (en) | Optical sensing module, system and method for operating optical sensing system |