[go: up one dir, main page]

TWI821607B - 合作車間有效資源使用方法 - Google Patents

合作車間有效資源使用方法 Download PDF

Info

Publication number
TWI821607B
TWI821607B TW109136690A TW109136690A TWI821607B TW I821607 B TWI821607 B TW I821607B TW 109136690 A TW109136690 A TW 109136690A TW 109136690 A TW109136690 A TW 109136690A TW I821607 B TWI821607 B TW I821607B
Authority
TW
Taiwan
Prior art keywords
wtru
group
resource
resources
transmission
Prior art date
Application number
TW109136690A
Other languages
English (en)
Other versions
TW202126092A (zh
Inventor
馬提諾 M 法瑞達
濤 鄧
祥德 黃
伯努瓦 佩勒特爾
阿塔 艾爾漢斯
薩德 艾哈邁德
米歇爾 沛拉斯
Original Assignee
美商內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商內數位專利控股公司 filed Critical 美商內數位專利控股公司
Publication of TW202126092A publication Critical patent/TW202126092A/zh
Application granted granted Critical
Publication of TWI821607B publication Critical patent/TWI821607B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

所揭露的是用於側鏈路通信的方法、系統及裝置。WTRU可以從群組內的第二WTRU接收第一SCI元素。WTRU可以在第一SCI所排程的第一資源集合內接收第一RCI元素。該第一RCI可以包括關於群組中的哪一個WTRU被排程為使用第二資源集合的資訊。WTRU可以基於第一RCI確定第二資源集合內的一個或多個子資源可用。WTRU可以在一個或多個子資源中發送資料。第一SCI以及第一RCI可以在第一保留週期中被接收,並且一個或多個子資源可以處於第二保留週期中。

Description

合作車間有效資源使用方法
相關申請案的交叉引用
本申請案要求享有2018年4月3日申請的美國臨時申請案序號62/651,974、2018年5月8日申請的美國臨時申請案序號62/668,322以及2018年9月25日申請的美國臨時申請案序號62/735,982的權益,該申請案的內容在這裡被引入以作為參考。
車輛(“V2X”)通信是一種可供無線傳輸/接收單元(WTRU)彼此直接進行通信的通信模式。在處於覆蓋範圍中時,WTRU可以接收源於網路的輔助以開始傳輸及接收V2X訊息。在處於覆蓋範圍以外時,WTRU可以使用一個或多個預先配置的參數來開始傳輸及接收V2X訊息。
所揭露的是用於側鏈路通信的方法、系統及裝置。WTRU可以接收來自群組內的第二WTRU的第一SCI元素。該WTRU可以在該第一SCI排程的第一資源集合內接收第一RCI元素。該第一SCI可以包括關於該群組中的哪一個WTRU被排程為使用第二資源集合的資訊。基於該第一SCI,該WTRU可以確定該第二資源集合內的一個或多個子資源可用。該WTRU可以在該一個或多個子資源中傳輸資料。該第一SCI以及該第一SCI可以在第一保留週期中被接收,並且該一個或多個子資源可以處於第二保留週期。
100:通信系統
102、102a、102b、102c、102d、202、214:無線傳輸/接收單元(WTRU)
104:無線電存取網路(RAN)
106:核心網路(CN)
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b:基地台
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:行動性管理實體(MME)
164:服務閘道(SGW)
166:封包資料網路(PDN)閘道(PGW)
180a、180b、180c、1315、1325、1410:gNB(g節點B)
182a、182b:存取以及行動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
206、212、308:保留週期
204、216、302、402:側鏈路控制資訊(SCI)
208、218、304、316:資源控制資訊(RCI)
210:資源
306、310、312、314:子資源
404:子資源集合
406、408、410:起始子資源
502、504、506、508:步驟
N2、N3、N4、N6、N11、S1、X2、Xn:介面
更詳細的理解可以從以下結合附圖舉例給出的描述中得到,其中附圖中的相同參考數字指示的是相同的要素,並且其中:
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統的系統圖;
第1B圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖;
第1C圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖;
第1D圖是示出了根據實施例的可以在第1A圖所示的通信系統內使用的另一個範例性RAN以及另一個範例性CN的系統圖;
第2圖是示出了使用子資源協調的第一群組保留方法的圖式;
第3圖是示出了使用子資源協調的第二群組保留方法的圖式;
第4圖是示出了用於保留基於爭用的資源的方法的圖式;以及
第5圖是示出了使用子資源協調的第一群組保留方法的流程圖。
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統100的圖式。該通信系統100可以是為多個無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉轉換擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路(CN)106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d(其任一者都可被稱為站(STA))可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動訂戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備以及應用(例如遠端手術)、工業設備以及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c以及102d中的任何一個可被可交換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。基地台114a及/或基地台114b每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接來促進其存取一個或多個通信網路(例如CN 106、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、下一代節點B(例如,g節點B(gNB))、新無線電(NR)節點B、站點控制器、存取點(AP)以及無線路由器等等。雖然基地台114a、114b每一者都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)以及中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一個或多個載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,一個收發器都用於胞元的每一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用多個收發器。例如,波束成形可以用於在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速上鏈(UL)封包存取(HSUPA)。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施可以建立使用新型無線電(NR)的空中介面116的無線電技術,例如NR無線電存取。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以經由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如eNB以及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫時標準2000(IS-2000)、暫時標準95(IS-95)、暫時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促進例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b 以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以具有與網際網路110的直接連接。因此,基地台114b不需要經由CN 106來存取網際網路110。
RAN 104可以與CN 106進行通信,該CN可以是被配置為向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)的服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104及/或CN 106可以直接或間接地與其他RAN進行通信,該其他RAN使用了與RAN 104相同的RAT、或使用了不同RAT。例如,除了與使用NR無線電技術的RAN 104連接之外,CN 106還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務供應者擁有及/或操作的有線及/或無線通訊網路。例如,網路112可以包括與一個或多個RAN連接的另一個CN,其中該一個或多個RAN可以與RAN 104使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括經由不同無線鏈 路以與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138等等。應該瞭解的是,在維持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的任何其他功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118以及收發器120描述為單獨元件,然而應該瞭解,處理器118以及收發器120也可以一起集成在一電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116來傳輸至基地台(例如基地台114a)或從基地台(例如基地台114a)接收信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸以及接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線電信號的兩個或多個傳輸/接收元件122(例如多個天線)。
收發器120可被配置為對傳輸/接收元件122要傳輸的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如NR以及IEEE 802.11)來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度以及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在維持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片以及視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器以及濕度感測器等等。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置,一些或所有信號(例如與用於UL(例如針對傳輸)以及DL(例如針對接收)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元139。在實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如對傳輸而言)或DL(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
第1C圖是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術經由空中介面116以與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在維持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c每一者都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
第1C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN營運者之外的實體擁有及/或操作。
MME 162可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者、並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162還可以提供用於在RAN 104與使用其他無線電技術(例如GSM或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由以及轉發使用者資料封包至WTRU 102a、102b、102c/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的切換過程中錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端可以(例如暫時或永久性地)使用與通信網路的有線通信介面。
在典型的實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是介接到分散式系統(DS)或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且去往BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如在源STA可以向AP發送訊務、並且AP可以將訊務遞送至目的地STA的情況下。在BSS內的 STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。舉例來說,使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些典型實施例中,(例如在802.11系統中)可以實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。
高輸送量(HT)STA可以使用40MHz寬的通道來進行通信(例如經由將20MHz寬的主通道與20MHz寬的相鄰或不相鄰通道相結合來形成40MHz寬的通道)。
超高輸送量(VHT)STA可以支援20MHz、40MHz、80MHz及/或160MHz寬的通道。40MHz及/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分為兩個流。在每一個流上可以單獨執行反向快速傅立葉轉換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由一傳 輸STA來傳輸。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af以及802.11ah支援次1GHz的操作模式。與802.11n以及802.11ac中的通道操作頻寬以及載波相較,在802.11af以及802.11ah中使用通道操作頻寬以及載波減少。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz以及20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz以及16MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於維持很長的電池壽命)。
可以支援多個通道以及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括了可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP以及其他STA支援2MHz、4MHz、8MHz、16MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置),主通道的寬度可以是1MHz。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶維持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是從902MHz到928MHz。在韓國,可用頻帶是從917.5MHz到923.5MHz。在日本,可用頻帶是從916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是從6MHz到26MHz。
第1D圖是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以使用NR無線電技術經由空中介面116以與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括gNB 180a、180b、180c,但是應該瞭解,在維持符合實施例的同時,RAN 104可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一個或多個收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形處理以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,舉例來說,gNB 180a可以使用多個天線以向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a傳輸多個分量載波(未顯示)。這些分量載波的一個子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置(numerology)相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳s輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使 用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c基本同時地進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WPRU 102a、102b、102c的行動錨點、並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c的每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、DC、實施NR與E-UTRA之間的互通處理、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取以及行動性管理功能(AMF)182a、182b等等。如第1D圖所示,gNB 180a、180b、180c彼此可以經由Xn介面進行通信。
第1D圖中顯示的CN 106可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 106的一部分,但是應該瞭解,這其中的任一元件都可以被CN營運者之外的其他實體擁有及/或操作。
AMF 182a、182b可以經由N2介面被連接到RAN 104中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及行動性管理等等。AMF 182a、182b可以使用網路截割,以 基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面被連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面被連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇以及控制UPF 184a、184b,並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理以及分配UE IP位址、管理PDU對話、控制策略實施及QoS、以及提供DL資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面被連接到RAN 104中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)接,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由以及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、緩衝DL封包、以及提供行動性錨定等等。
CN 106可以促進與其他網路的通信。例如,CN 106可以包括充當CN 106與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)、或者與該IP閘道進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、 102c可以經由與UPF 184a、184b介接的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b被連接到本地DN185a、185b。
鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的對應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN 185 a-b及/或這裡描述的其他任何裝置。這些仿真裝置可以是被配置為模擬這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或仿真網路及/或WTRU功能。
仿真裝置可被設計為在實驗室環境及/或營運者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一個或多個或所有功能,以測試通信網路內的其他裝置。該一個或多個仿真裝置可以在被暫時作為有線及/或無線通訊網路的一部分實施/部署的同時執行一個或多個或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通訊來執行測試。
一個或多個仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施/部署的同時執行包括所有功能在內的一個或多個功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或多個元件的測試。該一個或多個仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或借助RF電路(例如,該電路可以包括一個或多個天線)的無線通訊來傳輸及/或接收資料。
如上所述,車輛(“V2X”)通信是一種可供WTRU彼此直接進行通信的通信模式。V2X通信在第14版的長期演進(“LTE”)通信中被支援、 並且其靈感源於關於裝置到裝置(D2D)通信的先前操作。V2X通信服務可以包括以下的一種或多種類型。車對車(“V2V”)通信可以允許車載WTRU彼此直接進行通信。車對基礎設施(“V2I”)通信可以允許車載WTRU與路邊單元(RSU)及/或gNB進行通信。車對網路(“V2N”)通信可以允許車載WTRU與核心網路進行通信。車對行人(“V2P”)通信可以允許車載WTRU與其他類型的WTRU(例如具有低電池容量之類的特殊狀況的WTRU)進行通信。
LTE為V2X通信定義了兩種操作模式。在模式3中,網路可以將排程指配給予WTRU,以進行V2X側鏈路傳輸。在模式4中,WTRU可以自主地從被配置/預先配置的資源池中選擇資源。此外,LTE為V2X通信定義了兩種類別的資源池,即接收池以及傳輸池。該接收池可被監視,以接收V2X傳輸。傳輸池則被WTRU用於在模式4中選擇傳輸資源。以模式3配置的WTRU不使用傳輸池。
資源池可以經由RRC傳訊而被半靜態地被傳訊給WTRU。在模式4中,在從RRC配置的傳輸池中選擇資源之前,WTRU可以使用感測。LTE V2X可能不支援動態的資源池再配置。池配置可以僅經由系統資訊塊(SIB)及/或專用RRC傳訊而被攜帶。
目前正在開發稱為新型無線電(“NR”)系統的下一代無線系統。期望NR系統支援很多用例,例如增強型行動寬頻(“eMBB”)、超高可靠性以及低潛時通信(“URLLC”)以及增強型V2X通信。期望NR中的V2X通信支援用於安全以及非安全場景的全新服務(例如感測器共用、自動駕駛、車輛編隊以及遠端駕駛)。
車輛編隊能使車輛在一起行進的時候動態地形成群組。編隊中的車輛可以接收來自領隊車輛的週期性資料,以執行編隊操作。此資訊可以允許 車輛之間的距離變得極小。例如,轉換為時間的間隙距離可以很低(例如不到一秒)。編隊應用可以允許對跟隨領隊車輛的車輛進行自動駕駛。
高級駕駛可以實現半自動或全自動駕駛。較長的車輛間距離可以被假設。車輛及/或RSU可以與鄰近的車輛共用從其本地感測器獲得的資料。這可以允許車輛協調其軌跡或機動性。此外,車輛可以與附近的車輛共用其駕駛意圖。這可以允許更為安全的行進、避免碰撞以及提高交通效率。
擴展感測器能夠交換經由一個或多個本地感測器收集的原始或經過處理的資料以及車輛、RSU、行人裝置、或V2X應用伺服器之間的直播視訊資料。車輛可以增強其對其自己的感測器所能偵測的環境之外的環境的感知,並且可以更全面地瞭解本地狀況。
遠端駕駛能使遠端駕駛員或V2X應用為無法自己駕駛的乘客操作遠端車輛、或是操作處於危險環境中的遠端車輛。如果變化有限並且路線是可預測的(例如公共交通),那麼可以使用基於雲計算的駕駛。此外,基於雲的後端服務平臺存取也是可以使用的。應該指出的是,不同的V2X服務可能需要不同的性能需求,並且對於一些場景,3毫秒的潛時有可能是必需的。
在車輛編隊中,某些訊息可能需要被傳輸到整個車輛編隊,且特別是其他訊息則有可能只需要被傳輸到一輛車。在相同編隊中的WTRU之間可能需要傳輸很多訊息(例如使用單播傳輸)。如果像在常規D2D通信中那樣為可相互通信的WTRU的每一個組合分配唯一的L2識別(ID),那麼其效率將會很低。
編隊內的車輛使用的傳輸資源可以具有確定性的時序關係。這種時序關係可能是解決車輛編隊的某些需求所必需的。例如,編隊中的連續WTRU傳輸之間的短潛時需要可供每一個WTRU使用的資源都具有很短的時序偏移。由於每一個WTRU執行獨立的資源保留有可能是不可行及/或效率低下的,因此,在存取(AS)層需要用於確保資源協調以及管理的方法。
此外,SA1需求表明AS可能需要基於訊息特性來控制訊息的通信範圍。對於WTRU,有可能需要基於訊息的特性來區分所需要的傳輸範圍以及能夠有效使用側鏈路傳輸資源的方法。
編隊是V2X應用層概念,其在存取層將其本身顯現為是WTRU群組。這些WTRU可以在地理位置、資源使用、感測及/或定址方面相互關聯。這裡的描述可以包括WTRU群組的一般概念,其中該群組可以是由編隊應用或者其他V2X應用形成的。在此上下文中,WTRU群組可以具有以下的一個或多個特性。WTURU可以一起行動、或者可以具有相關的地理位置及/或拓撲。WTRU可能需要以多播方式來與整個群組進行通信。WTRU可能需要以單播方式以與群組中的特定成員進行通信。
在一個範例中,群組成員可以經由應用層管理/傳訊而被確定。群組形成以及修改決定可以由相關聯的V2X應用(例如編隊應用)來做出。群組資訊可以是完全可供AS使用的。例如,為該群組的一部分的WTRU的列表可被週期性地傳輸到AS。
在另一個範例中,群組確定及/或修改可以由應用層確定、並且僅僅為應用層所知。與定址以及資源使用相關的AS層可以接收相對於定址以及資源使用確保WTRU行為、反映了群組的存在性以及拓撲的特定資訊。當在應用層上致使WTRU已成為群組領隊時,應用層可以指示該WTRU應該承擔特定的AS行為。
WTRU可以從應用層接收以下資訊。對於每一個應用層封包,WTRU可以接收以下的一項或多項:該封包應該以單播還是多播被傳輸的指示,範圍資訊、時序需求、以及是否在整個群組中繼封包的指示。WTRU可以週期性或者在源自應用層的特定觸發項時接收以下的一者或多者:關於WTRU是或者不再是在AS處的WTRU群組的一部分以及相關聯的群組ID的指示、WTRU應該開始或停止執行某個群組領隊AS行為的指示、在群組中添加/或者從中移 除另一個WTRU以及與之關聯的ID的指示、WTRU的成員ID、以及不同WTRU在群組中的鄰近度資訊(例如方位,距離等等)。
WTRU可以進一步應用只和與群組通信相關聯的資料封包、服務及/或控制資訊關聯的某個行為。更具體地,上述資訊可以只與服務集合相關聯、可以由服務ID、目的地ID或是應用層提供的其他識別符識別。
常規的V2X通信方法沒有用於單播定址的程序。一些類型的D2D通信慮及了單播以及多播定址。對於D2D中的單播定址,WTRU的ProSe WTRU ID可被用作L2目的地ID,因此取代ProSe L2群組ID。雖然這能在群組內傳輸單播訊息,但是該方法可能具有以下問題。應用層可能需要為不同於任一WTRU的ProSe WTRU ID的服務保留唯一識別碼。另外,考慮到可能的大位址空間,在MAC層傳輸的任何封包的標頭中都有可能需要包括整個位址。並且,D2D以及常規V2X中的群組識別有可能僅僅指服務,而沒有特別暗示目的地WTRU之間的任何實體關係。因此,AS不會知曉傳輸是否與能夠實施編隊的服務(例如常規的編組概念)或WTRU的實體編組相關。
應該指出的是,術語“群組通信”可以指在實體關聯的WTRU的群組(例如編隊)內的通信,而不是背景中的常規的群組通信。在不喪失一般性的情況下,群組通信可以指在兩個WTRU(單播)或多個WTRU(多播)之間進行的通信。群組目的地位址可被用作用於單播或多播通信的目的地位址。
取決於以下的一項或多項,WTRU可以被提供以及使用(例如在MAC標頭中)不同的目的地位址結構:應用層封包是否與用於特定群組(例如實體編組)的通信相關聯、該傳輸是否為實體編組內的單播傳輸、以及該傳輸是否被多播到實體編組中的整個群組。更具體地,目的地位址可以具有以下結構:服務ID+群組ID+成員ID。群組ID以及成員ID可以是可選的、並且只有在執行群組通信的情況下才被使用。WTRU可以基於從應用層接收的目的地位址來傳輸具有可變標頭大小的MAC標頭。WTRU可以進一步表明標頭類型,以 對每一種傳輸情形進行區分。在群組通信的情況下,MAC層可以省略服務ID。在應用層資訊內可以傳輸服務ID。
取決於從應用層接收的用於在側鏈路上的傳輸的目的地位址,WTRU可以執行與多工以及資源選擇相關的不同行為。WTRU可以允許多工AS群組控制資訊(例如資源協調資訊(“RCI”)與具有包含群組ID且無成員ID的目的地位址的封包。當封包具有至少包含了群組ID的目的地位址時,WTRU可以為進行通信的WTRU的群組執行基於群組的資源選擇。當封包具有至少包含群組ID的目的地位址時,WTRU可以依靠與相同群組相關聯的另一個WTRU保留的基於群組的資源。當封包具有至少包含群組ID的目的地位址時,WTRU可以傳輸關於群組ID所表明的基於群組的資源的保留信號。
側鏈路資源可被保留用於群組通信。側鏈路控制資訊(“SCI”)可以表明傳輸與特定的群組相關聯(例如藉由在SCI中包括群組識別符)。在這種情況下,WTRU可以只在MAC層標頭中包含成員ID,以用於與這些專用資源相關聯的傳輸或是由SCI排程的傳輸。針對被廣播到整個群組的傳輸,WTRU可以包括特殊成員ID(例如全0),以將其區分為是針對整個群組的多播傳輸。WTRU可以不包括成員ID、並且可以使用MAC標頭類型以將其區分為是針對整個群組的多播傳輸。
WTRU可以從較高層接收用於群組通信的L2目的地位址。WTRU可以接收形成該群組的WTRU的L2源ID以及L2目的地位址。
WTRU可以從較高層接收在群組通信中使用的唯一的L2目的地位址的集合。WTRU可以選擇這些位址中的一個位址,以將其用於可以由該WTRU形成及/或管理的群組通信。WTRU可以進一步將形成該群組的WTRU的L2源位址以及對應的L2目的地群組位址通知給較高層。
WTRU可以將用於群組通信的目的地位址通知給群組中的其他WTRU。WTRU可以在WTRU之間發起群組形成傳訊(例如經由RRC訊息),因此可以交換群組的目的地位址。
WTRU可以使用專用目的地L2位址以用於交換群組形成及/或群組維持傳訊。例如,該目的地L2位址可以表明該訊息是控制平面訊息而不是使用者平面訊息。接收到具有專用控制平面目的地ID的訊息的WTRU可以將該訊息路由到WTRU的協定堆疊內的RRC實體。傳輸WTRU之間的控制平面傳訊訊息(例如RRC訊息)的WTRU可以將該專用目的地L2位址用於控制訊息。WTRU可以基於預配置來確定用於控制平面傳訊的專用L2位址。WTRU可以從較高層確定此位址。
為所配置的群組的一部分的WTRU可以使用由相同WTRU群組的成員保留用於通信的資源集合。這可以考慮到群組中的WTRU之間的更低潛時及/或更高可靠性通信。與鄰近於該群組的群組外的WTRU的干擾/爭用可被避免。群組內的通信可能需要低潛時及/或高可靠性。
WTRU可被配置為具有用於群組通信的一個或多個資源池。WTRU可以在廣播(SIB)、專用傳訊或預配置中接收一個或多個群組專用的資源池的配置。基於以下的一項或多項,可以從該配置中確定群組專用的資源池:WTRU的地理位置、WTRU速度、WTRU前進方向、群組ID、成員ID以及應用層資訊(例如與拓撲相關)。
資源池配置可以與群組ID相關聯。WTRU可以從較高層接收針對特定群組的傳輸的封包(也就是說,目的地位址與群組的目的地位址相匹配)。WTRU可以從群組專用池中選擇資源,以用於傳輸。WTRU可以進一步依照與待傳輸封包相關聯的某些條件來使用源自群組專用池的資源。這些條件可以是以下與QoS相關的條件中的一項或多項:封包具有滿足預定標準的特定延遲預算、封包需要以單播或多播方式來傳輸、封包具有特定的所需要的傳輸範圍或 是特定的傳輸方向性(例如由應用確定)、封包與特定資料速率需求相關聯、以及封包具有某個優先序。
WTRU可被配置為具有用於接收的群組專用池,這可以用類似的方式來導出。在滿足以上的任一條件時,WTRU可以監視來自群組專用池的資源。
WTRU可以在RRC配置中接收群組專用資源池配置。該群組專用資源池配置可以表明取決於WTRU的地理位置以及群組ID來使用一個或多個資源池。WTRU可以基於其地理位置以及群組ID以從該配置中的池的集合裡選擇群組專用資源池。WTRU可以使用關於其緯度/經度以及群組ID的取模運算來選擇資源池。更具體地,該池配置可以由MxN個資源池的表組成,並且WTRU可以藉由以下等式來確定在任一時間使用的該表中的資源池的索引:
m=(緯度/經度)mod M 等式1
n=(群組ID)mod N 等式2
只要WTRU被指配到群組並且具有關於該群組的傳輸,則WTRU可以使用群組專用資源池。否則,WTRU可以使用其他的TX池。WTRU可以從應用層接收其已被指配到特定群組的訊息。該訊息可以包含相關聯的群組識別符。在此種指配之後,在從較高層接收到用於傳輸的封包時,WTRU可以從群組專用池中選擇資源。該封包可以用相同的群組識別符而被標記。WTRU可以進一步從群組專用資源池中選擇取決於群組內的成員ID的資源。
群組中的WTRU可以在側鏈路通道上傳輸群組保留信號,以保留可被為該群組的一部分的多個WTRU使用的資源。WTRU可以進一步被配置為傳輸保留信號及其自己的側鏈路資料傳輸。該保留信號可以進一步與針對被傳輸該保留信號的相同群組的側鏈路資料傳輸一起傳輸。舉例來說,WTRU可以傳輸充當了可被群組使用的資源的保留信號的SCI。該SCI可以包括群組識別符 或群組識別符的一部分。WTRU可以使用相同的SCI以進一步排程該WTRU傳輸的PSSCH上的資料。該資料可以將群組的一個或多個成員作為預定目的地。
群組保留信號可以是PSCCH或PSSCH上的現有V2X傳輸中的欄位,在這些通道中的任一通道上傳輸的新訊息、或是這兩者的組合。更具體地,保留信號可以採用以下的一種或多種方式而被傳輸:側鏈路排程指配中的欄位、SCI、或是PSCCH上的類似訊息;同步信號、或是在同步信號內傳輸的欄位,與PSBCH相似;以及在PSSCH上包含的訊息(例如MAC CE、RRC或應用層訊息)。此訊息可以進一步在群組保留信號旨在保留的資源內部被傳輸。
保留信號可以提供資訊的以下片中的一者或多者。該保留信號可以提供用於指定為其保留了資源的特定WTRU群組的群組指示或群組識別。保留信號可以提供被保留的資源(例如時間、頻率、波束或波束集合)的指示。此指示可被隱性地包括在排程訊息提供的排程資訊中。舉例來說,該保留信號可以保留SCI意圖排程的資源。此外,此指示可以進一步由包括未被包括在排程資訊中的關於保留的附加資訊組成。舉例來說,保留信號可以表明在多個子訊框、週期保留被排程的資源,或者其也可以表明被排程的資源的子集。該保留信號可以提供用於在多個WTRU之間協調資源的資源協調資訊(RCI)。該保留信號可以提供傳輸資源保留信號的WTRU的地理位置。
用於特定群組或群組保留資源的RCI可以在側鏈路中由一個或多個WTRU(例如群組領隊)傳輸、由WTRU中繼、或是由所有WTRU傳輸。WTRU可以進一步被較高層配置為傳輸及/或中繼RCI。RCI可以作為資源保留信號的一部分來傳輸。RCI可以作為存取層控制訊息(例如側鏈路上的MAC CE或WTRU之間的控制訊息)而被傳輸。舉例來說,被配置為傳輸RCI的WTRU可以週期性地執行該處理、或可以在RCI內容改變(例如群組中的WTRU集合發生變化)的時候執行該處理。RCI可以由應用層提供給WTRU,並且會在群組拓撲發生變化(例如編隊中的車輛數量或是其定序變化)的時候改變。
特定或指定的WTRU可以藉由傳輸RCI以表明為群組保留信號中的群組保留的資源的使用定序。WTRU可以傳輸RCI來表明其使用或者不使用資源或子資源。例如,WTRU可以用這裡描述的任一方法以向群組的剩餘者表明其不會使用為其指配的子資源。在RCI中表明或是藉由特定規則確定的另一WTRU(例如具有次最大成員ID的WTRU)可以使用發送了該指示的WTRU的子資源。
WTRU可以傳輸RCI以表明其所確定的對群組關聯的資源的感測結果。例如,作為SCI的一部分,WTRU可以傳輸其偵測到的RSRP、RSSI以及佔用資訊(例如保留了不與自己的群組相關聯的資源的SCI傳輸)中的一者或多者。
與特定群組相關聯的RCI可以只被該群組的成員讀取。例如,WTRU可以將RCI作為MAC CE而在具有與群組目的地位址相匹配的目的地位址的MAC SDU中傳輸。雖然SCI可以為群組保留資源、並且能被群組以外的WTRU看到,但是RCI可以表明此類資源在群組內的使用、並且可以只能被群組內的WTRU看到。
RCI可以表明在子資源集合內的WTRU自己的傳輸子資源的允許的時間/頻率/波束定序。這可以採用表、位元映像或成員ID排序的形式。例如,RCI的大小可以由應用層基於編隊拓撲來確定。表/位元映像的大小可以由應用層來傳遞。
RCI可以表明使用與WTRU自己的傳輸或是與其他WTRU傳輸相關聯的子資源的條件,例如:可供WTRU為之使用其在群組中的自己的子資源的資料的最小優先序,以及可供WTRU為之使用群組中的其他資源的資料的最小優先序。這些條件可被預先配置在WTRU中、且不與RCI一起被傳輸。
RCI可以表明用於改變子資源使用定序的規則及/或指示。例如,RCI可以包含WTRU可以使用屬於其他WTRU的其他未使用子資源的指示。RCI 可以指示關於WTRU是否/何時可以傳輸新的RCI的規則。RCI可以表明將要由群組中的特定WTRU感測的資源集合。例如,RCI可以包含指定WTRU應在其上執行感測的時間/頻率/BWP/波束以監視SCI以及可能在相關控制資訊中進行報告的指示。RCI可以表明緩衝器佔用資訊(例如在WTRU緩衝器中未決且有可能與特定WTRU群組的傳輸相關聯及/或與不同QoS需求相關聯的資料量。RCI可以表明與WTRU選擇應被保留的保留週期的數量相關聯的亂數。RCI可以表明藉由特定WTRU的感測程序所獲得的感測結果(例如RSRP、RSSI以及資源佔用/可用性資訊)。
接收到群組的資源保留信號的WTRU可以將協調資訊(即其自己的RCI)作為其自己的傳輸的一部分來傳輸、或者可以在為其保留的子資源內傳輸。該協調資訊可以服務於傳輸資源保留信號的其他WTRU,以確定在以後的保留週期中保留的資源或是確定要傳輸的RCI。該協調資訊可以在控制訊息(例如MAC CE或側鏈路RRC訊息)中被傳輸、並且可以附加於WTRU在其自己的子資源上傳輸的任何資料。
該協調資訊可以包括WTRU自己的成員ID或是由應用層提供的用於識別WTRU的類似ID。該協調資訊可以包括感測結果,例如由WTRU確定的可用/不可用資源的指示。該感測結果可以進一步特定於在RCI中為WTRU表明的全部資源(例如時間、頻率、BWP、波束)的子集。該協調資訊可以包括WTRU意圖維持/持續使用為其指配的子資源的多個保留週期。該協調資訊可以包括WTRU緩衝器中的資源的QoS資訊,例如優先序、潛時、週期性、速率、範圍需求以及酬載。該協調資訊可以包括從較高層接收的任何週期性資訊的時序、大小以及週期性的絕對值或取值變化,例如週期性的CAM訊務或是類似的週期性應用層訊務。該協調資訊可以包括被指配給WTRU的子資源與將要在子資源中傳輸的資料的到達之間的差異或時間偏移。此時間差的潛在變化可以被包括。該協調資訊可以包括WTRU的緩衝器狀態。
WTRU可以從指定的WTRU接收RCI,該RCI表明了應在其上執行常規感測以做出可用性確定的資源集合。當WTRU在可由其接收的資源保留信號所表明的子資源中傳輸資料時,WTRU可以包括可用/不可用資源以及其意圖繼續在為其指配的子資源中執行週期性傳輸的保留週期的數量。此資訊可以與其自己的資料傳輸一起被包括在MAC CE中傳輸。
WTRU可被識別為是用於傳輸資源保留信號的指定WTRU。該WTRU可以從群組中的其他WTRU接收協調資訊,其中該協調資訊包含了單獨的WTRU發送的協調資訊中任何資訊。WTRU可以在下一個保留週期中使用所接收的資訊來執行資源保留、並且可以在其下一次傳輸資源保留信號中表明所保留的資源/子資源。
在特定數量的保留週期,WTRU可能不再需要用於群組的資源內的為其預訂的資源(例如多個保留週期上的相同資源)。在這種情況下,WTRU可以表明其在以後的保留週期不使用為其指配的子資源。因此,傳輸資源保留信號的WTRU會藉由在RCI中傳輸更新的資訊以將群組中的另一WTRU指配到相同的子資源。
由於下列觸發中的一個或多個觸發,WTRU可以傳輸保留信號。一旦從應用層發起特定服務(例如需要群組內通信的V2X服務),則WTRU可以傳輸保留信號。一旦創建了具有某個優先序、某個QoS特性、特定範圍需求或是為WTRU群組內的通信保留的邏輯通道,則WTRU可以傳輸保留信號。一旦從應用層接收到傳輸保留信號的指示,則WTRU可以傳輸此類保留信號。一旦從應用層接收到資料(有可能與群組相關聯),則WTRU可以傳輸保留信號。WTRU可以基於計時器(可以由應用層及/或RRC傳訊及/或廣播系統資訊來配置)終止來傳輸保留信號。
一旦由PHY層接收到另一個WTRU傳輸的保留信號,則WTRU可以傳輸保留信號。該觸發可以進一步以下列標準中的一個或多個標準為條件。 如果接收到的保留信號包含與在WTRU上啟動或配置的群組ID其中之一相匹配的群組ID,那麼WTRU可以傳輸保留信號。如果接收到的保留信號是以低於臨界值的功率而被接收,那麼WTRU可以傳輸保留信號。如果接收到的保留信號表明WTRU在序列中的位置是特定位置,那麼WTRU可以傳輸保留信號。如果WTRU的成員ID或是其在傳輸序列內的位置與接收到的保留信號所確定的下一個預期傳輸相匹配,那麼WTRU可以傳輸保留信號。在接收到保留信號後的配置或表明的時間之後,WTRU可以傳輸保留信號。如果測得的接收到的保留信號低於臨界值,那麼WTRU可以傳輸保留信號。如果接收到的保留信號是從距離高於/低於臨界值的WTRU接收的,那麼WTRU可以傳輸保留信號。
WTRU可以從較高層(例如V2X應用層、V2X控制層、ProSe層或NAS)接收用於表明開始為與群組識別符相關聯的特定群組傳輸保留信號的指示。在接收到這種較高層指示之後,WTRU可以週期性地傳輸保留信號,直至接收到禁止/停止傳輸保留信號的指示。
WTRU可以從較高層接收用於表明開始為與群組識別符相關聯的特定群組傳輸保留信號的指示,並且一旦從較高層接收到用於該WTRU群組的資料,則WTRU可以傳輸保留信號。
WTRU可以從較高層接收表明其是特定通信群組的一部分的指示。如果RCI表明資源在下一個保留週期中仍舊可用,並且WTRU按順序接下來會在保留資源上進行傳輸,那麼當其偵測到另一WTRU在先前保留週期中傳輸的資源保留信號時,WTRU可以傳輸保留信號。
可以將WTRU配置或表明為(例如藉由應用層或是藉由接收來自一個或多個其他WTRU的側鏈路控制訊息)保留將供WTRU群組使用的資源。例如,群組的一個或多個WTRU可被指定或者允許(例如由應用層配置)保留供群組中的所有WTRU使用的資源。WTRU可以執行資源選擇程序,其中該程序可以包括基於感測結果來確定可用資源集合。WTRU可以傳輸保留信號以保 留可以基於感測結果提供的所選擇的資源。WTRU可以進一步為可能與群組相關聯的多個WTRU執行資源選擇。WTRU可以確定要選擇的資源的數量以及資源的結構。
資源結構可以是指資源的週期性。例如,資源選擇可以選擇以固定週期出現的多個資源。資源結構可以指多個子資源。例如,WTRU可以為每一個WTRU的單一或多個一次性傳輸選擇固定數量的子資源。
資源結構可以指子資源之間的時間間隔。例如,資源選擇可以選擇與每一個資源相關聯的多個子資源。每一個子資源都可以被群組中的單一WTRU使用。這些子資源之間的時間差(以時槽為單位)可以是固定的、或者也可以使其不超過特定的最大時間差。
資源結構可以指每一個子資源大小。子資源可以被保留,使得每一個子資源都具有相同大小、或者在每一個子資源之間可以具有某種大小方面的關聯。可以提供每一個子資源大小以在群組保留中支援每一個WTRU傳輸的最大封包大小。每一個子資源大小可以由每一個WTRU的資料速率需求確定。每一個子資源大小可以由應用層表明。每一個子資源大小可以由傳輸保留信號的WTRU執行的傳輸所需要的資料大小來確定。
資源結構可以指應該保留的資源的任何部分或所有資源的頻率範圍(例如BWP)。例如,資源選擇可以只保留特定BWP中的所有資源、或者保留第一BWP中的第一數量的子資源以及第二BWP中的第二數量的子資源。
資源結構可以指應該保留的資源的任何部分或所有資源的波束或波束集合。舉例來說,資源選擇可以只保留來自波束子集、波束方向或是與波束方向相關聯的池的資源。
WTRU可以在其自己的傳輸中傳輸與資源保留結構相關的資訊。該資訊可以或可以不伴隨其自己的資料傳輸。例如,WTRU可以在SCI中傳輸 以上資訊。該資訊可以藉由為某些固定資源結構編索引(例如依照表格)而被識別。
在資源選擇期間,WTRU可以基於下列標準中的一個或多個標準來確定要選擇的資源的大小以及結構。該確定可以基於WTRU本身需要傳輸的資料量(也就是WTRU緩衝器中未決資料的大小)。例如,WTRU可以保留大小為M的N個子資源。大小M可以基於WTRU需要傳輸的資料的大小來確定。數量N可以藉由應用層資料(例如用於表明目前在群組中的WTRU的數量的資料)而被確定。
該確定可以基於要傳輸的資料的QoS特性(例如延遲需求、優先序、資料速率、可靠性以及傳輸範圍)。該確定可以基於由WTRU或gNB確定的MCS。該確定可以基於由WTRU執行或是由其他WTRU(有可能在相同群組中)傳遞至該WTRU的佔用量度(例如,CBR量度)。該確定可以基於波束級品質量度。該確定可以基於從應用層獲得的群組專用資訊。舉例來說,子資源的數量可以由應用層表明、或可以從所表明的群組中的WTRU的數量來推導。不同子資源之間的間距可以直接由應用層表明。
該確定可以基於對來自其他WTRU的傳輸大小的期望(有可能基於指定WTRU的傳輸的大小)。舉例來說,指定WTRU可以傳輸期望會有來自多個WTRU的回應的請求訊息。該回應訊息的大小可以是確定性的。
WTRU可以被配置為傳輸保留信號及用於群組的其自己的資料傳輸。WTRU可以從較高層接收用於群組保留的參數集合,其中該參數由子資源之間的時間間距、與資源相關聯的多個子資源、用於資源的子帶(例如BWP)以及群組識別符組成。一旦從較高層接收到與該群組相關聯的資料,或者一旦發起了特定於群組的服務,那麼WTRU可以執行資源保留程序,其中WTRU會藉由該資源保留程序完成以下的一項或多項處理。WTRU可以基於其自己的傳輸的大小來確定用於一個子資源的資源量。WTRU可以確定子資源圖案及/或保 留資源的週期性。WTRU可以基於應用層資訊來確定要保留的子資源的數量。WTRU可以選擇與來自較高層的所需要的時間間隔及子帶相匹配的子資源集合。WTRU可以傳輸表明了其自己的資料的存在性以及保留可被其他WTRU使用的資源的資源保留信號(有可能具有其自己的資料)。
WTRU可以結合可能不與群組相關聯的其他資源保留/傳輸來執行群組資源保留程序。例如,只有在較高層接收的資料與WTRU上配置的群組識別符相關聯的時候,該過程才可以被使用。
WTRU可以傳輸保留信號及其自己的資料傳輸。該保留信號可以是針對其自己的傳輸的回應訊息。WTRU可以為每一個WTRU做出的單一回應保留足夠資源。WTRU可以自主保留用於每一個WTRU回應的資源的時序,以滿足下列標準中的一個或多個標準。WTRU可以在特定時間訊框內接收所有回應,因此,時間訊框可以與該請求/回應或是取決於該請求回應的任何資料的QoS相關。該回應訊息不會在時間/頻率/波束上重疊。群組中的一個WTRU的回應訊息還會被該群組中的另一WTRU接收。
WTRU可以被配置為針對資源保留信號而監視側鏈路傳輸、以及使用另一WTRU保留的用於群組通信的資源。一旦接收到表明了可供群組執行的傳輸使用的資源(例如藉由在SCI中傳輸的群組身份識別碼而被識別)的資源保留信號,則WTRU可以在保留資源的一部分中(例如在資源保留信號中識別的資源的子資源中)傳輸用於相關聯的群組識別碼的未決資料。WTRU可以僅僅使用資源來傳輸針對為其保留了WTRU資源的特定群組的資料。如果WTRU沒有針對與資源保留信號相關聯的群組的未決資料,那麼WTRU可以忽略該資源、並且不會將其用於傳輸。
WTRU可以在與群組相關聯的子資源中傳輸非群組資料,但是其可以使群組資料優先於非群組資料。更具體地,只要WTRU具有與群組相關聯 的資料,則WTRU可以將整個子資源用於基於群組的資料。否則,其還可以使用資源來傳輸並非基於群組的資料。
WTRU可以延遲群組資料的傳輸,直到在群組或子資源內出現與其相關聯的資源。延遲傳輸群組資料的決定可以是出現群組資料(例如藉由RCI確定)之前剩餘的時間、以及群組資料的優先序及/或潛時需求為條件。例如,WTRU可以比較封包到達到預期出現群組子資源時群組資料所需的傳輸時間。只要子資源是在所需要的傳輸時間之前的某個時間增量上出現,則WTRU可以決定延遲傳輸,直至出現子資源。該時間增量可以為零。如果WTRU確定不等待群組子資源,那麼其可以在非群組資源上執行資源選擇以及傳輸。
WTRU有可能需要在群組資源中傳輸具有特定優先序(例如通過PPPP確定)的資料。更具體地,群組資源可以關聯於具有特定優先序的資料。與群組資源相關聯的優先序可以被包含在群組保留信號中(例如SCI中)。WTRU可被允許僅傳輸與在保留信號中傳輸的優先序相匹配的群組資料。WTRU還可以在群組資源中傳輸具有任何優先序(例如小於或大於保留信號中的優先序)的資料。
WTRU可以改變與群組資源相關聯的優先序。如這裡所述,這種改變可以在WTRU決定對群組資源執行重選的時候發生。
除了與群組相關聯的資料之外,WTRU還可以傳輸RCI。RCI可以包含與針對該群組的資料相關聯的緩衝器資訊。例如,WTRU可以傳輸其緩衝器中針對該群組的資料量(有可能具有優先序/可靠性或其他QoS資訊)。WTRU可以在RCI內表明是否需要分段以在所分配的資源中傳輸資料。WTRU還可以表明需要分段以適合群組子資源的封包的大小。
如果WTRU沒有與群組相關聯的要傳輸的資料,那麼其可以傳輸表明其在下一個保留週期中不需要資源的RCI、或是傳輸表明其在其緩衝器中沒有與資源相關聯的資料的緩衝器狀態。
WTRU可以在RCI中表明其因為WTRU決定使用非群組資源上的傳輸(例如因為群組資源不滿足WTRU的潛時需求)而不能使用群組資源。WTRU還可以表明到群組資源未能滿足其潛時需求時的時間量。
WTRU可以在RCI中表明其偵測到另一個WTRU執行的SCI傳輸,其中該另一個WTRU排程了與其自己的群組排程傳輸衝突的非群組傳輸。
WTRU可以在RCI中表明被緩衝的群組資料的存在性,其中該資料的優先序不同於可為群組資源上的傳輸許可的優先序。
當為群組保留的資源是針對該群組的WTRU使用的與SPS相似或前向預訂的資源時,WTRU可以做出資源重選決定。資源重選可以由群組中的任何WTRU執行,或者資源重選可以僅僅由單一WTRU執行。舉例來說,如果每一個WTRU傳輸可包括SCI以及RCI的資源保留信號來排程其自己的傳輸,那麼任何WTRU可以在其自己的排程傳輸之前執行資源重選。如果單一WTRU(例如指定WTRU)傳輸SCI來排程所有群組子資源,那麼可以僅由群組中的單一WTRU執行資源重選。
WTRU可以基於下列觸發或條件中的一個或多個觸發或條件來執行資源重選。資源重選可以由WTRU在其本身在資源或子資源上的排程傳輸之前執行。舉例來說,在WTRU確定(例如經由RCI以及成員ID)下一個資源被保留以用於其自己的傳輸時,WTRU不會被允許執行資源重選。
如果資源不滿足WTRU自己的潛時需求,那麼可以執行資源重選。例如,WTRU可以確定其下一個資源的預期時序不滿足從較高層到達的封包的潛時需求。該WTRU可以執行資源重選,以在與所排程的週期性資源相較下相對更早的時間點排程其自己的傳輸。
如果資源不滿足WTRU自己的緩衝需求,那麼可以執行資源重選。例如,WTRU可以確定所分配的資源/子資源需要對L2上的封包分段,並且WTRU可以決定不對封包進行分段。
如果來自其他WTRU的控制資訊(例如RCI)的傳輸表明其他WTRU的潛時及/或緩衝需求未被滿足,那麼可以執行資源重選。例如,WTRU可以接收來自群組中的一個或多個其他WTRU傳輸的RCI。如果一個或多個WTRU表明了以下的一項或多項,那麼WTRU可以執行資源重選:需要對封包進行分段以在群組資源中對其進行傳輸,因為群組資源沒有滿足潛時需求而不能在所分配的群組資源中傳輸群組資料,以及偵測到與另一非群組傳輸的子資源衝突。
一旦偵測到不屬於群組的另一WTRU的排程傳輸或非群組傳輸與所排程的資源衝突,則可以執行資源重選。這有可能僅僅在確定非群組傳輸具有高於群組傳輸的優先序下才會被執行。
如果不同載波、頻寬或波束變得比目前載波、頻寬或波束好預定或所配置的量,那麼可以執行資源重選。例如,除了其他載波、頻寬以及波束外,WTRU還可以維持目前目前載波、頻寬以及波束的CRB量度、並且可以在另一載波、頻寬以及波束的CBR低於目前CBR時決定重選。
WTRU可以從與其群組相關聯的一個或多個WTRU接收RCI。如果WTRU從不同WTRU接收到了超出預定或所配置的數量的RCI,其中每一個RCI都表明群組子資源不能滿足潛時需求,那麼WTRU可以執行針對群組資源的資源重選。WTRU可以使用RCI中的其他WTRU的潛時需求來排程群組資源。
WTRU可以被配置為依照以下的一個或多個條件來回送(echo)所接收的資源保留信號。如果被應用層顯性或隱性地(例如經由成員ID的配置,其中該成員ID具有某個特定值,並且每N個成員ID會執行回送)配置為執行這種處理,那麼WTRU可以回送所接收的資源保留信號。如果指定WTRU傳輸的群組SCI的接收值、或是與WTRU的群組對應的任何群組RCI具有低於臨界 值的品質(例如RSRP),那麼WTRU可以回送所接收的資源保留信號。該臨界值可以取決於可為群組允許的傳輸的PPPP/PPPR。
在單一WTRU在後續子訊框中為多個WTRU排程子資源中使用上述方法會是有利的。如果群組中不同WTRU之間的距離大,那麼群組附近的其他WTRU未必能夠偵測到初始SCI傳輸、並且有可能會選擇與群組資源衝突的資源。重複(即回送)該群組資源可以避免其他WTRU執行資源選擇所造成的這種資源衝突。
現在參考第2圖,其顯示的是示出了使用子資源協調的第一群組保留方法的圖式。在此方法中,SCI可以排程用於單一WTRU的傳輸。第一WTRU 202可以在第一保留週期206傳輸第一SCI 204或資源保留信號,以排程用於其本身的傳輸。在SCI 204中,針對特定資源保留週期的前向預訂可被用於為群組中的其他WTRU的傳輸保留資源。第一WTRU 202可以使用與第一RCI 208結合的SCI 204或等效側鏈路排程訊息來傳輸群組保留。該第一RCI 208可以在PSSCH上作為MAC CE而被傳輸。
第一WTRU 202可以設定SCI 204的內容,以表明該第一WTRU 202排程的資源210。第一WTRU 202可以依照是否在以後的保留週期中保留相同的資源來表明前向預訂指示。SCI 204可以包括群組識別符欄位。第一WTRU 202可以將此欄位設定為被保留了資源的群組的群組ID。SCI 204中的排程資訊可以表明排程資訊中保留的特定資源。資源210可以是一個子訊框/時槽或子訊框/時槽的集合以及每一個子訊框/時槽內的資源塊。第一WTRU 202可以將第一RCI 208包括在由第一SCI 204表明的資源中的其本身的傳輸中。該第一RCI 208可以作為與第一WTRU 202的傳輸多工的MAC CE而在PSSCH上被發送。第一RCI 208可以包括第一WTRU 202是否打算在下一個保留週期212中使用相同資源(藉由第一SCI 204保留)及/或應該在下一個保留週期212中使用群組資源 的WTRU的序列的指示。如第2圖所示,第一WTRU 202可以使用第一RCI 208以表明第二WTRU 214應該在第二保留週期212在資源中執行傳輸。
第一WTRU 202可以包括整個WTRU ID序列,使得第二WTRU 214可以基於最後一個群組保留信號的WTRU ID以及此序列來獲知其在傳輸序列中的輪次。該第二WTRU 214可以是相同群組的成員、並且可以解碼包括群組ID的第一SCI 204以及讀取MAC CE。如果第二WTRU 214確定其是序列中的下一個WTRU(也就是說,該資源被指配為是這個WTRU的傳輸資源),那麼第二WTRU 214可以在第二保留週期212在相同資源中執行傳輸。否則,第二WTRU 214可以只在下一個保留週期中接收傳輸及/或解碼第一RCI 208。
第二WTRU 214可以傳輸第二SCI 216,以在第二保留週期212中排程資源。該第二WTRU 214還可以在其本身在第二SCI 216所表明的資源中執行的傳輸中傳輸第二RCI 218。如第2圖所示,第二WTRU 214可以使用第二RCI 218來表明第三WTRU(未顯示)應該在第三保留週期中在資源上執行傳輸。
現在參考第3圖,其顯示的是示出了使用子資源協調的第二群組保留方法的圖式。在此方法中,SCI可以在保留週期中排程用於多個WTRU的傳輸。單一WTRU可被指配SCI排程資源的子資源。對於群組的週期性傳輸的情況,使用前向預訂可以為WTRU保留後續資源。
第一WTRU可以使用第一SCI 302以及第一RCI 304(例如使用PSSCH)來傳輸群組保留信號。第一WTRU可以在第一SCI 302中包括關於第一保留週期的排程資訊、群組ID以及前向預訂信號。第一WTRU還可以在第一保留週期308內傳輸子資源的格式或指示。更具體地,第一WTRU可以提供第一SCI 302所保留的資源中的每一個子資源的大小以及位置的指示。第一WTRU可以在第一SCI 302表明的第一子資源306中傳輸指向所表明的群組的資料。此外,該WTRU可以使用這個第一子資源306以在MAC CE中傳輸第一RCI 304。 該MAC CE可以包含將要在子資源內使用的成員WTRU ID傳輸的排序。每一個子資源都可以用於傳輸來自與群組相關聯的單一WTRU的資料。接收到第一SCI 302的WTRU可以確定子資源結構、並且可以解碼第一子資源306。
基於在第一子資源306中傳輸的第一RCI 304的內容,群組中的WTRU可以確定自己的子資源。WTRU可以在自己的子資源中傳輸與群組關聯的資料。例如,在第一保留週期308,第二WTRU可以在第二子資源310中傳輸資料。在第一保留週期308,第三WTRU可以在第三子資源312中傳輸資料。在第一保留週期308,第四WTRU可以在第四子資源314中傳輸資料。WTRU可以使用其在RCI上來傳輸使用資訊。例如,第四WTRU可以傳輸表明其資源使用資訊的第二RCI 316。
如果WTRU沒有將要傳輸的與群組相關聯的資料,那麼其可以傳輸表明其在下一個保留週期中不需要資源的RCI。此資訊可被RCI發起者(例如指定WTRU)用來確定關於下一個保留週期的排程、或者確定究竟是否需要在下一個保留週期保留群組資源。
傳輸群組保留信號的WTRU可以基於先前保留週期的每一個子資源中的RCI或控制資訊的傳輸來確定在未來的保留週期中保留群組資源的必要性。更具體地,WTRU可以在保留週期的每一個子資源中解碼來自每一個WTRU的RCI或類似的控制資訊。基於此資訊,WTRU可以確定是否在下一個保留週期維持資源。該確定可以基於以下的一項或多項:仍然具有與群組相關聯的資料的WTRU的數量;RCI中每一個WTRU的緩衝區佔用情況;在先前保留週期中的每一個子資源上偵測到的RSSI、RSRP或類似資訊;以及隨機數量的保留週期(有可能是在首次傳輸與特定資源相關聯的群組保留信號的時候選擇的,並且該數量會在與相同資源相關聯的保留週期的每一次傳輸時遞減)。
如果WTRU基於以上條件決定保留資源,那麼WTRU可以在下一個保留週期中傳輸與相同資源相關聯的資源保留信號。替代地,基於以上資訊, WTRU可以決定執行重選程序,以保留有可能具有更大或更小尺寸、且有可能基於在其他WTRU的RCI中發送的資訊而與該群組中的其他WTRU適應的不同資源集合。替代地,WTRU可以決定保留相同或不同的資源集合,但是該資源集合是供群組中的WTRU的子集(有可能是哪些仍然要傳輸資料的WTRU)使用的。WTRU還可以決定在保留週期中不保留任何資源、並且不會傳輸任何群組保留信號(例如在WTRU的緩衝器中全都沒有未決資料的情況下)。
被配置為傳輸群組保留信號的WTRU可以選擇介於n1與n2之間的亂數、並且可以傳輸帶有前向預訂指示集合的群組保留信號。在傳輸每一個資源保留信號時,WTRU可以遞減該亂數。當亂數達到0時,只要WTRU的緩衝器中仍有資料並且群組中的至少n個WTRU的緩衝器中具有與群組通信相關聯的至少x位元組的資料,則WTRU可以對群組資源執行資源重選程序。如果計數器尚未達到0,並且群組中至少有y個WTRU已經表明其緩衝器中仍具有與群組通信相關聯的至少x個位元組的資料,那麼WTRU可以決定在下一個保留週期中維持現有資源。此外,WTRU可以基於從每一個WTRU接收的RCI資訊來改變用於傳輸下一個群組保留信號的RCI,以改變具有被指配的子資源的WTRU的集合以及子資源的大小。
WTRU可以隱性或顯性地關聯資源保留信號所表明的資源集合內的子資源,以用於其自己的傳輸。WTRU可以基於以下的一項或多項來確定使用保留信號中表明的資源內的特定子資源:基於ID或類似識別的顯性映射;定序資訊(例如可在PDCCH或PDSCH中由WTRU、網路或應用層傳輸的RCI);要傳輸的資料的優先序(包括資料的延遲需求);要傳輸的資料的到達時間;要傳輸的資料的範圍;其他WTRU在相同子資源中執行的在先傳輸(例如在先前的保留週期中,或是先前的保留信號傳輸);測量得到的與在先保留週期期間的子資源或是與保留信號的先驗傳輸相關聯的RSRP、RSSI或CBR;與傳輸 資源保留信號的WTRU的距離或是關於該WTRU的距離;以及從一傳輸WTRU的角度來看的、由執行資源選擇的WTRU使用的感測結果的有效性。
WTRU可以基於為其指配的識別符(例如群組成員ID)來確定該WTRU可在其中發送其自己的傳輸的子資源。舉例來說,如果WTRU的群組成員ID mod N=i,那麼WTRU可以確定其可以使用第i個子資源。
具有與群組識別符相關聯的未決傳輸的WTRU可以使用資源協調資訊(RCI)來確定為群組保留的資源集合內與其自己的傳輸相關聯的子資源。
在與執行資源選擇及/或資源保留信號傳輸的WTRU使用的感測結果相關聯的某些條件下,WTRU可以基於RCI來確定其傳輸子資源。更具體地,當且僅當其自己的感測結果表明其傳輸子資源的可用性,WTRU可以使用在RCI中表明的其傳輸子資源。
當且僅當所接收的保留信號的品質高於臨界值,WTRU可以使用其傳輸子資源。
如果與傳輸資源保留信號的WTRU的距離沒有超出臨界值,那麼WTRU可以使用其傳輸子資源。在這種情況下,RCI或資源保留信號可以包含傳輸資源保留信號的WTRU的地理位置。
如果WTRU不能使用保留信號及/或RCI中表明的資源中的WTRU的子資源,那麼WTRU可以發起其自己的資源保留程序(感測以及資源選擇)、及/或可以重傳資源保留信號(可以使用其自己的子資源或是使用出於該目的而被預先定義的子資源)。
WTRU可以基於來自應用層的排序配置來確定群組資源的協調(也就是何時在為群組保留的資源內進行傳輸)。更具體地,WTRU可以接收成員ID、成員索引或是表明其在群組內的順序的相似索引。該順序可以規定WTRU可以何時以及在哪一個子資源中執行其自己的傳輸。
WTRU可以接收群組成員索引N、並且可以確定其應該在與群組保留相關聯的第N個子資源中進行傳輸。該N個子資源可以同時在時間以及頻率空間中被確定。例如,SCI可以在y個連續時槽上指定x個子通道、並且進一步表明與單一子通道對應的子資源。然後,WTRU可以藉由編索引(首先是藉由指定時槽中的子通道)、並且可以繼續執行下一個時槽中的子通道的編索引,直至到達第N個子資源,因此確定該第N個子資源。
WTRU可以基於其成員索引以及相同群組中的其他WTRU在保留信號中傳輸的成員索引來確定其自己的傳輸的時序。舉例來說,具有成員索引N的WTRU在其偵測到用於群組且在所傳輸的SCI或RCI中包含了群組成員索引N-1的傳輸之後,其可以在出現一個資源保留週期的相同資源中進行傳輸。
如果被配置了特定的成員ID值,那麼WTRU可以進一步確定其是指定的WTRU(也就是說,其應該為其他WTRU執行資源保留)。例如,成員ID為0的WTRU可以確定其需要為該WTRU群組執行資源保留。被配置了不為0的成員ID的WTRU不會執行群組保留、並且僅僅在其自己的子資源中或者根據其成員ID表明的順序來進行傳輸。
WTRU可以進一步基於其成員ID來確定其需要執行保留信號的回送。例如,某些成員ID可以與回送保留信號的任務相關聯(例如,所有偶數編號的成員ID都應該執行保留信號的回送)。執行回送的必要性地確定可以基於成員ID以及子資源配置。舉例來說,如果子資源配置包括處於指定時間視窗中的x個子資源,並且(成員ID)(mod x)=0,那麼WTRU可以確定其需要執行回送。換句話說,每一個子資源配置視窗都需要傳輸一個回送保留信號。
對於被配置為針對資源保留信號而監視側鏈路傳輸的WTRU,一旦接收到與該WTRU所屬群組相關聯的資源保留信號,則該WTRU會將保留信號保留的整個資源視為基於爭用的資源。更具體地,如果WTRU具有可用於傳輸的資料,那麼WTRU可以在整個資源上執行傳輸。然後,該WTRU可以在傳 輸之後發起爭用偵測及/或爭用解決程序,以確定其自己的傳輸是否與另一個WTRU的傳輸衝突。該程序可以包括確定在共用資源上的傳輸期間在共用資源中測得的RSCP。例如,WTRU可以在保留資源開端執行LBT程序,並且如果通道被認為是暢通的,則可以在保留資源中進行傳輸。
參考第4圖,其顯示的是示出了用於保留基於爭用的資源的方法的圖式。對於被配置為針對資源保留信號而監視側鏈路傳輸的WTRU,一旦接收到與該WTRU所屬群組相關聯的保留信號,那麼該WTRU可以取決於其是否偵測到群組中的另一WTRU已經在該資源上進行傳輸而在該資源的一部分上進行傳輸。例如,WTRU可被指配用於資源內的起始子資源的序號。與特定WTRU相關聯的起始子資源可以由WTRU成員ID以及RCI中的一者或多者而被確定。例如,成員ID的範圍可以是1-N,並且用於該WTRU的起始子資源會由WTRU成員ID給出。該RCI可以在SCI中或是在用於RCI的傳輸的PSSCH的一個子資源中被週期性地傳輸。
WTRU可以藉由感測在時間上在其自己的起始子資源位置之前出現的子資源來確定其是否可以在基於爭用的資源上進行傳輸。如果WTRU確定資源未被佔用(例如每一個子資源的RSRP都低於臨界值),那麼WTRU可以決定在從WTRU自己的子資源開始的剩餘資源中進行傳輸。子資源可以包括以下任何一者:OFDM符號、時槽、子訊框或多個子訊框、並且可被限制為是頻率中的多個資源塊(連續或非連續的)。子資源在時間上可以是連續或不連續的。子資源自己在時間上可以是連續或不連續的、並且可以關聯或者不關聯於相同的資源塊。子資源的格式、子資源的數量可以在以下的一項或多項中被提供:SCI、RRC配置或預配置、以及在確定性的子資源(例如在MAC CE)中傳輸的資料。
如第4圖所示,SCI 402可以排程子資源集合404。基於如上所述的一種或多種方法,可以為具有第一序號的第一WIRU指配第一起始子資源406。 該第一WTRU不會在第一起始子資源406上進行傳輸。被指配了第二序號的第二WTRU可以偵測到第一WTRU沒有在第一起始子資源406中進行傳輸、並且可以確定其可以在第二起始子資源408中進行傳輸。然而,第二WTRU不會在第二起始子資源408中進行傳輸。被指配了第三序號的第三WTRU可以偵測到第二WTRU沒有在第二起始子資源408中進行傳輸、並且可以確定其可以在第三起始子資源410中進行傳輸。該第三WTRU可以在第三起始子資源410中開始進行傳輸。該第三WTRU可以經由子資源集合404的剩餘部分來進行傳輸。
如上所述的將保留資源用於WTRU群組的程序可以被應用,以與網路排程的資源一起使用。更具體地,WTRU群組可以使用網路指配的資源。如這裡所述,多個程序可以被添加,以使WTRU群組能夠使用網路排程的資源。
群組內的WTRU可以接收可以被群組中的所有WTRU使用的用於資源指配的群組RNTI(“Gr-V-RNTI”)。該RNTI可以在專用RRC傳訊中被指配給WTRU。一旦加入V2X群組,則WTRU可以從gNB接收RNTI。替代地,一旦加入WTRU群組,則WTRU可以請求群組RNTI。舉例來說,一旦來自較高層的指示表明WTRU已經加入群組、應該加入群組或者應該形成群組,那麼WTRU可以使用側鏈路WTRU資訊或類似的RRC訊息以從gNB請求群組RNTI。WTRU可以接收作為用於建立單播/多播鏈路(例如針對網路的單播鏈路建立請求、或是在網路發起的側鏈路單播鏈路建立訊息中)的傳訊的一部分的群組RNTI。WTRU可以在專用配置中接收群組RNTI。關於群組RNTI的請求可以進一步包含WTRU的群組識別(由應用層配置),以便gNB識別WTRU群組。WTRU可以進一步從目的地ID(例如識別了單播/多播群組的L2 ID)中導出群組RNTI。舉例來說,WTRU可以使用與單播/多播鏈路相關聯的整個目的地ID或是其最低/最高有效位元作為群組RNTI。替代地,WTRU可以從單播/多播鏈路中關聯的一個或任一WTRU的源L2 ID中導出群組RNTI。
在被應用層配置為群組的一部分以及在被網路配置為執行網路排程的V2X通信時,WTRU可以針對Gr-V-RNTI而監視PDCCH。否則,WTRU可能不需要監視Gr-V-RNTI。加入多個群組的WTRU可被進一步指配與其已加入的群組相關聯的不同Gr-V-RNTI值。
指定WTRU的V-RNTI可被用於由網路指配且供WTRU群組中的通信使用的所有資源。WTRU可以從指定WTRU發送的協調資訊(例如RCI)中獲知指定WTRU的V-RNTI。特別地,在成為群組的指定WTRU時(例如在從應用層接收到指示時),WTRU可以在側鏈路上將包括了其網路指配的V-RNTI的RCI或類似協調資訊傳輸到群組中的其他WTRU。
在被應用層配置為群組的一部分以及在被網路配置為執行網路排程的V2X通信時,WTRU可以使用指定WTRU的V-RNTI來監視PDCCH。否則,WTRU不需要監視指定WTRU的V-RNTI。
WTRU可以進一步從網路請求使用指定WTRU的V-RNTI的許可。舉例來說,一旦接收到指定WTRU的V-RNTI,則WTRU可以在使用該WTRU的V-RNTI以及被允許在網路指配的資源內的子資源中進行傳輸之前向網路發送請求/指示。WTRU可以進一步從網路接收表明該WTRU是否可以在被指配給指定WTRU的V-RNTI的資源內進行傳輸。
WTRU可以定期(例如基於某個計時器)向NW傳輸此類請求/指示、或者可以在與指定WTRU的V-RNTI的距離變化(基於地理定位)、在用於群組的指定WTRU中變化或是在加入另一個群組的時候向NW傳輸此類請求/指示。
監視與另一個WTRU相關聯的V-RNTI的WTRU可以進一步從網路接收資源許可中的附加指示(例如DCI)。該WTRU可以使用該指示來區分可被群組使用的資源許可以及只被分配給與V-RNTI相關聯的單獨的WTRU使用的資源許可。該指示可以採用兩個值,即群組與個體。群組值表明WTRU可 以利用使用了V-RNTI所分配的資源中的子資源。個體值則表示不允許執行該處理。
WTRU可以使用如上所述的用於WTRU自主傳輸的機制而在網路分配的資源的子資源內進行傳輸,其中該機制可以基於一個或多個WTRU進行的RCI傳輸。此外,WTRU可以從網路接收作為由gNB傳輸的RRC訊息、MAC CE、DCI或類似訊息的一部分的RCI。
WTRU可以請求可用於WTRU群組的半持續性側鏈路資源。WTRU可以從應用層接收向網路發起此類請求的指示。更具體地,WTRU可以提供用於請求側鏈路SPS資源的輔助資訊,該輔助資訊反映了WTRU群組的資源需求。在從網路請求SPS資源時,及/或在發送關於來自網路的SPS資源的WTRU輔助資訊,WTRU可以考慮到群組中的其他WTRU的資源需求。更具體地,相較於其自己的資源需求,請求SPS資源的WTRU可以基於附加資訊來增加或縮放所需要的SPS資源的數量。該附加資訊可以包括以下的一項或多項。該附加資訊可以是群組中的WTRU的數量(可以由應用層提供)。該附加資訊可以是與WTRU自己的資源週期相對比的因數(例如乘數)(可以由應用層提供)。該因數可以代表群組中的WTRU的數量、群組中具有阻塞關係的WTRU的數量、需要處理以及中繼訊息的WTRU的數量、或是將訊息廣播到整個群組所需要的重複次數。舉例來說,如果WTRU確定其用於特定服務的通信週期是300毫秒,並且應用層表明了因數10,那麼WTRU可以請求週期為30毫秒的SPS資源。
該附加資訊可以是SPS資源的時序偏移變化。該附加資訊可以是在WTRU上未決且針對該群組的傳輸的QoS相關資訊(例如優先序)。該附加資訊可以是範圍相關資訊,例如是否需要在長範圍或短範圍上發送具有發起SPS請求的未決傳輸的資料。該附加資訊可以是操作頻帶,例如群組成員之間的傳輸是否經由高頻(例如毫米波)來進行。
WTRU可以藉由發送WTRU輔助資訊來發起關於SPS側鏈路資源的請求。如果WTRU是群組的指定WTRU(例如由應用層確定),那麼該輔助資訊可以基於WTRU自己的資源需求以及其他WTRU的潛在資源需求。與WTRU自己的SPS週期相較,WTRU可以請求更短週期的SPS(例如藉由因數x)。該因數x可以是從應用層接收的,或者其可以是從應用層提供的資訊推斷/導出。
WTRU可以在其關於SPS資源的請求中確定是否需要縮放其自己的封包到達週期、以及應該對其縮放的量。這可以基於拓撲(例如由較高層表明的可能在阻塞位置的車輛的數量)、頻帶(舉例來說,當傳輸在毫米波上執行時有能需要進行縮放)以及QoS(例如,取決於從較高層接收的封包的優先序或可靠性,可能需要進行縮放)。
在請求具有特定週期的SPS資源之前,WTRU可以使用以下的一個或多個規則來確定是否需縮放其自己的封包週期。如果在毫米波上進行傳輸並且使用了小於x的波束角,那麼可以執行縮放。如果與週期性傳輸相關聯的封包的優先序高於某個值,那麼可以執行縮放。如果縮放是基於以上的一個或多個確定執行的,那麼縮放可以依據應用層提供的因數。
WTRU可以基於以下的一個或多個標準來確定其使用以傳輸針對特定群組的資料的特定時間/頻率資源。WTRU可以使用由另一個WTRU經由側鏈路傳輸的或是由網路傳輸的RCI或類似資訊來確定時間/頻率資源。舉例來說,在RCI中可以包含WTRU之間的資源使用的定序資訊。WTRU可以使用與特定資源相關的資料到達時序來確定時間/頻率資源。例如,WTRU可以假設可使用與封包到達相較下具有最小潛時的資源來傳輸封包。例如,WTRU可以使用在封包到達AS層之後的SPS許可中的下一個單一時間資源。
WTRU可以使用由應用層或網路指配的群組內的WTRU ID來確定時間/頻率資源。具有群組WTRU ID M的WTRU可以在接收到許可之後在SPS許可的第M(mod n)個時間資源中進行傳輸。M以及n的值可以由較高層提供。
此外,WTRU可以使用下列來確定時間/頻率資源:要傳輸的資料的優先序(包括資料的延遲需求)、要傳輸的資料的到達時間、要傳輸的資料的傳輸範圍、其他WTRU在相同子資源中的在先傳輸、以及與子資源或其他子資源相關聯的測得(有可能是在在先的保留週期期間)的RSRP、RSSI或CBR。
基於SAI需求,AS能夠基於WTRU傳輸的訊息的特性來控制訊息的通信範圍。這些特性可以由應用層確定、並且可以與應用層訊息的類型相關(例如針對整個WTRU群組、或者針對群組中的單一WTRU)。為了確保資源效率,WTRU可以設定其傳輸參數以假設最壞情況下的傳輸範圍(例如從群組頭端到群組尾端的傳輸)、或是考慮最差情況下的群組長度,因此假設群組中的WTRU在道路上以縱向方式相互跟隨。
WTRU可以從應用層接收與要傳輸的訊息的範圍相關聯的一個或多個參數。在此上下文中,術語“範圍”可以指WTRU的傳輸要達到的距離、或是可以確保可靠傳輸的距離。一個或多個參數可以與要傳輸的封包的QoS相關聯。該一個或多個參數可以是用從較高層接收的每一個封包(例如“逐個封包”範圍)提供的。替代地,WTRU可以接收與特定目的地位址及/或較高層流及/或承載相關聯的範圍需求QoS參數、並且可以假設適用於所接收的具有相同目的地位址/流/承載的所有封包的相同範圍。替代地,從較高層提供的其他參數(例如特定的QoS參數或目的地位址(例如多播與組播))中可以隱性地導出範圍需求。
與範圍相關聯的一個或多個參數可以採用有限數量的值。每一個值都可以進一步與以下的任何參數相關聯。該值可以與使用了單一側鏈路傳輸的特定實體傳輸距離相關聯。該值可以與假設了中繼側鏈路傳輸的特定實體傳 輸距離相關聯。該值可以與實體傳輸方向及/或覆蓋範圍相關聯,其中該實體傳輸方向及/或覆蓋範圍對應於是否需要將封包傳輸到位於該WTRU後方、位於該WTRU後方以及前方、位於該WTRU周圍的所有方向上的車輛。
替代地,與範圍相關聯的一個或多個參數可以採用具有定性關聯的有限數量的值,例如短範圍、中範圍以及長範圍。
WTRU可以基於與封包相關聯的接收範圍值來改變或適配該封包的一個或多個傳輸參數。該範圍值可以進一步是從與封包相關聯的QoS特性(例如經由所配置的表)中導出。舉例來說,QoS值x可以表明表中的特定條目,並且表中的條目可以進一步與特定的範圍需求值相關聯。範圍需求可以採用任何數量的不同的可能值(例如1-x或是低/中/大等等)。這種適配可以允許WTRU實現V2X傳輸的所需要的範圍,而不用假設所有V2X傳輸所需要的最差情況下的傳輸參數。
WTRU可以將一個或多個範圍值與特定的單播或多播鏈路相關聯。更具體地,WTRU可以將一個或多個範圍值與以下的一項或多項相關聯:目的地ID、單播/多播鏈路ID(由WTRU確定、來自較高層、或是由網路提供)、邏輯通道、無線電承載或是其群組、QoS流或QoS流群組。WTRU可以在以下的一個或多個時間執行關聯:在創建邏輯通道或無線電承載時、在較高層發起與一個或多個WTRU的單播/多播鏈路時、以及在與網路進行用於與一個或多個WTRU建立單播/多播鏈路的傳訊期間。
WTRU可以從較高層或者從網路接收關聯。更具體地,WTRU可以從較高層接收發起具有指定目的地ID及/或單播/多播鏈路ID的單播/多播鏈路的指示。該WTRU可以被提供相關聯的QoS值(例如VQI),並且該WTRU可以從中導出範圍。然後,WTRU可以為其從較高層接收且具有特定目的地ID或單播/多播鏈路ID的每一個封包應用與範圍值相適用的傳輸參數。
WTRU可以從網路接收範圍值與TX參數的關聯。更具體地,WTRU可以發起與網路的傳訊以建立單播/多播鏈路、並且可以進一步提供適用於此單播/多播鏈路的相關聯範圍值。網路可以用將被應用於傳輸與此鏈路相關聯的參數的適用TX參數來進行回應。如上所述,封包可以與目的地ID、邏輯通道等等相關聯。
WTRU可以基於預配置以及網路配置中的一項或多項來確定要修改的適用傳輸參數以及指配此類參數的特定值。
WTRU可以基於從應用層接收的範圍值或範圍參數來修改以下的一個或多個傳輸參數:PSCCH及/或PSSCH上的重傳次數、所選擇的資源池、WTRU選擇的資源的最小/最大/平均數量、TX分集的用途、PSCCH及/或PSSCH上的TX功率、用於傳輸的MCS的選擇、波束成形特性(例如是否開啟/關閉波束成形、所使用的波束角度、是否在一個或多個波束上進行傳輸、以及相對於另一WTRU的傳輸要在哪一個波束方向上進行傳輸)、以及是否賦能/禁用中繼。
WTRU可以基於與該傳輸相關聯的範圍值來選擇上述任何傳輸參數的一個或一組值。
WTRU還可以基於通道的其他測得的方面(例如以下的一項或多項)來確定指定傳輸參數的一個或多個適用值:在資源集合上測得的CBR、在WTRU上測得的CR、由網路或另一個WTRU傳輸的參考信號的品質、來自另一個WTRU的HARQ回饋、來自另一個WTRU的CQI量度、以及在WTRU與一個或多個其他WTRU(例如包含在單播/多播鏈路的WTRU)之間測得的路徑損耗。
WTRU可以被配置為維持其與配對的WTRU的單播鏈路上的路徑損耗估計及/或通道品質估計(例如藉由測量由配對的WTRU傳輸的參考信號)。針對測得的路徑損耗及/或通道品質以及範圍,WTRU可被配置有用於PSCCH 及/或PSSCH上的TX功率的一組適用值。WTRU可以接收與目的地位址相關聯的封包,其中該目的地位址具有與其關聯的範圍值。然後,WTRU可以基於範圍參數及其與配對的WTRU的鏈路上(在單播鏈路上)的路徑損耗及/或通道品質來選擇用於傳輸該封包的可允許TX功率值。WTRU可以進一步基於測得的通道CBR而在可允許的範圍內適配TX功率。
WTRU可以從應用層接收被標記為短範圍、中範圍或長範圍的封包。對於短範圍封包,WTRU可以選擇特定的MCS值、或者可以從可允許的MCS值的子集中選擇,對於中範圍封包,WTRU可以選擇不同的MCS,或者可以從不同的可允許MCS值的子集中選擇,並且對於長範圍封包,WTRU可以執行相同的處理。
WTRU可以從應用層接收被標記為短範圍、中範圍或長範圍的封包。在經由無線電傳輸封包時,WTRU可以為短範圍封包使用波束角x1、為中範圍封包使用波束角x2、以及為長範圍封包使用波束角x3。
WTRU可以從應用層接收具有範圍參數值的封包,其中該範圍參數值表明該封包只需要針對單一方向傳輸。該方向可以被進一步規定(例如使用基本方向或是相對於車輛前進方向的方向)。WTRU可以決定只在與指示方向相關聯的單一波束或波束子集上傳輸封包。替代地,不同的封包可以表明所有方向上的傳輸。在這種情況下,WTRU可以決定在所有波束中傳輸封包。
針對可以由應用層配置的每一個範圍參數值,WTRU可被配置有TX功率偏移值、最大TX功率或TX功率計算公式。在將MAC PDU發送到PHY層以用於傳輸時,WTRU MAC可以向PHY層表明適當的TX功率偏移值、最大TX功率或計算公式。然後,在傳輸MAC PDU時,PHY層可以將相關聯的偏移/最大值/公式應用於TX功率計算。
與提供給PHY層的傳輸塊相關聯的範圍參數可以包括與可以被多工在傳輸塊上的最壞情況下的(即最大範圍的)封包相關聯的範圍。
WTRU可以基於感測結果來估計側鏈路路徑損耗值。該WTRU可以處理此類側鏈路路徑損耗估計集合、並且可以藉由將所配置的短範圍、中範圍以及長範圍與所估計的路徑損耗相關聯來確定與所配置的範圍集合相對應的側鏈路路徑損耗範圍。舉例來說,WTRU可以將33%的路徑損耗估計與短範圍相關聯、將67%的路徑損耗與中範圍相關聯、以及將100%的路徑損耗與長範圍相關聯。WTRU可以基於與所配置的範圍相關聯的側鏈路路徑損耗估計來確定側鏈路功率。為了賦能路徑損耗估計,WTRU可以在SCI資訊中表明傳輸功率。
WTRU可被配置有與從較高層接收的每一個範圍參數值相關聯的傳輸參數集合。舉例來說,來自較高層的範圍參數值可以採用一組預先定義的值(1,2,...N)。針對該參數的每一個值,WTRU可被配置用於指配期望的N元組的傳輸參數,其中N元組中的每一個元素由上述傳輸參數其中之一組成,例如N元組、重傳次數、TX功率、所選擇的MCS以及波束成形角。WTRU可被配置有將範圍參數映射不同N元組的表映射。WTRU可被進一步允許為其中一個N元組選擇任何可能的值或該可能的值的子集。例如,WTRU可以不具有關於Tx功率的偏好,或者其可以是由WTRU選擇或者可以被WTRU選擇的。波束角可以是從某個範圍的參數值的可允許/被支援的波束角的子集中選擇的。
經由傳輸設定檔,可以為WTRU配置適用的傳輸參數集合。該傳輸設定檔可以由將被應用於側鏈路上的傳輸的傳輸參數集合組成。例如,WTRU可以基於要傳輸的資料的特性來選擇例如與資料相關聯的傳輸範圍及/或QoS特性(例如優先序或可靠性),以使用為該傳輸範圍及/或QoS特性配置的相關聯的傳輸設定檔來執行傳輸。WTRU可以使用第一傳輸設定檔來傳輸具有第一範圍特性的封包、並且可以選擇第二傳輸設定檔來傳輸具有第二範圍特性的封包。
傳輸設定檔可以由gNB配置(例如經由RRC傳訊),其可以是預先配置的、或者可以藉由規範而被硬編碼在WTRU中。WTRU可以進一步支援 硬編碼以及限定的傳輸設定檔的子集、並且可以向gNB及/或較高層表明所支援的傳輸設定檔。
傳輸設定檔可以影響以下的一個或多個WTRU傳輸參數。傳輸設定檔可以規定PSCCH及/或PSSCH上的重傳。舉例來說,傳輸設定檔可以與在PSCCH及/或PSSCH上應用的重傳(例如SCI的重傳)的次數相關聯。傳輸設定檔可以進一步規定傳輸與重傳之間的時間/頻率關係。例如,傳輸與重傳之間的時間可以是固定的、並且可以由傳輸設定檔來確定。重傳的通道(或頻率位置)可以與初始傳輸使用的頻率資源相關聯,其中該關聯可以從傳輸設定檔中確定。
傳輸設定檔可以影響所選擇的資源池。例如,傳輸設定檔可以限制或指示可以用於經由側鏈路的資料傳輸使用的資源池。
傳輸設定檔可以影響TX分集的用途。例如,傳輸設定檔可以表明是否應該應用TX分集(例如空間分集)來傳輸資料。傳輸設定檔可以藉由配置跨越時槽、波束、資源、BWP以及TX池的跳躍圖案來配置分級傳輸的設定(例如藉由資源跳躍)。
傳輸設定檔可以影響PSCCH及/或PSSCH上的TX功率。傳輸設定檔可以確定要使用的標稱或最大傳輸功率。其還可以表明會隨著每一次的初始傳輸/重傳及/或成功的傳輸/重傳而被增加/減少的傳輸功率的量。
傳輸設定檔可以影響為傳輸選擇的MCS。
傳輸設定檔可以影響波束成形特性。該傳輸設定檔可以確定或影響用於傳輸的波束成形特性。該特性可以包括是執行全向傳輸還是僅僅在波束子集上執行傳輸、是否開啟/關閉波束掃描、以及要使用的波束角或光束集合。該波束集合可以參照特定的參考方向,例如車輛行進方向或是某個固定方向(例如北方)。
傳輸設定檔會影響中繼的賦能/禁用。傳輸設定檔可以表明是否應該將傳輸傳輸到中繼器。基於傳輸設定檔,WTRU可以進一步在傳輸內表明(例如作為AS層中的一個AS層(例如MAC、RLC、PDCP)的PDU中的控制元素)是否應該中繼特定訊息、以及中繼該特定訊息的跳數。
傳輸設定檔會影響側鏈路傳輸模式。側鏈路傳輸模式可以確定WTRU使用PC5傳輸還是Uu傳輸、WTRU將模式3還是模式4用於傳輸、及/或WTRU選擇的是允許在被gNB排程與WTRU自主選擇之間共用的資源還是不被共用的資源。
傳輸設定檔會影響要使用的頻寬以及載波頻率(例如頻寬部分或載波的指示)。例如,傳輸設定檔可以表明將被用於傳輸的BWP。
傳輸設定檔可以影響控制通道及/或資料通道格式(也就是時槽/微時槽格式)以及在時間/頻率中使用的OFDM符號集合。舉例來說,WTRU可以被配置為使用不同的PSCCH或PSSCH格式來傳輸SCI或資料。該設定檔可以進一步確定用於PSCCH及/或PSSCH的可允許的控制通道格式。
傳輸設定檔會影響關於一次性或週期性資源的資源選擇標準。傳輸設定檔會影響模式4(WTRU自主)資源選擇標準的一個或多個標準。例如,每一個傳輸設定檔都可以與不同的RSRP/RSSI/CBR或類似臨界值相關聯,以確定資源是否被另一WTRU傳輸佔用或者可用於選擇。每一個傳輸設定檔都可以與用於保留或維持所選擇的資源的不同標準(例如要保留的連續資源的最大數量或是資源重選標準)相關聯。
WTRU可被配置有多個傳輸設定檔、並且可以被配置為取決於區域而使用不同的傳輸設定檔。更具體地,WTRU可以確定其目前地理位置、並且可以為該地理位置應用所配置的傳輸設定檔。
WTRU上的V2X應用層或是這裡描述的任何較高層可以獲知在指定時間支援或配置的傳輸設定檔、並且可以在其發送藉由AS層傳輸的V2X訊 息的時候選擇用於傳輸該訊息的傳輸設定檔。應用層可以提供所選擇的傳輸設定檔的索引。例如,每一個傳輸設定檔都可以與不同範圍索引相關聯,並且應用層可以將範圍索引連同要傳輸的封包一起傳遞到較低層。
WTRU AS可以被配置有一組傳輸設定檔(例如PF1、PF2、……PFN)。WTRU可以進一步被gNB配置為具有範圍參數(例如短範圍、中範圍、長範圍、或範圍1、範圍2、…範圍n)到設定檔的映射。該配置可以藉由RRC傳訊、藉由MAC CE、經由SI或者藉由預配置而被提供給WTRU。然後,當應用層選擇與封包一起使用的特定範圍值時,WTRU AS可以選擇與該範圍值相關聯的所配置的一個傳輸設定檔。
WTRU可以接收目的地位址、載波頻率或是識別V2X訊息的目的地的類似參數與傳輸該訊息的範圍之間的關聯。該關聯可以採用一個或多個目的地位址及/或載波頻率及/或頻寬部分與範圍值之間的映射的形式。該範圍值可以採用這裡描述的任何形式(例如短範圍、中範圍、長範圍、方向資訊等)。該映射可以經由配置(例如預配置或gNB/eNB配置)而被提供、或者也可以藉由較高層配置而被提供。該映射還可以藉由更新的配置而被改變。在傳輸具有特定目的地位址的V2X封包期間,WTRU可以在任何時間基於目的地位址到範圍映射的映射來應用某個傳輸參數或傳輸參數集合。
WTRU可以維持經由RRC傳訊由gNB接收的目的地位址到範圍(例如短範圍、中範圍、長範圍)的映射。WTRU可以維持這種映射,直至其在接收到新的RRC配置時接收到新的映射。WTRU還可以為從較高層接收尚未被配置相應範圍值的任何目的地位址應用或假設預設範圍(例如長範圍)。一旦接收到具有指定目的地位址的封包,則WTRU可以應用滿足相關聯的範圍特性的傳輸參數。如這裡所述,該確定可以進一步基於傳輸設定檔。
WTRU可被配置有並維持目的地位址、載波頻率或是識別V2X訊息的目的地的類似參數與傳輸設定檔之間的關聯。WTRU可以從gNB/eNB、從 較高層及/或在預配置中接收這種配置。一旦接收到具有指定目的地位址的封包,則WTRU可以應用所配置的相關聯的傳輸設定檔來傳輸封包。
WTRU可以具有從目的地位址到傳輸設定檔再到傳輸參數集合的兩級映射。每一級映射都可以由不同的實體/機制或者在不同的時間被配置/再配置。WTRU可以由gNB/eNB及/或藉由預配置而被配置有設定檔編號/索引到傳輸參數集合的映射。該傳輸參數集合可以包括與傳輸設定檔相關聯的任何參數的設定。然後,WTRU可以接收從目的地位址的應用層到傳輸設定檔的映射(例如採用一組已知傳輸設定檔(例如PF1、PF2、PF3等等)中的索引的形式。例如,目的地位址x可以使用傳輸設定檔PF1。
WTRU可以向gNB提供目的地位址到範圍索引及/或傳輸設定檔的映射。該映射可以允許gNB為模式3類型操作執行適當的排程決定(即經gNB排程的)。例如,WTRU可以在與UE側鏈路資訊(UESidelinkInformation)訊息類似的RRC訊息中向gNB提供目的地位址列表。該訊息可以包含與每一個目的地位址相關聯的範圍資訊。WTRU可以提供該WTRU中的應用層提供的與每一個目的地位址相關聯的範圍索引。WTRU可以在出現以下的一個或多個事件時向gNB提供目的地位址到範圍索引的映射。
WTRU可能會在WTRU應用層發起映射改變時(可能因為接收到來自V2X控制功能或核心網路中的其他任何網路功能的新映射資訊)提供目的地到範圍索引的映射。
WTRU可以在其轉換到RRC_連接(RRC_CONNECTED)時(有可能是該映射在WTRU以RRC_空閒(RRC_IDLE)/RRC_不活動(RRC_INACTIVE)操作時發生變化的情況下)提供目的地到範圍索引的映射。
如果WTRU在處於RRC_連接的同時執行側鏈路傳輸,那麼WTRU可以在切換時提供目的地到範圍索引的映射。
更進一步,在WTRU選擇新PLMN(即PLMN變化)期間、以及在WTRU改變WTRU中預先配置的地理區域時,WTRU可以在RAN區域更新或追蹤區域更新時提供目的地到範圍索引的映射。
WTRU可以將不同的邏輯通道集合指配給具有特定範圍參數值的封包。例如,邏輯通道ID L1-L2可用於被標記為“短範圍”的封包,邏輯通道ID L3-L4可用於被標記為“中範圍”的封包,邏輯通道ID L5-L6可用於被標記為“長範圍”的封包。WTRU可以基於其他QoS相關因素(例如優先序)而在用於特定範圍值的可允許集合內選擇特定的邏輯通道ID。也就是說,WTRU可以在用於“中範圍”的集合中為高優先序封包選擇具有最小值的邏輯通道ID,以將其設定為覆蓋中範圍。該可允許集合還可以由網路配置或者在WTRU中預先配置。
WTRU可以基於範圍參數值而在AS上標記具有特定範圍識別符值的SDU。範圍識別符值到範圍參數值映射也可以是可配置的。WTRU不會將具有特定範圍識別符值的封包限制為使用特定邏輯通道。相反,在PDCP、RLC以及MAC層的L2處理中,WTRU可以考慮範圍參數值/識別符。舉例來說,在SDU的分段期間,WTRU可以將特定範圍識別符值或範圍參數值與SDU的每一個分段相關聯。
WTRU可以在任何層(例如RLC及/或MAC)執行SDU的序連/多工,使得具有不同範圍參數值的兩個封包不會被連接/多工。替代地,WTRU可以在不同的邏輯通道之間執行多工,以使與不同範圍參數相關聯的邏輯通道集合不會一起被多工。
WTRU可以取決於範圍參數本身來執行封包及/或邏輯通道的選擇性序連/多工。對於範圍參數x,多工是可以被允許的,而對範圍參數y而言則不允許多工。針對與傳輸方向相關聯的範圍參數值,WTRU可以執行序連/多工。針對與TX功率相關聯的範圍參數,WTRU不會執行序連/多工。藉由RRC或預 配置,可以向WTRU指定或配置這些規則。WTRU可以進一步基於與該PDU相關聯的範圍來為被識別為受特定範圍限制的PDU選擇資源/許可。該範圍可能是最壞情況下的範圍。
WTRU可以確定供包含具有不同範圍參數值的邏輯通道或封包的MAC PDU使用的傳輸參數。該確定可以基於取決於範圍參數值的特定規則。更具體地,當WTRU接收到關於指定封包的多個範圍參數時,WTRU可被配置為具有用於每一個範圍參數的特定行為。WTRU可以被配置為使用組合/總和。舉例來說,如果與不同傳輸方向相關聯的封包被多工,那麼可以在與該封包中的不同範圍參數值相關聯的每一個方向上傳輸MAC PDU。WTRU可以被配置為使用最大傳輸功率。舉例來說,如果在MAC PDU中多工了與不同TX功率相關聯的封包,那麼可以使用與封包中提供的任何參數值相關聯的最大TX功率來傳輸MAC PDU。
WTRU可以被配置為使用最小波束角。舉例來說,如果與不同波束角相關聯的封包在MAC PDU中被多工,那麼可以用與封包中提供的任何參數值相關聯的最小波束角來傳輸MAC PDU。WTRU可以被配置為使用以上參數的平均值。
WTRU還可以取決於資源選擇標準來改變與參數選擇相關聯的規則(例如使用平均值而不是最大值)。該資源選擇標準可以包括但不限於目前測得的CBR、來自感測結果的資源目前可用性或中間資源可用性的百分比、以及可用資源的平均RSSI。
WTRU可以在給gNB的側鏈路緩衝器狀態報告中包括與範圍相關聯的資訊。該範圍資訊可以被顯性地提供。WTRU可以在WTRU緩衝器中提供與每一個範圍參數值相關聯的資料量。舉例來說,對於可以採用“短”、“中”、“長”的範圍參數,WTRU可以報告用於這三個值中的每一個值的緩衝器中的資料量。
WTRU可以使用與所報告的邏輯通道群組的映射(有可能是可配置的)來隱性地提供該資訊。例如,新的邏輯通道群組集合可以被報告。每一個邏輯通道群組都可以與一個或一組範圍參數值相關聯。範圍參數值與邏輯通道群組之間的映射也可以是可配置的。舉例來說,LCG可被映射到一個或多個PPPP以及一個或多個範圍參數值。WTRU可以藉由確定WTRU緩衝器中與所配置的PPPP值以及範圍參數值相關聯的封包的數量來報告與每一個LCG相關聯的緩衝器狀態。
WTRU可以向網路報告關於所報告的每一個LCG的單一範圍參數值。每一LCG的單一參數值可以類似於與如上所述的用於為被多工的MAC PDU的傳輸參數選擇而被導出。更具體地,單一參數值可以是組合、最大值、最小值或平均值。舉例來說,WTRU可以確定與LCG以及這些邏輯通道中的未決資料相關聯的每一個邏輯通道中的封包的所有不同波束方向。WTRU可以報告此波束方向集合以及該LCG的緩衝器狀態。波束方向集合可以藉由配置或標準化映射而被映射到特定的編號(識別符)。
取決於上述範圍參數識別符,可以用不同的資源特性來標記PHY層可用的資料。WTRU可以為以上提供的每一個獨立範圍參數識別符執行獨立的資源選擇程序。每一個資源選擇程序都可以具有取決於與其關聯的相關範圍參數識別符的特定規則。此外,WTRU可以先為第一範圍參數值執行資源選擇,然後為第二範圍參數值執行第二資源選擇。
WTRU可以為需要與另一傳輸方向不同的指定傳輸方向的資料執行資源選擇。特別地,WTRU可以只考慮用於感測/資源選擇的某些資源。
參考第5圖,該圖顯示的是用於示出使用了子資源協調的第一群組保留方法的流程圖。在步驟502,WTRU可以從群組內的第二WTRU接收第一SCI元素。在步驟504,WTRU可以在第一SCI所排程的第一資源集合內接收第一RCI元素。該第一RCI可以包括關於群組中的哪一個WTRU被排程為使用 第二資源集合的資訊。在步驟506,WTRU可以基於第一RCI以確定第二資源集合內的一個或多個子資源可用。在步驟508,WTRU可以在一個或多個子資源中傳輸資料。
雖然在上文中描述了採用特定組合或順序的特徵以及要素,但是本領域中具有通常知識者將會認識到,每一個特徵以及要素可以單獨使用、或可以用與其他特徵以及要素進行任何組合的方式使用。此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(經由有線以及無線連接被傳輸)。關於電腦可讀媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、磁性媒體(例如內部硬碟以及可移磁片)、磁光媒體以及光學媒體(例如CD-ROM碟片以及數位多功能光碟(DVD))。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
RCI:資源協調資訊
SCI:側鏈路控制資訊
WTRU:無線傳輸/接收單元

Claims (16)

  1. 一種被配置用於側鏈路通信的無線傳輸/接收單元(WTRU),該WTRU包括:一收發器;以及一處理器,其中:該收發器被配置以接收來自一網路的側鏈路無線電承載(SLRB)配置資訊,其中該SLRB配置資訊包含服務品質(QoS)流至一SLRB的一映射;該處理器被配置以接收用於傳輸的一資料封包,其中該資料封包具有一相關聯範圍參數值;該處理器被配置為依據QoS流至一SLRB的該映射,建立一SLRB以用於具有該相關聯範圍參數值的該資料封包;該處理器更被配置為基於至少該範圍參數值以選出至少一資料傳輸參數;以及該收發器被配置為基於所選出的至少一資料傳輸參數以傳送該資料封包。
  2. 如請求項1所述的WTRU,其中該資料封包被接收自一較高層。
  3. 如請求項1所述的WTRU,其中該範圍參數值對應於一物理距離。
  4. 如請求項1所述的WTRU,其中該範圍參數值表明一物理距離,該資料封包的一QoS在該物理距離上應該被滿足。
  5. 如請求項1所述的WTRU,其中該至少一資料傳輸參數包括下列中的至少一者:一調變及編碼方案(MCS)、一傳輸功率、或一最大重傳數量。
  6. 如請求項1所述的WTRU,其中該被選擇的至少一資料傳輸參數是基於一網路配置映射。
  7. 如請求項1所述的WTRU,其中該被選擇的至少一資料傳輸參數是基於一通道繁忙率(CBR)值。
  8. 如請求項1所述的WTRU,其中該被選擇的至少一資料傳輸參數是基於一邏輯通道優先序。
  9. 一種由一無線傳輸/接收單元(WTRU)實施的用於側鏈路通信的方法,該方法包括:接收來自一網路的側鏈路無線電承載(SLRB)配置資訊,其中該SLRB配置資訊包含服務品質(QoS)流至一SLRB的一映射;接收用於傳輸的一資料封包,其中該資料封包具有一相關聯範圍參數值;依據該所接收的QoS流至一SLRB的映射,建立一SLRB以用於具有該相關聯範圍參數值的該資料封包;基於至少該範圍參數值,選出至少一資料傳輸參數;以及基於所選出的至少一資料傳輸參數,傳送該資料封包。
  10. 如請求項9所述的方法,其中該資料封包被接收自一較高層。
  11. 如請求項9所述的方法,其中該範圍參數值對應於一物理距離。
  12. 如請求項9所述的方法,其中該範圍參數值表明一物理距離,該資料封包的一QoS在該物理距離上應該被滿足。
  13. 如請求項9所述的方法,其中該至少一資料傳輸參數包括下列中的至少一者:一調變及編碼方案(MCS)、一傳輸功率、或一最大重傳數量。
  14. 如請求項9所述的方法,其中該被選擇的至少一資料傳輸參數是基於一網路配置映射。
  15. 如請求項9所述的方法,其中該被選擇的至少一資料傳輸參數是基於一通道繁忙率(CBR)值。
  16. 如請求項9所述的方法,其中該被選擇的至少一資料傳輸參數是基於一邏輯通道優先序。
TW109136690A 2018-04-03 2019-03-29 合作車間有效資源使用方法 TWI821607B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862651974P 2018-04-03 2018-04-03
US62/651,974 2018-04-03
US201862668322P 2018-05-08 2018-05-08
US62/668,322 2018-05-08
US201862735982P 2018-09-25 2018-09-25
US62/735,982 2018-09-25

Publications (2)

Publication Number Publication Date
TW202126092A TW202126092A (zh) 2021-07-01
TWI821607B true TWI821607B (zh) 2023-11-11

Family

ID=66323901

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109136690A TWI821607B (zh) 2018-04-03 2019-03-29 合作車間有效資源使用方法
TW108111184A TWI711327B (zh) 2018-04-03 2019-03-29 合作車間有效資源使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108111184A TWI711327B (zh) 2018-04-03 2019-03-29 合作車間有效資源使用方法

Country Status (9)

Country Link
US (3) US11528716B2 (zh)
EP (2) EP3777397B1 (zh)
JP (3) JP7203117B2 (zh)
KR (1) KR20210005583A (zh)
CN (3) CN111937463B (zh)
BR (1) BR112020020138A2 (zh)
RU (1) RU2748541C1 (zh)
TW (2) TWI821607B (zh)
WO (1) WO2019195138A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127193A (ko) * 2018-05-03 2019-11-13 삼성전자주식회사 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치
CN110753300B (zh) * 2018-07-06 2021-10-15 华为技术有限公司 一种物联网编队通信方法
US11006269B2 (en) * 2018-07-20 2021-05-11 Qualcomm Incorporated Techniques for facilitating co-existence of radio access technologies in wireless communications
EP3609279A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America User equipment and base station involved in improved discontinued reception for unlicensed cells
EP3629662A1 (en) * 2018-09-27 2020-04-01 Panasonic Intellectual Property Corporation of America User equipment and base station involved in transmission of uplink control data
US11212806B2 (en) * 2018-12-14 2021-12-28 Apple Inc. NAN fine-grained availability schedule indications
WO2020167225A1 (en) * 2019-02-13 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) European telecommunications standards institute (etsi) cooperative intelligent transport system (c-its) communication compatibility
CN113574930B (zh) * 2019-03-20 2024-04-26 联想(新加坡)私人有限公司 用于移动性事件的v2x通信资源的装置、方法和系统
CN111867099B (zh) * 2019-04-30 2024-04-05 株式会社Kt 发射和接收侧链路harq反馈信息的方法和装置
KR20200127402A (ko) * 2019-05-02 2020-11-11 삼성전자주식회사 단말 직접 통신시스템에서 패킷 송수신 영역 결정 방법 및 장치
CN112152760B (zh) * 2019-06-27 2022-03-29 华为技术有限公司 一种psfch的发送方法及装置
US11456823B2 (en) * 2019-06-28 2022-09-27 Qualcomm Incorporated Distance and angle based sidelink HARQ
WO2021040383A1 (ko) * 2019-08-26 2021-03-04 엘지전자 주식회사 Nr v2x에서 사이드링크 전송 전력을 결정하는 방법 및 장치
SG10201909315QA (en) * 2019-10-04 2021-05-28 Panasonic Ip Corp America Communication apparatuses and communication methods for utilisation of sl-rsrp in v2x resource sensing and selection
EP4042733A1 (en) * 2019-10-07 2022-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Security for groupcast message in d2d communication
US11778642B2 (en) * 2019-12-20 2023-10-03 Qualcomm Incorporated Facilitating device-to-device communications
US11330414B2 (en) 2020-01-24 2022-05-10 Qualcomm Incorporated Proximity determination to a geo-fence
CN115136722A (zh) * 2020-01-29 2022-09-30 Idac控股公司 针对用于超出范围接近无线发射/接收设备的改进的服务连续性的方法、架构、装置和系统
US11553376B2 (en) * 2020-03-09 2023-01-10 Qualcomm Incorporated Communication link selection for non-RSRP based association in wireless industrial internet-of-things
EP3890416B1 (en) * 2020-03-17 2022-09-07 ASUSTek Computer Inc. Method and apparatus for device-to-device sidelink resource selection in a wireless communication system
US11601188B2 (en) * 2020-03-26 2023-03-07 Qualcomm Incorporated Repeater mechanical beam steering
US12256253B2 (en) 2020-04-30 2025-03-18 Qualcomm Incorporated Combining coordination information
CN114071733A (zh) * 2020-08-05 2022-02-18 北京三星通信技术研究有限公司 一种用户设备的协作方法
US11825450B2 (en) * 2020-09-04 2023-11-21 Qualcomm Incorporated Channel reservation for sidelink
US12028896B2 (en) * 2020-09-23 2024-07-02 Qualcomm Incorporated Methods and system for establishing multiple starting points for sidelink transmissions
US20240276521A1 (en) * 2020-09-25 2024-08-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource exclusion method, resource reselection method and apparatuses, terminal, and storage medium
CN115918203A (zh) 2020-09-25 2023-04-04 Oppo广东移动通信有限公司 传输资源集合的方法和终端设备
US20220322359A1 (en) * 2020-10-15 2022-10-06 Apple Inc. Triggering and Signaling of Inter-UE Coordination Message
EP4216631A4 (en) * 2020-10-16 2024-02-21 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION DEVICE
EP4241532A1 (en) * 2020-11-03 2023-09-13 InterDigital Patent Holdings, Inc. Methods, architectures, apparatuses and systems for service continuity for premises networks
CN113115450A (zh) * 2021-01-15 2021-07-13 中兴通讯股份有限公司 协作信息发送、资源确定方法、通信节点及存储介质
CN115002828A (zh) * 2021-03-02 2022-09-02 索尼公司 用户设备、电子设备、无线通信方法和存储介质
US20220303949A1 (en) * 2021-03-19 2022-09-22 Qualcomm Incorporated Slot and subslot-based sidelink communication
US11683727B2 (en) 2021-03-31 2023-06-20 Qualcomm Incorporated Coexistence of redcap and non-redcap UEs in SL
ES2999377T3 (en) * 2021-03-31 2025-02-25 Nokia Technologies Oy Efficient signaling of non-preferred transmission resources
CN115334473B (zh) * 2021-05-10 2024-11-08 中信科智联科技有限公司 一种车联网设备间资源协调方法、装置和用户设备
US20230114809A1 (en) * 2021-10-12 2023-04-13 Qualcomm Incorporated Selective resource collision indication according to full duplex communication capability
CN116033566A (zh) * 2021-10-21 2023-04-28 中兴通讯股份有限公司 资源指示方法、节点和存储介质
WO2023108534A1 (en) * 2021-12-16 2023-06-22 Mediatek Singapore Pte. Ltd. Methods and apparatus of sidelink relay based data transmission with multiple paths
US20230353992A1 (en) * 2022-04-27 2023-11-02 Qualcomm Incorporated Announcement of vehicle-to-everything capabilities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148285A1 (en) * 2015-09-25 2017-03-29 Panasonic Intellectual Property Corporation of America Improved radio bearer mapping for proximity services ue to network relay with associated priority signalling
WO2017051330A1 (en) * 2015-09-25 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Per-packet resource pool selection in lte v2x system
US20170181206A1 (en) * 2014-04-24 2017-06-22 Lg Electronics Inc. Method for establishing layer-2 entities for d2d communication system and device therefor
WO2017188547A1 (ko) * 2016-04-25 2017-11-02 엘지전자(주) 무선 통신 시스템에서 d2d 단말들 사이의 거리를 추정하기 위한 방법 및 이를 위한 장치
WO2018027528A1 (en) * 2016-08-09 2018-02-15 Panasonic Intellectual Property Corporation Of America Improved radio resource selection and sensing for v2x transmissions

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0211286D0 (en) * 2002-05-16 2002-06-26 Nokia Corp Routing data packets through a wireless network
DE102009021007A1 (de) * 2009-05-12 2010-11-25 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Plazieren von Einheiten zum Ausführen einer Anwendung in einem verteilten System
WO2013106536A2 (en) * 2012-01-11 2013-07-18 Interdigital Patent Holdings, Inc. Method and apparatus for accelerated link setup
KR102009745B1 (ko) 2013-04-05 2019-08-13 삼성전자주식회사 무선 네트워크에서의 디바이스간 직접 통신장치 및 방법
KR101506598B1 (ko) * 2013-11-29 2015-03-27 현대모비스 주식회사 차량간 통신을 위한 통신 장치
CN104754748B (zh) * 2013-12-27 2019-02-26 电信科学技术研究院 一种d2d资源分配方法、数据传输方法及装置
JP6156573B2 (ja) 2014-03-04 2017-07-05 日本電気株式会社 通信装置、輻輳制御方法および記録媒体
US9107026B1 (en) * 2014-07-18 2015-08-11 Google Inc. Range management with Bluetooth low energy
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
CN117222049A (zh) * 2015-04-08 2023-12-12 苹果公司 用于增强的设备到设备(d2d)的控制信令机制
EP3986072B1 (en) * 2015-04-17 2023-08-23 Panasonic Intellectual Property Corporation of America Multiple prose group communication during a sidelink control period
US20180132278A1 (en) 2015-04-28 2018-05-10 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for procedures for carrier sense multiple access and spatial reuse in sub-channelized wireless local area networks (wlans)
WO2016175638A1 (ko) * 2015-04-30 2016-11-03 엘지전자(주) 블루투스 메쉬 네트워크에서 디바이스의 주소를 할당하기 위한 방법 및 장치
US10506402B2 (en) * 2016-03-31 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for transmission of control and data in vehicle to vehicle communication
JP6586512B2 (ja) 2016-03-31 2019-10-02 京セラ株式会社 通信方法及び通信装置
EP3244677B1 (en) 2016-05-13 2020-04-29 Panasonic Intellectual Property Corporation of America Improved mechanism for qos implementation in vehicular communication
EP3273634A1 (en) * 2016-07-18 2018-01-24 Panasonic Intellectual Property Corporation of America Improved support of quality of service for v2x transmissions
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
US10469358B2 (en) * 2017-05-18 2019-11-05 Qualcomm Incorporated Wireless multihop relay
US20190140864A1 (en) * 2017-11-06 2019-05-09 Qualcomm Incorporated Device-to-device (d2d) channel measurement techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170181206A1 (en) * 2014-04-24 2017-06-22 Lg Electronics Inc. Method for establishing layer-2 entities for d2d communication system and device therefor
EP3148285A1 (en) * 2015-09-25 2017-03-29 Panasonic Intellectual Property Corporation of America Improved radio bearer mapping for proximity services ue to network relay with associated priority signalling
WO2017051330A1 (en) * 2015-09-25 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Per-packet resource pool selection in lte v2x system
WO2017188547A1 (ko) * 2016-04-25 2017-11-02 엘지전자(주) 무선 통신 시스템에서 d2d 단말들 사이의 거리를 추정하기 위한 방법 및 이를 위한 장치
WO2018027528A1 (en) * 2016-08-09 2018-02-15 Panasonic Intellectual Property Corporation Of America Improved radio resource selection and sensing for v2x transmissions

Also Published As

Publication number Publication date
EP3777397A1 (en) 2021-02-17
CN118450527A (zh) 2024-08-06
BR112020020138A2 (pt) 2021-01-05
EP4294102A2 (en) 2023-12-20
JP7489450B2 (ja) 2024-05-23
TWI711327B (zh) 2020-11-21
US11528716B2 (en) 2022-12-13
TW202126092A (zh) 2021-07-01
US20210105789A1 (en) 2021-04-08
JP7203117B2 (ja) 2023-01-12
RU2748541C1 (ru) 2021-05-26
TW201943303A (zh) 2019-11-01
EP4294102A3 (en) 2024-01-24
JP2021520098A (ja) 2021-08-12
US20230118609A1 (en) 2023-04-20
JP2023036851A (ja) 2023-03-14
JP2024109671A (ja) 2024-08-14
US20240430925A1 (en) 2024-12-26
EP3777397B1 (en) 2023-12-13
CN111937463A (zh) 2020-11-13
CN111937463B (zh) 2024-05-17
US12207288B2 (en) 2025-01-21
CN118524564A (zh) 2024-08-20
KR20210005583A (ko) 2021-01-14
WO2019195138A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
TWI821607B (zh) 合作車間有效資源使用方法
US12127044B2 (en) Methods for resource reservation to satisfy new radio (NR) vehicular communications (V2X) quality of service (QoS) requirements
CN112997565B (zh) 用于单播和/或多播链路建立和维持的l2过程
TWI826711B (zh) 上鏈及側鏈同步操作的裝置及方法
CN112703801B (zh) 用于新的无线电的车辆到万物(nr v2x)中的自主资源选择的方法和装置
JP7090799B2 (ja) Nruにおける受信機支援送信
TW201935981A (zh) 側鏈資源場啟動
WO2020033628A1 (en) Sidelink resource selection and control