TWI817998B - Predictive sample queueing for time-shared adc in a multiphase pwm controller - Google Patents
Predictive sample queueing for time-shared adc in a multiphase pwm controller Download PDFInfo
- Publication number
- TWI817998B TWI817998B TW108109515A TW108109515A TWI817998B TW I817998 B TWI817998 B TW I817998B TW 108109515 A TW108109515 A TW 108109515A TW 108109515 A TW108109515 A TW 108109515A TW I817998 B TWI817998 B TW I817998B
- Authority
- TW
- Taiwan
- Prior art keywords
- pwm
- analog signals
- sampling
- control signal
- waveform
- Prior art date
Links
- 238000005070 sampling Methods 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000115 helium ionisation detection Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Time-Division Multiplex Systems (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
相關申請的交叉引用Cross-references to related applications
本專利申請案請求2018年3月20日提出申請的美國臨時申請案第62/645,624號的優先權,其內容經由引用整體併入本文。This patent application claims priority from U.S. Provisional Application No. 62/645,624, filed on March 20, 2018, the contents of which are incorporated herein by reference in their entirety.
本發明的實施例大體上係關於功率轉換器,並且更特定言之係關於在多相PWM控制器中的相之間對時間共享類比數位轉換器(ADC)的採樣分配設定優先順序。Embodiments of the present invention relate generally to power converters, and more particularly to prioritizing sample distribution of time-shared analog-to-digital converters (ADCs) between phases in a multiphase PWM controller.
多相PWM控制器大體在所有相中使用共同的PWM週期並且交錯PWM,使得每個相的脈衝在一個PWM週期內在時間上等間隔。利用高頻寬電感器電流資訊可以提高電壓調節性能。對於數位控制器,這可能需要高取樣速率ADC來將類比電感器電流信號轉換為數位表達。該ADC功能的面積和能耗很高,通常與取樣速率成比例。因此,需要解決該等和其他問題。Polyphase PWM controllers generally use a common PWM period in all phases and stagger the PWM so that the pulses of each phase are equally spaced in time within a PWM period. Utilizing high-bandwidth inductor current information can improve voltage regulation performance. For digital controllers, this may require a high sample rate ADC to convert the analog inductor current signal into a digital representation. The area and energy consumption of this ADC function is high, usually proportional to the sampling rate. Therefore, these and other issues need to be addressed.
在一或多個實施例中,提供了一種對用於高頻寬電壓調節的數位多相PWM控制器中的電感器電流進行採樣的有效方案。一些實施例使用來自PWM調制器的資料以及基於PWM波形和過去轉換的加權狀態,以針對每次轉換,設定應當採樣哪個電流感測輸入的優先順序。在該等和其他實施例中,使用單個ADC來從多相PWM控制器中的兩相或更多相中採樣電感器電流,從而例如實現功率和面積節省。In one or more embodiments, an efficient scheme for sampling inductor current in a digital polyphase PWM controller for high bandwidth voltage regulation is provided. Some embodiments use data from the PWM modulator and weighted states based on the PWM waveform and past transitions to prioritize which current sense input should be sampled for each transition. In these and other embodiments, a single ADC is used to sample inductor current from two or more phases in a multiphase PWM controller, thereby achieving power and area savings, for example.
現在將參考附圖詳細描述本發明的實施例,附圖被提供作為實施例的說明性示例,以使得本領域技藝人士能夠實踐實施方案和本領域技藝人士顯而易見的替代方案。值得注意的是,附圖和示例並不意味著將本發明的實施例的範圍限制為單個實施例,而是經由互換一些或所有所描述或示出的元件可得到其他實施例。此外,在使用已知元件可以部分或完全實現本發明的實施例的某些元件的情況下,將僅描述對於理解本發明的實施例所必需的該等已知元件的那些部分,並且將省略對該等已知元件的其他部分的詳細描述,以免模糊本發明的實施例。如本領域技藝人士將顯而易見的,描述為以軟體實現的實施例不應限於此,而是可包括以硬體或軟體和硬體的組合實現的實施例,反之亦然,除非本文另有說明。在本說明書中,示出單個部件的實施例不應被視為限制;相反,除非本文另有明確說明,否則本案旨在涵蓋包括複數個相同組件的其他實施例,反之亦然。此外,除非明確說明,否則申請人不打算將說明書或請求項中的任何術語賦予不常見或特殊含義。此外,本發明的實施例包括經由說明在此提到的已知部件的當前已知和未來可知的均等物。Embodiments of the present invention will now be described in detail with reference to the accompanying drawings, which are provided as illustrative examples of embodiments to enable those skilled in the art to practice the embodiments and alternatives apparent to those skilled in the art. It is important to note that the drawings and examples are not meant to limit the scope of embodiments of the invention to a single embodiment, but that other embodiments may be obtained by interchanging some or all of the described or illustrated elements. Furthermore, in the case where certain elements of embodiments of the present invention can be partially or fully implemented using known elements, only those parts of such known elements that are necessary for understanding the embodiments of the present invention will be described and omitted Other parts of such known elements are described in detail so as not to obscure the embodiments of the present invention. As will be apparent to those skilled in the art, embodiments described as implemented in software should not be limited thereto, but may include embodiments implemented in hardware or a combination of software and hardware, and vice versa, unless otherwise stated herein. . In this specification, embodiments showing a single component should not be considered limiting; rather, other embodiments including plurals of the same component, and vice versa, are intended to cover unless otherwise expressly stated herein. Furthermore, the applicant does not intend to give unusual or special meaning to any term in the specification or claims unless expressly stated otherwise. Furthermore, embodiments of the present invention include both currently known and future known equivalents of known components mentioned herein by way of illustration.
根據某些態樣,本發明的實施例提供了對用於高頻寬電壓調節的數位多相PWM控制器中的電感器電流進行採樣的有效方案。一些實施例使用來自PWM調制器的資料以及基於PWM波形和過去轉換的加權狀態,以針對每次轉換,設定應當採樣哪個電流感測輸入的優先順序。According to certain aspects, embodiments of the invention provide an efficient scheme for sampling inductor current in a digital polyphase PWM controller for high bandwidth voltage regulation. Some embodiments use data from the PWM modulator and weighted states based on the PWM waveform and past transitions to prioritize which current sense input should be sampled for each transition.
作為背景技術,通常經由切換電壓調節器或降壓調節器,也稱作電壓轉換器、荷載點調節器或功率轉換器,將輸入電壓VIN轉換為一或多個荷載裝置所需的調節的輸出電壓VOUT ,來執行DC-DC電壓轉換。更一般地,電壓調節器和電流調節器共稱為功率轉換器,如本文使用的,術語功率轉換器的意思涵蓋所有此類裝置。切換電壓調節器通常使用二或更多個功率電晶體,自一個電壓至另一電壓轉換能量。圖1圖示這種電壓調節器100的一個常見示例,常稱作「降壓調節器」。降壓調節器100是切換調節器(或切換功率轉換器),其典型地切換連接在VIN 和地之間的一對功率電晶體(138和140)以在電晶體的共用節點SW產生方波。可使用包括電感器142和電容器144的LC電路將產生的方波平穩化以產生所需電壓VOUT 。包括誤差放大器146、比例-積分-微分(PID)控制濾波器132、脈寬調制器(PWM)134和輸出控制電路136(其包括用於分別驅動FET 138和140的高壓側和低壓側的驅動電路)的回饋控制回路可經配置用於控制輸出方波的占空循環,因此控制基於輸入電壓VIN 的VOUT 所得值。應注意儘管結合降壓調節器的示例應用描述了本發明的實施例,但其不限於此。反之,本發明的實施例也可實現為其它類型的調節器,例如降壓-升壓和升壓調節器。As a background art, an input voltage VIN is typically converted into a regulated output required by one or more load devices via a switching voltage regulator or buck regulator, also known as a voltage converter, point of load regulator or power converter. voltage V OUT to perform DC-DC voltage conversion. More generally, voltage regulators and current regulators are collectively referred to as power converters, and as used herein, the term power converter is meant to encompass all such devices. Switching voltage regulators typically use two or more power transistors to convert energy from one voltage to another. Figure 1 illustrates a common example of such a voltage regulator 100, often referred to as a "buck regulator." Buck regulator 100 is a switching regulator (or switching power converter) that typically switches a pair of power transistors (138 and 140) connected between V IN and ground to generate power at the transistors' common node SW. Wave. The resulting square wave can be smoothed using an LC circuit including inductor 142 and capacitor 144 to produce the desired voltage V OUT . Includes error amplifier 146, proportional-integral-derivative (PID) control filter 132, pulse width modulator (PWM) 134, and output control circuit 136 including drivers for driving the high and low sides of FETs 138 and 140, respectively. The feedback control loop of the circuit) can be configured to control the duty cycle of the output square wave and therefore the resulting value of V OUT based on the input voltage V IN . It should be noted that although embodiments of the present invention are described in connection with the example application of a buck regulator, they are not limited thereto. Conversely, embodiments of the invention may also be implemented as other types of regulators, such as buck-boost and boost regulators.
電壓調節器,例如調節器100有些時候包括在電流共享配置中,在電流共享配置中經由共享供電電壓來分配功率。經由共享荷載供電點的分配功率與單荷載供電點或調節器相比具有數個矚目優勢。分配功率或電流共享可用於經由較寬輸出電流範圍上的更高效率、經由冗餘的可靠性、以及分散式散熱來適應與低電壓應用相關的日益增加的電流需求。Voltage regulators, such as regulator 100, are sometimes included in current sharing configurations in which power is distributed via a shared supply voltage. Distributing power via shared load feed points has several notable advantages over single load feed points or regulators. Distributing power or current sharing can be used to accommodate the increasing current demands associated with low voltage applications via higher efficiency over a wider output current range, reliability via redundancy, and distributed cooling.
圖2圖示電流共享配置的一個示例。如圖2所示,多相調節器280包括多個具有FET對(172/174和176/178)和電感器(153和155)的輸出級(該示例中示出二級154和156)。輸出級154、156提供單個輸出電壓VOUT (例如,於電容器160至示例荷載162),可使用單個控制器(例如,控制器IC 152)及電壓回饋VFB 的單個輸入、單個補償器(即,PID)和多個PWM輸出。多個PWM輸出可提供至各個輸出級(即,驅動電路)154和156。在一些實施例中,輸出級可經由單個電路或IC共同實現,或者輸出級也可包括在控制器IC 152中。多相調節器280中的相間通訊匯流排可以包含在控制器152中,其允許數位控制器中共享的高頻寬電流。儘管圖2的實施例中圖示只有兩個輸出級,各種實施例可包括按照所示方式類似佈置的更多輸出級。本領域技藝人士將理解本文揭露的轉換器(或電壓調節器)以及電壓調節器系統的各種繪示方式意在於涵蓋根據本文所需原理的所有可行實施方式。Figure 2 illustrates an example of a current sharing configuration. As shown in Figure 2, polyphase regulator 280 includes multiple output stages (secondary stages 154 and 156 are shown in this example) with FET pairs (172/174 and 176/178) and inductors (153 and 155). The output stages 154, 156 provide a single output voltage V OUT (e.g., across capacitor 160 to example load 162) using a single controller (e.g., controller IC 152) and a single input of voltage feedback V FB , a single compensator (i.e., , PID) and multiple PWM outputs. Multiple PWM outputs may be provided to various output stages (ie, drive circuits) 154 and 156. In some embodiments, the output stages may be implemented collectively via a single circuit or IC, or the output stages may be included in the controller IC 152 . Phase-to-phase communication busses in the multiphase regulator 280 may be included in the controller 152, allowing for high bandwidth current sharing among digital controllers. Although only two output stages are illustrated in the embodiment of Figure 2, various embodiments may include more output stages similarly arranged in the manner shown. Those skilled in the art will understand that the various illustrations of converters (or voltage regulators) and voltage regulator systems disclosed herein are intended to cover all possible implementations in accordance with the principles required herein.
在許多調節器中,有關電流的資訊(即,電感器電流,例如,電壓電源/調節器100中的電感器142中的電流)對於PWM控制器(例如圖1中的PWM控制器134)中的許多功能的服務而言是不可或缺的。該等功能包括電壓精準度、瞬態回應、電流平衡、電路錯誤保護和遙測。獲得高品質的電感器電流資訊以支援該等功能可以是控制器IC設計的多個挑戰性需求之一。可以在精準度、準確性、頻寬和延遲性中量化品質。高品質來自於高精準度、高準確性、高頻寬及/或低延遲性。In many regulators, information about the current (i.e., the inductor current, e.g., the current in inductor 142 in voltage supply/regulator 100) is required in a PWM controller (e.g., PWM controller 134 in Figure 1). It is indispensable for many functions of the service. These features include voltage accuracy, transient response, current balancing, circuit error protection and telemetry. Obtaining high-quality inductor current information to support these functions can be one of the many challenging requirements of controller IC design. Quality can be quantified in precision, accuracy, bandwidth and latency. High quality comes from high precision, high accuracy, high bandwidth and/or low latency.
來自已知系統參數的合成電感器電流可以減緩在單獨電流測量上獲取電流資訊的大多數挑戰。這是因為可以從系統參數計算出電感器中的電流的動態組成(即,電流如何隨時間變化)的事實,這與獲得電流值自身相比獲得高準確性的挑戰更小。第一階系統參數包括跨電感器電壓和電感值[di/dt=V/L]。更精準的計算可包括電感器及/或切換損耗。另一更複雜的計算可包括隨時間的非線性或參數漂移。可以以電路面積和功耗中的低成本估計或測量所有該等特徵。更複雜的計算提高了合成資訊的品質,但是帶來計算電路面積和功耗的開支。較高品質的合成(或計算)資訊可以降低提供消失的穩態電感器電流組成所需的測量電路的成本。在以數位邏輯設計合成器的系統中,使用主要是類比的電路測量穩態電感器電流,經由根據莫耳定律而採用的比例縮放,總成本和功率最佳化可以受益。獲得輸出電流資訊的該方案對於數位功率控制器可以是非常有吸引力的。然而,即使在包括如前述的電流合成器的控制器中,仍然需要精準的電感器電流測量用於合成器電流校正和其它功能。Synthetic inductor current from known system parameters alleviates most of the challenges of obtaining current information on individual current measurements. This is due to the fact that the dynamic composition of the current in the inductor (i.e., how the current changes over time) can be calculated from the system parameters, which is less of a challenge to obtain high accuracy than obtaining the current value itself. The first order system parameters include the voltage across the inductor and the inductance value [di/dt=V/L]. A more precise calculation may include inductor and/or switching losses. Another more complex calculation may include nonlinearity or parameter drift over time. All such characteristics can be estimated or measured at low cost in circuit area and power consumption. More complex calculations improve the quality of synthesized information, but incur costs in computational circuit area and power consumption. Higher quality synthetic (or computational) information can reduce the cost of the measurement circuitry required to provide the vanishing steady-state inductor current component. In systems where synthesizers are designed with digital logic, total cost and power optimization can benefit through scaling based on Moore's Law, using primarily analog circuits to measure steady-state inductor current. This scheme of obtaining output current information can be very attractive for digital power controllers. However, even in controllers that include a current combiner as previously described, accurate inductor current measurement is still required for combiner current correction and other functions.
總之,本文揭露的調節器的各種實施例包括電源(或功率轉換器或電壓調節器)控制電路,其被設計用於幫助切換調節器/電源的最佳化操作,包括使用精準電流測量提高的精準電流合成。圖3圖示系統300的一個實施例的方塊圖,系統300包括根據本文所述的原理設計的電源301,將在下文詳述。系統300包括電源/功率調節器301的至少一個例子,其提供一或多個電源電壓至系統積體 電路(或處理元件)310、一或多個周邊設備307和記憶體子系統(或記憶體)305。記憶體305可包括例如可被處理元件310執行的程式指令以執行各種系統功能,其還可包括控制及/或操作周邊設備307。In summary, various embodiments of the regulators disclosed herein include power supply (or power converter or voltage regulator) control circuits designed to aid in optimal operation of the switching regulator/power supply, including the use of precise current measurements to improve Precise current synthesis. Figure 3 illustrates a block diagram of one embodiment of a system 300 including a power supply 301 designed in accordance with the principles described herein, as will be described in detail below. System 300 includes at least one example of a power supply/power regulator 301 that provides one or more supply voltages to system integrated circuits (or processing elements) 310, one or more peripheral devices 307, and a memory subsystem (or memory )305. Memory 305 may include, for example, program instructions executable by processing element 310 to perform various system functions, which may also include controlling and/or operating peripheral devices 307 .
在一些實施例中,可包括不止一個電源/轉換器301。而且,調節器301可包括一或多個電源控制積體電路,例如電源控制IC 312和314。電源控制IC 312和314可包括各種元件,例如回饋控制電路、PWM調制電路、輸出級控制電路等。而且,在一些實施例中,控制電路可不包括在個別IC上,而是可以簡單成為電源301的一部分。總之,電源301的各種實施例可以分成兩個主要組成,包含高壓側和低壓側FET的驅動級、以及囊括執行驅動輸出級中的FET的驅動信號的控制的元件的控制電路。如圖3所示,控制電路以IC的形式實現,其可以耦合至驅動級(例如圖1所示的輸出控制級136),或者可以直接耦合至高壓側FET和低壓側FET,例如圖1中的FET 138和140。在一些實施例中,系統300自身可以是晶片上系統(SOC),由此系統300是具有全部元件的IC,其包括電壓301和電壓控制IC 312及/或314的彼等元件作為同一IC的一部分。In some embodiments, more than one power supply/converter 301 may be included. Furthermore, regulator 301 may include one or more power control integrated circuits, such as power control ICs 312 and 314. The power control ICs 312 and 314 may include various components, such as feedback control circuits, PWM modulation circuits, output stage control circuits, etc. Furthermore, in some embodiments, the control circuitry may not be included on a separate IC, but may simply be part of the power supply 301. In summary, various embodiments of the power supply 301 can be divided into two main components, a driver stage containing high-side and low-side FETs, and a control circuit including elements that perform control of the drive signals that drive the FETs in the output stage. As shown in Figure 3, the control circuit is implemented in the form of an IC, which can be coupled to a driver stage (such as the output control stage 136 shown in Figure 1), or can be directly coupled to the high-side FET and low-side FET, such as in Figure 1 FETs 138 and 140. In some embodiments, system 300 itself may be a system-on-a-chip (SOC), whereby system 300 is an IC with all components including voltage 301 and voltage control ICs 312 and/or 314 as part of the same IC. part.
周邊設備307取決於系統的類型而可包括任何所需電路。例如,在一個實施例中,系統300可包括在行動裝置(例如,個人數位助理(PDA)、智慧型電話等)中,周邊設備307可包括用於各種類型的無線通訊的設備,例如Wi-Fi、藍芽、蜂巢網路、全球定位系統等。周邊設備307還可包括額外的儲存器,其包括RAM儲存器、固態儲存器或磁碟儲存器。周邊設備307可包括使用者介面裝置,例如包括觸摸顯示螢幕或多點觸摸顯示螢幕的顯示螢幕、鍵盤或其它輸入裝置、麥克風、揚聲器等。在其它實施例中,系統300可包括在任何類型的計算系統中(例如,桌上型個人電腦、膝上型電腦、工作站、網上系統等)。而且,系統記憶體305可包括任何類型的記憶體。Peripheral devices 307 may include any desired circuitry depending on the type of system. For example, in one embodiment, system 300 may be included in a mobile device (eg, a personal digital assistant (PDA), a smartphone, etc.) and peripheral devices 307 may include devices for various types of wireless communications, such as Wi-Fi. Fi, Bluetooth, cellular network, GPS, etc. Peripheral devices 307 may also include additional storage, including RAM storage, solid state storage, or disk storage. Peripheral devices 307 may include user interface devices, such as a display screen including a touch display screen or a multi-touch display screen, a keyboard or other input device, a microphone, a speaker, etc. In other embodiments, system 300 may be included in any type of computing system (eg, desktop personal computer, laptop computer, workstation, online system, etc.). Furthermore, system memory 305 may include any type of memory.
圖4圖示計算系統的若干實施例,計算系統可包括全部或部分的系統300,更具體而言是電源301及/或電源控制IC 312及/或314。系統401可表示桌上型電腦,系統402可表示膝上型電腦,系統403可表示具有無線鍵盤的平板電腦或智慧型電話。系統401可包括一或多個人機周邊設備(HID),例如鍵盤、滑鼠、麥克風、照相機等。系統402和403可包括與系統401類似的HID。未示出的其它設備,例如智慧電視或視頻遊戲控制台也可以包括例如本文揭露的各種形式或實施例的電源或電壓控制器。注意到圖4示出的電腦系統只作為示例提供。其它類型的具有電源/功率調節器和電源控制器IC的系統也是可行和可考慮的。Figure 4 illustrates several embodiments of a computing system that may include all or part of system 300, more specifically power supply 301 and/or power control ICs 312 and/or 314. System 401 may represent a desktop computer, system 402 may represent a laptop computer, and system 403 may represent a tablet computer or smart phone with a wireless keyboard. System 401 may include one or more human-machine peripheral devices (HID), such as keyboards, mice, microphones, cameras, etc. Systems 402 and 403 may include HIDs similar to system 401. Other devices not shown, such as smart televisions or video game consoles, may also include power supply or voltage controllers such as those disclosed herein in various forms or embodiments. Note that the computer system shown in Figure 4 is provided as an example only. Other types of systems with power supplies/power regulators and power controller ICs are also possible and may be considered.
此外,並且如前述,本案申請人認識到在整個PWM切換週期內精確地感測電感器電流(例如,圖2中的電感器153、155中的電流)可能是困難且昂貴的。例如,傳統的解決方案傾向於在PWM週期內僅在小的時間窗口期間提供電感器電流的精確表示,留下週期內的有雜訊或不精確的剩餘時間。更具體地,如圖5所示,波形502表示針對給定相(即,多相控制器中的一個相)的PWM調制器(例如,圖1中的134)輸出。同時,波形504表示該相中的相應電感器電流。如圖5所示,精確的電流感測資料只能在電流波形504的間隔508中獲得,該間隔508對應於PWM調制器輸出502處於低狀態時的時間(即,高壓側FET 138關斷且低壓側FET 140導通)。然而,在電流波形504的間隔510期間,當電感器電流回應於PWM調制器輸出502的高狀態而增加時,電流感測資料可能非常不可靠且不精確。Additionally, and as previously stated, Applicants recognize that accurately sensing inductor current (eg, current in inductors 153, 155 in Figure 2) throughout the PWM switching cycle can be difficult and expensive. For example, traditional solutions tend to provide an accurate representation of the inductor current only during a small time window within the PWM cycle, leaving the remainder of the cycle noisy or inaccurate. More specifically, as shown in Figure 5, waveform 502 represents the PWM modulator (eg, 134 in Figure 1) output for a given phase (ie, one phase in the multiphase controller). Meanwhile, waveform 504 represents the corresponding inductor current in that phase. As shown in Figure 5, accurate current sensing data can only be obtained during intervals 508 of the current waveform 504, which correspond to the times when the PWM modulator output 502 is in the low state (i.e., the high-side FET 138 is off and Low side FET 140 conducts). However, during intervals 510 of the current waveform 504, when the inductor current increases in response to the high state of the PWM modulator output 502, the current sensing data can be very unreliable and inaccurate.
本案申請人認識到,經由僅利用在來自電流感測器的信號的精確部分期間採集的取樣(例如,圖5中的間隔508),可以使數位系統更精確,並且在該等時間可以獲得的取樣越多越好。在單相的上下文中觀察,取樣的最優分配將是在電感器電流信號的精確部分期間突發所有取樣,並且暫停直到下一個精確窗口。然而,支持這種方案的ADC將與在PWM週期內採樣的部分窗口成比例地浪費專用於該相的功率和面積。但是在多相系統的上下文中觀察,本案人設想經由在多個相上對其取樣進行時間共享來更最佳化地使用該相同的ADC,所述多個相的精確時間窗口在時間上是專有的。Applicants recognize that a digital system can be made more accurate by utilizing only samples taken during a precise portion of the signal from the current sensor (e.g., interval 508 in Figure 5), and that the The more samples the better. Observed in the context of a single phase, the optimal distribution of samples would be to burst all samples during a precise portion of the inductor current signal, and pause until the next precise window. However, an ADC that supports this scheme will waste power and area dedicated to that phase in proportion to the partial window sampled within the PWM cycle. But looking at the context of a multi-phase system, the authors envisage a more optimal use of this same ADC via time-sharing of its samples over multiple phases, the precise time windows of which are in time Proprietary.
例如,本案人認識到,在多相控制器的穩定狀態下,PWM週期是固定的,並且相之間的相關係均勻分配,這使得取樣的最優時間共享是容易的,使其遵循相位交錯模式。更具體而言,如圖6所示,波形602表示對於四相控制器的四個相中的每一相的PWM調制器(例如,圖1中的134)輸出。在該示例中,PWM週期全部相同,並且PWM波形602的「高」狀態部分均勻地分配在各相之間。波形604表示回應於PWM波形602而產生的每個相中的電感器電流。由於PWM波形602的「高」狀態部分非常均勻的分配,電流波形604的精確部分606 (例如,如上面在圖5中所描述的)也非常均勻地分配。這樣,使用單個共享ADC的簡單TDM方法可用於順序測量每個相的電流波形604,一次測量一個。For example, the authors recognized that in the steady state of a polyphase controller, the PWM period is fixed and the phase relationships between phases are evenly distributed, which makes it easy to optimally time share sampling so that it follows phase interleaving model. More specifically, as shown in Figure 6, waveform 602 represents the PWM modulator (eg, 134 in Figure 1) output for each of the four phases of a four-phase controller. In this example, the PWM periods are all the same, and the "high" state portion of PWM waveform 602 is evenly distributed between phases. Waveform 604 represents the inductor current in each phase produced in response to PWM waveform 602 . Because the "high" state portion of the PWM waveform 602 is very evenly distributed, the precise portion 606 of the current waveform 604 (eg, as described above in Figure 5) is also very evenly distributed. In this way, a simple TDM approach using a single shared ADC can be used to sequentially measure the current waveform 604 of each phase, one at a time.
儘管圖6的示例使取樣的時間共享相當容易,實際上PWM週期和相位關係可隨著電壓調節器上的負載的變化而發生顯著變化。如果調制方案採用雙邊沿調制、動態切換頻率或使PWM邊沿非週期性的其他技術,則尤其如此。動態負載下的最優時間共享要求時間共享遵循共享ADC的所有PWM相的調制。Although the example of Figure 6 makes time sharing of samples fairly easy, in reality the PWM period and phase relationship can change significantly as the load on the voltage regulator changes. This is especially true if the modulation scheme uses dual-edge modulation, dynamically switching frequencies, or other techniques that make the PWM edges non-periodic. Optimal time sharing under dynamic loads requires that the time sharing follows the modulation of all PWM phases of the shared ADC.
在採用調制器中使用的電流資訊中的預測的系統中,最優時間共享可能進一步複雜化。回到圖5,並且如前述,這樣的系統可以從已知的PWM信號(例如,圖5中的波形502)以及影響電感器電流的其他參數(諸如輸入和輸出電壓、PWM傳播延遲和電感值)的相對低頻寬測量來合成電感器電流資訊(例如,圖5中的波形506)。由於這種系統具有預測性,因此它們有可能偏離實際的電感器電流。當系統參數更加動態時,在動態載入的情況下尤其如此。由於以足夠的速率並且在合成器可能出錯的關鍵時刻向合成器提供精確測量的電感器電流,因此可能包含偏離。因此,相之間的實際電感器電流的ADC取樣的最優共享可以在某種程度上由合成器架構和系統元件特性決定。Optimal time sharing may be further complicated in systems that employ predictions from the current information used in the modulator. Returning to Figure 5, and as mentioned previously, such a system can be derived from a known PWM signal (e.g., waveform 502 in Figure 5) as well as other parameters that affect the inductor current, such as input and output voltages, PWM propagation delays, and inductor values. ) to synthesize inductor current information (e.g., waveform 506 in Figure 5). Because of the predictive nature of such systems, they have the potential to deviate from the actual inductor current. This is especially true in the case of dynamic loading when system parameters are more dynamic. Bias may be included due to providing accurately measured inductor current to the synthesizer at a sufficient rate and at critical times when the synthesizer may error. Therefore, the optimal sharing of ADC samples of the actual inductor current between phases can be determined to some extent by the synthesizer architecture and system component characteristics.
根據某些態樣,下面將更詳細描述的一些實施例使用來自PWM調制器(例如,在圖2中的控制器152中)的資料以及基於PWM波形和過去轉換的權重,以便針對每次轉換,設定應當採樣哪個電流感測輸入的優先順序。如前述,PWM調制器產生PWM信號以發送到外部輸出級(例如圖2中的154和156)或FET。然後,由輸出級接收的PWM信號被位準移位並施加到用於驅動功率電感器(例如圖2中的153和155)的功率FET(例如,圖2中的172-178)。然後將在低壓FET裝置上感測到的所得電流驅動到輸出級(例如圖2中的154和156)的引腳上,該引腳連接回要感測的控制器(例如圖2中的控制器152)。從PWM產生到所得類比感測的總時間往往是幾個系統時鐘週期(例如80ns左右)。如圖5所示,並且如前述,大部分輸出級僅在低壓FET導通時產生有用資料,因為感測到電流流過低壓FET。因此,要測量的PWM信號的優選部分是從PWM變低之後大約300ns開始,直到PWM變高。此外,在典型的多相調制器中,在整個開關週期內對相進行排序,以最小化紋波,這確保大體不是所有相同時具有有價值的資料。According to some aspects, some embodiments, described in greater detail below, use information from a PWM modulator (eg, in controller 152 in FIG. 2) and weights based on the PWM waveform and past transitions to target each transition. , sets the priority for which current sense inputs should be sampled. As mentioned previously, the PWM modulator generates a PWM signal to be sent to an external output stage (such as 154 and 156 in Figure 2) or a FET. The PWM signal received by the output stage is then level shifted and applied to the power FETs (eg, 172-178 in Figure 2) used to drive the power inductors (eg, 153 and 155 in Figure 2). The resulting current sensed on the low voltage FET device is then driven onto pins of the output stage (e.g. 154 and 156 in Figure 2) which are connected back to the controller to be sensed (e.g. Control in Figure 2 device 152). The total time from PWM generation to the resulting analog sensing is often a few system clock cycles (e.g. around 80ns). As shown in Figure 5, and as mentioned previously, most output stages only produce useful data when the low-voltage FET is on because current is sensed flowing through the low-voltage FET. Therefore, the preferred portion of the PWM signal to measure is starting approximately 300ns after the PWM goes low until the PWM goes high. Furthermore, in a typical polyphase modulator, the phases are sequenced throughout the switching cycle to minimize ripple, which ensures that not all are the same in general and that there is valuable information.
經由利用基於PWM調制器的加權狀態對設備進行程式化並基於過去的取樣收集資料,根據本發明的實施例的方法建立了一個排隊系統,該系統將從多個相進入到共享ADC中的有用資料取樣取最大值。排隊系統決定接下來應該採樣哪個相,確保所有相最近已經接收到有效資料,並且基於調制器的狀態選擇下一個採樣相(即,ADC將採樣模擬波形中的哪個位置)。該排隊系統還可用於決定ADC採用自動歸零採樣以最小化ADC偏移的最優時間。因為所得到的採樣是非週期性的,所以本發明的實施例還追蹤每個相的採樣頻率,以便考慮每個相上的變化的輸入阻抗。此外,每個相都可以用最小採樣週期進行程式化,可以設置該最小採樣週期以確保每個相的最大採樣頻率。By programming the device with weighted states based on the PWM modulator and collecting data based on past samples, methods according to embodiments of the present invention establish a queuing system that will feed useful signals from multiple phases into a shared ADC. Data sampling takes the maximum value. The queuing system determines which phase should be sampled next, ensures that all phases have recently received valid data, and selects the next sampled phase based on the state of the modulator (i.e., where in the analog waveform the ADC will sample). This queuing system can also be used to determine the optimal time for the ADC to take auto-zero samples to minimize ADC offset. Because the resulting samples are non-periodic, embodiments of the present invention also track the sampling frequency of each phase to account for the varying input impedance on each phase. Additionally, each phase can be programmed with a minimum sampling period, which can be set to ensure maximum sampling frequency for each phase.
圖7是說明根據實施例的預測性取樣排隊的示例態樣的時序圖。如圖所示,控制器為4相轉換器的每個相產生PWM波形702。在該示例中,由於負載需求,波形702在相之間不是如圖5的示例中彼等等間隔和交錯的。波形704表示四個相中回應於PWM波形702而產生的相應電感器電流,其中每個波形704具有如前述的精確部分706。同樣在這個例子中,負載正在減少,因此相遞進地下降,從Ph3下降開始,然後Ph2下降,然後Ph1下降,此時正在操作Ph0。7 is a timing diagram illustrating an example aspect of predictive sample queuing in accordance with an embodiment. As shown, the controller generates PWM waveforms 702 for each phase of the 4-phase converter. In this example, due to load requirements, waveforms 702 are not equally spaced and interleaved between phases as in the example of Figure 5. Waveforms 704 represent the corresponding inductor currents in the four phases produced in response to the PWM waveform 702, with each waveform 704 having a precise portion 706 as previously described. Also in this example, the load is being reduced, so the phases are falling progressively, starting with Ph3 falling, then Ph2 falling, then Ph1 falling, and now Ph0 is being operated.
波形下方的表格指示在每個採樣週期中從哪個相獲取電感器電流取樣。可以看出,與簡單的TDM技術(即行710中的取樣)相比,電感器電流取樣取自在給定採樣週期期間具有最精確的電流資訊的相(即,使用本發明的實施例,行708)。例如,在週期0和1中,電流從Ph2採樣(而不是TDM方法中的0和1);在週期2中,電流從Ph0採樣;在週期3中,電流從Ph1採樣,依此類推。如表中進一步所示,本方法減少了使用簡單TDM方法獲得的不精確取樣712的數量。下面將更詳細地描述設定優先順序,即如何在給定的採樣週期中分配相以用於採樣。 The table below the waveform indicates which phase the inductor current samples are taken from during each sampling period. It can be seen that compared to the simple TDM technique (i.e., sampling in row 710), the inductor current samples are taken from the phase with the most accurate current information during a given sampling period (i.e., using embodiments of the present invention, row 710) 708). For example, in cycles 0 and 1, the current is sampled from Ph2 (instead of 0 and 1 in the TDM method); in cycle 2, the current is sampled from Ph0; in cycle 3, the current is sampled from Ph1, and so on. As further shown in the table, the present method reduces the number of imprecise samples 712 obtained using simple TDM methods. Setting priorities, ie how phases are allocated for sampling in a given sampling period, is described in more detail below.
圖8是說明根據實施例的轉換器中的預測性採樣方案的示例實施方案的方塊圖。 8 is a block diagram illustrating an example implementation of a predictive sampling scheme in a converter according to an embodiment.
如該示例中所示,控制器800(例如,圖2中的152的示例實施方案)包括數位部分802和類比部分804。數位部分802包括迴路/調制器806、電流合成器808、和取樣排隊系統810。 As shown in this example, controller 800 (eg, the example implementation of 152 in FIG. 2 ) includes a digital portion 802 and an analog portion 804 . Digital section 802 includes loop/modulator 806, current synthesizer 808, and sample queuing system 810.
類比部分804包括電流感測類比數位轉換器(Isen ADC)812和多工器814。基於來自排隊系統810的信號,Isen ADC 812經由多工器814獲得從相Ph1到Ph4的類比取樣。將取樣數位化並提供給合成器808和排隊系統810。本發明的實施例的一個態樣是在取樣排隊系統810的控制下,僅需要單個ADC 812對來自所有相Ph1到Ph4的電感器電流進行採樣。 Analog section 804 includes a current sensing analog to digital converter (Isen ADC) 812 and a multiplexer 814. Based on the signal from the queuing system 810, the Isen ADC 812 obtains analog samples from phases Ph1 to Ph4 via the multiplexer 814. The samples are digitized and provided to synthesizer 808 and queuing system 810. One aspect of an embodiment of the present invention requires only a single ADC 812 to sample the inductor current from all phases Ph1 to Ph4 under the control of the sample queuing system 810 .
來自ADC 812的電流取樣可用於電流合成器校正,例如如美國專利9,419,627中所述,其內容經由引用整體併入本文。合成器808又將校正的電流合成器資料提供給迴路/調制器806,例如,使用在共同未決的美國專利申請案第16/357,212號(其內容經由引用整體併 入本文)中描述的預測資料和測量資料的組合。迴路/調制器806使用來自合成器808的所產生的電流資料以及其他資訊來產生適當的PWM調制信號到輸出級816,輸出級816使用該等信號來驅動電流到發電站818。 The current samples from the ADC 812 can be used for current synthesizer correction, for example as described in US Patent 9,419,627, the contents of which are incorporated herein by reference in their entirety. Synthesizer 808 in turn provides corrected current synthesizer data to loop/modulator 806, as used, for example, in co-pending U.S. Patent Application No. 16/357,212 (the contents of which are incorporated by reference in their entirety). The combination of predicted data and measured data described in this article). Loop/modulator 806 uses the generated current data from synthesizer 808 and other information to generate appropriate PWM modulated signals to output stage 816 which uses the signals to drive current to power station 818 .
圖9是示出根據實施例的用於實現取樣排隊系統810的示例性方法的各態樣的時序圖。 9 is a timing diagram illustrating aspects of an exemplary method for implementing sample queuing system 810, according to an embodiment.
如圖9所示,波形902表示對於給定相的PWM調制器輸出,並且波形904表示回應於波形902而產生的對於給定相的相應電感器電流。如進一步所示,本發明的實施例辨識三個主要狀態:低狀態,其中經由低壓側開關或FET(例如圖1中的140)將電感器的開關端子主動拉至低電壓;高狀態,其中經由高壓側開關或FET(例如圖1中的138)將電感器的開關端子主動拉高至高電壓;及Mid/Hi-Z狀態(即,dio),其中兩個開關或FET都處於非導通狀態。在最終狀態下,電感器電流將正向偏置兩個FET之一的體二極體,根據電感器電流的極性決定/選擇所討論的FET。 As shown in Figure 9, waveform 902 represents the PWM modulator output for a given phase, and waveform 904 represents the corresponding inductor current for the given phase produced in response to waveform 902. As further shown, embodiments of the present invention recognize three primary states: a low state, in which the switch terminal of the inductor is actively pulled to a low voltage via a low-side switch or FET (eg, 140 in Figure 1); and a high state, in which Active pulling of the inductor's switch terminal to high voltage via a high-side switch or FET (e.g., 138 in Figure 1); and Mid/Hi-Z state (i.e., dio) where both switches or FETs are in a non-conducting state . In the final state, the inductor current will forward bias the body diode of one of the two FETs, the FET in question being determined/selected based on the polarity of the inductor current.
圖9還圖示了根據實施例在每個主PWM狀態之間的過渡狀態906。該等過渡狀態描述了系統正處於離開一事件的程序中的時間段。對於每個PWM事件(上升沿、下降沿、中間驅動/Hi-Z狀態),可以為每個指定時槽指定一個時間段(或時間長度)。指定的時槽可以分為兩大類,即「Settle」時槽和「Settled」時槽。因此,如圖9所示,對於每個PWM事件可能存在不同的「Settle」時槽和「Settled」時槽。Figure 9 also illustrates transition states 906 between each main PWM state according to an embodiment. These transition states describe the time period during which the system is in the process of exiting an event. For each PWM event (rising edge, falling edge, mid-drive/Hi-Z state), a time period (or length of time) can be specified for each designated time slot. Specified time slots can be divided into two categories, namely "Settle" time slots and "Settled" time slots. Therefore, as shown in Figure 9, there may be different "Settle" time slots and "Settled" time slots for each PWM event.
如圖9中進一步所示,可以為每個相應的時槽906指定(即配置)相應的權重908。相應的權重908值由排隊系統810使用,以決定如何對於任何給定的採樣週期對相之間的ADC採樣設定優先順序。在此示例中,有三個可能的權重值,0表示沒有電流取樣精度,1表示非常小的電流取樣精度,3表示高電流取樣精度。這便於對相應的電流感測波形的每個精確部分進行採樣,同時在實際電流感測波形可能有很多雜訊或者根本無效的波形部分中限制或歸零電流採樣。例如,雖然可以在CFGhiSettled 時槽中的上升段上獲得取樣,但是低權重值指示該部分中的採樣電流可能不精確。另一方面,在CFGloSettled 時槽中的下降段上獲得的取樣可能非常精確,如相對高的權重值所示。As further shown in Figure 9, a corresponding weight 908 may be assigned (ie, configured) for each corresponding time slot 906. The corresponding weight 908 values are used by the queuing system 810 to determine how to prioritize ADC samples between phases for any given sampling period. In this example, there are three possible weight values, 0 means no current sampling accuracy, 1 means very little current sampling accuracy, and 3 means high current sampling accuracy. This facilitates sampling every precise portion of the corresponding current sensing waveform, while limiting or zeroing the current sampling in portions of the waveform where the actual current sensing waveform may be noisy or simply ineffective. For example, although samples may be obtained on the rising segment in the CFG hiSettled time slot, low weight values indicate that the sampled current in that segment may be inaccurate. On the other hand, the samples obtained on the descending segment in the CFG loSettled time slot can be very accurate, as shown by the relatively high weight values.
因此,在操作中,在每個採樣週期中,排隊系統810接收每個相的調制器波形902資訊,並決定該相當前所在的時槽906。基於時槽906,排隊系統810進一步決定應用於每個相的權重值908。在一個示例中,將經由產生適當的控制信號到多工器814來選擇在給定採樣週期中具有最高權重的相以由ADC 812採樣。在該等和其他實施例中,排隊系統810可以包括記憶體或儲存器,其包含PWM波形的指定「時槽」的配置以及分配給它們的權重,並且可以存取該記憶體或儲存器以用於決定給定採樣週期中具有最高權重的相。Therefore, in operation, in each sampling period, the queuing system 810 receives the modulator waveform 902 information for each phase and determines the time slot 906 in which that phase currently resides. Based on the time slot 906, the queuing system 810 further determines the weight value 908 to apply to each phase. In one example, the phase with the highest weight in a given sampling period will be selected to be sampled by ADC 812 via generating appropriate control signals to multiplexer 814 . In these and other embodiments, the queuing system 810 may include memory or storage that contains a configuration of designated "slots" of PWM waveforms and the weights assigned to them, and may access the memory or storage to Used to determine the phase with the highest weight for a given sampling period.
返回參考圖7,可以看出,與簡單的TDM方法(其中每個相的取樣是以固定的採樣頻率獲得的)相比,本發明的實施例中每個相的有效採樣頻率不是固定的。這可能導致每個相的ADC輸入阻抗對於每個取樣不同,並因此導致每個相的增益對於每個取樣不同。這樣,在一些實施例中,追蹤每個相的實際採樣頻率並將其用於根據需要調整ADC增益。另外且相關地,排隊系統810可以包括給定相的取樣之間的固定最大延遲,並且作為計算權重的補充或替代,可以使用它來決定對於給定採樣週期採樣哪個相。換句話說,如果給定相在自其上次被採樣後的最大延遲之後尚未被採樣,則將選擇它在當前採樣週期中進行採樣,即使其權重不是所有相中的最大值。在其他實施例中,不是具有固定的最大採樣延遲,或者除了具有固定的最大採樣延遲之外,每個相的採樣之間的週期可以是可程式化參數。Referring back to Figure 7, it can be seen that compared to the simple TDM method (in which samples of each phase are obtained at a fixed sampling frequency), the effective sampling frequency of each phase is not fixed in embodiments of the present invention. This can cause the ADC input impedance of each phase to be different for each sample, and therefore the gain of each phase to be different for each sample. This way, in some embodiments, the actual sampling frequency of each phase is tracked and used to adjust the ADC gain as needed. Additionally and relatedly, the queuing system 810 may include a fixed maximum delay between samples of a given phase, and in addition to or instead of calculating weights, this may be used to decide which phase to sample for a given sampling period. In other words, if a given phase has not been sampled after the maximum delay since it was last sampled, it will be selected for sampling in the current sampling period, even if its weight is not the largest among all phases. In other embodiments, instead of or in addition to having a fixed maximum sampling delay, the period between samples of each phase may be a programmable parameter.
在這方面,圖10是說明根據實施例的包括可程式化最小週期的設定優先順序的採樣方案的額外或替代態樣的時序圖。In this regard, FIG. 10 is a timing diagram illustrating an additional or alternative aspect of a prioritized sampling scheme that includes programmable minimum periods, according to an embodiment.
在該示例中,波形1002表示對於4相轉換器的每個相,控制器中的電感器電流。在該示例中,類似於圖7中所示的波形,由於負載需求,波形1002和它們各自的精確部分1004在相之間並不是如圖5的示例中彼等等間隔和交錯的。進一步類似於圖7,在該示例中,控制器負載正在減少,因此相遞進地下降,從Ph3開始,然後是Ph2,然後是Ph1。In this example, waveform 1002 represents the inductor current in the controller for each phase of a 4-phase converter. In this example, similar to the waveforms shown in Figure 7, due to load requirements, the waveforms 1002 and their respective precise portions 1004 are not equally spaced and interleaved between phases as in the example of Figure 5. Further similar to Figure 7, in this example the controller load is decreasing so the phases decrease progressively, starting with Ph3, then Ph2, then Ph1.
表1006指示在每個採樣週期中從哪個相進行電感器電流採樣。與圖7的實施方式不同,除了如上面結合圖9之權重所指定的精確電流取樣的可用性之外,還基於取樣之間的最小採樣週期選擇用於採樣的相。例如,如圖9所示,當「最小週期」參數為0時,排隊系統810在週期3和4中都選擇相2用於採樣。然而,如果「最小週期」參數是1,則排隊系統810在週期3中選擇相2用於採樣,但不會在緊接的下一個週期4中選擇相2,而是選擇相3。Table 1006 indicates which phase the inductor current is sampled from during each sampling period. Unlike the embodiment of Figure 7, in addition to the availability of accurate current samples as specified above in conjunction with the weights of Figure 9, the phase selected for sampling is also based on the minimum sampling period between samples. For example, as shown in Figure 9, when the "minimum period" parameter is 0, the queuing system 810 selects phase 2 for sampling in both periods 3 and 4. However, if the "minimum period" parameter is 1, then the queuing system 810 selects phase 2 for sampling in period 3, but does not select phase 2 in the immediately following period 4, but instead selects phase 3.
圖11是示出根據實施例的示例性設定優先順序的電流採樣方法的流程圖。11 is a flowchart illustrating an exemplary prioritized current sampling method according to an embodiment.
在方塊1102中,排隊系統(例如,810)辨識用於相之間的電流採樣的優先順序參數,諸如PWM波形中的時槽的配置,以及相關聯的權重。如前述,參數還可以包括採樣之間的最大延遲、最小採樣週期等。然後在方塊1104中,針對單個ADC(例如,ADC 812)的每個採樣週期逐個取樣地進行處理。例如,在方塊1106中,排隊系統810在給定時刻(例如,從迴路/調制器806)接收每個相的PWM波形資訊。使用PWM波形資訊和優先順序參數(例如,如結合圖9所述),排隊系統810在方塊1108中決定當前具有最高權重的相。在一些實施例中,最高權重是唯一需要決定的。然而,在方塊1110中,決定是否也應該使用其他標準。如果是,則在方塊1112中,使用其他優先順序參數來決定是否應選擇除了具有最高權重的相之外的不同相用於採樣。如前述,該等其他參數可以包括採樣之間的最大延遲、最小採樣週期等。基於該等其他優先順序參數,具有最高權重的相被確認或被不同的相替換。在任一情況中,在方塊1110之後,在方塊1114中,決定所選相的實際採樣週期,並且如果需要,將其用於調整ADC增益。然後令ADC(例如812)從所選相獲得電感器電流取樣(例如,經由將適當的控制信號發送到多工器814)。如前述,然後可以將電感器電流取樣(以及採樣相的辨識)提供給其他電路,例如電流合成器(例如808)及/或迴路/調制器(例如806)。In block 1102, the queuing system (eg, 810) identifies prioritization parameters for current sampling between phases, such as the configuration of time slots in the PWM waveform, and associated weights. As mentioned above, parameters may also include the maximum delay between samples, the minimum sampling period, etc. In block 1104, processing is then performed on a sample-by-sample basis for each sampling period of a single ADC (eg, ADC 812). For example, in block 1106, the queuing system 810 receives PWM waveform information for each phase at a given time (eg, from the loop/modulator 806). Using the PWM waveform information and priority parameters (eg, as described in connection with FIG. 9 ), the queuing system 810 determines the phase that currently has the highest weight in block 1108 . In some embodiments, the highest weight is the only one that needs to be decided. However, in block 1110, it is decided whether other standards should also be used. If so, then in block 1112, other priority parameters are used to decide whether a different phase should be selected for sampling other than the phase with the highest weight. As mentioned above, the other parameters may include the maximum delay between samples, the minimum sampling period, etc. Based on these other priority parameters, the phase with the highest weight is confirmed or replaced by a different phase. In either case, following block 1110, in block 1114, the actual sampling period of the selected phase is determined and used to adjust the ADC gain, if necessary. The ADC (eg, 812) is then directed to obtain inductor current samples from the selected phase (eg, via sending appropriate control signals to multiplexer 814). As mentioned previously, the inductor current samples (and identification of the sampled phases) can then be provided to other circuits, such as current synthesizers (eg, 808) and/or loop/modulators (eg, 806).
儘管已經參考優選實施例具體描述了本發明的實施例,但是對於本領域技藝人士來說顯而易見的是,在不脫離本發明的精神和範圍的情況下,可以對形式和細節進行改變和修改。所附請求項旨在涵蓋該等改變和修改。Although the embodiments of the present invention have been described in detail with reference to the preferred embodiments, it will be apparent to those skilled in the art that changes and modifications can be made in form and details without departing from the spirit and scope of the invention. The attached request is intended to cover such changes and modifications.
100:降壓調節器 132:比例-積分-微分(PID)控制濾波器 134:脈寬調制器(PWM) 136:輸出控制電路 138:功率電晶體 140:功率電晶體 142:電感器 144:電容器 146:誤差放大器 152:控制器IC 153:電感器 154:輸出級 155:電感器 156:輸出級 160:電容器 162:示例荷載 172:功率FET 174:功率FET 176:功率FET 178:功率FET 280:多相調節器 301:電源 305:記憶體子系統(或記憶體) 307:周邊設備 310:系統積體電路 312:電源控制IC 314:電源控制IC 401:系統 402:系統 403:系統 502:PWM調制器輸出 504:波形 506:波形 508:間隔 510:間隔 602:波形 604:波形 606:精確部分 702:波形 704:波形 706:精確部分 708:行 710:行 802:數位部分 804:類比部分 806:迴路/調制器 808:電流合成器 810:取樣排隊系統 812:電流感測類比數位轉換器(Isen ADC) 816:輸出級 818:發電站 902:波形 904:波形 1002:波形 1004:精確部分 1006:表 1102:方塊 1104:方塊 1106:方塊 1108:方塊 1110:方塊 1112:方塊 1114:方塊 1116:方塊100: Buck regulator 132: Proportional-integral-derivative (PID) control filter 134: Pulse width modulator (PWM) 136:Output control circuit 138:Power transistor 140:Power transistor 142:Inductor 144:Capacitor 146: Error amplifier 152:Controller IC 153:Inductor 154:Output stage 155:Inductor 156:Output stage 160:Capacitor 162:Example load 172:Power FET 174:Power FET 176:Power FET 178:Power FET 280:Polyphase regulator 301:Power supply 305: Memory subsystem (or memory) 307: Peripheral equipment 310:System Integrated Circuits 312:Power control IC 314:Power control IC 401: System 402: System 403:System 502:PWM modulator output 504: Waveform 506: Waveform 508:Interval 510:interval 602: Waveform 604: Waveform 606:Precise part 702: Waveform 704: Waveform 706:Precise part 708: OK 710: OK 802:Digital part 804: Analogy part 806: Loop/Modulator 808:Current synthesizer 810: Sampling queuing system 812: Current Sensing Analog-to-Digital Converter (Isen ADC) 816:Output stage 818:Power station 902: Waveform 904: Waveform 1002:Waveform 1004:Exact part 1006:Table 1102: Square 1104:block 1106: Square 1108:block 1110: Square 1112: Square 1114:block 1116: Square
經由結合附圖閱讀以下具體實施例的描述,本發明的該等和其他態樣和特徵對於本領域一般技藝人士將變得顯而易見,其中:These and other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon reading the following description of specific embodiments in conjunction with the accompanying drawings, in which:
圖1是根據實施例的控制器的示例系統方塊圖;Figure 1 is an example system block diagram of a controller according to an embodiment;
圖2是示出諸如圖1中所示的控制器的示例實施方式的方塊圖;Figure 2 is a block diagram illustrating an example implementation of a controller such as that shown in Figure 1;
圖3是示出具有電源的示例系統的方塊圖,該電源包括諸如圖1中所示的控制器;Figure 3 is a block diagram illustrating an example system having a power supply including a controller such as that shown in Figure 1;
圖4圖示包含諸如圖3中所示的電源的示例計算系統;Figure 4 illustrates an example computing system including a power supply such as that shown in Figure 3;
圖5提供了說明控制器中的電感器電流採樣的各態樣的波形圖;Figure 5 provides waveform diagrams illustrating various aspects of inductor current sampling in the controller;
圖6提供了說明根據實施例的共享電感器電流採樣技術的各態樣的波形圖;6 provides waveform diagrams illustrating aspects of a shared inductor current sampling technique in accordance with embodiments;
圖7提供了示出根據實施例的示例性設定優先順序的電感器電流採樣技術的各態樣的波形圖;7 provides waveform diagrams illustrating aspects of an exemplary prioritized inductor current sampling technique in accordance with an embodiment;
圖8是示出可以實現本發明的實施例的示例控制器的方塊圖;8 is a block diagram illustrating an example controller that may implement embodiments of the invention;
圖9是示出如何實現根據實施例的設定優先順序的電感器電流採樣技術的示例的時序圖;9 is a timing diagram illustrating an example of how to implement a prioritized inductor current sampling technique in accordance with an embodiment;
圖10提供了說明根據實施例的另一示例性設定優先順序的電感器電流採樣技術的各態樣的波形圖;及10 provides waveform diagrams illustrating aspects of another exemplary prioritized inductor current sampling technique in accordance with an embodiment; and
圖11是示出根據本實施例的示例性方法的流程圖。FIG. 11 is a flowchart illustrating an exemplary method according to the present embodiment.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date and number) without
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Overseas storage information (please note in order of storage country, institution, date, and number) without
100:降壓調節器 100: Buck regulator
132:比例-積分-微分(PID)控制濾波器 132: Proportional-integral-derivative (PID) control filter
134:脈寬調制器(PWM) 134: Pulse width modulator (PWM)
136:輸出控制電路 136:Output control circuit
138:功率電晶體 138:Power transistor
140:功率電晶體 140:Power transistor
142:電感器 142:Inductor
144:電容器 144:Capacitor
146:誤差放大器 146: Error amplifier
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108109515A TWI817998B (en) | 2019-03-20 | 2019-03-20 | Predictive sample queueing for time-shared adc in a multiphase pwm controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108109515A TWI817998B (en) | 2019-03-20 | 2019-03-20 | Predictive sample queueing for time-shared adc in a multiphase pwm controller |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202037080A TW202037080A (en) | 2020-10-01 |
TWI817998B true TWI817998B (en) | 2023-10-11 |
Family
ID=74091100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108109515A TWI817998B (en) | 2019-03-20 | 2019-03-20 | Predictive sample queueing for time-shared adc in a multiphase pwm controller |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI817998B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11935577B2 (en) | 2022-02-08 | 2024-03-19 | Faraday Technology Corp. | Physical interface and associated signal processing method for clock domain transfer of quarter-rate data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110012687A1 (en) * | 2009-07-16 | 2011-01-20 | University Of Limerick | Digital pulse width modulator |
US20130270910A1 (en) * | 2008-01-11 | 2013-10-17 | Kabushiki Kaisha Toshiba | Semiconductor device |
US20140167833A1 (en) * | 2012-12-13 | 2014-06-19 | Chengdu Monolithic Power Systems Co., Ltd. | Digital controllers and digital control methods of multi-phase switching converters |
TWI465044B (en) * | 2004-08-23 | 2014-12-11 | Microchip Tech Inc | Digital processor with pulse width modulation module having dynamically adjustable phase offset capability, high speed operation and simultaneous update of multiple pulse width modulation duty cycle registers |
-
2019
- 2019-03-20 TW TW108109515A patent/TWI817998B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI465044B (en) * | 2004-08-23 | 2014-12-11 | Microchip Tech Inc | Digital processor with pulse width modulation module having dynamically adjustable phase offset capability, high speed operation and simultaneous update of multiple pulse width modulation duty cycle registers |
US20130270910A1 (en) * | 2008-01-11 | 2013-10-17 | Kabushiki Kaisha Toshiba | Semiconductor device |
US20110012687A1 (en) * | 2009-07-16 | 2011-01-20 | University Of Limerick | Digital pulse width modulator |
US20140167833A1 (en) * | 2012-12-13 | 2014-06-19 | Chengdu Monolithic Power Systems Co., Ltd. | Digital controllers and digital control methods of multi-phase switching converters |
Also Published As
Publication number | Publication date |
---|---|
TW202037080A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2920872B1 (en) | Feed forward current mode switching regulator with improved transient response | |
US7453250B2 (en) | PWM controller with dual-edge modulation using dual ramps | |
TWI828670B (en) | Apparatus, method, and system for sampling signals in a power controller | |
USRE46419E1 (en) | Active pulse positioning modulator | |
US8085017B2 (en) | Pulse adding scheme for smooth phase dropping at light load conditions for multiphase voltage regulators | |
US9312772B2 (en) | Current limiting scheme for a converter | |
US8541993B2 (en) | DC-DC converters operable in a discontinuous switching mode | |
CN103378734B (en) | Semiconductor device, power-supply device and the method for controlling power-supply device | |
CN110326206A (en) | Fixed frequency DC-DC converter | |
US9641076B2 (en) | Switching regulators | |
TW201230671A (en) | Clock phase shifter for use with buck-boost converter | |
JP2016535967A (en) | Feedback control in hybrid voltage regulators | |
US11973423B2 (en) | Switching converter with pulse truncation control | |
TWI280728B (en) | N-phase integrated buck converter | |
CN110308320B (en) | Predictive sample queuing for time-sharing ADC in multiphase PWM controllers | |
CN106953520A (en) | Digitally Controlled Buck‑Boost Regulators | |
JP2008263714A (en) | DC-DC converter control circuit, DC-DC converter, and power supply voltage supply method | |
JP2015061497A (en) | Power supply | |
TWI817998B (en) | Predictive sample queueing for time-shared adc in a multiphase pwm controller | |
US9143034B2 (en) | DC-DC controller and multi-ramp signal operating method thereof | |
CN112748757A (en) | DAC control logic for controlling a DAC | |
Nozaki et al. | Time delay reduction for improving transient response of digital controlled POL using DSP |