TWI817848B - Method for obtaining three-dimensional vein information based on binocular stereo vision - Google Patents
Method for obtaining three-dimensional vein information based on binocular stereo vision Download PDFInfo
- Publication number
- TWI817848B TWI817848B TW111145528A TW111145528A TWI817848B TW I817848 B TWI817848 B TW I817848B TW 111145528 A TW111145528 A TW 111145528A TW 111145528 A TW111145528 A TW 111145528A TW I817848 B TWI817848 B TW I817848B
- Authority
- TW
- Taiwan
- Prior art keywords
- vein
- infrared light
- information
- target
- position information
- Prior art date
Links
- 210000003462 vein Anatomy 0.000 title claims abstract description 271
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 230000011218 segmentation Effects 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 51
- 230000008320 venous blood flow Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000012549 training Methods 0.000 claims description 8
- 238000010801 machine learning Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 abstract description 7
- 239000007924 injection Substances 0.000 abstract description 7
- 230000017531 blood circulation Effects 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000002642 intravenous therapy Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000968 medical method and process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Image Generation (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一種基於雙目立體視覺的靜脈三維資訊獲得方法,該方法包含以下步驟:拍攝一病患的一手臂,以分別獲得一第一紅外光影像,及一第二紅外光影像;根據該第一紅外光影像及該第二紅外光影像,利用一靜脈分割模型,獲得多筆第一靜脈位置資訊,及多筆第二靜脈位置資訊;根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一第一目標靜脈位置資訊,及一第二目標靜脈位置資訊;及根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及一外部參數矩陣,獲得一目標靜脈三維資訊。醫務人員正確地掌握注射的深度,以提高注射成功機率。 A method for obtaining three-dimensional vein information based on binocular stereo vision. The method includes the following steps: photographing an arm of a patient to obtain a first infrared light image and a second infrared light image respectively; according to the first infrared light image The light image and the second infrared light image use a vein segmentation model to obtain multiple pieces of first vein position information and multiple pieces of second vein position information; based on the first vein position information and the second vein position information , obtain a first target vein position information, and a second target vein position information; and obtain a target vein three-dimensional information based on the first target vein position information, the second target vein position information, and an external parameter matrix. Medical staff correctly grasp the depth of injection to increase the chance of successful injection.
Description
本發明是有關於一種建立電腦繪圖之3D模型的方法,特別是指一種基於雙目立體視覺的靜脈三維資訊獲得方法。 The present invention relates to a method of establishing a 3D model for computer graphics, and in particular, to a method of obtaining three-dimensional vein information based on binocular stereo vision.
靜脈注射(Intravenous therapy,IV)是一種醫療方法,即把血液、藥液、營養液等液體物質直接注射到靜脈中。由於人體淺層皮下組織較多,在靜脈注射過程中會受到,例如血管細小、脂肪層厚度、皮膚色素含量等因素的影響,導致在靜脈注射時醫務人員找不到血管,因此靜脈注射的難度相當大。 Intravenous therapy (IV) is a medical method that injects liquid substances such as blood, medicinal solutions, and nutritional solutions directly into the veins. Since there are many superficial subcutaneous tissues in the human body, the intravenous injection process will be affected by factors such as small blood vessels, fat layer thickness, and skin pigment content. As a result, medical staff cannot find blood vessels during intravenous injection, so intravenous injection is difficult. Quite big.
然而,即使手臂能清楚顯現血管,也只能得知血管的二維資訊,醫務人員依然無法正確地掌握注射的深度,故經驗豐富的醫務人員也未必能一次性注射成功,而靜脈注射失敗不僅會增加病人的痛苦,還會增加醫療糾紛的頻率。 However, even if the blood vessels can be clearly displayed in the arm, only two-dimensional information of the blood vessels can be obtained, and medical staff still cannot correctly grasp the depth of the injection. Therefore, experienced medical staff may not be able to successfully inject in one go. Failure of intravenous injection is not only It will increase the patient's pain and increase the frequency of medical disputes.
因此,本發明的目的,即在提供一種能獲得靜脈三維資 訊的基於雙目立體視覺的靜脈三維資訊獲得方法。 Therefore, the object of the present invention is to provide a method that can obtain three-dimensional intravenous data. A method for obtaining three-dimensional vein information based on binocular stereo vision.
於是,本發明基於雙目立體視覺的靜脈三維資訊獲得方法,適用於獲得一病患的一手臂的靜脈三維資訊,由一顯像系統來實施,該顯像系統包括一第一紅外光拍攝模組、一第二紅外光拍攝模組,及一電連接該第一紅外光拍攝模組及該第二紅外光拍攝模組的處理模組,該方法包含以下步驟。 Therefore, the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention is suitable for obtaining three-dimensional vein information of an arm of a patient, and is implemented by an imaging system, which includes a first infrared light photography module. A set, a second infrared light photography module, and a processing module electrically connected to the first infrared light photography module and the second infrared light photography module. The method includes the following steps.
該第一紅外光拍攝模組及該第二紅外光拍攝模組分別拍攝該病患的該手臂,以分別獲得一第一紅外光影像,及一第二紅外光影像。 The first infrared light photography module and the second infrared light photography module respectively capture the patient's arm to obtain a first infrared light image and a second infrared light image respectively.
該處理模組根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得一紅外光影像中靜脈位置的靜脈分割模型,獲得多筆分別對應在該第一紅外光影像中的多個靜脈的第一靜脈位置資訊,及多筆分別對應在該第二紅外光影像中的該等靜脈的第二靜脈位置資訊。 The processing module uses a vein segmentation model for obtaining the location of veins in an infrared image based on the first infrared image and the second infrared image to obtain a plurality of strokes corresponding to the first infrared image. First vein position information of a plurality of veins, and a plurality of second vein position information respectively corresponding to the veins in the second infrared light image.
該處理模組根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一對應在該第一紅外光影像中的該等靜脈之一目標靜脈的第一目標靜脈位置資訊,及一對應在該第二紅外光影像中的該目標靜脈的第二目標靜脈位置資訊。 The processing module obtains first target vein position information corresponding to one of the target veins in the first infrared light image based on the first vein position information and the second vein position information, and a Second target vein position information corresponding to the target vein in the second infrared image.
該處理模組根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及一相關於該第二紅外光拍攝模組的外部參數矩 陣,獲得一相關於該目標靜脈的目標靜脈三維資訊。 The processing module is based on the first target vein position information, the second target vein position information, and an external parameter matrix related to the second infrared light photography module. array to obtain a target vein three-dimensional information related to the target vein.
本發明之功效在於:藉由該處理模組根據該第一紅外光影像及該第二紅外光影像,利用該靜脈分割模型獲得該第一靜脈位置資訊及該第二靜脈位置資訊,並根據該第一靜脈位置資訊及該第二靜脈位置資訊獲得該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,再根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得該目標靜脈三維資訊,使醫務人員正確地掌握注射的深度,以提高注射成功機率。 The effect of the present invention is that: the processing module uses the vein segmentation model to obtain the first vein position information and the second vein position information based on the first infrared image and the second infrared image, and based on the The first target vein position information and the second target vein position information are obtained from the first target vein position information and the second target vein position information, and then based on the first target vein position information, the second target vein position information, and the external The parameter matrix can obtain the three-dimensional information of the target vein, allowing medical staff to correctly grasp the depth of injection to increase the probability of successful injection.
1:顯像系統 1:Imaging system
11:第一紅外光拍攝模組 11: The first infrared light shooting module
12:第二紅外光拍攝模組 12: The second infrared light shooting module
13:處理模組 13: Processing module
100:手臂 100:arm
21~24:設備初始程序 21~24: Equipment initialization program
31~36:靜脈三維資訊獲得程序 31~36: Procedure for obtaining three-dimensional vein information
351~353:子步驟 351~353: Sub-steps
361~362:子步驟 361~362: Sub-steps
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明用以實施本發明基於雙目立體視覺的靜脈三維資訊獲得方法的一實施例之一顯像系統;圖2是一流程圖,本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之一設備初始程序;圖3是一流程圖,本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之一靜脈三維資訊獲得程序;圖4是一流程圖,輔助說明圖3步驟35之子步驟;及圖5是一流程圖,輔助說明圖3步驟36之子步驟。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a schematic diagram illustrating an implementation of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention. An example of an imaging system; Figure 2 is a flowchart of an equipment initialization procedure of an embodiment of a vein three-dimensional information acquisition method based on binocular stereoscopic vision of the present invention; Figure 3 is a flowchart of an equipment initialization procedure of the present invention based on binocular stereoscopic vision One embodiment of the visual vein three-dimensional information acquisition method is a vein three-dimensional information acquisition procedure; Figure 4 is a flow chart to assist in explaining the sub-steps of step 35 in Figure 3; and Figure 5 is a flow chart to assist in explaining the sub-steps of step 36 in Figure 3 steps.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated with the same numbering.
參閱圖1,用以實施本發明基於雙目立體視覺的靜脈三維資訊獲得方法的一實施例之一顯像系統1,該顯像系統1包含一第一紅外光拍攝模組11、一焦距與該第一紅外光拍攝模組11相同的第二紅外光拍攝模組12、一電連接該第一紅外光拍攝模組11及該第二紅外光拍攝模組12的處理模組13。
Referring to Figure 1, an
在本實施例中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12為雙目攝像頭,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12的視野(field of view,FOV)例如為110度,焦距例如為3公厘,拍攝距離例如小於20公分,波長範圍例如為780奈米~940奈米,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12所拍攝的影像即為雙目影像,但不以此為限。
In this embodiment, the first infrared
本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例包含一設備初始程序及一靜脈三維資訊獲得程序。 This embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention includes an equipment initialization program and a three-dimensional vein information obtaining program.
參閱圖1、2,以下說明本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之該設備初始程序。 Referring to Figures 1 and 2, the following describes the initial procedure of the equipment of this embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention.
在步驟21中,該第一紅外光拍攝模組11及該第二紅外光
拍攝模組12分別拍攝一目標物,以分別獲得多張第一紅外光目標物影像,及多張第二紅外光目標物影像。
In step 21, the first infrared
值得注意的是,在本實施例中,該第一紅外光拍攝模組11例如拍攝12張第一紅外光目標物影像,該第二紅外光拍攝模組12例如拍攝12張第二紅外光目標物影像,但不以此為限。
It is worth noting that in this embodiment, the first infrared
在步驟22中,該第一紅外光拍攝模組11根據該等第一紅外光目標物影像進行內外部參數校正,且該第二紅外光拍攝模組12根據該等第二紅外光目標物影像進行內外部參數校正。
In step 22, the first infrared
在步驟23中,校正後的該第一紅外光拍攝模組11及該第二紅外光拍攝模組12分別拍攝該目標物,以分別獲得多張第一紅外光校正影像,及多張第二紅外光校正影像。
In step 23, the corrected first infrared
值得注意的是,在本實施例中,校正後的該第一紅外光拍攝模組11例如拍攝12張第一紅外光校正影像,校正後的該第二紅外光拍攝模組12例如拍攝12張第二紅外光校正影像,但不以此為限。
It is worth noting that in this embodiment, the corrected first infrared
在步驟24中,該處理模組13根據該等第一紅外光校正影像及該等第二紅外光校正影像,及一相關於該第二紅外光拍攝模組12的內部參數矩陣,獲得該外部參數矩陣。
In step 24 , the
該外部參數矩陣是由下式所獲得:
詳細而言,該處理模組13將一相關於該第一紅外光拍攝模組11的第一紅外光拍攝模組坐標系作為該世界坐標系,即將該第一紅外光拍攝模組11的焦點作為該世界坐標系的原點。對於每一第一紅外光校正影像,該處理模組13根據該第一紅外光校正影像,獲得該目標物在拍攝時的及,並根據該第一紅外光拍攝模組11的焦距以相似三角形獲得該目標物在拍攝時的。對於每一第二紅外光校正影像,該處理模組13根據該第二紅外光校正影像,獲得(,)。最後根據每一第一紅外光校正影像及第二紅外光校正影像所獲得的(,,)、(,)及已知的該第二紅外光拍攝模組12的焦距,以線性回歸求得該外部參數矩陣。
Specifically, the
參閱圖1、3,以下說明本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之該靜脈三維資訊獲得程序。 Referring to Figures 1 and 3, the following describes the procedure for obtaining three-dimensional vein information according to this embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention.
在步驟31中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12分別拍攝一病患的一手臂100,以分別獲得一第一紅外光影像,及一第二紅外光影像。
In step 31, the first infrared
在步驟32中,該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得雙目影像中手臂角度的手臂角度模型,獲得一相關於該手臂100的角度資訊。
In step 32 , the
值得注意的是,在本實施例中,該手臂角度模型是由該處理模組13根據多筆手臂角度訓練資料,利用一機器學習演算法所建立,其中每一筆手臂角度訓練資料包括二雙目影像,及一角度標註,該機器學習演算法例如為卷積神經網路(Convolutional Neural Network,CNN)、殘差神經網路(Residual neural network,ResNet)、全卷積神經網路(Fully Convolutional Network,FCN),或U-Net等神經網路演算法,但不以此為限。
It is worth noting that in this embodiment, the arm angle model is established by the
在步驟33中,該處理模組13判定該角度資訊是否符合一預定條件。當判定出該角度資訊符合該預定條件時,流程進行步驟34;而當判定出該角度資訊不符合該預定條件時,則重複步驟31~33。
In step 33, the
值得注意的是,在本實施例中,該角度資訊包括一偏轉 角度(deflection angle),該預定條件為該偏轉角度小於一閾值,該閾值例如為90度,但不以此為限。 It is worth noting that in this embodiment, the angle information includes a deflection Angle (deflection angle), the predetermined condition is that the deflection angle is less than a threshold, the threshold is, for example, 90 degrees, but is not limited to this.
要特別注意的是,該處理模組13獲得該角度資訊並判定該角度資訊是否符合該預定條件,以確認該病患的手臂100是否正確放置到拍攝平台,在其他實施方式中,亦可不用確認該病患的手臂100是否正確放置到拍攝平台,即省略步驟32、33,直接進行步驟34。
It should be noted that the
在步驟34中,該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得一紅外光影像中靜脈位置的靜脈分割模型,獲得多筆分別對應在該第一紅外光影像中的多個靜脈的第一靜脈位置資訊,及多筆分別對應在該第二紅外光影像中的該等靜脈的第二靜脈位置資訊。
In step 34 , the
值得注意的是,在本實施例中,每一第一靜脈位置資訊包括所對應的靜脈在該第一紅外光影像的多個像素點位置,每一第二靜脈位置資訊包括所對應的靜脈在該第二紅外光影像的多個像素點位置。該靜脈分割模型是由該處理模組13根據多筆靜脈分割訓練資料,利用該機器學習演算法所建立,其中每一筆靜脈分割訓練資料包括一標註有至少一靜脈區域的紅外光靜脈影像。
It is worth noting that in this embodiment, each first vein position information includes a plurality of pixel positions of the corresponding vein in the first infrared image, and each second vein position information includes a corresponding vein at a plurality of pixel positions in the first infrared image. Multiple pixel positions of the second infrared image. The vein segmentation model is established by the
在步驟35中,該處理模組13根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一對應在該第一紅外光影像中的該
等靜脈之一目標靜脈的第一目標靜脈位置資訊,及一對應在該第二紅外光影像中的該目標靜脈的第二目標靜脈位置資訊。
In step 35, the
搭配參閱圖4,步驟35包括以下子步驟:在子步驟351中,該處理模組13根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得多筆分別對應該等第一靜脈位置資訊的第一靜脈特徵資訊,及多筆分別對應該等第二靜脈位置資訊的第二靜脈特徵資訊。
Referring to Figure 4, step 35 includes the following sub-steps: In sub-step 351, the
在子步驟352中,該處理模組13根據該等第一靜脈特徵資訊及該等第二靜脈特徵資訊,從該等靜脈中獲得該目標靜脈。
In sub-step 352, the
值得注意的是,在本實施例中,每一第一靜脈特徵資訊包括一第一靜脈孔徑、一第一靜脈血流方向,及一第一靜脈血流方向法向量。每一第二靜脈特徵資訊包括一第二靜脈孔徑、一第二靜脈血流方向,及一第二靜脈血流方向法向量。該第一靜脈孔徑及該第二靜脈孔徑為所對應的靜脈之邊緣橫方向或邊緣縱方向的寬度。對於每一靜脈,該處理模組13獲得該靜脈之邊緣橫方向或邊緣縱方向座標的一中心,再利用該中心到該靜脈的一端點獲得該第一靜脈血流方向及該第二靜脈血流方向,在獲得垂直於該第一靜脈血流方向的該第一靜脈血流方向法向量,及垂直於該第二靜脈血流方向的該第二靜脈血流方向法向量,根據該第一靜脈孔徑、該第一靜脈血流方向、該第一靜脈血流方向法向量、該第二靜脈孔徑、該第二靜
脈血流方向,及該第二靜脈血流方向法向量,以例如高斯混合模型(Gaussian Mixture Model))估算出該靜脈的一靜脈深度,最後根據該等靜脈對應的靜脈深度獲得該目標靜脈,但不以此為限。
It is worth noting that in this embodiment, each first vein characteristic information includes a first vein aperture, a first vein blood flow direction, and a first vein blood flow direction normal vector. Each second vein characteristic information includes a second vein aperture, a second vein blood flow direction, and a second vein blood flow direction normal vector. The first vein aperture and the second vein aperture are the widths of the corresponding veins in the edge transverse direction or the edge longitudinal direction. For each vein, the
在子步驟353中,該處理模組13獲得該目標靜脈對應的該第一目標靜脈位置資訊、該第二目標靜脈位置資訊。
In sub-step 353, the
舉例來說,在步驟34中,該處理模組13從該第一紅外光影像獲得對應一靜脈A的一第一靜脈位置資訊A、對應一靜脈B的一第一靜脈位置資訊B,及對應一靜脈C的一第一靜脈位置資訊C,並從及該第二紅外光影像獲得對應該靜脈A的一第二靜脈位置資訊A、對應該靜脈B的一第二靜脈位置資訊B,及對應該靜脈C的一第二靜脈位置資訊C。
For example, in step 34, the
在子步驟351中,該處理模組13分別根據該第一靜脈位置資訊A、該第一靜脈位置資訊B、該第一靜脈位置資訊C、該第二靜脈位置資訊A、該第二靜脈位置資訊B,及該第二靜脈位置資訊C,獲得一第一靜脈特徵資訊A、一第一靜脈特徵資訊B、一第一靜脈特徵資訊C、一第二靜脈特徵資訊A、一第二靜脈特徵資訊B,及一第二靜脈特徵資訊C。
In sub-step 351, the
在子步驟352中,該處理模組13根據該第一靜脈特徵資訊A及該第二靜脈特徵資訊A獲得一靜脈深度A,根據該第一靜脈特徵資訊B及該第二靜脈特徵資訊B獲得一靜脈深度B,根據該第一
靜脈特徵資訊C及該第二靜脈特徵資訊C獲得一靜脈深度C。其中,該靜脈深度B為最佳,因此,該處理模組13從該等靜脈A、B、C中將該靜脈B作為該目標靜脈,並在子步驟353中,該處理模組13將該第一靜脈位置資訊B作為該第一目標靜脈位置資訊,且將該第二靜脈位置資訊B作為該第二目標靜脈位置資訊。
In sub-step 352, the
在步驟36中,該處理模組13根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得一相關於該目標靜脈的目標靜脈三維資訊,該目標靜脈三維資訊包括一相關於該目標靜脈的目標靜脈深度資訊。
In step 36, the
要特別注意的是,在本實施例得該設備初始程序中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12有進行內外部參數校正,因此該外部參數矩陣是有校正過的,在其他實施方式中,可不進行該設備初始程序,直接進行該靜脈三維資訊獲得程序,則該外部參數矩陣為沒有校正過的。
It should be particularly noted that in the initialization process of the device in this embodiment, the first infrared
搭配參閱圖5,步驟35包括以下子步驟:在子步驟361中,該處理模組13根據該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,獲得多個位於一對應該第一紅外光拍攝模組11的第一成像平面座標系的第一目標靜脈座標,及多個位於一對應該第二紅外光拍攝模組12的第二成像平面座標系的第二目標靜脈座標。
Referring to FIG. 5 , step 35 includes the following sub-steps: In sub-step 361 , the
值得注意的是,在本實施例中,該處理模組13是將該第一目標靜脈位置資訊及該第二目標靜脈位置資訊進行一特徵點匹配(Feature Matching)、一影像縫合(image stitching),及一區塊偵測,以獲得該等第一目標靜脈座標及該等第二目標靜脈座標,其中,該特徵點匹配、該影像縫合,及該區塊偵測是以尺度不變特徵轉換(Scale-invariant feature transform,SIFT)演算法來實現,但不以此為限。
It is worth noting that in this embodiment, the
在子步驟362中,該處理模組13根據該等第一目標靜脈座標、該等第二目標靜脈座標,及該外部參數矩陣獲得該靜脈深度資訊。
In sub-step 362, the
值得注意的是,該處理模組13是根據下式獲得該靜脈深度資訊:
要再注意的是,在獲得該目標靜脈三維資訊後,該處理模組13可利用物件追蹤演算法,由後續該第一紅外光拍攝模組11
及該第二紅外光拍攝模組12拍攝的影像追蹤該目標靜脈。
It should be noted again that after obtaining the three-dimensional information of the target vein, the
綜上所述,本發明基於雙目立體視覺的靜脈三維資訊獲得方法,藉由該處理模組13根據該角度資訊判定該角度資訊是否符合該預定條件,以確認該病患的手臂100是否正確放置到拍攝平台,且藉由該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用該靜脈分割模型獲得該第一靜脈位置資訊及該第二靜脈位置資訊,並根據該第一靜脈位置資訊及該第二靜脈位置資訊獲得該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,再根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得該目標靜脈三維資訊,使醫務人員正確地掌握注射的深度,以提高注射成功機率,故確實能達成本發明的目的。
To sum up, the method of obtaining three-dimensional vein information based on binocular stereo vision of the present invention uses the
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. within the scope covered by the patent of this invention.
31~36:靜脈三維資訊獲得程序 31~36: Procedure for obtaining three-dimensional vein information
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110144645 | 2021-11-30 | ||
TW110144645 | 2021-11-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202322767A TW202322767A (en) | 2023-06-16 |
TWI817848B true TWI817848B (en) | 2023-10-01 |
Family
ID=87803888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111145528A TWI817848B (en) | 2021-11-30 | 2022-11-28 | Method for obtaining three-dimensional vein information based on binocular stereo vision |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI817848B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075836A (en) * | 1997-07-03 | 2000-06-13 | University Of Rochester | Method of and system for intravenous volume tomographic digital angiography imaging |
CN109758136A (en) * | 2019-02-28 | 2019-05-17 | 四川大学华西医院 | A method for measuring hepatic venous pressure gradient based on the characteristics of portal vessels |
CN111507206A (en) * | 2020-03-29 | 2020-08-07 | 杭州电子科技大学 | A Finger Vein Recognition Method Based on Multi-scale Local Feature Fusion |
CN113658238A (en) * | 2021-08-23 | 2021-11-16 | 重庆大学 | Near-infrared vein image high-precision matching method based on improved feature detection |
-
2022
- 2022-11-28 TW TW111145528A patent/TWI817848B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6075836A (en) * | 1997-07-03 | 2000-06-13 | University Of Rochester | Method of and system for intravenous volume tomographic digital angiography imaging |
CN109758136A (en) * | 2019-02-28 | 2019-05-17 | 四川大学华西医院 | A method for measuring hepatic venous pressure gradient based on the characteristics of portal vessels |
CN111507206A (en) * | 2020-03-29 | 2020-08-07 | 杭州电子科技大学 | A Finger Vein Recognition Method Based on Multi-scale Local Feature Fusion |
CN113658238A (en) * | 2021-08-23 | 2021-11-16 | 重庆大学 | Near-infrared vein image high-precision matching method based on improved feature detection |
Also Published As
Publication number | Publication date |
---|---|
TW202322767A (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12266155B2 (en) | Feature point detection | |
US7965905B2 (en) | Device, method and system for automatic stabilization of a series of retinal images | |
CN107041729A (en) | Binocular near infrared imaging system and blood vessel recognition methods | |
CN110288653B (en) | A multi-angle ultrasound image fusion method, system and electronic device | |
CN106575439A (en) | Image registration device, image registration method, and image registration program | |
Liu et al. | Global and local panoramic views for gastroscopy: an assisted method of gastroscopic lesion surveillance | |
CN109166177A (en) | Air navigation aid in a kind of art of craniomaxillofacial surgery | |
CN111544037B (en) | Ultrasonic positioning method and system based on binocular vision | |
Niri et al. | Multi-view data augmentation to improve wound segmentation on 3d surface model by deep learning | |
Richa et al. | Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging | |
CN116807577B (en) | Full-automatic venipuncture equipment and full-automatic venipuncture method | |
WO2024113275A1 (en) | Gaze point acquisition method and apparatus, electronic device, and storage medium | |
CN106510626A (en) | Human body superficial layer vein three-dimensional reconstruction device and method based on binocular stereoscopic vision | |
CN109766007A (en) | A kind of the blinkpunkt compensation method and compensation device, display equipment of display equipment | |
CN106455956A (en) | Reconstruction of images from an in vivo multi-camera capsule with confidence matching | |
Leli et al. | Near-infrared-to-visible vein imaging via convolutional neural networks and reinforcement learning | |
CN110532933A (en) | A kind of living body faces detection head pose returns the acquisition methods and detection method of device | |
Benalcazar et al. | A 3D iris scanner from multiple 2D visible light images | |
TWI817848B (en) | Method for obtaining three-dimensional vein information based on binocular stereo vision | |
KR20160057024A (en) | Markerless 3D Object Tracking Apparatus and Method therefor | |
CN111292410B (en) | A vein imaging device and method for generating a three-dimensional panoramic model | |
CN112075981B (en) | Venipuncture robot control method, device and computer-readable storage medium | |
TWI817847B (en) | Method, computer program and computer readable medium for fast tracking and positioning objects in augmented reality and mixed reality | |
CN118710712A (en) | Surgical instrument tracking methods, systems, devices, media and products | |
CN111784749A (en) | A spatial positioning and motion analysis system based on binocular vision |