[go: up one dir, main page]

TWI817848B - Method for obtaining three-dimensional vein information based on binocular stereo vision - Google Patents

Method for obtaining three-dimensional vein information based on binocular stereo vision Download PDF

Info

Publication number
TWI817848B
TWI817848B TW111145528A TW111145528A TWI817848B TW I817848 B TWI817848 B TW I817848B TW 111145528 A TW111145528 A TW 111145528A TW 111145528 A TW111145528 A TW 111145528A TW I817848 B TWI817848 B TW I817848B
Authority
TW
Taiwan
Prior art keywords
vein
infrared light
information
target
position information
Prior art date
Application number
TW111145528A
Other languages
Chinese (zh)
Other versions
TW202322767A (en
Inventor
彭百君
謝一鋒
張銘方
Original Assignee
裕隆汽車製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕隆汽車製造股份有限公司 filed Critical 裕隆汽車製造股份有限公司
Publication of TW202322767A publication Critical patent/TW202322767A/en
Application granted granted Critical
Publication of TWI817848B publication Critical patent/TWI817848B/en

Links

Images

Landscapes

  • Image Generation (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一種基於雙目立體視覺的靜脈三維資訊獲得方法,該方法包含以下步驟:拍攝一病患的一手臂,以分別獲得一第一紅外光影像,及一第二紅外光影像;根據該第一紅外光影像及該第二紅外光影像,利用一靜脈分割模型,獲得多筆第一靜脈位置資訊,及多筆第二靜脈位置資訊;根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一第一目標靜脈位置資訊,及一第二目標靜脈位置資訊;及根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及一外部參數矩陣,獲得一目標靜脈三維資訊。醫務人員正確地掌握注射的深度,以提高注射成功機率。 A method for obtaining three-dimensional vein information based on binocular stereo vision. The method includes the following steps: photographing an arm of a patient to obtain a first infrared light image and a second infrared light image respectively; according to the first infrared light image The light image and the second infrared light image use a vein segmentation model to obtain multiple pieces of first vein position information and multiple pieces of second vein position information; based on the first vein position information and the second vein position information , obtain a first target vein position information, and a second target vein position information; and obtain a target vein three-dimensional information based on the first target vein position information, the second target vein position information, and an external parameter matrix. Medical staff correctly grasp the depth of injection to increase the chance of successful injection.

Description

基於雙目立體視覺的靜脈三維資訊獲得方法 Method for obtaining three-dimensional vein information based on binocular stereo vision

本發明是有關於一種建立電腦繪圖之3D模型的方法,特別是指一種基於雙目立體視覺的靜脈三維資訊獲得方法。 The present invention relates to a method of establishing a 3D model for computer graphics, and in particular, to a method of obtaining three-dimensional vein information based on binocular stereo vision.

靜脈注射(Intravenous therapy,IV)是一種醫療方法,即把血液、藥液、營養液等液體物質直接注射到靜脈中。由於人體淺層皮下組織較多,在靜脈注射過程中會受到,例如血管細小、脂肪層厚度、皮膚色素含量等因素的影響,導致在靜脈注射時醫務人員找不到血管,因此靜脈注射的難度相當大。 Intravenous therapy (IV) is a medical method that injects liquid substances such as blood, medicinal solutions, and nutritional solutions directly into the veins. Since there are many superficial subcutaneous tissues in the human body, the intravenous injection process will be affected by factors such as small blood vessels, fat layer thickness, and skin pigment content. As a result, medical staff cannot find blood vessels during intravenous injection, so intravenous injection is difficult. Quite big.

然而,即使手臂能清楚顯現血管,也只能得知血管的二維資訊,醫務人員依然無法正確地掌握注射的深度,故經驗豐富的醫務人員也未必能一次性注射成功,而靜脈注射失敗不僅會增加病人的痛苦,還會增加醫療糾紛的頻率。 However, even if the blood vessels can be clearly displayed in the arm, only two-dimensional information of the blood vessels can be obtained, and medical staff still cannot correctly grasp the depth of the injection. Therefore, experienced medical staff may not be able to successfully inject in one go. Failure of intravenous injection is not only It will increase the patient's pain and increase the frequency of medical disputes.

因此,本發明的目的,即在提供一種能獲得靜脈三維資 訊的基於雙目立體視覺的靜脈三維資訊獲得方法。 Therefore, the object of the present invention is to provide a method that can obtain three-dimensional intravenous data. A method for obtaining three-dimensional vein information based on binocular stereo vision.

於是,本發明基於雙目立體視覺的靜脈三維資訊獲得方法,適用於獲得一病患的一手臂的靜脈三維資訊,由一顯像系統來實施,該顯像系統包括一第一紅外光拍攝模組、一第二紅外光拍攝模組,及一電連接該第一紅外光拍攝模組及該第二紅外光拍攝模組的處理模組,該方法包含以下步驟。 Therefore, the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention is suitable for obtaining three-dimensional vein information of an arm of a patient, and is implemented by an imaging system, which includes a first infrared light photography module. A set, a second infrared light photography module, and a processing module electrically connected to the first infrared light photography module and the second infrared light photography module. The method includes the following steps.

該第一紅外光拍攝模組及該第二紅外光拍攝模組分別拍攝該病患的該手臂,以分別獲得一第一紅外光影像,及一第二紅外光影像。 The first infrared light photography module and the second infrared light photography module respectively capture the patient's arm to obtain a first infrared light image and a second infrared light image respectively.

該處理模組根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得一紅外光影像中靜脈位置的靜脈分割模型,獲得多筆分別對應在該第一紅外光影像中的多個靜脈的第一靜脈位置資訊,及多筆分別對應在該第二紅外光影像中的該等靜脈的第二靜脈位置資訊。 The processing module uses a vein segmentation model for obtaining the location of veins in an infrared image based on the first infrared image and the second infrared image to obtain a plurality of strokes corresponding to the first infrared image. First vein position information of a plurality of veins, and a plurality of second vein position information respectively corresponding to the veins in the second infrared light image.

該處理模組根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一對應在該第一紅外光影像中的該等靜脈之一目標靜脈的第一目標靜脈位置資訊,及一對應在該第二紅外光影像中的該目標靜脈的第二目標靜脈位置資訊。 The processing module obtains first target vein position information corresponding to one of the target veins in the first infrared light image based on the first vein position information and the second vein position information, and a Second target vein position information corresponding to the target vein in the second infrared image.

該處理模組根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及一相關於該第二紅外光拍攝模組的外部參數矩 陣,獲得一相關於該目標靜脈的目標靜脈三維資訊。 The processing module is based on the first target vein position information, the second target vein position information, and an external parameter matrix related to the second infrared light photography module. array to obtain a target vein three-dimensional information related to the target vein.

本發明之功效在於:藉由該處理模組根據該第一紅外光影像及該第二紅外光影像,利用該靜脈分割模型獲得該第一靜脈位置資訊及該第二靜脈位置資訊,並根據該第一靜脈位置資訊及該第二靜脈位置資訊獲得該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,再根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得該目標靜脈三維資訊,使醫務人員正確地掌握注射的深度,以提高注射成功機率。 The effect of the present invention is that: the processing module uses the vein segmentation model to obtain the first vein position information and the second vein position information based on the first infrared image and the second infrared image, and based on the The first target vein position information and the second target vein position information are obtained from the first target vein position information and the second target vein position information, and then based on the first target vein position information, the second target vein position information, and the external The parameter matrix can obtain the three-dimensional information of the target vein, allowing medical staff to correctly grasp the depth of injection to increase the probability of successful injection.

1:顯像系統 1:Imaging system

11:第一紅外光拍攝模組 11: The first infrared light shooting module

12:第二紅外光拍攝模組 12: The second infrared light shooting module

13:處理模組 13: Processing module

100:手臂 100:arm

21~24:設備初始程序 21~24: Equipment initialization program

31~36:靜脈三維資訊獲得程序 31~36: Procedure for obtaining three-dimensional vein information

351~353:子步驟 351~353: Sub-steps

361~362:子步驟 361~362: Sub-steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明用以實施本發明基於雙目立體視覺的靜脈三維資訊獲得方法的一實施例之一顯像系統;圖2是一流程圖,本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之一設備初始程序;圖3是一流程圖,本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之一靜脈三維資訊獲得程序;圖4是一流程圖,輔助說明圖3步驟35之子步驟;及圖5是一流程圖,輔助說明圖3步驟36之子步驟。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: Figure 1 is a schematic diagram illustrating an implementation of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention. An example of an imaging system; Figure 2 is a flowchart of an equipment initialization procedure of an embodiment of a vein three-dimensional information acquisition method based on binocular stereoscopic vision of the present invention; Figure 3 is a flowchart of an equipment initialization procedure of the present invention based on binocular stereoscopic vision One embodiment of the visual vein three-dimensional information acquisition method is a vein three-dimensional information acquisition procedure; Figure 4 is a flow chart to assist in explaining the sub-steps of step 35 in Figure 3; and Figure 5 is a flow chart to assist in explaining the sub-steps of step 36 in Figure 3 steps.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated with the same numbering.

參閱圖1,用以實施本發明基於雙目立體視覺的靜脈三維資訊獲得方法的一實施例之一顯像系統1,該顯像系統1包含一第一紅外光拍攝模組11、一焦距與該第一紅外光拍攝模組11相同的第二紅外光拍攝模組12、一電連接該第一紅外光拍攝模組11及該第二紅外光拍攝模組12的處理模組13。 Referring to Figure 1, an imaging system 1 is used to implement a method for obtaining three-dimensional vein information based on binocular stereo vision according to an embodiment of the present invention. The imaging system 1 includes a first infrared light shooting module 11, a focal length and The first infrared light photography module 11 is the same as the second infrared light photography module 12, and a processing module 13 that is electrically connected to the first infrared light photography module 11 and the second infrared light photography module 12.

在本實施例中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12為雙目攝像頭,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12的視野(field of view,FOV)例如為110度,焦距例如為3公厘,拍攝距離例如小於20公分,波長範圍例如為780奈米~940奈米,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12所拍攝的影像即為雙目影像,但不以此為限。 In this embodiment, the first infrared light photography module 11 and the second infrared light photography module 12 are binocular cameras. The first infrared light photography module 11 and the second infrared light photography module 12 are The field of view (FOV) is, for example, 110 degrees, the focal length is, for example, 3 mm, the shooting distance is, for example, less than 20 cm, and the wavelength range is, for example, 780 nanometers to 940 nanometers. The first infrared light shooting module 11 and the The image captured by the second infrared light photography module 12 is a binocular image, but is not limited to this.

本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例包含一設備初始程序及一靜脈三維資訊獲得程序。 This embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention includes an equipment initialization program and a three-dimensional vein information obtaining program.

參閱圖1、2,以下說明本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之該設備初始程序。 Referring to Figures 1 and 2, the following describes the initial procedure of the equipment of this embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention.

在步驟21中,該第一紅外光拍攝模組11及該第二紅外光 拍攝模組12分別拍攝一目標物,以分別獲得多張第一紅外光目標物影像,及多張第二紅外光目標物影像。 In step 21, the first infrared light shooting module 11 and the second infrared light The photography module 12 captures a target object respectively to obtain a plurality of first infrared light target images and a plurality of second infrared light target images.

值得注意的是,在本實施例中,該第一紅外光拍攝模組11例如拍攝12張第一紅外光目標物影像,該第二紅外光拍攝模組12例如拍攝12張第二紅外光目標物影像,但不以此為限。 It is worth noting that in this embodiment, the first infrared light photography module 11 captures, for example, 12 images of the first infrared light target, and the second infrared light photography module 12 captures, for example, 12 images of the second infrared light target. object image, but not limited to this.

在步驟22中,該第一紅外光拍攝模組11根據該等第一紅外光目標物影像進行內外部參數校正,且該第二紅外光拍攝模組12根據該等第二紅外光目標物影像進行內外部參數校正。 In step 22, the first infrared light photography module 11 performs internal and external parameter correction based on the first infrared light target images, and the second infrared light photography module 12 performs internal and external parameter correction based on the second infrared light target images. Calibrate internal and external parameters.

在步驟23中,校正後的該第一紅外光拍攝模組11及該第二紅外光拍攝模組12分別拍攝該目標物,以分別獲得多張第一紅外光校正影像,及多張第二紅外光校正影像。 In step 23, the corrected first infrared light photographing module 11 and the second infrared light photographing module 12 respectively photograph the target object to obtain a plurality of first infrared light corrected images and a plurality of second infrared light photographs. Infrared light corrected image.

值得注意的是,在本實施例中,校正後的該第一紅外光拍攝模組11例如拍攝12張第一紅外光校正影像,校正後的該第二紅外光拍攝模組12例如拍攝12張第二紅外光校正影像,但不以此為限。 It is worth noting that in this embodiment, the corrected first infrared light photography module 11 takes, for example, 12 first infrared light corrected images, and the corrected second infrared light photography module 12 takes, for example, 12 pictures. The second infrared light corrects the image, but is not limited to this.

在步驟24中,該處理模組13根據該等第一紅外光校正影像及該等第二紅外光校正影像,及一相關於該第二紅外光拍攝模組12的內部參數矩陣,獲得該外部參數矩陣。 In step 24 , the processing module 13 obtains the external parameter matrix based on the first infrared light correction images and the second infrared light correction images and an internal parameter matrix related to the second infrared light photography module 12 . parameter matrix.

該外部參數矩陣是由下式所獲得:

Figure 111145528-A0305-02-0007-2
其中,K為該內部參數矩陣,f為該第二紅外光拍攝模組12的焦距,[R B T B ]為該外部參數矩陣,R B 為旋轉(rotation)矩陣,T B 為位移(translation)矩陣,(
Figure 111145528-A0305-02-0007-3
,
Figure 111145528-A0305-02-0007-4
,
Figure 111145528-A0305-02-0007-8
)為該目標物在一世界坐標系的座標,(
Figure 111145528-A0305-02-0007-6
,
Figure 111145528-A0305-02-0007-7
)為該目標物在一對應該第二紅外光拍攝模組12的第二成像平面座標系的座標。 The external parameter matrix is obtained by the following formula:
Figure 111145528-A0305-02-0007-2
Among them, K is the internal parameter matrix, f is the focal length of the second infrared light shooting module 12, [ RB | T B ] is the external parameter matrix, R B is the rotation matrix, and T B is the displacement ( translation) matrix, (
Figure 111145528-A0305-02-0007-3
,
Figure 111145528-A0305-02-0007-4
,
Figure 111145528-A0305-02-0007-8
) is the coordinate of the target object in a world coordinate system, (
Figure 111145528-A0305-02-0007-6
,
Figure 111145528-A0305-02-0007-7
) is the coordinate of the target object corresponding to the second imaging plane coordinate system of the second infrared light photography module 12 .

詳細而言,該處理模組13將一相關於該第一紅外光拍攝模組11的第一紅外光拍攝模組坐標系作為該世界坐標系,即將該第一紅外光拍攝模組11的焦點作為該世界坐標系的原點。對於每一第一紅外光校正影像,該處理模組13根據該第一紅外光校正影像,獲得該目標物在拍攝時的

Figure 111145528-A0305-02-0007-9
Figure 111145528-A0305-02-0007-10
,並根據該第一紅外光拍攝模組11的焦距以相似三角形獲得該目標物在拍攝時的
Figure 111145528-A0305-02-0007-11
。對於每一第二紅外光校正影像,該處理模組13根據該第二紅外光校正影像,獲得(
Figure 111145528-A0305-02-0007-12
,
Figure 111145528-A0305-02-0007-14
)。最後根據每一第一紅外光校正影像及第二紅外光校正影像所獲得的(
Figure 111145528-A0305-02-0007-15
,
Figure 111145528-A0305-02-0007-23
,
Figure 111145528-A0305-02-0007-22
)、(
Figure 111145528-A0305-02-0007-19
,
Figure 111145528-A0305-02-0007-20
)及已知的該第二紅外光拍攝模組12的焦距,以線性回歸求得該外部參數矩陣。 Specifically, the processing module 13 uses a first infrared light photography module coordinate system related to the first infrared light photography module 11 as the world coordinate system, that is, the focus of the first infrared light photography module 11 as the origin of the world coordinate system. For each first infrared light correction image, the processing module 13 obtains the image of the target object when shooting based on the first infrared light correction image.
Figure 111145528-A0305-02-0007-9
and
Figure 111145528-A0305-02-0007-10
, and according to the focal length of the first infrared light shooting module 11, a similar triangle is used to obtain the image of the target object during shooting.
Figure 111145528-A0305-02-0007-11
. For each second infrared light correction image, the processing module 13 obtains (
Figure 111145528-A0305-02-0007-12
,
Figure 111145528-A0305-02-0007-14
). Finally, (
Figure 111145528-A0305-02-0007-15
,
Figure 111145528-A0305-02-0007-23
,
Figure 111145528-A0305-02-0007-22
), (
Figure 111145528-A0305-02-0007-19
,
Figure 111145528-A0305-02-0007-20
) and the known focal length of the second infrared light photography module 12, use linear regression to obtain the external parameter matrix.

參閱圖1、3,以下說明本發明基於雙目立體視覺的靜脈三維資訊獲得方法的該實施例之該靜脈三維資訊獲得程序。 Referring to Figures 1 and 3, the following describes the procedure for obtaining three-dimensional vein information according to this embodiment of the method for obtaining three-dimensional vein information based on binocular stereo vision of the present invention.

在步驟31中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12分別拍攝一病患的一手臂100,以分別獲得一第一紅外光影像,及一第二紅外光影像。 In step 31, the first infrared light photography module 11 and the second infrared light photography module 12 respectively photograph an arm 100 of a patient to obtain a first infrared light image and a second infrared light image respectively. image.

在步驟32中,該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得雙目影像中手臂角度的手臂角度模型,獲得一相關於該手臂100的角度資訊。 In step 32 , the processing module 13 uses an arm angle model for obtaining the arm angle in the binocular image to obtain an angle related to the arm 100 based on the first infrared image and the second infrared image. information.

值得注意的是,在本實施例中,該手臂角度模型是由該處理模組13根據多筆手臂角度訓練資料,利用一機器學習演算法所建立,其中每一筆手臂角度訓練資料包括二雙目影像,及一角度標註,該機器學習演算法例如為卷積神經網路(Convolutional Neural Network,CNN)、殘差神經網路(Residual neural network,ResNet)、全卷積神經網路(Fully Convolutional Network,FCN),或U-Net等神經網路演算法,但不以此為限。 It is worth noting that in this embodiment, the arm angle model is established by the processing module 13 using a machine learning algorithm based on multiple arm angle training data, where each arm angle training data includes two binoculars. image, and an angle annotation. The machine learning algorithm is, for example, Convolutional Neural Network (CNN), Residual neural network (ResNet), Fully Convolutional Network (Fully Convolutional Network) , FCN), or U-Net and other neural network algorithms, but are not limited to this.

在步驟33中,該處理模組13判定該角度資訊是否符合一預定條件。當判定出該角度資訊符合該預定條件時,流程進行步驟34;而當判定出該角度資訊不符合該預定條件時,則重複步驟31~33。 In step 33, the processing module 13 determines whether the angle information meets a predetermined condition. When it is determined that the angle information meets the predetermined condition, the process proceeds to step 34; and when it is determined that the angle information does not meet the predetermined condition, steps 31 to 33 are repeated.

值得注意的是,在本實施例中,該角度資訊包括一偏轉 角度(deflection angle),該預定條件為該偏轉角度小於一閾值,該閾值例如為90度,但不以此為限。 It is worth noting that in this embodiment, the angle information includes a deflection Angle (deflection angle), the predetermined condition is that the deflection angle is less than a threshold, the threshold is, for example, 90 degrees, but is not limited to this.

要特別注意的是,該處理模組13獲得該角度資訊並判定該角度資訊是否符合該預定條件,以確認該病患的手臂100是否正確放置到拍攝平台,在其他實施方式中,亦可不用確認該病患的手臂100是否正確放置到拍攝平台,即省略步驟32、33,直接進行步驟34。 It should be noted that the processing module 13 obtains the angle information and determines whether the angle information meets the predetermined conditions to confirm whether the patient's arm 100 is correctly placed on the shooting platform. In other implementations, it may not be necessary. Confirm whether the patient's arm 100 is correctly placed on the imaging platform, that is, steps 32 and 33 are omitted and step 34 is performed directly.

在步驟34中,該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得一紅外光影像中靜脈位置的靜脈分割模型,獲得多筆分別對應在該第一紅外光影像中的多個靜脈的第一靜脈位置資訊,及多筆分別對應在該第二紅外光影像中的該等靜脈的第二靜脈位置資訊。 In step 34 , the processing module 13 uses a vein segmentation model for obtaining vein positions in an infrared image based on the first infrared image and the second infrared image to obtain a plurality of strokes corresponding to the third infrared image. First vein position information of a plurality of veins in an infrared light image, and a plurality of second vein position information respectively corresponding to the veins in the second infrared light image.

值得注意的是,在本實施例中,每一第一靜脈位置資訊包括所對應的靜脈在該第一紅外光影像的多個像素點位置,每一第二靜脈位置資訊包括所對應的靜脈在該第二紅外光影像的多個像素點位置。該靜脈分割模型是由該處理模組13根據多筆靜脈分割訓練資料,利用該機器學習演算法所建立,其中每一筆靜脈分割訓練資料包括一標註有至少一靜脈區域的紅外光靜脈影像。 It is worth noting that in this embodiment, each first vein position information includes a plurality of pixel positions of the corresponding vein in the first infrared image, and each second vein position information includes a corresponding vein at a plurality of pixel positions in the first infrared image. Multiple pixel positions of the second infrared image. The vein segmentation model is established by the processing module 13 using the machine learning algorithm based on multiple vein segmentation training data, where each vein segmentation training data includes an infrared light vein image marked with at least one vein area.

在步驟35中,該處理模組13根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一對應在該第一紅外光影像中的該 等靜脈之一目標靜脈的第一目標靜脈位置資訊,及一對應在該第二紅外光影像中的該目標靜脈的第二目標靜脈位置資訊。 In step 35, the processing module 13 obtains a pair corresponding to the first infrared light image based on the first vein position information and the second vein position information. First target vein position information of one of the target veins of the isovenous vein, and second target vein position information corresponding to the target vein in the second infrared light image.

搭配參閱圖4,步驟35包括以下子步驟:在子步驟351中,該處理模組13根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得多筆分別對應該等第一靜脈位置資訊的第一靜脈特徵資訊,及多筆分別對應該等第二靜脈位置資訊的第二靜脈特徵資訊。 Referring to Figure 4, step 35 includes the following sub-steps: In sub-step 351, the processing module 13 obtains a plurality of records corresponding to the first veins based on the first vein position information and the second vein position information. The first vein characteristic information of the position information, and a plurality of second vein characteristic information respectively corresponding to the second vein position information.

在子步驟352中,該處理模組13根據該等第一靜脈特徵資訊及該等第二靜脈特徵資訊,從該等靜脈中獲得該目標靜脈。 In sub-step 352, the processing module 13 obtains the target vein from the veins based on the first vein characteristic information and the second vein characteristic information.

值得注意的是,在本實施例中,每一第一靜脈特徵資訊包括一第一靜脈孔徑、一第一靜脈血流方向,及一第一靜脈血流方向法向量。每一第二靜脈特徵資訊包括一第二靜脈孔徑、一第二靜脈血流方向,及一第二靜脈血流方向法向量。該第一靜脈孔徑及該第二靜脈孔徑為所對應的靜脈之邊緣橫方向或邊緣縱方向的寬度。對於每一靜脈,該處理模組13獲得該靜脈之邊緣橫方向或邊緣縱方向座標的一中心,再利用該中心到該靜脈的一端點獲得該第一靜脈血流方向及該第二靜脈血流方向,在獲得垂直於該第一靜脈血流方向的該第一靜脈血流方向法向量,及垂直於該第二靜脈血流方向的該第二靜脈血流方向法向量,根據該第一靜脈孔徑、該第一靜脈血流方向、該第一靜脈血流方向法向量、該第二靜脈孔徑、該第二靜 脈血流方向,及該第二靜脈血流方向法向量,以例如高斯混合模型(Gaussian Mixture Model))估算出該靜脈的一靜脈深度,最後根據該等靜脈對應的靜脈深度獲得該目標靜脈,但不以此為限。 It is worth noting that in this embodiment, each first vein characteristic information includes a first vein aperture, a first vein blood flow direction, and a first vein blood flow direction normal vector. Each second vein characteristic information includes a second vein aperture, a second vein blood flow direction, and a second vein blood flow direction normal vector. The first vein aperture and the second vein aperture are the widths of the corresponding veins in the edge transverse direction or the edge longitudinal direction. For each vein, the processing module 13 obtains a center of the edge transverse direction or edge longitudinal coordinates of the vein, and then uses the center to an end point of the vein to obtain the first venous blood flow direction and the second venous blood flow direction. flow direction, after obtaining the first venous blood flow direction normal vector perpendicular to the first venous blood flow direction, and the second venous blood flow direction normal vector perpendicular to the second venous blood flow direction, according to the first The venous aperture, the first venous blood flow direction, the normal vector of the first venous blood flow direction, the second venous aperture, the second venous blood flow direction The vein blood flow direction and the normal vector of the second vein blood flow direction are used to estimate a vein depth of the vein using, for example, a Gaussian Mixture Model, and finally the target vein is obtained based on the vein depths corresponding to the veins. But it is not limited to this.

在子步驟353中,該處理模組13獲得該目標靜脈對應的該第一目標靜脈位置資訊、該第二目標靜脈位置資訊。 In sub-step 353, the processing module 13 obtains the first target vein position information and the second target vein position information corresponding to the target vein.

舉例來說,在步驟34中,該處理模組13從該第一紅外光影像獲得對應一靜脈A的一第一靜脈位置資訊A、對應一靜脈B的一第一靜脈位置資訊B,及對應一靜脈C的一第一靜脈位置資訊C,並從及該第二紅外光影像獲得對應該靜脈A的一第二靜脈位置資訊A、對應該靜脈B的一第二靜脈位置資訊B,及對應該靜脈C的一第二靜脈位置資訊C。 For example, in step 34, the processing module 13 obtains a first vein position information A corresponding to a vein A, a first vein position information B corresponding to a vein B, and the corresponding A first vein position information C of a vein C, and a second vein position information A corresponding to the vein A, a second vein position information B corresponding to the vein B, and a second vein position information B corresponding to the vein B are obtained from the second infrared image. A second vein location information C that should be vein C.

在子步驟351中,該處理模組13分別根據該第一靜脈位置資訊A、該第一靜脈位置資訊B、該第一靜脈位置資訊C、該第二靜脈位置資訊A、該第二靜脈位置資訊B,及該第二靜脈位置資訊C,獲得一第一靜脈特徵資訊A、一第一靜脈特徵資訊B、一第一靜脈特徵資訊C、一第二靜脈特徵資訊A、一第二靜脈特徵資訊B,及一第二靜脈特徵資訊C。 In sub-step 351, the processing module 13 respectively determines the first vein position information A, the first vein position information B, the first vein position information C, the second vein position information A, and the second vein position information. Information B, and the second vein position information C, obtain a first vein characteristic information A, a first vein characteristic information B, a first vein characteristic information C, a second vein characteristic information A, and a second vein characteristic Information B, and a second vein characteristic information C.

在子步驟352中,該處理模組13根據該第一靜脈特徵資訊A及該第二靜脈特徵資訊A獲得一靜脈深度A,根據該第一靜脈特徵資訊B及該第二靜脈特徵資訊B獲得一靜脈深度B,根據該第一 靜脈特徵資訊C及該第二靜脈特徵資訊C獲得一靜脈深度C。其中,該靜脈深度B為最佳,因此,該處理模組13從該等靜脈A、B、C中將該靜脈B作為該目標靜脈,並在子步驟353中,該處理模組13將該第一靜脈位置資訊B作為該第一目標靜脈位置資訊,且將該第二靜脈位置資訊B作為該第二目標靜脈位置資訊。 In sub-step 352, the processing module 13 obtains a vein depth A according to the first vein characteristic information A and the second vein characteristic information A, and obtains a vein depth A according to the first vein characteristic information B and the second vein characteristic information B. A vein depth B, according to the first The vein characteristic information C and the second vein characteristic information C obtain a vein depth C. Among them, the vein depth B is the best. Therefore, the processing module 13 selects the vein B as the target vein from the veins A, B, and C, and in sub-step 353, the processing module 13 selects the vein B as the target vein. The first vein position information B is used as the first target vein position information, and the second vein position information B is used as the second target vein position information.

在步驟36中,該處理模組13根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得一相關於該目標靜脈的目標靜脈三維資訊,該目標靜脈三維資訊包括一相關於該目標靜脈的目標靜脈深度資訊。 In step 36, the processing module 13 obtains a target vein three-dimensional information related to the target vein based on the first target vein position information, the second target vein position information, and the external parameter matrix. The target vein three-dimensional information is The information includes target vein depth information related to the target vein.

要特別注意的是,在本實施例得該設備初始程序中,該第一紅外光拍攝模組11及該第二紅外光拍攝模組12有進行內外部參數校正,因此該外部參數矩陣是有校正過的,在其他實施方式中,可不進行該設備初始程序,直接進行該靜脈三維資訊獲得程序,則該外部參數矩陣為沒有校正過的。 It should be particularly noted that in the initialization process of the device in this embodiment, the first infrared light photography module 11 and the second infrared light photography module 12 perform internal and external parameter correction, so the external parameter matrix has Corrected, in other embodiments, the device initialization procedure may be skipped and the vein three-dimensional information acquisition procedure may be directly performed, then the external parameter matrix has not been corrected.

搭配參閱圖5,步驟35包括以下子步驟:在子步驟361中,該處理模組13根據該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,獲得多個位於一對應該第一紅外光拍攝模組11的第一成像平面座標系的第一目標靜脈座標,及多個位於一對應該第二紅外光拍攝模組12的第二成像平面座標系的第二目標靜脈座標。 Referring to FIG. 5 , step 35 includes the following sub-steps: In sub-step 361 , the processing module 13 obtains a plurality of locations corresponding to the first infrared based on the first target vein position information and the second target vein position information. The first target vein coordinates of the first imaging plane coordinate system of the light photography module 11 and a plurality of second target vein coordinates located corresponding to the second imaging plane coordinate system of the second infrared light photography module 12 .

值得注意的是,在本實施例中,該處理模組13是將該第一目標靜脈位置資訊及該第二目標靜脈位置資訊進行一特徵點匹配(Feature Matching)、一影像縫合(image stitching),及一區塊偵測,以獲得該等第一目標靜脈座標及該等第二目標靜脈座標,其中,該特徵點匹配、該影像縫合,及該區塊偵測是以尺度不變特徵轉換(Scale-invariant feature transform,SIFT)演算法來實現,但不以此為限。 It is worth noting that in this embodiment, the processing module 13 performs a feature matching (Feature Matching) and an image stitching (image stitching) on the first target vein position information and the second target vein position information. , and a block detection to obtain the first target vein coordinates and the second target vein coordinates, wherein the feature point matching, the image stitching, and the block detection are based on scale-invariant feature transformation (Scale-invariant feature transform, SIFT) algorithm, but is not limited to this.

在子步驟362中,該處理模組13根據該等第一目標靜脈座標、該等第二目標靜脈座標,及該外部參數矩陣獲得該靜脈深度資訊。 In sub-step 362, the processing module 13 obtains the vein depth information based on the first target vein coordinates, the second target vein coordinates, and the external parameter matrix.

值得注意的是,該處理模組13是根據下式獲得該靜脈深度資訊:

Figure 111145528-A0305-02-0013-1
其中,
Figure 111145528-A0305-02-0013-24
為每一靜脈深度,(
Figure 111145528-A0305-02-0013-27
,
Figure 111145528-A0305-02-0013-26
)為每一第一目標靜脈座標,(
Figure 111145528-A0305-02-0013-28
,
Figure 111145528-A0305-02-0013-29
)為每一第二目標靜脈座標,f為該第一紅外光拍攝模組11及該第二紅外光拍攝模組12的焦距,
Figure 111145528-A0305-02-0013-33
Figure 111145528-A0305-02-0013-34
Figure 111145528-A0305-02-0013-41
Figure 111145528-A0305-02-0013-42
Figure 111145528-A0305-02-0013-47
Figure 111145528-A0305-02-0013-48
Figure 111145528-A0305-02-0013-49
Figure 111145528-A0305-02-0013-50
為該外部參數矩陣的參數。 It is worth noting that the processing module 13 obtains the vein depth information according to the following formula:
Figure 111145528-A0305-02-0013-1
in,
Figure 111145528-A0305-02-0013-24
For each vein depth, (
Figure 111145528-A0305-02-0013-27
,
Figure 111145528-A0305-02-0013-26
) is the coordinate of each first target vein, (
Figure 111145528-A0305-02-0013-28
,
Figure 111145528-A0305-02-0013-29
) is the coordinate of each second target vein, f is the focal length of the first infrared light photography module 11 and the second infrared light photography module 12,
Figure 111145528-A0305-02-0013-33
,
Figure 111145528-A0305-02-0013-34
,
Figure 111145528-A0305-02-0013-41
,
Figure 111145528-A0305-02-0013-42
,
Figure 111145528-A0305-02-0013-47
,
Figure 111145528-A0305-02-0013-48
,
Figure 111145528-A0305-02-0013-49
,
Figure 111145528-A0305-02-0013-50
are the parameters of this external parameter matrix.

要再注意的是,在獲得該目標靜脈三維資訊後,該處理模組13可利用物件追蹤演算法,由後續該第一紅外光拍攝模組11 及該第二紅外光拍攝模組12拍攝的影像追蹤該目標靜脈。 It should be noted again that after obtaining the three-dimensional information of the target vein, the processing module 13 can use the object tracking algorithm to follow up the first infrared photography module 11 And the image captured by the second infrared light photography module 12 tracks the target vein.

綜上所述,本發明基於雙目立體視覺的靜脈三維資訊獲得方法,藉由該處理模組13根據該角度資訊判定該角度資訊是否符合該預定條件,以確認該病患的手臂100是否正確放置到拍攝平台,且藉由該處理模組13根據該第一紅外光影像及該第二紅外光影像,利用該靜脈分割模型獲得該第一靜脈位置資訊及該第二靜脈位置資訊,並根據該第一靜脈位置資訊及該第二靜脈位置資訊獲得該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,再根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及該外部參數矩陣,獲得該目標靜脈三維資訊,使醫務人員正確地掌握注射的深度,以提高注射成功機率,故確實能達成本發明的目的。 To sum up, the method of obtaining three-dimensional vein information based on binocular stereo vision of the present invention uses the processing module 13 to determine whether the angle information meets the predetermined conditions according to the angle information, so as to confirm whether the patient's arm 100 is correct. Place it on the shooting platform, and use the vein segmentation model to obtain the first vein position information and the second vein position information based on the first infrared light image and the second infrared light image through the processing module 13, and based on The first vein position information and the second vein position information obtain the first target vein position information and the second target vein position information, and then based on the first target vein position information, the second target vein position information, and the The external parameter matrix obtains the three-dimensional information of the target vein, allowing medical personnel to correctly grasp the depth of injection to improve the probability of successful injection, so the purpose of the present invention can indeed be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. within the scope covered by the patent of this invention.

31~36:靜脈三維資訊獲得程序 31~36: Procedure for obtaining three-dimensional vein information

Claims (10)

一種基於雙目立體視覺的靜脈三維資訊獲得方法,適用於獲得一病患的一手臂的靜脈三維資訊,由一顯像系統來實施,該顯像系統包括一第一紅外光拍攝模組、一第二紅外光拍攝模組,及一電連接該第一紅外光拍攝模組及該第二紅外光拍攝模組的處理模組,該方法包含以下步驟:該第一紅外光拍攝模組及該第二紅外光拍攝模組分別拍攝該病患的該手臂,以分別獲得一第一紅外光影像,及一第二紅外光影像;該處理模組根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得一紅外光影像中靜脈位置的靜脈分割模型,獲得多筆分別對應在該第一紅外光影像中的多個靜脈的第一靜脈位置資訊,及多筆分別對應在該第二紅外光影像中的該等靜脈的第二靜脈位置資訊;該處理模組根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得一對應在該第一紅外光影像中的該等靜脈之一目標靜脈的第一目標靜脈位置資訊,及一對應在該第二紅外光影像中的該目標靜脈的第二目標靜脈位置資訊;及該處理模組根據該第一目標靜脈位置資訊、該第二目標靜脈位置資訊,及一相關於該第二紅外光拍攝模組的外部參數矩陣,獲得一相關於該目標靜脈的目標靜脈三維資訊。 A method of obtaining three-dimensional vein information based on binocular stereo vision, suitable for obtaining three-dimensional vein information of an arm of a patient, is implemented by an imaging system, which includes a first infrared light shooting module, a a second infrared light photography module, and a processing module electrically connected to the first infrared light photography module and the second infrared light photography module. The method includes the following steps: the first infrared light photography module and the The second infrared light photography module captures the patient's arm respectively to obtain a first infrared light image and a second infrared light image; the processing module uses the first infrared light image and the second infrared light image. Light image, using a vein segmentation model for obtaining the position of veins in an infrared light image, obtaining first vein position information of multiple strokes corresponding to multiple veins in the first infrared light image, and multiple strokes respectively corresponding to the first vein position information in the first infrared light image. The second vein position information of the veins in the second infrared image; the processing module obtains a corresponding position information in the first infrared image based on the first vein position information and the second vein position information The first target vein position information of one of the target veins, and the second target vein position information corresponding to the target vein in the second infrared image; and the processing module is based on the first target vein. The position information, the second target vein position information, and an external parameter matrix related to the second infrared light photography module are used to obtain a target vein three-dimensional information related to the target vein. 如請求項1所述的基於雙目立體視覺的靜脈三維資訊獲得 方法,在獲得該第一紅外光影像及該第二紅外光影像的步驟,及獲得該等第一靜脈位置資訊及該等第二靜脈位置資訊的步驟之間還包含以下步驟:該處理模組根據該第一紅外光影像及該第二紅外光影像,利用一用於獲得雙目影像中手臂角度的手臂角度模型,獲得一相關於該手臂的角度資訊;該處理模組判定該角度資訊是否符合一預定條件;及當判定出該角度資訊不符合該預定條件時,該處理模組重複獲得該第一紅外光影像及該第二紅外光影像的步驟、獲得該角度資訊的步驟、判定該角度資訊是否符合該預定條件的步驟,直到該角度資訊符合該預定條件;其中,當判定出該角度資訊符合該預定條件時,進行獲得該等第一靜脈位置資訊及該等第二靜脈位置資訊的步驟。 Acquisition of three-dimensional vein information based on binocular stereo vision as described in request 1 The method further includes the following steps between the steps of obtaining the first infrared light image and the second infrared light image, and the steps of obtaining the first vein position information and the second vein position information: the processing module According to the first infrared image and the second infrared image, an arm angle model used to obtain the arm angle in the binocular image is used to obtain angle information related to the arm; the processing module determines whether the angle information Meets a predetermined condition; and when it is determined that the angle information does not meet the predetermined condition, the processing module repeats the steps of obtaining the first infrared light image and the second infrared light image, the steps of obtaining the angle information, and determining the The step of whether the angle information meets the predetermined condition until the angle information meets the predetermined condition; wherein, when it is determined that the angle information meets the predetermined condition, the first vein position information and the second vein position information are obtained steps. 如請求項2所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,該角度資訊包括一偏轉角度,該預定條件為該偏轉角度小於一閾值。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 2, wherein the angle information includes a deflection angle, and the predetermined condition is that the deflection angle is less than a threshold. 如請求項2所述的基於雙目立體視覺的靜脈三維資訊獲得方法,在獲得該角度資訊的步驟之前還包含以下步驟:該處理模組根據多筆手臂角度訓練資料,利用一機器學習演算法,建立該手臂角度模型,每一筆手臂角度訓練資料包括二雙目影像,及一角度標註。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 2 further includes the following steps before obtaining the angle information: the processing module uses a machine learning algorithm based on multiple arm angle training data , to establish the arm angle model, each arm angle training data includes two binocular images and an angle label. 如請求項1所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,在獲得該第一目標靜脈位置資訊及該第二目標靜脈位置資訊的步驟中包括以下子步驟: 該處理模組根據該等第一靜脈位置資訊及該等第二靜脈位置資訊,獲得多筆分別對應該等第一靜脈位置資訊的第一靜脈特徵資訊,及多筆分別對應該等第二靜脈位置資訊的第二靜脈特徵資訊;該處理模組根據該等第一靜脈特徵資訊及該等第二靜脈特徵資訊,從該等靜脈中獲得該目標靜脈;及該處理模組獲得該目標靜脈對應的該第一目標靜脈位置資訊及該第二目標靜脈位置資訊。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 1, wherein the step of obtaining the first target vein position information and the second target vein position information includes the following sub-steps: The processing module obtains a plurality of pieces of first vein characteristic information corresponding to the first vein position information and a plurality of pieces of first vein characteristic information respectively corresponding to the second vein based on the first vein position information and the second vein position information. The second vein characteristic information of the position information; the processing module obtains the target vein from the veins based on the first vein characteristic information and the second vein characteristic information; and the processing module obtains the target vein correspondence The first target vein position information and the second target vein position information. 如請求項5所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,在獲得該等第一靜脈特徵資訊及該等第二靜脈特徵資訊的子步驟中,每一第一靜脈特徵資訊包括一第一靜脈孔徑、一第一靜脈血流方向,及一第一靜脈血流方向法向量,每一第二靜脈特徵資訊包括一第二靜脈孔徑、一第二靜脈血流方向,及一第二靜脈血流方向法向量,對於每一靜脈,該處理模組根據該第一靜脈孔徑、該第一靜脈血流方向、該第一靜脈血流方向法向量、該第二靜脈孔徑、該第二靜脈血流方向,及該第二靜脈血流方向法向量,估算出該靜脈的一靜脈深度,再根據該等靜脈對應的靜脈深度獲得該目標靜脈。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 5, wherein in the sub-step of obtaining the first vein characteristic information and the second vein characteristic information, each first vein characteristic information It includes a first venous aperture, a first venous blood flow direction, and a first venous blood flow direction normal vector, and each second vein characteristic information includes a second venous aperture, a second venous blood flow direction, and a The second venous blood flow direction normal vector, for each vein, the processing module is based on the first venous aperture, the first venous blood flow direction, the first venous blood flow direction normal vector, the second venous aperture, the The second venous blood flow direction and the normal vector of the second venous blood flow direction are used to estimate a vein depth of the vein, and then the target vein is obtained based on the vein depths corresponding to the veins. 如請求項1所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,在獲得該第一紅外光影像及該第二紅外光影像的步驟之前還包含以下步驟:該第一紅外光拍攝模組及該第二紅外光拍攝模組分別拍攝一目標物,以分別獲得多張第一紅外光目標物影 像,及多張第二紅外光目標物影像;該第一紅外光拍攝模組根據該等第一紅外光目標物影像進行內外部參數校正,且該第二紅外光拍攝模組根據該等第二紅外光目標物影像進行內外部參數校正;校正後的該第一紅外光拍攝模組及該第二紅外光拍攝模組分別拍攝該目標物,以分別獲得多張第一紅外光校正影像,及多張第二紅外光校正影像;及該處理模組根據該等第一紅外光校正影像、該等第二紅外光校正影像,及一相關於該第二紅外光拍攝模組的內部參數矩陣,獲得該外部參數矩陣。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 1, wherein the following steps are further included before obtaining the first infrared light image and the second infrared light image: the first infrared light photography The module and the second infrared light shooting module respectively capture a target object to obtain multiple first infrared light target object images. image, and a plurality of second infrared light target images; the first infrared light photography module performs internal and external parameter correction based on the first infrared light target images, and the second infrared light photography module performs internal and external parameter correction based on the first infrared light target images. The two infrared light target images are calibrated for internal and external parameters; the corrected first infrared light shooting module and the second infrared light shooting module respectively shoot the target object to obtain multiple first infrared light corrected images, and a plurality of second infrared light correction images; and the processing module is based on the first infrared light correction images, the second infrared light correction images, and an internal parameter matrix related to the second infrared light shooting module , obtain the external parameter matrix. 如請求項1所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,在獲得該目標靜脈三維資訊的步驟中,該目標靜脈三維資訊包括一相關於該目標靜脈的目標靜脈深度資訊。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 1, wherein in the step of obtaining the three-dimensional information of the target vein, the three-dimensional information of the target vein includes target vein depth information related to the target vein. 如請求項8所述的基於雙目立體視覺的靜脈三維資訊獲得方法,其中,獲得該目標靜脈三維資訊的步驟包括以下子步驟:該處理模組根據該第一目標靜脈位置資訊及該第二目標靜脈位置資訊,獲得多個位於一對應該第一紅外光拍攝模組的第一成像平面座標系的第一目標靜脈座標,及多個位於一對應該第二紅外光拍攝模組的第二成像平面座標系的第二目標靜脈座標;及該處理模組根據該等第一目標靜脈座標、該等第二目標靜脈座標,及該外部參數矩陣獲得該目標靜脈深度資 訊。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 8, wherein the step of obtaining the three-dimensional information of the target vein includes the following sub-steps: the processing module is based on the first target vein position information and the second The target vein position information is obtained by obtaining a plurality of first target vein coordinates located in a first imaging plane coordinate system corresponding to the first infrared light shooting module, and a plurality of second target vein coordinates located in a corresponding position corresponding to the second infrared light shooting module. The second target vein coordinates of the imaging plane coordinate system; and the processing module obtains the target vein depth information based on the first target vein coordinates, the second target vein coordinates, and the external parameter matrix News. 如請求項1所述的基於雙目立體視覺的靜脈三維資訊獲得方法,在獲得該等第一靜脈位置資訊及該等第二靜脈位置資訊的步驟之前還包含以下步驟:該處理模組根據多筆靜脈分割訓練資料,利用一機器學習演算法,建立該靜脈分割模型,每一筆靜脈分割訓練資料包括一標註有至少一靜脈區域的紅外光靜脈影像。 The method for obtaining three-dimensional vein information based on binocular stereo vision as described in claim 1 further includes the following steps before obtaining the first vein position information and the second vein position information: the processing module is based on multiple The vein segmentation training data uses a machine learning algorithm to establish the vein segmentation model. Each vein segmentation training data includes an infrared light vein image marked with at least one vein area.
TW111145528A 2021-11-30 2022-11-28 Method for obtaining three-dimensional vein information based on binocular stereo vision TWI817848B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110144645 2021-11-30
TW110144645 2021-11-30

Publications (2)

Publication Number Publication Date
TW202322767A TW202322767A (en) 2023-06-16
TWI817848B true TWI817848B (en) 2023-10-01

Family

ID=87803888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145528A TWI817848B (en) 2021-11-30 2022-11-28 Method for obtaining three-dimensional vein information based on binocular stereo vision

Country Status (1)

Country Link
TW (1) TWI817848B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075836A (en) * 1997-07-03 2000-06-13 University Of Rochester Method of and system for intravenous volume tomographic digital angiography imaging
CN109758136A (en) * 2019-02-28 2019-05-17 四川大学华西医院 A method for measuring hepatic venous pressure gradient based on the characteristics of portal vessels
CN111507206A (en) * 2020-03-29 2020-08-07 杭州电子科技大学 A Finger Vein Recognition Method Based on Multi-scale Local Feature Fusion
CN113658238A (en) * 2021-08-23 2021-11-16 重庆大学 Near-infrared vein image high-precision matching method based on improved feature detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075836A (en) * 1997-07-03 2000-06-13 University Of Rochester Method of and system for intravenous volume tomographic digital angiography imaging
CN109758136A (en) * 2019-02-28 2019-05-17 四川大学华西医院 A method for measuring hepatic venous pressure gradient based on the characteristics of portal vessels
CN111507206A (en) * 2020-03-29 2020-08-07 杭州电子科技大学 A Finger Vein Recognition Method Based on Multi-scale Local Feature Fusion
CN113658238A (en) * 2021-08-23 2021-11-16 重庆大学 Near-infrared vein image high-precision matching method based on improved feature detection

Also Published As

Publication number Publication date
TW202322767A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US12266155B2 (en) Feature point detection
US7965905B2 (en) Device, method and system for automatic stabilization of a series of retinal images
CN107041729A (en) Binocular near infrared imaging system and blood vessel recognition methods
CN110288653B (en) A multi-angle ultrasound image fusion method, system and electronic device
CN106575439A (en) Image registration device, image registration method, and image registration program
Liu et al. Global and local panoramic views for gastroscopy: an assisted method of gastroscopic lesion surveillance
CN109166177A (en) Air navigation aid in a kind of art of craniomaxillofacial surgery
CN111544037B (en) Ultrasonic positioning method and system based on binocular vision
Niri et al. Multi-view data augmentation to improve wound segmentation on 3d surface model by deep learning
Richa et al. Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging
CN116807577B (en) Full-automatic venipuncture equipment and full-automatic venipuncture method
WO2024113275A1 (en) Gaze point acquisition method and apparatus, electronic device, and storage medium
CN106510626A (en) Human body superficial layer vein three-dimensional reconstruction device and method based on binocular stereoscopic vision
CN109766007A (en) A kind of the blinkpunkt compensation method and compensation device, display equipment of display equipment
CN106455956A (en) Reconstruction of images from an in vivo multi-camera capsule with confidence matching
Leli et al. Near-infrared-to-visible vein imaging via convolutional neural networks and reinforcement learning
CN110532933A (en) A kind of living body faces detection head pose returns the acquisition methods and detection method of device
Benalcazar et al. A 3D iris scanner from multiple 2D visible light images
TWI817848B (en) Method for obtaining three-dimensional vein information based on binocular stereo vision
KR20160057024A (en) Markerless 3D Object Tracking Apparatus and Method therefor
CN111292410B (en) A vein imaging device and method for generating a three-dimensional panoramic model
CN112075981B (en) Venipuncture robot control method, device and computer-readable storage medium
TWI817847B (en) Method, computer program and computer readable medium for fast tracking and positioning objects in augmented reality and mixed reality
CN118710712A (en) Surgical instrument tracking methods, systems, devices, media and products
CN111784749A (en) A spatial positioning and motion analysis system based on binocular vision