TWI809518B - Automatic mirror precision detection system and its detection method - Google Patents
Automatic mirror precision detection system and its detection method Download PDFInfo
- Publication number
- TWI809518B TWI809518B TW110136483A TW110136483A TWI809518B TW I809518 B TWI809518 B TW I809518B TW 110136483 A TW110136483 A TW 110136483A TW 110136483 A TW110136483 A TW 110136483A TW I809518 B TWI809518 B TW I809518B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- detection
- mirror
- mirror surface
- image
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 202
- 238000007689 inspection Methods 0.000 claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 238000006073 displacement reaction Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 13
- 238000013480 data collection Methods 0.000 claims description 7
- 238000007405 data analysis Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims 1
- 239000005304 optical glass Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
一種自動化鏡面精度檢測系統,包含有一鏡片上載設備、一鏡面檢測設備以及一鏡片下載設備。該鏡片上載設備用以輸入一鏡片,該鏡面檢測設備用以接收該鏡片上載設備所運載的鏡片,該鏡面檢測設備能對該鏡片之鏡面進行光學干涉,以產生一牛頓環圖像,對該牛頓環圖像進行影像擷取,以取得一干涉畫面,並控制該鏡片位移,以擷取該牛頓環圖像中之局部該等干涉條紋而獲取一檢測畫面,並判定該鏡片的鏡面不符合品質規範;該鏡片下載設備用以接收該鏡面檢測設備所運載符合品質規範的所述鏡片並將其輸出。一種自動化鏡面精度檢測方法亦揭露於此。An automatic mirror precision detection system includes a lens uploading device, a mirror detection device and a lens downloading device. The lens uploading device is used to input a lens, and the mirror surface detection device is used to receive the lens carried by the lens uploading device. The mirror surface detection device can perform optical interference on the mirror surface of the lens to generate a Newton ring image. Image acquisition of the Newton ring image to obtain an interference frame, and control the displacement of the lens to capture the local interference fringes in the Newton ring image to obtain a detection frame, and determine that the mirror surface of the lens does not conform to Quality specification; the lens downloading device is used to receive the lens carried by the mirror inspection device and meet the quality specification and output it. An automatic mirror precision detection method is also disclosed herein.
Description
本發明係與鏡片檢測的應用領域有關;特別是指一種自動化鏡面精度檢測系統及其檢測方法。 The invention is related to the application field of lens detection; in particular, it refers to an automatic mirror precision detection system and a detection method thereof.
隨著時代的演進,光學成像的產品出貨量不斷成長,進而帶動光學元件廠商快速的成長。加上技術的演進,量產光學元件變的比以往更加容易,製作光學元件的時間縮短、成本也開始下降,光學元件市場也因此而蓬勃發展。 With the evolution of the times, the shipments of optical imaging products continue to grow, which in turn drives the rapid growth of optical component manufacturers. Coupled with the evolution of technology, mass production of optical components has become easier than before, the time for producing optical components has been shortened, and the cost has also begun to decrease. As a result, the optical component market has also flourished.
目前的光學元件依材質區分可以分成光學塑膠鏡片與光學玻璃鏡片兩大類,兩者的差異主要在於成本、品質、重量、耐用性等。舉例來說,光學玻璃鏡片的優點在於品質及耐用性較佳,但成本較高且重量較重,所以較適合用來作為專業攝像鏡頭;相較於光學塑膠鏡片的優點則是成本較低與重量較輕,但相對的品質及耐用性較差,藉以塑膠鏡片則適合用在手機鏡頭。 The current optical components can be divided into two categories: optical plastic lenses and optical glass lenses according to their materials. The differences between the two mainly lie in cost, quality, weight, and durability. For example, the advantages of optical glass lenses are better quality and durability, but higher cost and heavier weight, so they are more suitable for professional camera lenses; compared with optical plastic lenses, the advantages are lower cost and Lighter in weight, but relatively poor in quality and durability, plastic lenses are suitable for use in mobile phone lenses.
由於目前光學領域的製程尚未開發有全自動機器設備,使得前述光學元件在製程檢測上需耗費許多人力成本;就以光學玻璃鏡片來說,在光學玻璃鏡片研磨後,鏡片的面精度需透過人工檢查,現有面精度檢驗方式,係將鏡面藉由雷射干涉儀投射出的牛頓環圖形,並依照標準圖像以人工方式做相互比對,除了不同鏡片的規格及檢測標準有所差異,檢測過程需要花費較多的時間來調整位置,且鏡面的檢測並沒有 精確標準數據來判斷該光學玻璃鏡片是否符合品質規範,以至於提高鏡片判斷的錯誤率。 Since the current optical manufacturing process has not yet developed fully automatic machinery and equipment, the above-mentioned optical components require a lot of labor costs in the process inspection; for optical glass lenses, after the optical glass lens is ground, the surface accuracy of the lens needs to be manually Inspection, the existing surface accuracy inspection method is to use the Newton ring pattern projected by the laser interferometer on the mirror surface, and compare it manually according to the standard image. Except for the differences in the specifications and inspection standards of different lenses, the inspection The process takes a lot of time to adjust the position, and the detection of the mirror surface does not Accurate standard data is used to judge whether the optical glass lens meets the quality specification, so as to increase the error rate of lens judgment.
因此,如何建構出符合鏡片面精度檢測的高智能全自動化精密光學玻璃鏡片精度檢測系統,以取代人工檢測方式,是設計者的重要課題。 Therefore, how to construct a highly intelligent and fully automatic precision optical glass lens accuracy inspection system that meets the accuracy inspection of the lens surface to replace the manual inspection method is an important issue for designers.
有鑑於此,本發明之目的在於提供一種自動化鏡面精度檢測系統及其檢測方法,能高智能自動化檢測該鏡片的面精度,除了有效地節省人力成本,還能提高光學玻璃鏡片的面精度檢測之準確度。 In view of this, the purpose of the present invention is to provide an automatic mirror surface precision detection system and its detection method, which can automatically detect the surface precision of the lens with high intelligence, in addition to effectively saving labor costs, and can also improve the surface precision detection of optical glass lenses. Accuracy.
緣以達成上述目的,本發明提供的一種自動化鏡面精度檢測系統,包含有一鏡片上載設備、一鏡面檢測設備以及一鏡片下載設備。該鏡片上載設備輸入一鏡片;該鏡面檢測設備連接該鏡片上載設備,用以接收該鏡片上載設備所運載的所述鏡片,該鏡面檢測設備包含一軸向調整模組、一光學干涉模組、一影像處理模組以及一圖像判讀模組,該軸向調整模組能夠提供該鏡片放置,該光學干涉模組對該鏡片之鏡面進行光學干涉,以產生一牛頓環圖像,該牛頓環圖像具有一中心圓環以及複數圈干涉條紋環繞該中心圓環,該影像處理模組以該中心圓環為中心對該牛頓環圖像進行影像擷取,以取得一干涉畫面,並控制該軸向調整模組帶動該鏡片位移,使該干涉畫面中的所述中心圓環偏移,以擷取該牛頓環圖像中之局部該等干涉條紋而獲取一檢測畫面,該圖像判讀模組在該檢測畫面中相鄰之二干涉條紋定義有複數影像特徵點,並對該等影像特徵點進行計算一亞斯檢測值以及一庫斜檢設值,該圖像判讀模組預設有一亞斯容許區間及一庫斜容許區間;若該亞斯檢測值超出於該亞斯 容許區間,或該庫斜檢測值超出於該庫斜容許區間,該圖像判讀模組判定該鏡片的鏡面不符合品質規範;若該亞斯檢測值未超出於該亞斯容許區間,以及該庫斜檢測值未超出於該庫斜容許區間,該圖像判讀模組則判定該鏡片的鏡面符合品質規範;該鏡片下載設備連接該鏡面檢測設備,用以對該鏡面檢測設備所運載符合品質規範的所述鏡片取下。 In order to achieve the above purpose, the present invention provides an automatic mirror precision inspection system, which includes a lens uploading device, a mirror inspection device and a lens downloading device. The lens uploading device inputs a lens; the mirror detection device is connected to the lens uploading device to receive the lens carried by the lens uploading device, and the mirror detection device includes an axial adjustment module, an optical interference module, An image processing module and an image interpretation module, the axial adjustment module can provide the lens placement, the optical interference module performs optical interference on the mirror surface of the lens to generate a Newton ring image, the Newton ring The image has a central ring and a plurality of rings of interference fringes surrounding the central ring. The image processing module captures the image of the Newton ring with the central ring as the center to obtain an interference frame and controls the The axial adjustment module drives the lens to shift, so that the central ring in the interference image is shifted, so as to capture the local interference fringes in the Newton ring image to obtain a detection image. The image interpretation module A set of two adjacent interference fringes in the detection screen defines a plurality of image feature points, and calculates a Yass detection value and a library of oblique detection values for these image feature points. The image interpretation module presets a Yas tolerance interval and a library skew tolerance interval; if the Yas detection value exceeds the Yas Allowable interval, or the library tilt detection value exceeds the library tilt allowable interval, the image interpretation module determines that the mirror surface of the lens does not meet the quality standard; if the Yass detection value does not exceed the Yass allowable interval, and the If the library inclination detection value does not exceed the allowable range of the library inclination, the image interpretation module determines that the mirror surface of the lens meets the quality specification; Specification of the lens removed.
本發明另一目的在於提供一種自動化鏡面精度檢測方法,包含有以下步驟:步驟A,對一鏡片之一鏡面進行光學干涉,產生一牛頓環圖像;步驟B,以該牛頓環圖像之一中心圓環為中心進行影像擷取,取得一干涉畫面,該干涉畫面中具有複數圈干涉條紋環繞該中心圓環;步驟C,控制該鏡片位移,使該干涉畫面中的所述中心圓環偏移並擷取該牛頓環圖像中之局部該等干涉條紋,以獲取一檢測畫面;步驟D,在該檢測畫面中定義有複數影像特徵點並分布在相鄰之二干涉條紋上,接著對該等影像特徵點進行計算一亞斯檢測值以及一庫斜檢設值;以及步驟E,分析該亞斯檢測值是否超出於一亞斯容許區間,以及該庫斜檢測值是否超出於一庫斜容許區間;若該亞斯檢測值超出於該亞斯容許區間,或該庫斜檢測值超出於該庫斜容許區間,則判定該鏡片的鏡面不符合品質規範;若該亞斯檢測值未超出於該亞斯容許區間,以及該庫斜檢測值未超出於該庫斜容許區間,則判定該鏡片的鏡面符合品質規範。 Another object of the present invention is to provide an automatic mirror surface precision detection method, which includes the following steps: step A, optically interfere with one of the mirror surfaces of a lens to generate a Newton ring image; step B, use one of the Newton ring images The central ring is used as the center to capture an image, and an interference picture is obtained, in which there are a plurality of rings of interference fringes surrounding the central ring; step C, controlling the displacement of the lens so that the central ring in the interference picture is Move and capture the local interference fringes in the Newton ring image to obtain a detection frame; step D, in the detection frame, a plurality of image feature points are defined and distributed on two adjacent interference fringes, and then These image feature points are calculated a Yass detection value and a library skew detection value; and step E, analyzing whether the Yass detection value exceeds a Yass allowable interval, and whether the library skew detection value exceeds a library If the Yass test value exceeds the Yass allowable range, or if the library skew test value exceeds the library tilt allowable range, it is determined that the mirror surface of the lens does not meet the quality standard; if the Yass test value is not If it exceeds the Yass allowable range, and the library tilt detection value does not exceed the library tilt allowable range, then it is determined that the mirror surface of the lens meets the quality standard.
本發明之效果在於,該自動化鏡面精度檢測系統及方法能高智能自動化檢測該鏡片的面精度,除了有效地節省人力成本,在該鏡面檢測設備中,該影像處理模組33能自動控制該鏡片進行軸向位移,且該圖像判讀模組能對該檢測畫面進行分析該亞斯檢測值與該庫斜檢設值,並判讀該光學玻璃鏡片的鏡面之面精度是否符合品質規範;除此之外,該鏡面檢測設備還能自動翻轉光學玻璃鏡片,提供檢測該光學玻璃鏡片之
兩側鏡面的面精度之效用,藉以達到提高光學玻璃鏡片的面精度檢測之準確度的目的。
The effect of the present invention is that the automatic mirror surface precision detection system and method can automatically detect the surface precision of the lens with high intelligence. In addition to effectively saving labor costs, in the mirror surface detection equipment, the
100:自動化鏡面精度檢測系統 100: Automatic mirror surface precision detection system
110:鏡片 110: lens
110A:第一鏡面 110A: the first mirror
110B:第二鏡面 110B: second mirror surface
10:鏡片上載設備 10: Lens upload device
20:厚度檢測設備 20:Thickness testing equipment
30:鏡面檢測設備 30: Mirror inspection equipment
30A:第一鏡面檢測區 30A: The first mirror detection area
30B:第二鏡面檢測區 30B: Second mirror detection area
30C:緩衝區 30C: Buffer
31:軸向調整模組 31: Axial adjustment module
32:光學干涉模組 32: Optical interference module
33:影像處理模組 33: Image processing module
331:影像擷取單元 331: image capture unit
332:干涉圖像判斷單元 332: Interference image judging unit
333:空間演算單元 333:Spatial Calculus Unit
34:圖像判讀模組 34: Image Interpretation Module
341:面精度演算單元 341: Surface precision calculation unit
342:數據搜集單元 342: Data collection unit
343:資料分析單元 343: Data analysis unit
35:翻轉模組 35: Flip Module
40:鏡片下載設備 40: Lens download device
50:手臂移載模組 50: Arm transfer module
S1:第一檢測區 S1: The first detection area
S2:第二檢測區 S2: Second detection area
S3:第三檢測區 S3: The third detection area
S4:第四檢測區 S4: The fourth detection area
P:影像特徵點 P: image feature point
A:牛頓環圖像 A: Newton ring image
r:中心圓環 r: center ring
f:干涉條紋 f: interference fringes
D:中心厚度 D: center thickness
A~F:步驟 A~F: steps
圖1為本發明一較佳實施例自動化鏡面精度檢測系統的系統架構圖。 Fig. 1 is a system architecture diagram of an automatic mirror precision detection system according to a preferred embodiment of the present invention.
圖2為本發明一較佳實施例自動化鏡面精度檢測系統的鏡片結構示意圖。 Fig. 2 is a schematic diagram of the lens structure of an automatic mirror precision detection system according to a preferred embodiment of the present invention.
圖3為本發明一較佳實施例自動化鏡面精度檢測系統之鏡面檢測設備的結構方塊圖。 Fig. 3 is a structural block diagram of the mirror surface inspection equipment of the automatic mirror surface precision inspection system of a preferred embodiment of the present invention.
圖4為本發明一較佳實施例自動化鏡面精度檢測系統之影像處理模組的結構方塊圖。 FIG. 4 is a structural block diagram of an image processing module of an automated mirror precision inspection system according to a preferred embodiment of the present invention.
圖5為本發明一較佳實施例自動化鏡面精度檢測系統之圖像判讀處理模組的結構方塊圖。 FIG. 5 is a structural block diagram of an image interpretation processing module of an automated mirror surface precision inspection system according to a preferred embodiment of the present invention.
圖6為本發明一較佳實施例自動化鏡面精度檢測系統的干涉畫面示意圖。 FIG. 6 is a schematic diagram of an interference picture of an automated mirror precision detection system according to a preferred embodiment of the present invention.
圖7為本發明一較佳實施例自動化鏡面精度檢測系統的干涉畫面轉變成檢測畫面之變化示意圖。 Fig. 7 is a schematic diagram of the change from the interference picture to the detection picture of the automated mirror surface precision testing system according to a preferred embodiment of the present invention.
圖8為本發明一較佳實施例自動化鏡面精度檢測系統的檢測畫面之面精度分析示意圖。 Fig. 8 is a schematic diagram of the surface precision analysis of the detection screen of the automatic mirror surface precision detection system according to a preferred embodiment of the present invention.
圖9為本發明一較佳實施例自動化鏡面精度檢測方法的步驟流程圖。 FIG. 9 is a flow chart of the steps of the automatic mirror surface precision detection method in a preferred embodiment of the present invention.
圖10為本發明一較佳實施例自動化鏡面精度檢測方法的影像判斷流程圖。 FIG. 10 is a flow chart of image judgment of an automatic mirror precision detection method according to a preferred embodiment of the present invention.
圖11為本發明一較佳實施例自動化鏡面精度檢測方法的面精度判讀流 程圖。 Fig. 11 is a surface accuracy interpretation flow of an automatic mirror surface accuracy detection method in a preferred embodiment of the present invention map.
圖12為本發明一較佳實施例自動化鏡面精度檢測方法新增步驟F的流程圖。 Fig. 12 is a flow chart of the newly added step F of the automatic mirror precision detection method according to a preferred embodiment of the present invention.
為能更清楚地說明本發明,茲舉較佳實施例並配合圖式詳細說明如後。請參考圖1及圖2,為本發明一較佳實施例提供一種自動化鏡面精度檢測系統100,用以檢測一鏡片110的面精度;本實施例中,該鏡片110係為雙凹透鏡,該鏡片110具有一第一鏡面110A以及一第二鏡面110B相背於該第一鏡面110A;在其他實施例中,該鏡片110的結構可依需求選擇其他透鏡。
In order to illustrate the present invention more clearly, preferred embodiments are given and detailed descriptions are given below in conjunction with drawings. Please refer to Fig. 1 and Fig. 2, provide a kind of automatic mirror
該自動化鏡面精度檢測系統100包含有一鏡片上載設備10、一厚度檢測設備20、一鏡面檢測設備30、一鏡片下載設備40以及複數個手臂移載模組50,其中該等手臂移載模組50係為機械手臂,其個別設置在該鏡片上載設備10與該厚度檢測設備20之間、該厚度檢測設備20與該鏡面檢測設備30之間,以及該鏡面檢測設備30與該鏡片下載設備40之間,各該手臂移載模組50用以自動搬運該鏡片110;在其他實施例中,該等手臂移載模組50可替換成其他自動搬運元件,並不限制於機械手臂。
The automatic mirror surface
該鏡片上載設備10用以輸入該鏡片110,在本實施例中,該鏡片110係放置在托盤上,再將該鏡片110輸入該鏡片上載設備10,但該鏡片110的輸入方式不限於此。
The
該厚度檢測設備20連接該鏡片上載設備10與該鏡面檢測設備30之間,用以接收該鏡片上載設備10所運載的該鏡片110,並檢測
該鏡片110的中心厚度D;如圖2所示,該厚度檢測設備20能夠先偵測該鏡片110的第一鏡面110A與第二鏡面110B的中心位置,並測量該第一鏡面110A與該第二鏡面110B之間的中心厚度D。
The
該鏡面檢測設備30位於該厚度檢測設備20之一側,用以接收該厚度檢測設備20所運載的所述鏡片110,該鏡面檢測設備30能對所述鏡片110進行面精度的檢測;如圖3所示,該鏡面檢測設備30包含一第一鏡面檢測區30A、一第二鏡面檢測區30B,以及一緩衝區30C,其中該第一鏡面檢測區30A與該第二鏡面檢測區30B分別皆用來檢測該鏡片110的面精度,且該第一鏡面檢測區30A與該第二鏡面檢測區30B分別皆設有一軸向調整模組31、一光學干涉模組32、一影像處理模組33以及一圖像判讀模組34,該第一鏡面檢測區30A與該第二鏡面檢測區30B差異在於,該第一鏡面檢測區30A用以檢測及判斷該鏡片110之第一鏡面110A的面精度,該第二鏡面檢測區30B用以檢測及判斷該鏡片110之第二鏡面110B的面精度;該緩衝區30C位於該第一鏡面檢測區30A與該第二鏡面檢測區30B之間,用以接收該第一鏡面檢測區30A所運載的該鏡片110,該緩衝區30C設有一翻轉模組35能夠將該鏡片110由該第一鏡面110A翻轉至該第二鏡面110B,再將該鏡片110輸入該第二鏡面檢測區30B進行該第二鏡面110B的面精度檢測。 The mirror inspection device 30 is located on one side of the thickness inspection device 20, and is used to receive the lens 110 carried by the thickness inspection device 20, and the mirror inspection device 30 can detect the surface accuracy of the lens 110; as shown in FIG. 3, the mirror detection device 30 includes a first mirror detection area 30A, a second mirror detection area 30B, and a buffer zone 30C, wherein the first mirror detection area 30A and the second mirror detection area 30B are respectively It is used to detect the surface accuracy of the lens 110, and the first mirror inspection area 30A and the second mirror inspection area 30B are respectively equipped with an axial adjustment module 31, an optical interference module 32, and an image processing module 33 And an image interpretation module 34, the difference between the first mirror inspection area 30A and the second mirror inspection area 30B is that the first mirror inspection area 30A is used to detect and judge the surface accuracy of the first mirror 110A of the lens 110 , the second mirror detection area 30B is used to detect and judge the surface accuracy of the second mirror 110B of the lens 110; the buffer zone 30C is located between the first mirror detection area 30A and the second mirror detection area 30B for Receiving the lens 110 carried by the first mirror detection area 30A, the buffer zone 30C is provided with a turning module 35 capable of turning the lens 110 from the first mirror 110A to the second mirror 110B, and then inputting the lens 110 The second mirror inspection area 30B performs surface precision inspection of the second mirror 110B.
請參考圖3至圖5,該軸向調整模組31能夠提供該鏡片110放置,且該軸向調整模組31能夠帶動該鏡片110進行至少X軸、Y軸、Z軸的軸向位移;該光學干涉模組32係為干涉儀,能對該鏡片110之鏡面進行光學干涉,以產生一牛頓環圖像A,如圖6所示,該牛頓環圖像A具有一中心圓環r以及複數圈干涉條紋f環繞該中心圓環r;該影像處理模組33包含有一影像擷取單元331、一干涉圖像判斷單元332以及一空間演
算單元333,該影像擷取單元331用以對該鏡面進行擷取影像,且該影像擷取單元331先以該中心圓環r為中心對該牛頓環圖像A進行影像擷取,以取得一干涉畫面(參如圖6),該干涉圖像判斷單元332用以判讀該牛頓環圖像A的干涉條紋上是否具有變形紋路。本文中所記載該干涉條紋的變形紋路,是指彎曲不規則的線條,使該干涉條紋形成非平整曲線。若該等干涉條紋f上具有變形紋路,則判定該鏡片110的鏡面不符合品質規範;若該等干涉條紋f為平整曲線且沒有變形紋路,則判定該鏡片110的鏡面符合品質規範。
Please refer to FIG. 3 to FIG. 5, the
該空間演算單元333在該干涉畫面中以該中心圓環r為中心對該牛頓環圖像A定義有四個檢測區及至少八個檢測方向;如圖7所示,該干涉畫面以平面作為說明,該空間演算單元333以該中心圓環r為中心將該牛頓環圖像A定義有一第一檢測區S1、一第二檢測區S2、一第三檢測區S3以及一第四檢測區S4,其中該第一檢測區S1以座標軸表示係位於(Xi,Zc)與(Yb,Zc)的區域範圍,該第二檢測區S2以座標軸表示係位於(Xa,Zc)與(Yb,Zc)的區域範圍,該第三檢測區S3以座標軸表示係位於(Xa,Zc)與(Yj,Zc)的區域範圍,該第四檢測區S4以座標軸表示係位於(Xi,Zc)與(Yj,Zc)的區域範圍,且該等檢測方向係平均分布在該第一檢測區S1、該第二檢測區S2、該第三檢測區S3與該第四檢測區S4中,且該空間演算單元333能夠控制該軸向調整模組31依據各該方位帶動該鏡片110進行至少X軸、Y軸、Z軸之其中兩者軸向位移,並在各該檢測區中個別產生該檢測畫面(參如圖7),其中該檢測畫面中之該等干涉條紋f的數量介於4至8條之間。 The space calculation unit 333 defines four detection areas and at least eight detection directions for the Newton ring image A centered on the central ring r in the interference frame; as shown in FIG. 7 , the interference frame uses a plane as a center To illustrate, the space calculation unit 333 defines the Newton ring image A as a center with the central ring r as a first detection area S1, a second detection area S2, a third detection area S3 and a fourth detection area S4 , wherein the first detection area S1 is represented by the coordinate axis in the range of (Xi, Zc) and (Yb, Zc), and the second detection area S2 is represented by the coordinate axis in the range of (Xa, Zc) and (Yb, Zc) The range of the area, the third detection area S3 is located in the range of (Xa, Zc) and (Yj, Zc) with the coordinate axis, and the fourth detection area S4 is located in the area of (Xi, Zc) and (Yj, Zc) with the coordinate axis Zc), and the detection directions are evenly distributed in the first detection area S1, the second detection area S2, the third detection area S3 and the fourth detection area S4, and the spatial calculation unit 333 It is possible to control the axial adjustment module 31 to drive the lens 110 to perform axial displacement of at least two of the X-axis, Y-axis, and Z-axis according to each of the orientations, and generate the detection images individually in each of the detection areas (see eg FIG. 7 ), wherein the number of the interference fringes f in the detection frame is between 4 and 8.
由於該鏡片110在該厚度檢測設備20中先檢測該鏡片110的中心厚度D,所以該空間演算單元333在空間判讀過程能預先減少該
鏡片110的Z軸變異因子,進而有效率地調整該鏡片110位移方向及位置,提高面精度檢測的效率。
Since the
在其他實施例中,該厚度檢測設備20可省略不設,只要該鏡面檢測設備30連接該鏡片上載設備10,能夠接收該鏡片上載設備10所運載的所述鏡片110進行面精度檢測即可,不限定事先檢測該鏡片110的中心厚度D;該影像處理模組33只要能夠獲取至少一個檢測畫面,作為後續檢測面精度的效用。
In other embodiments, the
該圖像判讀模組34在該檢測畫面中相鄰之二干涉條紋定義有複數影像特徵點P,並對該等影像特徵點P進行計算一亞斯檢測值以及一庫斜檢設值;如圖5及圖8所示,該圖像判讀模組34包含有一面精度演算單元341、一數據搜集單元342以及一資料分析單元343,該面精度演算單元341先將該等影像特徵點P分布在相鄰之二干涉條紋f上;如圖8所示,該等影像特徵點P為六個影像特徵點P,其中四個影像特徵點P分別設置在相鄰之二干涉條紋的兩端,而另外影像特徵點P分別設置在兩個相鄰之二干涉條紋f的中心位置,且該面精度演算單元341以該等影像特徵點P計算取得相鄰之二干涉條紋f的中點之間的一相鄰距離、前述二干涉條紋對應之兩端之間的一長度距離,以及前述二干涉條紋之其中一該干涉條紋之一偏移距離,並依據該鏡片直徑、該相鄰距離、該長度距離以及該偏移距離計算整合出該亞斯檢測值與該庫斜檢設值。
The
該數據搜集單元342預存有該亞斯容許區間與該庫斜容許區間;本實施例中,該亞斯容許區間與該庫斜容許區間係經由搜集多筆不同規格的鏡片110之面精度所測得的亞斯檢測值與庫斜檢設值,以建立標準的該亞斯容許區間與該庫斜容許區間,但不以此為限;該資料分析單元343接收該亞斯檢測值與該庫斜檢設值,並自該數據搜集單元342
擷取該亞斯容許區間及該庫斜容許區間進行比對,以判讀該鏡片110是否符合品質規範;若該資料分析單元343分析該亞斯檢測值超出於該亞斯容許區間,或該庫斜檢測值超出於該庫斜容許區間,則判定該鏡片110的鏡面不符合品質規範;若該資料分析單元343分析該亞斯檢測值未超出於該亞斯容許區間,以及該庫斜檢測值未超出於該庫斜容許區間,則判定該鏡片110的鏡面符合品質規範。
The
此外,當該第一鏡面檢測區30A對該鏡片110之第一鏡面110A的面精度檢測完成之後,若該鏡片110的鏡面符合品質規範,將符合品質規範之所述鏡片110輸入該緩衝區30C中,藉由該翻轉模組35將所述鏡片110由該第一鏡面110A翻轉至該第二鏡面110B,再輸入該第二鏡面檢測區30B進行第二鏡面110B的面精度檢測。
In addition, after the surface accuracy inspection of the
該鏡片下載設備40連接該鏡面檢測設備30,用以對該鏡面檢測設備30所運載符合品質規範的所述鏡片110取下,在本實施例中,該鏡片下載設備40能夠依據設定需求,藉由該手臂移載模組50將符合品質規範的所述鏡片110以及不符合品質規範的所述鏡片110個別取下,並放置在特定位置;在其他實施例中,該鏡片下載設備40能藉由該手臂移載模組50將符合品質規範的所述鏡片110與不符合品質規範的所述鏡片110取下後進行分類。
The
藉此,本發明自動化鏡面精度檢測系統100能高智能自動化檢測該鏡片的面精度,除了有效地節省人力成本,在該鏡面檢測設備30中,該影像處理模組33能自動控制該鏡片110進行至少X軸、Y軸、Z軸之其中二者軸向位移,且該圖像判讀模組34能對該檢測畫面進行分析該亞斯檢測值與該庫斜檢設值,並判讀該光學玻璃鏡片的鏡面之面精度是否符合品質規範,提高光學玻璃鏡片的面精度檢測之準確度;此外,該鏡面
檢測設備30還能自動翻轉光學玻璃鏡片,提供檢測該光學玻璃鏡片之兩側鏡面的面精度之效用。
In this way, the automatic mirror surface
以下說明係以上述自動化鏡面精度檢測系統100來實現自動化鏡面精度檢測方法。請參考圖9,該自動化鏡面精度檢測方法包括下列步驟:
The following description is based on the automatic mirror surface
步驟A,對該鏡片110之鏡面進行光學干涉,產生該牛頓環圖像A;在本實施例中,係先測量該鏡片110的中心厚度D,再對該鏡面進行光學干涉。
In step A, optical interference is performed on the mirror surface of the
步驟B,以該牛頓環圖像A之中心圓環r為中心進行影像擷取,取得該干涉畫面,該干涉畫面中具有複數圈干涉條紋f環繞該中心圓環r;在本實施例中,如圖10所示,取得該干涉畫面之後,能夠判讀該干涉畫面中該牛頓環圖像A的干涉條紋f是否具有變形紋路;若該等干涉條紋f上具有變形紋路,則判定該鏡片110的鏡面不符合品質規範,並停止後續步驟;若該等干涉條紋f為平整曲線且沒有變形紋路,則初步判定該鏡片110的鏡面符合品質規範,繼續進行該步驟C。
In step B, image capture is performed centering on the central ring r of the Newton ring image A, and the interference frame is obtained. In the interference frame, there are a plurality of rings of interference fringes f surrounding the central ring r; in this embodiment, As shown in Figure 10, after the interference picture is obtained, it can be judged whether the interference fringes f of the Newton ring image A in the interference picture have deformation lines; If the mirror surface does not meet the quality standard, stop the subsequent steps; if the interference fringes f are flat curves and have no deformation lines, it is preliminarily determined that the mirror surface of the
步驟C,控制該鏡片110位移,使該干涉畫面中的所述中心圓環r偏移並擷取該牛頓環圖像A中之局部該等干涉條紋f,以獲取該檢測畫面;如圖7所示,在本實施例中,係先在該干涉畫面上以該中心圓環r為中心定義有四個檢測區及至少八個檢測方向,再根據各該檢測方向控制該鏡片110進行至少X軸、Y軸、Z軸的其中二者軸向位移,在各該檢測區中個別產生該檢測畫面,且該檢測畫面中之該等干涉條紋f的數量介於4至8條之間。
Step C, controlling the displacement of the
步驟D,在該檢測畫面中定義有複數影像特徵點P並分布在相鄰之二干涉條紋f上,接著對該等影像特徵點P進行計算該亞斯檢測 值以及該庫斜檢設值,其中該亞斯檢測值與該庫斜檢設值的演算係根據該等影像特徵點P的分布,以計算取得相鄰之二干涉條紋f的中點之間的一相鄰距離、前述二干涉條紋f對應之兩端之間的一長度距離,以及前述二干涉條紋f之其中一該干涉條紋f之一偏移距離進行演算所得出。 In step D, a plurality of image feature points P are defined in the detection screen and distributed on two adjacent interference fringes f, and then the image feature points P are calculated for the Yass detection value and the library oblique detection value, wherein the calculation of the Yass detection value and the library oblique detection value is based on the distribution of the image feature points P to calculate the distance between the midpoints of two adjacent interference fringes f It is obtained by calculating an adjacent distance of , a length distance between the corresponding two ends of the aforementioned two interference fringes f, and an offset distance of one of the aforementioned two interference fringes f.
步驟E,分析該亞斯檢測值是否超出於該亞斯容許區間,以及該庫斜檢測值是否超出於該庫斜容許區間;如圖11所示,若該亞斯檢測值超出於該亞斯容許區間,或該庫斜檢測值超出於該庫斜容許區間,則判定該鏡片110的鏡面不符合品質規範;若該亞斯檢測值未超出於該亞斯容許區間,以及該庫斜檢測值未超出於該庫斜容許區間,則判定該鏡片110的鏡面符合品質規範。
Step E, analyzing whether the Yass detection value exceeds the Yass tolerance interval, and whether the library skew detection value exceeds the library skews tolerance interval; as shown in Figure 11, if the Yass detection value exceeds the Yass Allowable range, or the library tilt detection value exceeds the library tilt tolerance range, then it is determined that the mirror surface of the
請參考圖12,本實施例中在該步驟E之後還包含有步驟F; Please refer to FIG. 12 , step F is also included after step E in this embodiment;
步驟F,在該鏡片110之一側該鏡面檢測之後,再將該鏡片110翻轉至另一鏡面,重複上述該步驟A至該步驟E,以檢測該鏡片110之所述另一鏡面的品質規格。
Step F, after the mirror surface on one side of the
藉由本發明之設計,該自動化鏡面精度檢測系統100及方法能高智能自動化檢測該鏡片的面精度,除了有效地節省人力成本,在該鏡面檢測設備30中,該影像處理模組33能自動控制該鏡片110進行至少X軸、Y軸、Z軸之其中二者軸向位移,且該圖像判讀模組34能對該檢測畫面進行分析該亞斯檢測值與該庫斜檢設值,並判讀該光學玻璃鏡片的鏡面之面精度是否符合品質規範;除此之外,該鏡面檢測設備30還能自動翻轉光學玻璃鏡片,提供檢測該光學玻璃鏡片之兩側鏡面的面精度之效用,藉以達到提高光學玻璃鏡片的面精度檢測之準確度的目的。
With the design of the present invention, the automatic mirror surface
以上所述僅為本發明較佳可行實施例而已,需注意的是,上述表格所列的數據資料並非用以限定本發明,任何所屬技術領域中具 有通常知識者在參照本發明後,當可對其參數或設定做適當的更動,惟其乃應屬於本發明之範疇內。舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。 The above description is only a preferred feasible embodiment of the present invention. It should be noted that the data listed in the above table is not intended to limit the present invention. After referring to the present invention, those with ordinary knowledge can make appropriate changes to its parameters or settings, but they should fall within the scope of the present invention. All equivalent changes made by applying the description of the present invention and the patent scope of the application should be included in the patent scope of the present invention.
100:自動化鏡面精度檢測系統 10:鏡片上載設備 20:厚度檢測設備 30:鏡面檢測設備 40:鏡片下載設備 50:手臂移載模組 100: Automatic mirror surface precision detection system 10: Lens upload device 20:Thickness testing equipment 30: Mirror inspection equipment 40: Lens download device 50: Arm transfer module
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110136483A TWI809518B (en) | 2021-09-30 | 2021-09-30 | Automatic mirror precision detection system and its detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110136483A TWI809518B (en) | 2021-09-30 | 2021-09-30 | Automatic mirror precision detection system and its detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202316080A TW202316080A (en) | 2023-04-16 |
TWI809518B true TWI809518B (en) | 2023-07-21 |
Family
ID=86943134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110136483A TWI809518B (en) | 2021-09-30 | 2021-09-30 | Automatic mirror precision detection system and its detection method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI809518B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI879141B (en) * | 2023-10-13 | 2025-04-01 | 州巧科技股份有限公司 | Three-axis-platform-controlled lens inspection system and method for operating the same |
TWI877846B (en) * | 2023-10-18 | 2025-03-21 | 余忠道 | Optical measurement element, measurement system and measurement method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101750205A (en) * | 2008-12-10 | 2010-06-23 | 鸿富锦精密工业(深圳)有限公司 | Lens decentration detecting device |
WO2012014810A1 (en) * | 2010-07-27 | 2012-02-02 | Hoya株式会社 | Eyeglass lens evaluation method, eyeglass lens design method, eyeglass lens manufacturing method, eyeglass lens manufacturing system, and eyeglass lens |
CN107990833A (en) * | 2017-11-06 | 2018-05-04 | 南京珂亥韧光电科技有限公司 | Optical coating lens center thickness measuring device and method |
CN111220544A (en) * | 2020-01-19 | 2020-06-02 | 河海大学 | Lens quality detection device and detection method |
-
2021
- 2021-09-30 TW TW110136483A patent/TWI809518B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101750205A (en) * | 2008-12-10 | 2010-06-23 | 鸿富锦精密工业(深圳)有限公司 | Lens decentration detecting device |
WO2012014810A1 (en) * | 2010-07-27 | 2012-02-02 | Hoya株式会社 | Eyeglass lens evaluation method, eyeglass lens design method, eyeglass lens manufacturing method, eyeglass lens manufacturing system, and eyeglass lens |
CN107990833A (en) * | 2017-11-06 | 2018-05-04 | 南京珂亥韧光电科技有限公司 | Optical coating lens center thickness measuring device and method |
CN111220544A (en) * | 2020-01-19 | 2020-06-02 | 河海大学 | Lens quality detection device and detection method |
Also Published As
Publication number | Publication date |
---|---|
TW202316080A (en) | 2023-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110006905B (en) | Large-caliber ultra-clean smooth surface defect detection device combined with linear area array camera | |
TWI809518B (en) | Automatic mirror precision detection system and its detection method | |
JP5982144B2 (en) | Edge position measurement correction for epi-illumination images | |
CN107121093A (en) | A kind of gear measurement device and measuring method based on active vision | |
CN108714701A (en) | A kind of Machining of Shaft-type Parts device | |
CN103557807B (en) | The method of cigarette filter rod end surface shape quality testing and device thereof | |
CN104992446B (en) | The image split-joint method of non-linear illumination adaptive and its realize system | |
CN110501347A (en) | A kind of rapid automatized Systems for optical inspection and method | |
CN110645911B (en) | A device and method for obtaining a complete 3D profile of an outer surface by rotational scanning | |
CN113000413B (en) | System, method and terminal for detecting surface defects of synchronizer gear sleeve based on machine vision | |
US10142621B2 (en) | Mass production MTF testing machine | |
CN110554046A (en) | detection system and method for pins of electronic components | |
CN102628670A (en) | Dimension measuring apparatus, dimension measuring method, and program for dimension measuring apparatus | |
CN105783723A (en) | Machine vision-based precise die surface processing precision detection device and method | |
CN108090896A (en) | Plank flatness detection and its machine learning method, device and electronic equipment | |
CN114022370A (en) | Galvanometer laser processing distortion correction method and system | |
CN114113114A (en) | Automatic process method for detecting and repairing micro-defects on surface of large-diameter element | |
CN118610143A (en) | A rotation centering method and system based on online offset monitoring | |
CN117388254A (en) | An industrial product defect detection method and detection system | |
CN209992407U (en) | Large-caliber ultra-clean smooth surface defect detection device combined with linear array camera | |
CN106162165B (en) | Imaging sensor photosurface localization method and relevant apparatus | |
CN111912854B (en) | Large-area surface defect optical detection system and method based on fast scanning of galvanometer | |
CN116593137B (en) | Interferometer-based optical lens quality testing method and system | |
CN118224989A (en) | Optical fiber diameter measuring device and measuring method | |
CN117697187A (en) | Drilling detection device and method of laser drilling machine and laser drilling machine |