TWI804204B - Apparatus and methods for providing machine learning to analyze a biological specimen - Google Patents
Apparatus and methods for providing machine learning to analyze a biological specimen Download PDFInfo
- Publication number
- TWI804204B TWI804204B TW111106257A TW111106257A TWI804204B TW I804204 B TWI804204 B TW I804204B TW 111106257 A TW111106257 A TW 111106257A TW 111106257 A TW111106257 A TW 111106257A TW I804204 B TWI804204 B TW I804204B
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting units
- light
- biological sample
- groups
- image
- Prior art date
Links
- 238000010801 machine learning Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 238000005070 sampling Methods 0.000 claims abstract description 30
- 239000012472 biological sample Substances 0.000 claims description 54
- 239000000523 sample Substances 0.000 claims description 30
- 238000013527 convolutional neural network Methods 0.000 claims description 15
- 230000010287 polarization Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000011176 pooling Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 238000005286 illumination Methods 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 7
- 210000001124 body fluid Anatomy 0.000 description 6
- 239000010839 body fluid Substances 0.000 description 6
- 235000013601 eggs Nutrition 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 244000045947 parasite Species 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 210000003495 flagella Anatomy 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係關於一種生物樣品的取樣方法與裝置,尤其是以光學影像為分析對象,用以提供機器學習判讀生物樣品的取樣方法與裝置。 The present invention relates to a sampling method and device for biological samples, in particular to a sampling method and device for providing machine learning to interpret biological samples by using optical images as analysis objects.
自動光學檢測為業界常見之檢測方法,其有速度快之顯著優點。一般而言,自動光學檢測系統適用各種樣品,諸如晶圓與面板等,皆可維持其檢測準確度及效率。惟其使用於生物樣品時,常發生單一光學照明模式無法有效泛用的問題。原因在於生物樣品中的細胞或個體種類多元,非但結構與尺寸迥異,縱為同種細胞但仍常有個體差異的困擾,加上透明度通常較高造成低對比,以及為使之維生或維持原生水份的飽和導致背景複雜等問題。 Automatic optical inspection is a common inspection method in the industry, and it has the obvious advantage of fast speed. Generally speaking, the automatic optical inspection system is suitable for various samples, such as wafers and panels, etc., and can maintain its inspection accuracy and efficiency. However, when it is used in biological samples, there is often a problem that a single optical illumination mode cannot be used effectively. The reason is that there are many types of cells or individuals in biological samples, not only are they different in structure and size, but even though they are of the same type of cells, there are often problems with individual differences. In addition, the transparency is usually high, resulting in low contrast, and in order to maintain life or originality. The saturation of water causes problems such as complex background.
代表性生物細胞或個體為寄生蟲體,如蠕蟲或原蟲,目前最廣泛的診斷方式是使用光學顯微鏡進行觀察,需在糞便或血液抹片等複雜環境中尋找寄生蟲卵,通常需靠專業的醫檢經驗耗時耗力來完成,即使至今仍採這種人工模式。因此,必須建立一種可以供應電腦學習判讀的採樣方法,並且提供更具足豐沛的資訊,來大幅降低誤判率。 Representative biological cells or individuals are parasites, such as worms or protozoa. Currently, the most widely used diagnostic method is to observe with an optical microscope, and it is necessary to find parasite eggs in complex environments such as feces or blood smears. Professional medical examination experience is time-consuming and labor-intensive to complete, even though this manual mode is still adopted today. Therefore, it is necessary to establish a sampling method that can provide computer learning and interpretation, and provide more abundant information to greatly reduce the misjudgment rate.
參閱圖1,美國專利申請公開號US2012/0120221揭露一種體液分析系統10,包括:生物樣品乘載容器11、影像採集元件12、及影像
處裡裝置13,用於採集體液中的目標蟲體細胞的影像17。
Referring to FIG. 1, US Patent Application Publication No. US2012/0120221 discloses a body
圖1所示的習知技藝所使用的自動聚焦攝影所獲取的體液內各類蟲體細胞的影像17不清楚,導致辨識不精確。該發明將空間沿垂直方向分成深度不同的N層,透過電腦系統的控制同步擷取各層15的影像資料17,經數位化後的各層影像資料再由軟體程式處理進行堆疊。該方法使用電腦系統搭配光學攝影來進行複合影像處理與堆疊,並且由電腦程式進行對微小細胞的辨識與數量統計。一般連續性的照明光源16配置於不同的位置以維持均勻的光照。
The
習知的提供機器學習判讀的取樣方式在影像取樣之後,可以讓電腦透過模擬的方式來擴充辨識用樣品影像的數量,以提供機器學習。然而,生物細胞或是個體的特徵未必是對稱的,而且生物體的表面各部輪廓與特徵在相同或是均勻的光照之下,並不容易充分的顯示,如果使用相同光照條件下所取得的影像來虛擬出辨識用的樣品影像,對於表面各部輪廓與特徵較為複雜且不對稱的生物體(例如蟲卵)而言,機器學習的辨識效果相當有限。 In the conventional sampling method for machine learning interpretation, after image sampling, the computer can expand the number of sample images for identification through simulation to provide machine learning. However, the characteristics of biological cells or individuals are not necessarily symmetrical, and the contours and features of each part of the surface of the organism are not easy to fully display under the same or uniform illumination. If images obtained under the same illumination conditions are used To virtualize sample images for identification, for organisms (such as insect eggs) with complex and asymmetric surface contours and features, the identification effect of machine learning is quite limited.
因此,如何能夠避免上述裝置的缺點,是需要解決的技術問題。 Therefore, how to avoid the disadvantages of the above devices is a technical problem to be solved.
本發明提出一種用以提供機器學習判讀一生物樣品的取樣方法與裝置,旨在供應一種可大量擷取單一樣品不同光學特徵的方法,透過多向分域照明模組來同時創造不同投角、波前、光譜與偏振等之照明,加上不同光學焦面的影像擷取,來取得單一樣品的大量面向資訊,並以複 合影像或複數影像、來供應資訊予人工智慧軟體進行機器學習。 The present invention proposes a sampling method and device for machine learning to interpret a biological sample. It aims to provide a method that can capture a large number of different optical features of a single sample, and simultaneously create different projection angles, Illumination of wavefront, spectrum, and polarization, together with image acquisition of different optical focal planes, can obtain a large amount of oriented information of a single sample, and complex Combine images or multiple images to provide information to artificial intelligence software for machine learning.
依據本發明一實施例,提出一種用以提供機器學習判讀一生物樣品的取樣裝置,該裝置包含有一透明樣品承載容器、一影像收集元件、複數光學元件、和一控制元件。該透明樣品承載容器配置以承載該生物樣品,且具有一承載平面;該影像收集元件,配置於該承載平面的一上方,以即時獲取該生物樣品的一影像;該複數光學元件,配置於相對於該承載平面的一上方位置、一下方位置、和一側方位置的其中之一;以及該控制元件,電性連接於該影像收集元件以及該複數光學元件,其中該複數光學元件包含配置於不同位置的多組發光單元,各該組發光單元配置以依據來自該控制元件之對應各該組的各控制指令而開啟,且該些控制指令於該控制元件的安排下,依據一時序而分別開啟該多組發光單元的至少其中之一。 According to an embodiment of the present invention, a sampling device for providing machine learning to interpret a biological sample is proposed. The device includes a transparent sample holding container, an image collection element, a plurality of optical elements, and a control element. The transparent sample holding container is configured to carry the biological sample, and has a carrying plane; the image collection element is arranged above the carrying plane to obtain an image of the biological sample in real time; the plurality of optical elements are arranged opposite at one of an upper position, a lower position, and a side position of the carrying plane; and the control element, electrically connected to the image collection element and the plurality of optical elements, wherein the plurality of optical elements are arranged on Multiple groups of light-emitting units at different positions, each group of light-emitting units is configured to be turned on according to the control instructions corresponding to each group from the control element, and these control instructions are arranged according to a time sequence under the arrangement of the control element Turn on at least one of the plurality of groups of light emitting units.
依據本發明另一實施例,提出一種用以提供機器學習判讀一生物樣品的取樣方法,包含下列步驟:提供具有一承載平面的一樣品承載容器,用以承載該生物樣品;間隔於該承載平面一距離處配置一影像收集元件,以即時獲取該生物樣品的一影像;提供複數光學元件,其中該複數光學元件形成位於不同位置的多組發光單元,以向該生物樣品投射複數光源;以及以一控制元件電性連接該影像收集元件以及該複數光學元件,俾控制該複數光源於不同時間係由不同之該多組發光單元所組成。 According to another embodiment of the present invention, a sampling method for providing machine learning to interpret a biological sample is provided, comprising the following steps: providing a sample holding container with a carrying plane for carrying the biological sample; spaced apart from the carrying plane An image collection element is arranged at a distance to acquire an image of the biological sample in real time; a plurality of optical elements are provided, wherein the plurality of optical elements form a plurality of sets of light-emitting units located at different positions to project a plurality of light sources to the biological sample; and A control element is electrically connected to the image collection element and the plurality of optical elements, so as to control the plurality of light sources to be composed of different groups of light emitting units at different times.
依據本發明另一實施例,提出一種用以提供機器學習判讀一生物樣品的取樣方法,包含下列步驟:提供具有一承載平面的一樣品承載容器,用以承載該生物樣品;間隔於該承載平面一距離處配置一影像收集元件,以即時獲取該生物樣品的一影像;提供複數光學元件,以向該生物 樣品投射複數光源;以一控制元件電性連接該影像收集元件以及該複數光學元件,並以一時序發出複數控制指令;以及因應該複數控制指令,啟動該複數光學元件。 According to another embodiment of the present invention, a sampling method for providing machine learning to interpret a biological sample is provided, comprising the following steps: providing a sample holding container with a carrying plane for carrying the biological sample; spaced apart from the carrying plane An image collection element is arranged at a distance to obtain an image of the biological sample in real time; multiple optical elements are provided to provide the biological The sample projects a plurality of light sources; a control element is used to electrically connect the image collection element and the plurality of optical elements, and a plurality of control commands are issued in a sequence; and the plurality of optical elements are activated in response to the plurality of control commands.
本發明所提出的用以提供機器學習判讀一生物樣品的取樣裝置和方法,適合應用於生物科技產業的分析工作中,具有產業利用性。 The sampling device and method proposed by the present invention for providing machine learning to interpret a biological sample are suitable for analysis in the biotechnology industry and have industrial applicability.
10:體液分析系統 10: Body fluid analysis system
11:生物樣品乘載容器 11: Biological sample carrying container
12:影像採集元件 12: Image acquisition components
13:影像處裡裝置 13: Image processing device
15:層 15: layers
16:照明光源 16: Lighting source
17:目標蟲體細胞的影像 17: The image of the somatic cells of the target worm
100/200/300:取樣裝置 100/200/300: sampling device
110:樣品承載容器 110: sample holding container
115:承載平面 115: bearing plane
120:影像收集元件 120: Image collection component
121:鏡頭 121: Lens
122:攝影裝置 122: Photographic device
130:控制元件 130: Control element
160/260/360:光學元件 160/260/360: Optics
161-169/261-269/261-369:發光單元 161-169/261-269/261-369: Lighting unit
171/173/175:生物樣品 171/173/175: biological samples
501-505/511-515/610/620/630/640/650:發光單元組 501-505/511-515/610/620/630/640/650: light emitting unit group
D:距離 D: distance
本案得藉由下列圖式之詳細說明,俾得更深入之瞭解:圖1係習知用以獲取生物樣品影像的取樣裝置的示意圖;圖2係本發明用以提供機器學習判讀生物樣品的取樣方法與裝置之一實施例的示意圖;圖3是依據本發明用以提供機器學習判讀生物樣品的取樣方法與裝置之另一實施例的示意圖;圖4顯示依本發明用以提供機器學習判讀生物樣品的取樣方法與裝置之又一實施例的示意圖;圖5-1顯示依本發明所提出配置多組發光單元於不同位置的一實施例的示意圖;圖5-2顯示依本發明所提出配置多組發光單元於不同位置的另一實施例的示意圖;圖6顯示依本發明配置多組發光單元於不同位置的又一實施例的示意圖;圖7顯示依本發明利用卷積神經網路計算方法來進行影像辨識與判定之一實施例的示意圖;圖8A顯示依先前技藝所擷取的影像而提供CNN學習後的輸出正確率的示意圖: This case can be better understood through the detailed description of the following drawings: Figure 1 is a schematic diagram of a conventional sampling device used to obtain images of biological samples; Figure 2 is the sampling device used to provide machine learning to interpret biological samples in the present invention A schematic diagram of an embodiment of the method and device; FIG. 3 is a schematic diagram of another embodiment of a sampling method and device for providing machine learning to interpret biological samples according to the present invention; FIG. 4 shows a schematic diagram for providing machine learning to interpret biological samples according to the present invention A schematic diagram of another embodiment of the sample sampling method and device; FIG. 5-1 shows a schematic diagram of an embodiment of arranging multiple sets of light-emitting units at different positions according to the present invention; FIG. 5-2 shows the configuration proposed according to the present invention A schematic diagram of another embodiment of multiple groups of light emitting units at different positions; FIG. 6 shows a schematic diagram of another embodiment of disposing multiple groups of light emitting units at different positions according to the present invention; FIG. 7 shows a calculation using a convolutional neural network according to the present invention A schematic diagram of an embodiment of the method for image recognition and determination; FIG. 8A shows a schematic diagram of the output accuracy rate after CNN learning provided by an image captured according to the previous technology:
圖8B顯示依本發明一實施例所所擷取的影像而提供CNN學習後的輸出正確率的示意圖。 FIG. 8B shows a schematic diagram of the output accuracy rate after CNN learning is provided from images captured according to an embodiment of the present invention.
本發明將可由下列實施例說明而得到充分瞭解,使熟習本技藝之人士可以據以完成之,然本發明之實施並非可由下列實施例而被限制其實施型態。 The present invention will be fully understood by the description of the following examples, so that those skilled in the art can complete it, but the implementation of the present invention cannot be limited by the following examples.
請參閱圖2,其顯示依據本發明用以提供機器學習判讀生物樣品的取樣裝置與方法的一實施例。如圖,取樣裝置100包含有樣品承載容器110、影像收集元件120、複數光學元件160、和控制元件130。樣品承載容器110是配置用來承載生物樣品171/173/175,且具有一承載平面115。為了提供來自不同角度的光照,同時避免在邊緣區域形成陰影,樣品承載容器110較佳為透明材質。生物樣品171/173/175可以是血細胞、淋巴球、寄生蟲卵、或其它生物體或細胞。樣品承載容器110中的生物樣品171/173/175通常是存在於可透光的體液或組織液,也可以是糞便或是可以透光的組織切片之內,而載有這些生物樣品171/173/175的體液、組織液、糞便或是組織切片則被容納於樣品承載容器110中。
Please refer to FIG. 2 , which shows an embodiment of a sampling device and method for machine learning interpretation of biological samples according to the present invention. As shown in the figure, the
影像收集元件120通常配置於承載平面115上方的一定距離D,以即時獲取生物樣品171/173/175的影像(未顯示)。依據一實施例,影像收集元件120由鏡頭121搭配攝影裝置122而組成,可以將攝影的聚焦深度安排在承載平面115附近,讓樣品承載容器110內所有的生物樣品
171/173/175的影像都能夠被同步的獲取。攝影裝置122可以是,但是不限於,配置有電荷耦合元件(CCD)的攝影機或錄影機,在快門(未顯示)的配合下,可以在每十到千分之一秒的曝光時間裡,將所擷取的影像轉換成電子訊號。
The
這些攜帶著影像資訊的電子訊號可以被傳送到控制元件130或其他電腦設備,用來處理後續的影像辨識。請參閱圖7,其顯示一種典型的利用卷積神經網路(CNN)計算方法來進行影像辨識與判定的基本步驟。當含有生物樣品171影像的數位影像資料被輸入之後,透過卷積步驟來萃取特徵,例如生物樣品171影像的右方局部輪廓。之後的池化步驟,針對所萃取的特徵進行採樣,再反覆進行池化採樣後,資訊被壓扁成為一維向量再完全連接層分類,最終的判定被輸出。輸出的辨識判定可以是辨識出若干個特定的蟲卵數量。
These electronic signals carrying image information can be sent to the
回到圖2所示的實施例,由於圖7所示流程的功效有賴於所輸入的影像資訊的內容是否充分,好讓類神經網路計算的功能可以正確有效的發揮,本發明的取樣裝置100在承載平面115上方配置有一或多個光學元件160。圖中顯示兩個光學元件160,但不以此為限。光學元件160包含配置於不同位置的多組發光單元161-169,可分別從不同的角度與位置來提供照明。依據本發明一實施例,這些發光單元161-169的各組可以配置為提供不同波長之多個光源,該不同波長落於例如350-1100奈米的可見光範圍內。依據另一實施例,這些發光單元161-169的各組可以配置為提供不同偏振之多個光源,偏振光源可具有過濾以減少影像干擾,或用以凸顯影像的功效。或者,使用者可以只選用一個光學元件160,例如圖左上方的
光學元件160,而將發光單元161/163/165/167/169各自設定為一組。
Returning to the embodiment shown in Figure 2, since the effectiveness of the process shown in Figure 7 depends on whether the content of the input image information is sufficient, so that the function of the neural network-like calculation can be correctly and effectively played, the sampling device of the
這些光源提供各種不同投角、波前、光譜與偏振等之照明,俾使生物樣品171/173/175的影像中用以區分辨識的特徵可以被充分的顯現,有利於CNN計算功能的發揮,達到精確辨識的功效。
These light sources provide illumination with various projection angles, wavefronts, spectra, and polarizations, so that the features used to distinguish and identify
控制元件130電性連接於影像收集元件120以及複數光學元件160,各組發光單元配置以依據來自控制元件160之對應各組的各控制指令(未顯示)而依序開啟與關閉。例如,光學元件160共計包含有5組的發光單元161-169,其中發光單元161/162是第一組,發光單元163/164是第二組,發光單元165/166是第三組,發光單元167/168是第四組,發光單元169是第五組,控制指令也有五種,每一種指令的出現,指示對應的該組發光單元啟動。依據一實施例,各控制指令係單獨出現,所以各組發光單元也是在特定時段之內單獨開啟。依據另一實施例,不同的控制指令也可以同步出現,所以有多組發光單元是在特定時段之內同步開啟。
The
為了有效掌控發光單元161-169之中各組的照明時段來搭配影像收集元件120的快門節奏,該些控制指令可以在控制元件130的安排下,依據一時序而分別開啟該多組發光單元的至少其中之一。該時序包含複數時段,各該時段的時間長度可以設為例如200至2000微秒之間,或是其他適合的時間長度。因而,該多組發光單元的各該組發光單元161-169可依序於各該時段中開啟。由於一般生物體的移動速度並不迅速,在一秒之內可以取樣數十次或數百次,甚是在光照適合的條件下以更高的快門速度來進行攝影取樣。如此獲得的大量光照條件不同的生物影像資訊,更有助於提供深度的機器學習所需的樣品,提高機器學習判讀的辨識能力。
In order to effectively control the lighting period of each group of light emitting units 161-169 to match the shutter rhythm of the
請參閱圖3,其顯示依據本發明用以提供機器學習判讀生物樣品的取樣裝置與方法的另一實施例。如圖,取樣裝置200包含有樣品承載容器110、影像收集元件120、複數光學元件260、和控制元件130。在此實施例中,樣品承載容器110應具有透光性,較佳為透明的樣品承載容器110,以利於光學元件260的照明效果。
Please refer to FIG. 3 , which shows another embodiment of the sampling device and method for machine learning interpretation of biological samples according to the present invention. As shown in the figure, the
不同於圖2實施例中的配置方式,圖3中的複數光學元件260是配置於相對於承載平面115的下方位置。圖中顯示兩個光學元件260,但不以此為限。光學元件260包含配置於不同位置的多組發光單元261-269,分別可從不同的角度與位置來提供照明。對於光學元件260與發光單元261-269數量上與分組方式的選用,已經在前開有所描述,於此不再重複。
Different from the arrangement in the embodiment of FIG. 2 , the plurality of
相同的,這些光源提供各種不同投角、波前、光譜與偏振等之照明,俾使生物樣品171/173/175的影像中用以區分辨識的特徵可以充分的顯現,有利於卷積神經網路計算功能的發揮,達到精確辨識的功效。
Similarly, these light sources provide illumination with various projection angles, wavefronts, spectra, and polarizations, so that the features used to distinguish and identify
請參閱圖4,其顯示依據本發明用以提供機器學習判讀生物樣品的取樣裝置與方法的又一實施例。如圖,取樣裝置300包含有樣品承載容器110、影像收集元件120、複數光學元件360、和控制元件130。在此實施例中,樣品承載容器110至少於側壁應具有透光性,較佳為透明的樣品承載容器110,以利於光學元件360的照明效果。
Please refer to FIG. 4 , which shows another embodiment of the sampling device and method for machine learning interpretation of biological samples according to the present invention. As shown in the figure, the
不同於圖2和圖3實施例中的配置方式,圖4中的複數光學元件360是配置於相對於承載平面115的側邊位置。圖中顯示兩個光學元件360,但不以此為限,例如可參考圖6的配置概念而提供更多組的光學照
明。光學元件360包含配置於不同位置的多組發光單元361-369,分別可從不同的角度與位置來提供照明。關於光學元件360與發光單元361-369數量上與分組方式的選用,已經在前開有所描述,於此不再重複。
Different from the arrangement in the embodiments of FIG. 2 and FIG. 3 , the plurality of
圖5-1和5-2分別提供配置多組發光單元於不同位置的不同實施例的示意圖,其中圖5-1所示的5組發光單元501-505是將一組發光單元501位於中央而其他四組發光單元502-505環列於四周,而圖5-2所示的配置方式是將各組發光單元511-515以外徑不同的環型輪廓以同心狀方式的配置,使用者還可以依據需要而發展不同組別數量或不同輪廓的配置方式,皆不超出本發明的概念範圍。
Figures 5-1 and 5-2 respectively provide schematic diagrams of different embodiments of disposing multiple groups of light emitting units at different positions, wherein the five groups of light emitting units 501-505 shown in Figure 5-1 are arranged with one group of light emitting
圖6顯示依據本發明配置多組發光單元於不同位置的又一實施例的示意圖,圖中六組發光單元610-660是環繞於樣品承載容器110的不同投射位置來提供來自不同角度的照明。圖5-1、5-2和圖6之中的各組發光單元還可以包含不同波長或偏振之多個光源,俾使影像收集元件120所即時獲取的生物樣品171/173/175的影像可以據以充分辨識出其生物特徵。
6 shows a schematic diagram of yet another embodiment in which multiple groups of light emitting units are arranged at different positions according to the present invention. In the figure, six groups of light emitting units 610-660 surround different projection positions of the
比如說,有的生物體在其尾部一端有鞭毛而其它部位都沒有鞭毛,而該種生物體可能朝向任何方向游動,所以只有當投射光照的方向足以顯示該種生物體的鞭毛特徵時,所取得的影像足以用於辨識該種生物體。本發明所提供用以提供機器學習判讀一生物樣品的取樣裝置,運用配置於不同位置多組發光單元,可以在短時間內依據一時序來獲得來自不同位置甚至於不同波長或偏振之多個光源照射下所取得的大量影像,俾使生物樣品171/173/175的影像中用以區分辨識的特徵可以充分的顯現,有利
於CNN計算功能的發揮,達到精確辨識的功效。
For example, some organisms have flagella at one end of their tail and no flagella in other parts, and this organism may swim in any direction, so only when the direction of the projected light is sufficient to show the flagella characteristics of this organism, The images obtained are sufficient to identify the organism. The sampling device provided by the present invention for providing machine learning to interpret a biological sample uses multiple sets of light-emitting units arranged at different positions to obtain multiple light sources from different positions or even different wavelengths or polarizations in a short time according to a time sequence A large number of images obtained under irradiation, so that the features used to distinguish and identify the images of
請參閱圖8A和8B,分別是依先前技藝所擷取的影像而提供CNN學習後的若干筆輸出的判讀正確率以及依據本發明一個實施例(六種不同的照明模式)所擷取的影像而提供CNN學習後的判讀正確率的示意圖。所謂指定判別準確率是比較影像中經電腦判讀而取得的某種蟲卵數量對照該樣本中已知的該種蟲卵數量的準確率百分比。 Please refer to Figures 8A and 8B, which respectively provide the interpretation accuracy of several outputs after CNN learning based on the images captured by the prior art and the images captured according to an embodiment of the present invention (six different lighting modes) And provide a schematic diagram of the correct rate of interpretation after CNN learning. The so-called specified discrimination accuracy rate is the accuracy percentage of comparing the number of eggs of a certain type obtained through computer interpretation in the image with the known number of eggs of this type in the sample.
圖8A所示的指定判別準確率平均值實際為69.93%,圖中虛線所示的依據該些數據計算所得的控制界線閥值落在60%附近,而圖8B所示的指定判別準確率平均值實際為99.94%,圖中虛線所示的控制界線閥值落在99.6%。比較兩者的準確率數據與統計結果,不難發現依據本發明用以提供機器學習判讀一生物樣品的取樣方法與裝置所取得的影像資訊,能夠使得CNN學習後的判讀正確率出現突破性的提升,讓機器學習的判讀能力達到十分可靠的境界,可以說是技術的一大創新。 The average value of the specified discrimination accuracy shown in Figure 8A is actually 69.93%, and the control boundary threshold calculated based on the data shown by the dotted line in the figure falls near 60%, while the average specified discrimination accuracy shown in Figure 8B The value is actually 99.94%, and the control boundary threshold shown by the dotted line in the figure falls at 99.6%. Comparing the accuracy rate data and statistical results of the two, it is not difficult to find that the image information obtained by the sampling method and device for providing machine learning to interpret a biological sample according to the present invention can make a breakthrough in the accuracy rate of interpretation after CNN learning. It can be said that it is a major innovation of technology to improve the interpretation ability of machine learning to a very reliable state.
本案雖以較佳實施例揭露如上,然其並非用以限定本案的範圍,任何熟習此項技藝者,在不脫離本案之精神和範圍內所作之變動與修飾,皆應屬本案之涵蓋範圍。 Although this case discloses the above with a preferred embodiment, it is not used to limit the scope of this case. Any changes and modifications made by those who are familiar with this technology without departing from the spirit and scope of this case should fall within the scope of this case.
100:取樣裝置 100: sampling device
110:樣品承載容器 110: sample holding container
115:承載平面 115: bearing plane
120:影像收集元件 120: Image collection component
121:鏡頭 121: Lens
122:攝影裝置 122: Photographic device
130:控制元件 130: Control element
160/260/360:光學元件 160/260/360: Optics
161-169:發光單元 161-169: Lighting unit
171/173/175:生物樣品 171/173/175: biological samples
D:距離 D: distance
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111106257A TWI804204B (en) | 2022-02-21 | 2022-02-21 | Apparatus and methods for providing machine learning to analyze a biological specimen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111106257A TWI804204B (en) | 2022-02-21 | 2022-02-21 | Apparatus and methods for providing machine learning to analyze a biological specimen |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI804204B true TWI804204B (en) | 2023-06-01 |
TW202334650A TW202334650A (en) | 2023-09-01 |
Family
ID=87803316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111106257A TWI804204B (en) | 2022-02-21 | 2022-02-21 | Apparatus and methods for providing machine learning to analyze a biological specimen |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI804204B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150355101A1 (en) * | 2014-06-09 | 2015-12-10 | Keyence Corporation | Image Inspection Apparatus, Image Inspection Method, Image Inspection Program, Computer-Readable Recording Medium And Recording Device |
CN109477848A (en) * | 2016-07-25 | 2019-03-15 | 西门子医疗保健诊断公司 | The system of sample container lid, method and apparatus for identification |
US20200250396A1 (en) * | 2019-02-04 | 2020-08-06 | Tokitae Llc | Automated microscopy scanning systems and methods |
US10755401B2 (en) * | 2018-12-04 | 2020-08-25 | General Electric Company | System and method for work piece inspection |
US11238318B2 (en) * | 2017-04-13 | 2022-02-01 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for HILN characterization using convolutional neural network |
-
2022
- 2022-02-21 TW TW111106257A patent/TWI804204B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150355101A1 (en) * | 2014-06-09 | 2015-12-10 | Keyence Corporation | Image Inspection Apparatus, Image Inspection Method, Image Inspection Program, Computer-Readable Recording Medium And Recording Device |
CN109477848A (en) * | 2016-07-25 | 2019-03-15 | 西门子医疗保健诊断公司 | The system of sample container lid, method and apparatus for identification |
US11238318B2 (en) * | 2017-04-13 | 2022-02-01 | Siemens Healthcare Diagnostics Inc. | Methods and apparatus for HILN characterization using convolutional neural network |
US10755401B2 (en) * | 2018-12-04 | 2020-08-25 | General Electric Company | System and method for work piece inspection |
US20200250396A1 (en) * | 2019-02-04 | 2020-08-06 | Tokitae Llc | Automated microscopy scanning systems and methods |
Also Published As
Publication number | Publication date |
---|---|
TW202334650A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7590741B2 (en) | Analysis System | |
US20150213599A1 (en) | Automated histological diagnosis of bacterial infection using image analysis | |
EP2936116B1 (en) | System and method for classification of particles in a fluid sample | |
CN115032196B (en) | A full-scribing high-throughput color pathological imaging analysis instrument and method | |
KR102704880B1 (en) | System for inspecting product defects by type based on a deep learning model | |
US20220334371A1 (en) | Intelligent automated imaging system | |
JP2016505836A5 (en) | ||
Behera | Image-processing in textiles | |
CN102129558A (en) | System and method for collecting iris based on Purking spot analysis | |
CN106973258A (en) | Pathological section information quick obtaining device | |
US12032150B2 (en) | Method and system for identifying objects in a blood sample | |
EP4247153A1 (en) | Optical technique for analyzing insects, shrimp and fish | |
CN114972547A (en) | Method for determining tooth color | |
CN116012700A (en) | Real-time fish disease detection system based on YOLO-v5 | |
Wang et al. | Vision-based in situ monitoring of plankton size spectra via a convolutional neural network | |
CN117710820A (en) | Rice pest and disease detection method and system based on improved YOLOv8 | |
CN111079831A (en) | Intelligent optical detection sample characteristic and flaw automatic marking method and device | |
JP2010216920A (en) | Cell-image analyzing apparatus | |
TWI804204B (en) | Apparatus and methods for providing machine learning to analyze a biological specimen | |
Bagui et al. | Red blood cells counting by circular Hough transform using multispectral images | |
CN110619297A (en) | Bean seed image batch acquisition and identification method and device | |
Jaballah et al. | A deep learning approach to detect and identify live freshwater macroinvertebrates | |
CN112461762B (en) | Solution turbidity detection method, medium and image processing system based on HSV model | |
CN112505002B (en) | Solution turbidity detection method, medium and image system based on RGB model | |
CN112529916B (en) | Silkworm egg development degree detection method based on terahertz video imaging technology |