TWI782874B - Anti-electromagnetic wave heat dissipation composite film structure - Google Patents
Anti-electromagnetic wave heat dissipation composite film structure Download PDFInfo
- Publication number
- TWI782874B TWI782874B TW111106211A TW111106211A TWI782874B TW I782874 B TWI782874 B TW I782874B TW 111106211 A TW111106211 A TW 111106211A TW 111106211 A TW111106211 A TW 111106211A TW I782874 B TWI782874 B TW I782874B
- Authority
- TW
- Taiwan
- Prior art keywords
- electromagnetic wave
- heat dissipation
- layer
- heat
- heat conduction
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract 24
- 239000002131 composite material Substances 0.000 title claims abstract 8
- 239000010410 layer Substances 0.000 claims abstract 26
- 239000000463 material Substances 0.000 claims abstract 9
- 239000002346 layers by function Substances 0.000 claims abstract 7
- 239000011810 insulating material Substances 0.000 claims abstract 3
- 239000011248 coating agent Substances 0.000 claims abstract 2
- 238000000576 coating method Methods 0.000 claims abstract 2
- 238000010521 absorption reaction Methods 0.000 claims 3
- 150000002736 metal compounds Chemical class 0.000 claims 2
- 229910000859 α-Fe Inorganic materials 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000011358 absorbing material Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Laminated Bodies (AREA)
Abstract
一種抗電磁波的散熱複合膜層結構,供用於披覆於一可發出電磁波的元件表面,包含一介電絕緣層,及一抗電磁波散熱單元。該介電絕緣層由介電絕緣材料構成,披覆於該元件表面上。該抗電磁波散熱單元形成於該介電絕緣層表面,並具有抗電磁波特性,包括多層厚度介於5nm至1000nm的功能層,且其中至少一功能層由導熱散熱材料構成。本發明利用披覆於該元件上具有抗電磁波且具有導熱散熱特性的功能層,不僅可遮蔽該元件所發出的電磁波以避免電磁波干擾,同時還能提升元件整體的導熱散熱性。An anti-electromagnetic wave heat dissipation composite film structure is used for coating on the surface of an element capable of emitting electromagnetic waves, including a dielectric insulating layer and an anti-electromagnetic wave heat dissipation unit. The dielectric insulating layer is made of dielectric insulating material and covers the surface of the element. The anti-electromagnetic wave heat dissipation unit is formed on the surface of the dielectric insulating layer and has anti-electromagnetic wave characteristics, including multiple functional layers with a thickness ranging from 5nm to 1000nm, and at least one of the functional layers is made of heat-conducting and heat-dissipating materials. The present invention uses a functional layer coated on the element with anti-electromagnetic wave and heat conduction and heat dissipation properties, which can not only shield the electromagnetic wave emitted by the element to avoid electromagnetic wave interference, but also improve the overall heat conduction and heat dissipation of the element.
Description
本發明是有關於一種抗電磁波的複合膜層結構,特別是指一種抗電磁波並具有散熱性質的複合膜層結構。The invention relates to a composite membrane structure for resisting electromagnetic waves, in particular to a composite membrane structure for resisting electromagnetic waves and having heat dissipation properties.
隨著技術發展,在生活中或是各種產業領域中使用電子設備的占比越來越高,並逐漸往高頻化的方向發展,因此,業界會利用電磁遮蔽(Electromagnetic interference,EMI)材料,吸收或屏蔽該等電子設備所發出的電磁波,以避免該等電子設備間彼此串擾,並降低人體受輻射照射的程度。此外,在往高頻化方向發展的同時,對於該等電子設備之導熱散熱性的要求亦逐漸提高,使其保有一定程度的熱穩定性,而可改善訊號損耗、能量耗損等問題,因此,如何改善該等電子設備導熱散熱性,及電磁遮蔽性,並同時降低所配置之功能性構件的複雜度,為相關領域的重要課題。With the development of technology, the proportion of electronic equipment used in daily life or in various industrial fields is getting higher and higher, and it is gradually developing in the direction of high frequency. Therefore, the industry will use electromagnetic shielding (Electromagnetic interference, EMI) materials, Absorb or shield the electromagnetic waves emitted by these electronic devices to avoid crosstalk between these electronic devices and reduce the degree of radiation exposure of the human body. In addition, while developing in the direction of high frequency, the requirements for the heat conduction and heat dissipation of these electronic devices are also gradually increasing, so that they can maintain a certain degree of thermal stability, and can improve signal loss, energy loss and other problems. Therefore, How to improve the heat conduction and heat dissipation properties of these electronic devices, and the electromagnetic shielding properties, and at the same time reduce the complexity of the configured functional components is an important issue in related fields.
因此,本發明的目的,即在提供一種抗電磁波的散熱複合膜層結構,同時具有電磁遮蔽性質,以及導熱散熱性質。Therefore, the purpose of the present invention is to provide a heat dissipation composite film layer structure that is resistant to electromagnetic waves and has both electromagnetic shielding properties and heat conduction and heat dissipation properties.
於是,本發明抗電磁波的散熱複合膜層結構,供用於披覆於一可發出電磁波的元件表面,包含一介電絕緣層,及一抗電磁波散熱單元。Therefore, the anti-electromagnetic wave heat dissipation composite film structure of the present invention is used to cover the surface of a component capable of emitting electromagnetic waves, and includes a dielectric insulating layer and an anti-electromagnetic wave heat dissipation unit.
該介電絕緣層由介電絕緣材料構成,披覆於該元件表面上。The dielectric insulating layer is made of dielectric insulating material and covers the surface of the element.
該抗電磁波散熱單元形成於該介電絕緣層表面,並具有抗電磁波特性,包括多層厚度分別介於5nm至1000nm的功能層,且其中至少一功能層由導熱散熱材料構成。The anti-electromagnetic wave heat dissipation unit is formed on the surface of the dielectric insulating layer and has anti-electromagnetic wave characteristics, including multiple functional layers with a thickness of 5nm to 1000nm, and at least one of the functional layers is made of heat-conducting and heat-dissipating materials.
本發明的功效在於:利用披覆於該元件上具有抗電磁波且具有導熱散熱特性的功能層,而能遮蔽該元件所發出的電磁波,同時還可提升元件整體的導熱散熱性。The effect of the present invention is that the electromagnetic wave emitted by the element can be shielded by using the functional layer coated on the element with anti-electromagnetic wave and heat conduction and heat dissipation properties, and at the same time, the overall heat conduction and heat dissipation performance of the element can be improved.
有關本發明之相關技術內容、特點與功效,在以下配合參考圖式之實施例的詳細說明中,將可清楚的呈現。此外,要說明的是,本發明圖式僅為表示元件間的結構及/或位置相對關係,與各元件的實際尺寸並不相關。The relevant technical contents, features and effects of the present invention will be clearly presented in the following detailed description of the embodiments with reference to the drawings. In addition, it should be noted that the drawings of the present invention only represent the structure and/or relative positional relationship between components, and are not related to the actual size of each component.
參閱圖1與圖2,本發明抗電磁波的散熱複合膜層結構的一實施例,供用於披覆於一可發出電磁波的元件1表面,用以降低由該元件1對外發出的電磁波能量。其中,該元件1可以為電子元件(例如功率元件)、傳輸線、電路板、導電線路與電子構件間的連接接點,或是電子測試周邊元件(例如探針卡、探頭等)等任何可發出電磁波訊號的器件,但不以前述之舉例為限。Referring to FIG. 1 and FIG. 2 , an embodiment of the anti-electromagnetic wave heat dissipation composite film structure of the present invention is used to cover the surface of a component 1 capable of emitting electromagnetic waves, so as to reduce the energy of electromagnetic waves emitted by the component 1 . Wherein, the component 1 can be an electronic component (such as a power component), a transmission line, a circuit board, a connection point between a conductive circuit and an electronic component, or any peripheral component of an electronic test (such as a probe card, a probe, etc.) Devices for electromagnetic wave signals, but not limited to the aforementioned examples.
本發明抗電磁波的散熱複合膜層結構的該實施例包含一介電絕緣層2,及一抗電磁波散熱單元3。This embodiment of the anti-electromagnetic wave heat dissipation composite film structure of the present invention includes a
該介電絕緣層2由介電絕緣材料構成,披覆於該元件1表面上,用以令該元件1保持電性絕緣,不受到其他電子構件影響。在本實施例中,該介電絕緣材料選自氧化物、氮化物、其它V族元素的金屬化合物,或VI族元素的金屬化合物,且厚度介於20nm至100nm之間。The
該抗電磁波散熱單元3形成於該介電絕緣層2表面,並同時具有抗電磁波特性與導熱散熱性。The anti-electromagnetic wave
該抗電磁波散熱單元3包括多層厚度分別介於5nm至1000nm的功能層31。該等功能層31可以是利用化學氣相沉積法(CVD)、原子層沉積法(ALD)等氣相沉積方式或其它沉積製程形成,且其中至少一功能層31是由導熱散熱材料構成的導熱散熱層311。該導熱散熱材料選自氧化鋁、氮化鋁,或具有導熱散熱性的二維材料,該具有導熱散熱性的二維材料可選自含碳的二維材料(例如:石墨烯),或二硫化鉬。The anti-electromagnetic wave
較佳地,該等功能層31的表面平整。於一些實施例中,該等功能層31的表面粗糙度(Roughness)不大於其厚度的二十分之一。Preferably, the surfaces of the
在一些實施例中,該等功能層31的厚度可介於5nm至50nm、50nm至500nm,或是500nm至1000nm之間,且彼此的厚度可為相同或不同。In some embodiments, the thicknesses of the
在本實施例中,如圖1所示之抗電磁波散熱單元3的該等功能層31是由具有不同高、低折射率的導熱散熱材料所構成的導熱散熱層311,該等具有不同高、低折射率的導熱散熱層311彼此相疊置地形成於該介電絕緣層2的表面上而形成一類似於布拉格反射鏡的堆疊結構,而得以使自該元件1所發出的電磁波在通過該等層疊地且具有不同折射率的導熱散熱層311時,會產生內反射而逐漸消散,且該等導熱散熱層311基於構成材料的性質而具有導熱散熱性質,因此,於提供抗電磁波特性的同時還可提升該元件1的散熱性。具體地說,如圖1所示的該抗電磁波散熱單元3具有一形成於該元件1表面上的第一導熱散熱層311a,及一形成於該第一導熱散熱層311a表面上的第二導熱散熱層311b,且該第一、第二導熱散熱層311a、b分別由具有不同折射率的導熱散熱材料構成。較佳地,形成於內側(即鄰近該元件1一側)的該第一導熱散熱層311a的折射率低於位於外圍的第二導熱散熱層311b的折射率,而有助於電磁波對外發出時產生內反射。In this embodiment, the
參閱圖2,說明本發明抗電磁波的散熱複合膜層結構的另一實施態樣,在此實施態樣中,該等功能層31包括一形成於該介電絕緣層2表面,且由電磁波吸收材料構成的電磁波吸收層312,及一形成於該電磁波吸收層312表面的該導熱散熱層311,且該電磁波吸收層312與該導熱散熱層311的厚度分別介於5nm至1000nm。除了藉由該導熱散熱層311提升整體的熱穩定性以外,還可利用該電磁波吸收層312進一步吸收由該元件1所產生的電磁波能量。其中,該電磁波吸收材料選自鐵氧體或摻雜過渡金屬或稀土金屬的鐵氧體。具體的說,該電磁波吸收材料可以是氧化鐵、氧化鈷、摻雜有過渡金屬或稀土金屬的氧化鐵或其它磁性材料,摻雜的金屬可選自鈷(Co)、鎳(Ni)、鉻(Cr)、銪(Eu)、鉑(Pt)、鍶(Sr)或錳(Mn)。Referring to FIG. 2 , another embodiment of the heat dissipation composite film layer structure against electromagnetic waves of the present invention is illustrated. In this embodiment, the
較佳地,該電磁波吸收層312的厚度介於500nm至1000nm,且位於該抗電磁波散熱單元3的內側,而有足夠的厚度以吸收電磁波能量,使該元件1所發出的電磁波能量先被該電磁波吸收層312部份地吸收後,再通過位於外圍的該導熱散熱層311,而以內反射的方式逐漸消散,並提升元件1的導熱散熱性。要說明的是,此實施態樣是以自該介電絕緣層2上依序披覆一層電磁波吸收層312,及一層導熱散熱層311為例說明,然實際實施時,也可以具有多層導熱散熱層311,只要令該電磁波吸收層312最靠近該元件1即可,如圖3所示的該抗電磁波散熱單元3即是自該介電絕緣層2表面再依序形成一層電磁波吸收層312、一層第一導熱散熱層311a,及一層第二導熱散熱層311b,且該第一導熱散熱層311a的折射率低於該第二導熱散熱層311b的折射率,因此,透過同時設置該電磁波吸收層312及多層導熱散熱層311a、311b,可更確保該元件1的電磁波遮蔽效果及散熱效果。配合參閱圖3、圖4,茲將本發明抗電磁波的散熱複合膜層結構就以下實驗例1及2,及一對照例1作進一步說明,用以檢驗該等實驗例之抗電磁波散熱單元3的抗電磁波能力,並將測試結果整理於表1,但應瞭解的是,所述的實驗例及其測試數據僅為例示說明之用,而不應被解釋為本發明實施之限制。Preferably, the thickness of the electromagnetic
對照例1Comparative example 1
設置一第一天線,及一與該第一天線的間隔距離為10mm的第二天線,並自該第二天線發出一頻率為30GHz、波長為1mm的電磁波(此時該第二天線可相當於圖2、3的元件1),接著,利用一電磁波測量儀分別測量於該第二天線,及該第一天線接收的電磁波功率密度Pa、Pb,並將所測得之電磁波功率密度Pa、Pb依據公式:dB=20×log(Pa/Pb)計算,取得一電磁波遮蔽能力值(dB),用以表示自該第二天線產生的電磁波行進至該第一天線後,其電磁波強度的相對衰減程度。Set a first antenna, and a second antenna with a distance of 10mm from the first antenna, and send out an electromagnetic wave with a frequency of 30GHz and a wavelength of 1mm from the second antenna (at this time, the second antenna Antenna can be equivalent to the element 1) of Fig. 2, 3, then, utilize an electromagnetic wave measuring instrument to measure respectively at this second antenna, and the electromagnetic wave power density Pa, Pb that this first antenna receives, and the measured The electromagnetic wave power density Pa and Pb are calculated according to the formula: dB=20×log(Pa/Pb) to obtain an electromagnetic wave shielding ability value (dB), which is used to indicate that the electromagnetic wave generated from the second antenna travels to the first day After the line, the relative attenuation degree of its electromagnetic wave intensity.
實驗例1Experimental example 1
實驗例1的設置條件則是於該對照例1的該第一、第二天線的中心位置設置一抗電磁波散熱單元3(即分別與該第一、第二天線間隔5mm)。其中,該抗電磁波散熱單元3是由彼此相疊置的一電磁波吸收層312,及一導熱散熱層311所構成,且該電磁波吸收層312鄰近發出電磁波的該第二天線(該第二天線相當於圖2、3的元件1)設置。其中,該電磁波吸收層312的厚度為50nm,並選自氧化鐵,該導熱散熱層311的厚度為50nm,並選自氧化鋁。The installation condition of Experimental Example 1 is to install an anti-electromagnetic
接著,利用該電磁波測量儀分別測量該實驗例1於該第二天線的電磁波功率密度Pa及於該第一天線接收的電磁波功率密度Pb,並計算取得一電磁波遮蔽能力值(dB)。其中,圖3的虛線及實線分別表示該對照例1及該實驗例1,自該第二天線產生的電磁波行進至該第一天線後,依據該第一天線端接收的電磁波功率密度Pb,及該第二天線端接收到的電磁波功率密度Pa計算而得的電磁波遮蔽能力值的曲線分布圖。Then, the electromagnetic wave power density Pa at the second antenna and the electromagnetic wave power density Pb received at the first antenna of the experimental example 1 were respectively measured by the electromagnetic wave measuring instrument, and an electromagnetic wave shielding capability value (dB) was calculated and obtained. Wherein, the dotted line and the solid line of Fig. 3 represent respectively the comparative example 1 and the experimental example 1, after the electromagnetic wave generated from the second antenna advances to the first antenna, according to the electromagnetic wave power received by the first antenna terminal Density Pb, and the curve distribution diagram of the electromagnetic wave shielding ability value calculated from the electromagnetic wave power density Pa received by the second antenna end.
實驗例2Experimental example 2
實驗例2的設置及操作條件與實驗例1相似,其差異在於,該實驗例2的抗電磁波散熱單元3是由兩層彼此相疊置,且具有不同折射率的第一、第二導熱散熱層311a、b所構成,且該第一導熱散熱層311a鄰近發出電磁波的該第二天線設置。其中,該等第一、第二導熱散熱層311a、b的厚度分別為50nm,且該第一導熱散熱層311a選自折射率為1.77~1.78的氧化鋁,該第二導熱散熱層311b選自折射率為1.9~2.2的氮化鋁。The setup and operating conditions of Experimental Example 2 are similar to those of Experimental Example 1, the difference being that the anti-electromagnetic
接著,利用該電磁波測量儀分別量測於該實驗例2的第二天線、第一天線的電磁波功率密度Pa、Pb,並計算取得一電磁波遮蔽能力值(dB)。其中,圖4的虛線及實線分別表示該對照例1及該實驗例2,自該第二天線產生的電磁波行進至該第一天線後,依據該第一天線端接收的電磁波功率密度Pb,及該第二天線端接收到的電磁波功率密度Pa計算而得的電磁波遮蔽能力值的曲線分布圖。Next, the electromagnetic wave power densities Pa and Pb of the second antenna and the first antenna of the experimental example 2 were respectively measured by the electromagnetic wave measuring instrument, and an electromagnetic wave shielding capability value (dB) was calculated and obtained. Wherein, the dotted line and the solid line in Fig. 4 represent the comparative example 1 and the experimental example 2 respectively, after the electromagnetic wave generated from the second antenna travels to the first antenna, according to the electromagnetic wave power received by the first antenna terminal Density Pb, and the curve distribution diagram of the electromagnetic wave shielding ability value calculated from the electromagnetic wave power density Pa received by the second antenna end.
表1
由圖3、圖4,及表1的整理結果可以得知,當該第一、二天線之間未放置任何電磁波吸收材料時,電磁波自該第二天線行進至該第一天線時(對照例1),該電磁波遮蔽能力值約-16.6dB;而當該第一、第二天線之間設置有該實驗例1的抗電磁波散熱單元3時,其電磁波遮蔽能力值則進一步下降至-17 dB以下,可以得知該抗電磁波散熱單元3具有電磁遮蔽能力(即抗電磁波能力),其中,相較於實驗例1的電磁波吸收材料,由具有不同折射率的導熱散熱層311堆疊所構成的抗電磁波散熱單元3(實驗例2),其電磁波遮蔽能力值可下降更多(至-20.2dB),而可具有更佳的抗電磁波能力。且因為同時具有多層散熱材料,因此,該實驗例2的抗電磁波散熱單元3還可具有更佳的散熱效果。From Fig. 3, Fig. 4, and the collation results of Table 1, it can be known that when no electromagnetic wave absorbing material is placed between the first and second antennas, when the electromagnetic wave travels from the second antenna to the first antenna ( Comparative example 1), the electromagnetic wave shielding ability value is about -16.6dB; and when the anti-electromagnetic wave
綜上所述,本發明抗電磁波的散熱複合膜層結構透過在該元件1上披覆該等導熱散熱層311,使該元件1發出的電磁波能量在行進通過時能經由內反射方式而逐漸消逝,並提升該元件1整體的導熱散熱性,故確實可達成本發明的目的。To sum up, the anti-electromagnetic wave heat dissipation composite film structure of the present invention coats the heat conduction and heat dissipation layers 311 on the element 1, so that the electromagnetic wave energy emitted by the element 1 can gradually disappear through internal reflection when passing through. , and improve the overall heat conduction and heat dissipation of the element 1, so the purpose of the present invention can indeed be achieved.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.
1:元件1: component
2:介電絕緣層2: Dielectric insulation layer
3:抗電磁波散熱單元3: Anti-electromagnetic wave cooling unit
31:功能層31: Functional layer
311:導熱散熱層311: heat conduction and heat dissipation layer
311a:第一導熱散熱層311a: the first heat conduction and heat dissipation layer
311b:第二導熱散熱層311b: the second heat conduction and heat dissipation layer
312:電磁波吸收層312: Electromagnetic wave absorbing layer
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一剖視示意圖,說明本發明抗電磁波的散熱複合膜層結構的一實施例; 圖2是一剖視示意圖,說明該實施例的另一實施態樣; 圖3是一剖視示意圖,說明該實施例的另一實施態樣; 圖4是一電磁波遮蔽能力值的分布曲線圖,用以說明該實施例的抗電磁波散熱單元的抗電磁能力;及 圖5是一電磁波遮蔽能力值的分布曲線圖,用以說明另一實施態樣之抗電磁波散熱單元的抗電磁能力。Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a schematic cross-sectional view illustrating an embodiment of the anti-electromagnetic wave heat dissipation composite film structure of the present invention; Fig. 2 It is a schematic cross-sectional view illustrating another implementation mode of this embodiment; Fig. 3 is a schematic cross-sectional view illustrating another implementation mode of this embodiment; Fig. 4 is a distribution curve diagram of an electromagnetic wave shielding ability value, used To illustrate the anti-electromagnetic ability of the anti-electromagnetic wave heat dissipation unit of this embodiment; and FIG. 5 is a distribution curve diagram of the electromagnetic wave shielding ability value, which is used to illustrate the anti-electromagnetic ability of the anti-electromagnetic wave heat dissipation unit of another embodiment.
1:元件 1: component
2:介電絕緣層 2: Dielectric insulation layer
3:抗電磁波散熱單元 3: Anti-electromagnetic wave cooling unit
31:功能層 31: Functional layer
311a:第一導熱散熱層 311a: the first heat conduction and heat dissipation layer
311b:第二導熱散熱層 311b: the second heat conduction and heat dissipation layer
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111106211A TWI782874B (en) | 2022-02-21 | 2022-02-21 | Anti-electromagnetic wave heat dissipation composite film structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111106211A TWI782874B (en) | 2022-02-21 | 2022-02-21 | Anti-electromagnetic wave heat dissipation composite film structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI782874B true TWI782874B (en) | 2022-11-01 |
TW202335573A TW202335573A (en) | 2023-09-01 |
Family
ID=85794390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111106211A TWI782874B (en) | 2022-02-21 | 2022-02-21 | Anti-electromagnetic wave heat dissipation composite film structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI782874B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207706631U (en) * | 2017-12-22 | 2018-08-07 | 深圳市兴威格科技有限公司 | A kind of suction wave graphite flake |
TW202038696A (en) * | 2018-12-18 | 2020-10-16 | 日商東洋油墨Sc控股股份有限公司 | Electronic component mounting substrate and electronic device |
CN213187075U (en) * | 2020-10-23 | 2021-05-11 | 浙江康廷电子科技有限公司 | Heat conduction shielding film |
CN213534067U (en) * | 2020-10-23 | 2021-06-25 | 浙江康廷电子科技有限公司 | Heat-insulation shielding film |
-
2022
- 2022-02-21 TW TW111106211A patent/TWI782874B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207706631U (en) * | 2017-12-22 | 2018-08-07 | 深圳市兴威格科技有限公司 | A kind of suction wave graphite flake |
TW202038696A (en) * | 2018-12-18 | 2020-10-16 | 日商東洋油墨Sc控股股份有限公司 | Electronic component mounting substrate and electronic device |
CN213187075U (en) * | 2020-10-23 | 2021-05-11 | 浙江康廷电子科技有限公司 | Heat conduction shielding film |
CN213534067U (en) * | 2020-10-23 | 2021-06-25 | 浙江康廷电子科技有限公司 | Heat-insulation shielding film |
Also Published As
Publication number | Publication date |
---|---|
TW202335573A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100510921B1 (en) | Highly heat-conductive composite magnetic material | |
US9307631B2 (en) | Cavity resonance reduction and/or shielding structures including frequency selective surfaces | |
US9173333B2 (en) | Shielding structures including frequency selective surfaces | |
CN104271039B (en) | Electromagnetic probe, the method using electromagnetic surveying and the system of use electromagnetic surveying | |
CN103929933A (en) | Structure for inhibition of electromagnetic wave interference and flexible printed circuit comprising same | |
US9854720B2 (en) | Electromagnetic wave shileding dielectric film | |
US8373072B2 (en) | Printed circuit board | |
WO1998009490A1 (en) | Windowpane having electromagnetic shielding ability | |
TWI782874B (en) | Anti-electromagnetic wave heat dissipation composite film structure | |
JPWO2003081973A1 (en) | Electromagnetic wave shielding sheet, electromagnetic wave shielding transmission cable, and electromagnetic wave shielding LSI | |
CN217064422U (en) | Anti-electromagnetic wave heat dissipation composite film structure | |
TWM628279U (en) | Heat dissipation composite film structure capable of resisting electromagnetic wave | |
Sorgucu | Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ) | |
CN203105046U (en) | Structure for inhibition of electromagnetic wave interference, and flexible printed circuit comprising the same | |
KR101412617B1 (en) | Printed circuit board for LED capable of absorbing electromagnetic wave and dissipating heat and method for manufacturing thereof | |
CN116867215A (en) | Electromagnetic wave resistant heat dissipation composite film layer structure | |
US20250063706A1 (en) | Sheet | |
JPH1126977A (en) | Sheet for absorbing electromagnetic wave | |
TW201320116A (en) | Electromagnetically absorbing, thermally conductive sheet and electronic instrument | |
Kaur et al. | A Review Based on Effects of Change in Thickness and Number of Layers on Microwave Absorbing Materials | |
JP2008270714A (en) | Electromagnetic wave shielding sheet | |
TWI696256B (en) | Electromagnetic wave shilding element and transmisson line assembly using the same | |
RU2821816C1 (en) | Screen | |
KR101412618B1 (en) | A sheet capable of absorbing electromagnetic wave and dissipating heat and method for manufacturing thereof | |
TWI696259B (en) | Electromagnetic wave shilding element and transmisson line assembly using the same |