TWI781438B - Medical image analysis system and its training method - Google Patents
Medical image analysis system and its training method Download PDFInfo
- Publication number
- TWI781438B TWI781438B TW109130263A TW109130263A TWI781438B TW I781438 B TWI781438 B TW I781438B TW 109130263 A TW109130263 A TW 109130263A TW 109130263 A TW109130263 A TW 109130263A TW I781438 B TWI781438 B TW I781438B
- Authority
- TW
- Taiwan
- Prior art keywords
- image data
- new
- data
- tumor
- analysis system
- Prior art date
Links
Images
Landscapes
- Image Analysis (AREA)
- Image Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一種醫療影像分析系統及其訓練方法,其取得複數影像資料,依據前後時間點之影像資料建立出一三維數據資料;重新對三維數據資料進行切片,以將切片的間隔距離統一化;將重新切片後的影像資料中的每一像素之原始窗值進行重新映射,使每一像素得到一新窗值;將具有新窗值之切片進行堆疊,得到一新三維數據資料,再從中找出至少一特定區塊,用不同顏色區分不同身體構造,並以一特定顏色標記一腫瘤位置。當接收新影像資料後,利用上述步驟即可判斷新影像資料中是否包含腫瘤,並找出該腫瘤位置。藉由本發明可提升醫療影像的解析度,提升醫師判讀的速度及準確度。A medical image analysis system and its training method, which obtains multiple image data, and establishes a three-dimensional data data based on the image data at previous and subsequent time points; re-slices the three-dimensional data data to unify the interval distance of the slices; re-slices The original window value of each pixel in the subsequent image data is remapped to obtain a new window value for each pixel; the slices with the new window value are stacked to obtain a new three-dimensional data, and at least one In specific blocks, different body structures are distinguished with different colors, and a tumor location is marked with a specific color. After receiving the new image data, the above steps can be used to determine whether the new image data contains a tumor, and find out the location of the tumor. The invention can improve the resolution of medical images, and improve the speed and accuracy of doctor's interpretation.
Description
本發明係有關一種影像處理分析的技術,特別是指一種醫療影像分析系統及其訓練方法。 The invention relates to an image processing and analysis technology, in particular to a medical image analysis system and its training method.
醫療的影像判讀對於醫生及患者而言相當重要,因為藉由X光片、斷層掃描、核磁共振等手段才能在非侵入式檢測的前提下得知身體內部的狀況。目前的智慧醫療影像輔助判斷系統係擷取醫療影像後,將其由DICOM格式轉換成bmp、jpg、png的圖片格式後,手動對圖片中的腫瘤進行標記。接著建立AI模型,設定參數和訓練目標,再利用標記後的圖片訓練AI模型,並以樣本進行盲測,以確定AI模型是否以訓練完成。 Medical image interpretation is very important for doctors and patients, because X-rays, tomographic scans, nuclear magnetic resonance and other means can know the internal conditions of the body under the premise of non-invasive detection. The current smart medical image aided judgment system captures medical images, converts them from DICOM format into bmp, jpg, and png image formats, and manually marks tumors in the images. Then build the AI model, set parameters and training goals, then use the marked pictures to train the AI model, and conduct a blind test with samples to determine whether the AI model has been trained.
但影像轉換格式後會損失大量重要訊息,更容易讓影樣解析度下降;此外,訓練參數大海撈針,未能有效參考醫療相關訊息。系統僅倚靠深度學習的訓練模型,在訓練用的影像樣本相當有限的情況下,更無法達成100%零失誤的目標。 However, a large amount of important information will be lost after image conversion, and it is easier to reduce the resolution of the image sample. In addition, the training parameters cannot effectively refer to medical related information. The system only relies on the training model of deep learning, and in the case of very limited image samples for training, it is even more impossible to achieve the goal of 100% zero error.
有鑑於此,本發明針對上述習知技術之缺失及未來之需求,提出一種醫療影像分析系統及其訓練方法,以有效解決上述該等問題,具體架構及其實施方式將詳述於下: In view of this, the present invention proposes a medical image analysis system and its training method to effectively solve the above-mentioned problems. The specific architecture and its implementation will be described in detail below:
本發明之主要目的在提供一種醫療影像分析系統及其訓練方法,其將前後時間點的影像資料疊合成完整的三維數據資料後再重新切片,可將所有的影像資料統一成相同的切片間隔距離,達到正規化的目的。 The main purpose of the present invention is to provide a medical image analysis system and its training method, which superimposes the image data at the front and rear time points into a complete three-dimensional data and then slices again, so that all the image data can be unified into the same slice interval distance , to achieve the purpose of normalization.
本發明之另一目的在提供一種醫療影像分析系統及其訓練方法,其利用每一像素重新映射窗值的方式使影像更清晰,不須轉換影像格式,也不會喪失影像中包含的重要訊息。 Another object of the present invention is to provide a medical image analysis system and its training method, which uses the method of remapping the window value of each pixel to make the image clearer, without converting the image format, and will not lose the important information contained in the image .
本發明之再一目的在提供一種醫療影像分析系統及其訓練方法,其利用不同顏色區分不同的身體構造,可使專業醫療人員在影像判讀時可更快速找到腫瘤位置。 Another object of the present invention is to provide a medical image analysis system and its training method, which uses different colors to distinguish different body structures, so that professional medical personnel can find tumor locations more quickly during image interpretation.
為達上述目的,本發明提供一種醫療影像分析系統,包括:一資料庫,包含複數影像資料,該等影像資料中之每一像素皆具有一原始窗值;一醫療判斷模組,連接該資料庫,用以訓練該等影像資料中腫瘤位置之判斷能力,包括:一正規化模組,依據前後時間點之該等影像資料建立出一三維數據資料,且該三維數據資料中插入至少一窗值,使該三維數據資料符合實際人體構造後,再重新對以新的標準切割該三維數據資料進行切片,以將該等影像資料之該等切片的一間隔距離統一化,形成複數個切片影像資料;一資料重建模組,將重新切片後之該等切片影像資料中之該等原始窗值依照各人體構造的窗值進行重新映射,使該等切片影像資料中每一該等像素得到一新窗值,分別形成一新切片影像資料,再將該等新切片影像資料的切片進行堆疊,得到一新三維數據資料;以及一腫瘤標記模組,從該新三維數據資料中找出至少一特定區塊,用不同顏色區分不同身體構造,各該特定區塊係以 一高風險值1和一高風險值2之間的區段為發生腫瘤的窗值,並據以將符合高風險值1及高風險值2者以一特定顏色標記一腫瘤位置;以及一混合覆判模組,連接該醫療判斷模組,接收複數新影像資料並利用該醫療判斷模組進行正規化、資料重建及腫瘤標記後,判斷該等新影像資料中是否包含腫瘤,並找出該腫瘤位置。 To achieve the above purpose, the present invention provides a medical image analysis system, including: a database, including a plurality of image data, each pixel in the image data has an original window value; a medical judgment module, connected to the data A library for training the ability to judge the tumor location in the image data, including: a normalization module, which creates a three-dimensional data data according to the image data at previous and subsequent time points, and inserts at least one window into the three-dimensional data data After making the 3D data conform to the actual human body structure, slice the 3D data according to the new standard, so as to unify the interval distances of the slices of the image data to form a plurality of sliced images data; a data remodeling group, which remaps the original window values in the sliced image data after re-slicing according to the window values of each human body structure, so that each of the pixels in the sliced image data obtains a A new window value is used to form a new slice image data, and then the slices of the new slice image data are stacked to obtain a new three-dimensional data; and a tumor marker module is used to find at least one from the new three-dimensional data. Specific blocks, with different colors to distinguish different body structures, each of the specific blocks is The section between a high risk value 1 and a high risk value 2 is the window value of tumor occurrence, and according to this, those who meet the high risk value 1 and high risk value 2 are marked with a specific color for a tumor location; and a mixed The rejudgment module is connected to the medical judgment module, receives a plurality of new image data and uses the medical judgment module to perform normalization, data reconstruction and tumor marking, and then judges whether the new image data contains tumors, and finds out the Tumor location.
依據本發明之實施例,該特定區塊係被標記為腫瘤區塊。 According to an embodiment of the present invention, the specific block is marked as a tumor block.
依據本發明之實施例,該等影像資料為斷層掃描影像。 According to an embodiment of the present invention, the image data are tomographic images.
依據本發明之實施例,該混合覆判模組將連續的該等新影像資料疊合並給予不同的顏色,將疊合之該新等影像資料翻轉偵測是否有該特定顏色的變化存在,以判斷該等新影像資料中是否包含腫瘤,並找出該腫瘤之位置。 According to an embodiment of the present invention, the hybrid review module superimposes the continuous new image data and gives them different colors, flips the superimposed new image data to detect whether there is a change in the specific color, and Judging whether the new image data contains a tumor, and finding out the location of the tumor.
本發明另提供一種醫療影像分析系統之訓練方法,包括下列步驟:一醫療判斷模組中之一正規化模組從一資料庫取得複數影像資料,該正規化模組依據前後時間點之該等影像資料建立出一三維數據資料;該正規化模組於該三維數據資料中插入至少一窗值,使該三維數據資料符合實際人體構造後,再重新以新的標準切割對該三維數據資料進行切片,以將該等影像資料之該等切片的一間隔距離統一化,形成複數個切片影像資;該醫療判斷模組中之一資料重建模組將該等切片影像資料中之每一像素皆具有一原始窗值依照各人體構造的窗值,重新映射到一彩色光譜,使該等切片影像資料中每一該等像素得到一新窗值,分別形成一新切片影像資料;該資料重建模組將將該等新切片影像資料的切片進行堆疊,得到一新三維數據資料;以及該醫療判斷模組中之一腫瘤標記模組從該新三維數據資料中找出至少一特 定區塊,用不同顏色區分不同身體構造,並各該特定區塊係以一高風險值1和一高風險值2之間的區段為發生腫瘤的窗值,並據以將符合高風險值1及高風險值2者以一特定顏色標記一腫瘤位置。 The present invention also provides a training method for a medical image analysis system, which includes the following steps: a normalization module in a medical judgment module obtains multiple image data from a database, and the normalization module obtains multiple image data according to the time points before and after A three-dimensional data is established from the image data; the normalization module inserts at least one window value into the three-dimensional data to make the three-dimensional data conform to the actual human body structure, and then re-cuts the three-dimensional data according to a new standard. Slicing, so as to unify the interval distance of the slices of the image data to form a plurality of slice image data; a data reconstruction group in the medical judgment module divides each pixel in the slice image data Having an original window value according to the window value of each human body structure, remapping to a color spectrum, so that each of the pixels in the slice image data obtains a new window value, respectively forming a new slice image data; the data is reconstructed The group will stack the slices of the new slice image data to obtain a new three-dimensional data; and one of the tumor marking modules in the medical judgment module finds at least one characteristic from the new three-dimensional data. Define blocks, use different colors to distinguish different body structures, and each specific block is based on a section between a high risk value 1 and a high risk value 2 as the window value for tumor occurrence, and according to this will meet the high risk A value of 1 and a high risk value of 2 mark a tumor location with a specific color.
依據本發明之實施例,該三維數據資料利用內插法插入該至少一窗值,使該三維數據資料符合實際人體構造後,再重新切片。 According to an embodiment of the present invention, the 3D data is inserted into the at least one window value by an interpolation method, so that the 3D data conforms to the actual human body structure, and then re-sliced.
依據本發明之實施例,利用一混合覆判模組進行對該特定區塊多角度翻轉,以增加包含該腫瘤位置的影像樣本數。 According to the embodiment of the present invention, a hybrid review module is used to flip the specific block from multiple angles, so as to increase the number of image samples including the tumor location.
依據本發明之實施例,該等身體構造包括器官壁、氣血管及腫瘤或結節。 According to an embodiment of the present invention, such bodily structures include organ walls, air vessels, and tumors or nodules.
依據本發明之實施例,該等原始窗值係從一預設的密度值區間映射至0~255的區間,以得到該等新窗值。 According to an embodiment of the present invention, the original window values are mapped from a preset density value interval to an interval of 0-255 to obtain the new window values.
依據本發明之實施例,該原始窗值係利用一線性或非線性方法映射到該等新窗值。 According to an embodiment of the present invention, the original window values are mapped to the new window values using a linear or nonlinear method.
10:醫療影像分析系統 10:Medical image analysis system
12:資料庫 12: Database
14:醫療判斷模組 14:Medical judgment module
142:正規化模組 142: Normalization module
144:資料重建模組 144:Data reconstruction group
146:腫瘤標記模組 146: Tumor Marking Module
16:混合覆判模組 16: Mixed review module
第1圖為本發明醫療影像分析系統之方塊圖。 Fig. 1 is a block diagram of the medical image analysis system of the present invention.
第2圖為本發明醫療影像分析系統之訓練方法之流程圖。 Fig. 2 is a flowchart of the training method of the medical image analysis system of the present invention.
第3圖為本發明醫療影像分析系統及其訓練方法中重新映射步驟之示意圖。 FIG. 3 is a schematic diagram of the remapping steps in the medical image analysis system and its training method of the present invention.
第4A圖為先前技術中斷層掃描影像之示意圖,第4B圖為利用本發明醫療影像分析系統處理過之影像。 Fig. 4A is a schematic diagram of a tomographic image of the prior art, and Fig. 4B is an image processed by the medical image analysis system of the present invention.
本發明提供一種醫療影像分析系統及其訓練方法,用以對醫療影像進行正規化、資料重建及腫瘤標記等處理,在不喪失影像中所包含的資訊的前提下提升影像資料的解析度,並訓練用以判斷影像資料中是否包含腫瘤的AI模型。如此一來,專業醫療人員藉由本發明之系統輔助判斷,可快速又精準地判讀影像,從中找出腫瘤的位置。 The present invention provides a medical image analysis system and its training method, which are used to normalize medical images, reconstruct data and mark tumors, improve the resolution of image data without losing the information contained in the images, and An AI model trained to determine whether an image contains a tumor. In this way, professional medical personnel can quickly and accurately interpret images by using the system of the present invention to assist judgment, and find out the location of the tumor therefrom.
請參考第1圖,其為本發明醫療影像分析系統一實施例之立體圖。本發明之醫療影像分析系統10包含一資料庫12、一醫療判斷模組14及一混合覆判模組16。其中資料庫12包含複數醫療的影像資料,如斷層掃描(CT)的影像資料,影像資料中之每一像素皆具有一原始窗值(CT-number)。醫療判斷模組14為一個AI模型,其連接資料庫12,可取得資料庫12中的影像資料,並訓練出針對影像資料中腫瘤位置之判斷能力。混合覆判模組16連接醫療判斷模組14,當有新影像資料進入醫療影像分析系統10後,混合覆判模組16依據訓練好的醫療判斷模組14,可快速判斷新影像資料中是否包含腫瘤,並找出腫瘤的位置。
Please refer to FIG. 1 , which is a perspective view of an embodiment of the medical image analysis system of the present invention. The medical
醫療判斷模組14中更包括一正規化模組142、一資料重建模組144以及一腫瘤標記模組146。其中,正規化模組142依據前後時間點之影像資料,將其組合建立出一完整的三維數據資料,且該三維數據資料中插入至少一窗值,使該三維數據資料符合實際人體構造後,再重新以新的標準切割對三維數據資料進行切片,以將影像資料之切片的間隔距離統一化,形成複數個切片影像資料,例如有的斷層掃瞄儀器是0.5公分一切,有的是0.2公分一切,而正規化模組142將這些切片的影像資料組成三維數據資料後,重新以新的標準切割,例如0.1公分一切,如此一來便可將所有的影像資料的切片正規
化,形成複數個切片影像資料,不論是在哪台斷層掃瞄儀器上做的檢測,最終儲存在醫療影像分析系統10中的都具有統一的間隔距離。
The
特別的是,由於三維數據資料可能會因人體構造不同而使窗值有大段的落差,例如骨骼和血管的窗值差異頗大。因此,本發明更利用內插法在三維數據資料中插入至少一窗值,使該三維數據資料符合實際人體構造後,再重新切片。 In particular, because the three-dimensional data may have a large gap in the window value due to different human body structures, for example, the window values of bones and blood vessels are quite different. Therefore, the present invention uses an interpolation method to insert at least one window value into the 3D data, so that the 3D data conforms to the actual human body structure, and then slices again.
資料重建模組144連接正規化模組142。當影像資料重新切片後,切片影像資料原本的原始窗值依照各人體構造的窗值進行重新映射,使該等切片影像資料中每一像素得到一新窗值,分別形成一新切片影像資料,再將新切片影像資料的切片再次進行堆疊,得到一新三維數據資料。腫瘤標記模組146連接資料重建模組144,用以從新三維數據資料中找出至少一特定區塊。此特定區塊為疑似包含有腫瘤的所有區塊,腫瘤標記模組146用不同顏色區分不同身體構造,例如器官壁、氣血管及腫瘤或結節等,再以一特定顏色在特定區塊中標記一腫瘤位置。由於此時醫療判斷模組14還不具備精準判斷腫瘤位置的能力,因此腫瘤位置的標記係由專業醫療人員進行,以訓練醫療判斷模組14判斷腫瘤的能力。
The
當訓練好醫療判斷模組14後,混合覆判模組16便可對新進的新影像資料輔助進行是否有腫瘤的判讀。混合覆判模組16還可將連續的新影像資料疊合成3D影像區塊,並給予不同的顏色區分不同的身體構造,接著再將疊合後之新等影像資料翻轉以從不同角度進行觀察,偵測是否有特定顏色的變化存在,舉例而言,若腫瘤的顏色是紅色,影像資料在目前的角度沒有出現紅色,但翻轉後可能就會出現紅色,代表腫瘤隱藏在器官後面。如此一來,
混合覆判模組16便可判斷新影像資料中是否包含腫瘤,並找出該腫瘤之位置。
After the
此外,由於腫瘤樣本的影像資料相當有限,因此本發明將特定區塊被多角度翻轉後,還可增加包含腫瘤位置的影像樣本數。 In addition, since the image data of the tumor sample is quite limited, the present invention can increase the number of image samples including the tumor position after the specific block is flipped from multiple angles.
第2圖為本發明醫療影像分析系統之訓練方法之流程圖。首先於步驟S10中,醫療判斷模組中之一正規化模組從一資料庫先取得複數影像資料,例如斷層掃描影像,再依據前後時間點之影像資料建立出一三維數據資料;接著如步驟S12所述,該正規化模組於該三維數據資料中插入至少一窗值,使該三維數據資料符合實際人體構造後,再重新以新的標準切割對三維數據資料進行切片,以將影像資料之該等切片的一間隔距離統一化,使所有的影像資料都具有相同的切片間隔距離,形成複數個切片影像資料;各切片影像資料中之每一像素皆具有一原始窗值,接著在步驟S14中將各切片影像資料中之每一像素的原始窗值進行重新映射到一彩色光譜,使各切片影像資料中之每一像素得到一新窗值,分別形成一新切片影像資料;接著於步驟S16中,將具有各新切片影像資料的切片進行堆疊,得到一新三維數據資料;最後如步驟S18所述,該醫療判斷模組中之一腫瘤標記模組從新三維數據資料中找出至少一特定區塊,此特定區塊為可能包含腫瘤的所有區塊,用不同顏色將特定區塊中的不同身體構造加以區分,並以一特定顏色標記出一腫瘤位置。對多張影像資料重複步驟S10~S18,即可使本發明的醫療判斷模組14得到更佳的訓練,有助於輔助醫師判斷腫瘤的位置。
Fig. 2 is a flowchart of the training method of the medical image analysis system of the present invention. First in step S10, one of the normalization modules in the medical judgment module first obtains multiple image data from a database, such as tomographic images, and then builds a three-dimensional data data according to the image data at the front and rear time points; and then proceeds as in the steps As described in S12, the normalization module inserts at least one window value into the 3D data, so that the 3D data conforms to the actual human body structure, and then cuts the 3D data according to a new standard to slice the image data The interval distances of these slices are unified, so that all image data have the same slice interval distance, forming a plurality of slice image data; each pixel in each slice image data has an original window value, and then in the step In S14, the original window value of each pixel in each slice image data is remapped to a color spectrum, so that each pixel in each slice image data obtains a new window value to form a new slice image data respectively; then In step S16, the slices with the image data of each new slice are stacked to obtain a new three-dimensional data; finally, as described in step S18, one of the tumor marker modules in the medical judgment module finds out at least A specific block, the specific block is all blocks that may contain tumors, different body structures in the specific block are distinguished with different colors, and a tumor location is marked with a specific color. By repeating steps S10-S18 for multiple image data, the
步驟S14中重新映射得到新窗值之具體實施例請參考第3圖。斷層掃描的窗值的密度值(Hu)在-1000到3000Hu之間,低於-1000為空氣,高於 3000則為高密度材料。假設人體的斷層掃描窗值集中在-900~600Hu之間,本發明要將其重新映射到彩色光譜的0~255區間,以得到較佳的影像強度。發生腫瘤的機率如第3圖的右側曲線所示,因此,可設定-900~600Hu的中間值、高風險值1及高風險值2,在高風險值1和2之間的區段為統計後認為較容易發生腫瘤的窗值。本發明中係利用一線性或非線性方法進行映射,將-900~600Hu的原始窗值映射到0~255的新窗值。 Please refer to FIG. 3 for a specific embodiment of remapping to obtain a new window value in step S14. The density value (Hu) of the tomographic window value is between -1000 and 3000Hu, below -1000 is air, above 3000 is a high-density material. Assuming that the tomographic window value of the human body is concentrated between -900~600Hu, the present invention remaps it to the 0~255 interval of the color spectrum to obtain better image intensity. The probability of tumor occurrence is shown in the right curve of Figure 3. Therefore, the median value of -900~600Hu, high risk value 1 and high risk value 2 can be set, and the section between high risk value 1 and 2 is statistical Later, it is considered that the window value of tumor is more likely to occur. In the present invention, a linear or nonlinear method is used for mapping, and the original window value of -900~600Hu is mapped to a new window value of 0~255.
第4A圖為先前技術中斷層掃描影像之示意圖,第4B圖為利用本發明醫療影像分析系統處理過之影像。由第4A圖中可看出,黑色部分較暗,且白色的絲和點都偏灰而不明顯。而第4B圖的黑色部分、白色的絲和點都明顯較亮,且肉眼可看到的白色細絲更多。顯而易見,本發明之醫療影像分析系統處理過的影像資料更有利於供專業醫療人員進行影像判讀。 Fig. 4A is a schematic diagram of a tomographic image of the prior art, and Fig. 4B is an image processed by the medical image analysis system of the present invention. It can be seen from Figure 4A that the black part is darker, and the white filaments and dots are grayish and not obvious. However, the black parts, white filaments and dots in Figure 4B are obviously brighter, and there are more white filaments visible to the naked eye. Obviously, the image data processed by the medical image analysis system of the present invention is more conducive to image interpretation by professional medical personnel.
綜上所述,本發明所提供之一種醫療影像分析系統及其訓練方法係將前後時間點的影像資料疊合成完整的三維數據資料後再重新切片,可將所有的影像資料統一成相同的切片間隔距離,使不論是哪一間醫療機構、哪一台儀器所掃瞄出的影像資料皆為同一規格;其次,利用每一像素重新映射窗值的方式使影像更清晰,不須轉換影像格式,也就不會因此而喪失影像中包含的重要訊息;再者,本發明利用不同顏色區分不同的身體構造,可使專業醫療人員在影像判讀時可更快速找到腫瘤位置。 To sum up, a medical image analysis system and its training method provided by the present invention is to superimpose the image data at the front and rear time points into a complete three-dimensional data and then re-slice, so that all the image data can be unified into the same slice The interval distance makes the image data scanned by any medical institution or any instrument all have the same specifications; secondly, the image is clearer by remapping the window value of each pixel without converting the image format Therefore, the important information contained in the image will not be lost; moreover, the present invention uses different colors to distinguish different body structures, so that professional medical personnel can find the tumor location more quickly during image interpretation.
唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, all equivalent changes or modifications based on the features and spirit described in the scope of the application of the present invention shall be included in the scope of the patent application of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109130263A TWI781438B (en) | 2020-09-03 | 2020-09-03 | Medical image analysis system and its training method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109130263A TWI781438B (en) | 2020-09-03 | 2020-09-03 | Medical image analysis system and its training method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202211252A TW202211252A (en) | 2022-03-16 |
TWI781438B true TWI781438B (en) | 2022-10-21 |
Family
ID=81731792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109130263A TWI781438B (en) | 2020-09-03 | 2020-09-03 | Medical image analysis system and its training method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI781438B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103106348A (en) * | 2013-03-08 | 2013-05-15 | 上海交通大学医学院附属第九人民医院 | Virtual surgery simulation method and device thereof |
CN103377480A (en) * | 2012-04-12 | 2013-10-30 | 刘业东 | Medical image imaging system |
WO2017092615A1 (en) * | 2015-11-30 | 2017-06-08 | 上海联影医疗科技有限公司 | Computer aided diagnosis system and method |
US20190216955A1 (en) * | 2016-06-28 | 2019-07-18 | National Guard Health Affairs | Image-guided radiotherapy method for treating a subject having a tumor |
US20200027264A1 (en) * | 2018-07-20 | 2020-01-23 | Mackay Memorial Hospital | System and method for creating registered images |
TWI697010B (en) * | 2018-12-28 | 2020-06-21 | 國立成功大學 | Method of obtaining medical sagittal image, method of training neural network and computing device |
-
2020
- 2020-09-03 TW TW109130263A patent/TWI781438B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103377480A (en) * | 2012-04-12 | 2013-10-30 | 刘业东 | Medical image imaging system |
CN103106348A (en) * | 2013-03-08 | 2013-05-15 | 上海交通大学医学院附属第九人民医院 | Virtual surgery simulation method and device thereof |
WO2017092615A1 (en) * | 2015-11-30 | 2017-06-08 | 上海联影医疗科技有限公司 | Computer aided diagnosis system and method |
US20190216955A1 (en) * | 2016-06-28 | 2019-07-18 | National Guard Health Affairs | Image-guided radiotherapy method for treating a subject having a tumor |
US20200027264A1 (en) * | 2018-07-20 | 2020-01-23 | Mackay Memorial Hospital | System and method for creating registered images |
TWI697010B (en) * | 2018-12-28 | 2020-06-21 | 國立成功大學 | Method of obtaining medical sagittal image, method of training neural network and computing device |
Also Published As
Publication number | Publication date |
---|---|
TW202211252A (en) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiao et al. | Detection and classification the breast tumors using mask R-CNN on sonograms | |
ES2914387T3 (en) | immediate study | |
CN100562291C (en) | A kind of at CT treatment of picture device, method and system | |
US11373301B2 (en) | Image diagnostic device, image processing method, and program for obtaining diagnostic prediction models using deep learning | |
Berton et al. | Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images | |
CN113855079B (en) | Real-time detection and auxiliary analysis method of breast diseases based on breast ultrasound images | |
CN111602173B (en) | Brain tomography data analysis method | |
Rahmatullah et al. | Quality control of fetal ultrasound images: Detection of abdomen anatomical landmarks using adaboost | |
JP2001157675A (en) | Method and apparatus for displaying image | |
US20120078102A1 (en) | 3-dimensional (3d) ultrasound system using image filtering and method for operating 3d ultrasound system | |
US20210217166A1 (en) | Automated screening of medical data | |
Arthuis et al. | Computed tomographic study of anatomical relationship between pubic symphysis and ischial spines to improve interpretation of intrapartum translabial ultrasound | |
US8644608B2 (en) | Bone imagery segmentation method and apparatus | |
CN113838557A (en) | Medical image three-dimensional reconstruction simulation method and system | |
CN116797828A (en) | Method and device for processing oral full-view film and readable storage medium | |
Miller et al. | Automated detection of breast asymmetry using anatomical features | |
Shajudeen et al. | Spine surface detection from local phase‐symmetry enhanced ridges in ultrasound images | |
TWI781438B (en) | Medical image analysis system and its training method | |
CN113842212B (en) | Fluorescence scattering optical tomography processing method and system | |
CN113838020B (en) | Lesion area quantification method based on molybdenum target image | |
CN116344001A (en) | Medical information visual management system and method based on artificial intelligence | |
CN114418984A (en) | Human tissue symmetry detection and analysis method based on ultrasound | |
JP2024518386A (en) | System and method for processing and visualizing tube current modulation in a medical imaging device - Patents.com | |
Lee et al. | Fetal iliac angle measurements by three‐dimensional sonography | |
Supriyanti et al. | Comparison of conventional edge detection methods performance in lung segmentation of COVID19 patients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |