TWI781418B - Ceramic overvoltage protection device with low capacitance and improved durability and method of making the same - Google Patents
Ceramic overvoltage protection device with low capacitance and improved durability and method of making the same Download PDFInfo
- Publication number
- TWI781418B TWI781418B TW109120759A TW109120759A TWI781418B TW I781418 B TWI781418 B TW I781418B TW 109120759 A TW109120759 A TW 109120759A TW 109120759 A TW109120759 A TW 109120759A TW I781418 B TWI781418 B TW I781418B
- Authority
- TW
- Taiwan
- Prior art keywords
- overvoltage protection
- ceramic
- protection device
- improved durability
- low capacitance
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims description 108
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 239000012212 insulator Substances 0.000 claims abstract description 131
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000004020 conductor Substances 0.000 claims abstract description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 35
- 239000002243 precursor Substances 0.000 claims description 35
- 230000009977 dual effect Effects 0.000 claims description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- 229910002113 barium titanate Inorganic materials 0.000 claims description 8
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 7
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 7
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 7
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 7
- DJOYTAUERRJRAT-UHFFFAOYSA-N 2-(n-methyl-4-nitroanilino)acetonitrile Chemical compound N#CCN(C)C1=CC=C([N+]([O-])=O)C=C1 DJOYTAUERRJRAT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- XNFDWBSCUUZWCI-UHFFFAOYSA-N [Zr].[Sn] Chemical compound [Zr].[Sn] XNFDWBSCUUZWCI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- GGPKKISBXHMHEM-UHFFFAOYSA-N magnesium;zinc;oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Ti+4].[Zn+2] GGPKKISBXHMHEM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 17
- 230000001052 transient effect Effects 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- DGXKDBWJDQHNCI-UHFFFAOYSA-N dioxido(oxo)titanium nickel(2+) Chemical compound [Ni++].[O-][Ti]([O-])=O DGXKDBWJDQHNCI-UHFFFAOYSA-N 0.000 description 1
- -1 integrated circuits Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/12—Overvoltage protection resistors
- H01C7/123—Arrangements for improving potential distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/102—Varistor boundary, e.g. surface layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/12—Overvoltage protection resistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本發明提供了一種改良的過電壓保護元件。該過電壓保護裝置包括至少一個ESD保護耦合器,該ESD保護耦合器包括在一平面中的放電電極,一位在放電電極之間的間隙絕緣體,一平行於該平面的放電電極的過電壓保護元件,其中該過電壓保護元件包括一導體和一第二材料。過電壓保護元件還包括位在放電電極和過電壓保護元件之間的一第一絕緣體。The present invention provides an improved overvoltage protection element. The overvoltage protection device comprises at least one ESD protection coupler comprising discharge electrodes in a plane, a gap insulator between the discharge electrodes, an overvoltage protection of the discharge electrodes parallel to the plane An element, wherein the overvoltage protection element includes a conductor and a second material. The overvoltage protection element also includes a first insulator located between the discharge electrode and the overvoltage protection element.
Description
本發明是2018年11月19日提交申請的第16/165,159號待審查美國專利申請案的部分繼續申請案,該申請案內容併入本案作為參考內容。 This application is a continuation-in-part of co-pending U.S. Patent Application Serial No. 16/165,159, filed November 19, 2018, the contents of which are incorporated herein by reference.
本發明涉及一種陶瓷過電壓保護裝置,其提供了對觸發電壓的改良控制,具有小漏電流並且不會因重複的過電壓脈波而擊穿。 The present invention relates to a ceramic overvoltage protection device that provides improved control of trigger voltage, has low leakage current and does not breakdown due to repeated overvoltage pulses.
在現代電子學中,需要不斷增強對半導體、積體電路和其他組件的保護,使其免受靜電放電(ESD)和快速電子暫態的影響。ESD可能超過30kV,這遠遠超出了核心處理器所能承受的範圍。ESD是積體電路故障的主要原因,且是關於電子裝置小型化的一個特殊問題,其中,已證明要能可靠地提供適當的保護是很困難的。 In modern electronics, there is an ever-increasing need to protect semiconductors, integrated circuits, and other components from electrostatic discharge (ESD) and fast electronic transients. ESD can exceed 30kV, which is far beyond what the core processor can withstand. ESD is a major cause of failure in integrated circuits and is a particular problem with the miniaturization of electronic devices where it has proven difficult to reliably provide adequate protection.
ESD保護的必要性已經增加了裝置中專用於ESD保護的可用空間。除了裝置功能以外,在空間上的佔用違背了對組件和裝置小型化的不斷要求。除了佔用晶片上ESD保護裝置的空間外,它們還會限制處理數據的速度和數量。因此,有需要採用晶片外保護,尤其是可以提供ESD保護又不會降低處理速度的分開組件,才不會在電路設計或裝置內部佔用寶貴的空間。 The need for ESD protection has increased the available space in devices dedicated to ESD protection. Apart from the function of the device, the occupation of space is countered by the constant demand for miniaturization of components and devices. In addition to taking up space in the ESD protection devices on the die, they also limit the speed and amount of data that can be processed. Therefore, there is a need for off-chip protection, especially separate components that can provide ESD protection without slowing down processing speed, without taking up valuable real estate within the circuit design or device.
多層陶瓷電容器(MLCC)裝置在ESD保護中具有確定的作用。MLCC的較高電容級別會吸收來自ESD或暫態事件的電荷。不幸的是,高電容量會危及高速數據應用中的信號完整性。如果MLCC 的電容量減小,則由於吸收的電荷Q係取決於電容量C以及電壓V取決於關係Q=CV,故吸收ESD或暫態事件的能力會降低。因此可以看出,如果電容量降低50%,則電容器必須承受的電壓必須增加50%,以保持相同的吸收庫侖電荷Q的能力。實務中,不可能為了增加低電容量MLCC的耐壓能力到這種程度,而減損其能力。此外,當使用諸如壓敏電阻的保護裝置時,當該裝置不工作時,對地的漏電流可能是電池供電裝置的待機時間的主要耗損。電池上的任何寄生耗損都是不希望的,因此不太希望具有高漏電流和高電容量的保護裝置。 Multilayer ceramic capacitor (MLCC) devices have an established role in ESD protection. The higher capacitance levels of MLCCs absorb charge from ESD or transient events. Unfortunately, high capacitance can compromise signal integrity in high-speed data applications. If MLCC If the capacitance decreases, the ability to absorb ESD or transient events will decrease because the absorbed charge Q depends on the capacitance C and the voltage V depends on the relationship Q=CV. It can thus be seen that if the capacitance is reduced by 50%, the voltage the capacitor must withstand must be increased by 50% to maintain the same ability to absorb a Coulomb charge Q. In practice, it is impossible to increase the withstand voltage capability of a low-capacitance MLCC to such an extent without compromising its capability. Furthermore, when using a protection device such as a varistor, leakage current to ground can be a major drain on the standby time of a battery powered device when the device is not operating. Any parasitic losses on the battery are undesirable, so protection devices with high leakage current and high capacitance are less desirable.
為了滿足現代電路的需求,理想的ESD保護裝置優選地具有低電容量,並且在其非工作狀態下對地的漏電流可忽略不計。當由於ESD事件而暴露於升高的電壓或電流時,ESD保護裝置應例如<1ns內迅速做出響應,以通過低電阻路徑將潛在有害的暫態能量轉移到地面。ESD事件平息後,ESD保護裝置應恢復到其先前的非工作狀態。此外,ESD保護裝置應能夠承受多個ESD或暫態事件,同時又恢復到其初始非工作模式的接近事件前電容量和接近事件前漏電流的特性。事實證明,要滿足所有這些標準,尤其是在高壓應用中,要實現這些標準很困難,因為現代電路設計人員缺乏合適的ESD保護裝置。 To meet the demands of modern circuits, an ideal ESD protection device preferably has low capacitance and negligible leakage current to ground in its non-operating state. When exposed to elevated voltage or current due to an ESD event, an ESD protection device should respond quickly, for example within <1 ns, to transfer potentially harmful transient energy to ground through a low resistance path. After the ESD event subsides, the ESD protection device should return to its previous non-working state. Additionally, an ESD protection device should be able to withstand multiple ESD or transient events while reverting to its original non-operating mode pre-proximity capacitance and pre-proximity leakage current characteristics. Meeting all of these criteria has proven difficult, especially in high-voltage applications, because modern circuit designers lack suitable ESD protection.
本文提供了一種滿足現代電路的先進需求的改良ESD保護裝置。 This article provides an improved ESD protection device that meets the advanced needs of modern circuits.
本發明涉及一種改良的過電壓保護裝置和形成該改良過電壓保護裝置的方法。 The present invention relates to an improved overvoltage protection device and a method of forming the improved overvoltage protection device.
本發明的目的是提供一種具有低電容量、低漏電流以及能夠承受許多ESD脈波的能力的過電壓保護裝置。 It is an object of the present invention to provide an overvoltage protection device with low capacitance, low leakage current and the ability to withstand many ESD pulses.
本發明的特定特徵是能夠使用MLCC電容器的標準製造技術來製造過電壓保護裝置。 A particular feature of the present invention is the ability to manufacture the overvoltage protection device using standard manufacturing techniques for MLCC capacitors.
本發明的另一個特徵是允許將高ESD保護與低電容量多層陶瓷電容器相結合,使得該組合裝置可以保護免受高暫態電壓的影響,同時保留用來作信號濾波的電容量,同時僅佔用最小的可用空間。 Another feature of the present invention is that it allows high ESD protection to be combined with low capacitance multilayer ceramic capacitors so that the combined device can protect against high transient voltages while preserving capacitance for signal filtering while only Take up the smallest available space.
如將瞭解到的,這些和其他實施例係設置在過電壓保護裝置中。該過電壓保護裝置包括至少一個ESD保護耦合器,該ESD保護耦合器包括在一平面的放電電極、在放電電極之間的間隙絕緣體、平行於平面的放電電極的過電壓保護元件,其中該過電壓保護元件包括一導體和一第二材料。過電壓保護元件還包括在放電電極和過電壓保護元件之間的一第一絕緣體。 As will be appreciated, these and other embodiments are provided in overvoltage protection devices. The overvoltage protection device comprises at least one ESD protection coupler, the ESD protection coupler comprises discharge electrodes in a plane, a gap insulator between the discharge electrodes, an overvoltage protection element parallel to the discharge electrodes of the plane, wherein the overvoltage The voltage protection element includes a conductor and a second material. The overvoltage protection element also includes a first insulator between the discharge electrode and the overvoltage protection element.
另一個實施例提供一形成過電壓保護裝置的方法。該方法包括以下步驟:在一第一絕緣體前體上製造包括一第二絕緣體前體和一過電壓保護元件前體的至少一第一層;在一內部絕緣體前體上形成至少一第二層,該內部絕緣體前體包括一對放電電極和在所述放電電極之間的一間隙絕緣體前體;將包括所述至少一第一層疊合在所述至少一第二層上,且使覆蓋在所述間隙絕緣體前體對準於所述過電壓保護元件前體,以形成一疊層;和加熱所述疊層以形成包括以下組件的疊層結構:在一平面上的放電電極;一間隙絕緣體,位在所述平面的所述放電電極之間;一過電壓保護元件,平行於所述放電電極;和一第一絕緣體,位在所述放電電極和所述過電壓保護元件之間。 Another embodiment provides a method of forming an overvoltage protection device. The method comprises the steps of: producing on a first insulator precursor at least one first layer comprising a second insulator precursor and an overvoltage protection component precursor; forming at least one second layer on an internal insulator precursor , the internal insulator precursor includes a pair of discharge electrodes and a gap insulator precursor between the discharge electrodes; the at least one first layer is laminated on the at least one second layer, and the covering aligning the gap insulator precursor with the overvoltage protection element precursor to form a stack; and heating the stack to form a stack comprising: a discharge electrode on a plane; a gap an insulator between the discharge electrodes of the plane; an overvoltage protection element parallel to the discharge electrodes; and a first insulator between the discharge electrodes and the overvoltage protection element.
再一個實施例提供一雙功能過電壓保護裝置。該過電壓保護裝置包括至少一個ESD保護耦合器,該ESD保護耦合器包括在一平面中的放電電極、在放電電極之間的一間隙絕緣體、與放電電極平行的過電壓保護元件以及位在放電電極與過電壓保護元件之間的一第一絕緣體。雙功能過電壓保護裝置還包括一電容耦合器。 Yet another embodiment provides a dual function overvoltage protection device. The overvoltage protection device includes at least one ESD protection coupler, the ESD protection coupler includes discharge electrodes in a plane, a gap insulator between the discharge electrodes, overvoltage protection elements parallel to the discharge electrodes, and A first insulator between the electrode and the overvoltage protection element. The dual-function overvoltage protection device also includes a capacitive coupler.
10:ESD保護裝置 10:ESD protection device
11:雙功能ESD裝置 11: Dual function ESD device
12:放電電極 12: Discharge electrode
14:間隙絕緣體 14: Gap insulator
16:過電壓保護元件 16:Overvoltage protection element
18:第一絕緣體 18: The first insulator
2:ESD保護耦合器 2:ESD protection coupler
20:第二絕緣體 20: Second insulator
22:外部絕緣體 22: External insulator
23:電容器陶瓷 23: capacitor ceramic
24:內部絕緣體 24: Internal insulator
25:內部電極 25: Internal electrode
26:外部端子 26: External terminal
28:第二外部端子 28: Second external terminal
30:放電槍 30:Discharge gun
31:浮動電極 31: Floating electrode
32:ESD保護裝置 32:ESD protection device
34:敏感組件 34: Sensitive components
36:高壓脈波發生器 36: High voltage pulse generator
38:電源電容器 38: Power supply capacitor
4:電容耦合器 4: capacitive coupler
40:充電電阻器 40: charging resistor
41:浮動電極電容耦合器 41: Floating Electrode Capacitive Coupler
42:開關 42: switch
44:放電電阻器 44: Discharge resistor
100:位置 100: position
102、102':層 102, 102 ' : layers
104:層 104: layers
104A:位置 104A: Location
104B:位置 104B: location
105:位置 105: position
106:位置 106: position
108:位置 108: position
110:位置 110: position
112:位置 112: position
114:位置 114: position
TC:間隔距離 T C : separation distance
TOVP:間隔距離 T OVP : Separation distance
TFLO:間隔距離 T FLO : Separation distance
圖1是本發明的一實施例的斷面示意圖。 Fig. 1 is a schematic cross-sectional view of an embodiment of the present invention.
圖2是本發明的一實施例的斷面示意圖。 Fig. 2 is a schematic cross-sectional view of an embodiment of the present invention.
圖3是本發明的一實施例的斷面放大圖。 Fig. 3 is an enlarged cross-sectional view of an embodiment of the present invention.
圖4是本發明的一實施例的斷面放大圖。 Fig. 4 is an enlarged cross-sectional view of an embodiment of the present invention.
圖5是本發明一實施例的俯視示意圖。 Fig. 5 is a schematic top view of an embodiment of the present invention.
圖6是本發明一實施例的流程圖。 Fig. 6 is a flowchart of an embodiment of the present invention.
圖7和8是顯示本發明優點的曲線圖。 7 and 8 are graphs showing the advantages of the present invention.
圖9和10是說明本發明優點的電路示意圖。 9 and 10 are schematic circuit diagrams illustrating the advantages of the present invention.
本發明涉及一種改良的靜電放電(ESD)保護裝置,該裝置在不動作狀態下具有低電容和低漏電流,其在ESD事件出現時具有快速響應時間,並且可以承受許多ESD事件而不會損失電容量、漏電流或功能性。更具體地,本發明涉及一種層狀結構,其包括分開的絕緣體層作為放電電極和過電壓保護元件之間的疊層體。該結構提供了觸發電壓的優化,該觸發電壓是暫態能量轉移到地電位時的臨限電壓。本發明還涉及一種ESD保護裝置,其還包括適合在臨限電壓以下進行信號濾波的電容耦合器,而在超過該臨限電壓時,暫態能量會被轉移到地電位。 The present invention relates to an improved electrostatic discharge (ESD) protection device that has low capacitance and low leakage current in the inactive state, has a fast response time when an ESD event occurs, and can withstand many ESD events without loss of capacitance, leakage current or functionality. More specifically, the invention relates to a layered structure comprising a separate insulator layer as a laminate between a discharge electrode and an overvoltage protection element. This structure provides optimization of the trigger voltage, which is the threshold voltage at which transient energy is transferred to ground potential. The invention also relates to an ESD protection device further comprising a capacitive coupler suitable for signal filtering below a threshold voltage beyond which transient energy is diverted to ground potential.
在正常操作期間,ESD保護裝置的ESD保護耦合器是被動的或者是不為電路提供任何功能,因此通過設計,ESD保護耦合器應呈現低電容量,從而可以使高速信號失真最小化。但是,在ESD事件期間,ESD保護耦合器有效地作為一個開關,允許多餘的電壓分散到接地電位。 During normal operation, the ESD protection coupler of the ESD protection device is passive or does not provide any function for the circuit, so by design, the ESD protection coupler should exhibit low capacitance, so that the distortion of high-speed signals can be minimized. However, during an ESD event, the ESD protection coupler effectively acts as a switch, allowing excess voltage to spread to ground potential.
以下將參閱構成本發明的整體、非限制性組件的附圖對本發明作一說明。在整個說明書中,相似的元件將相應地編號。 The invention will now be described with reference to the accompanying drawings which form an integral, non-limiting component of the invention. Throughout the specification, like elements will be numbered accordingly.
以下將參閱圖1對本發明實施例予以說明,其中ESD保護耦合器2係以斷面圖予以示意。在圖1中,放電電極12優選地是共平面地以一間隙絕緣體14予以隔開。一第一絕緣體18以平面方式延伸在放電電極上,從而形成疊層結構。一過電壓保護元件16由該第一絕緣體18而與每個放電電極區隔開。一第二絕緣體20優選地在包含過電壓保護元件的那層圍繞該過電壓保護元件。在優選但非限制性的實施例中,為了便於製造,間隙絕緣體、第一絕緣體和第二絕緣體是相同的材料。ESD保護耦合器在暫態事件期間藉由過電壓保護元件在放電電極之間導通脈波能量而起作用,在暫態事件中,該脈波能量在過電壓保護元件和放電電極之間的每個暫態時,通過第一絕緣體。在一個特別優選的實施例中,過電壓保護元件16的寬度不大於間隙絕緣體14的寬度,從而使過電壓保護元件和放電電極12的疊合最小。
An embodiment of the present invention will be described below with reference to FIG. 1 , wherein the
以下將參閱圖2所示的斷面示意圖對本發明實施例予以說明。在圖2中,ESD保護裝置10包括多個以層狀或疊層結構佈置的ESD保護耦合器2。可選的但優選的內部絕緣體24可以位於相鄰的ESD保護耦合器之間。外部絕緣體22位於所有ESD保護耦合器的外部。為了方便製造,外部絕緣體和內部絕緣體優選地是相同的材料
製成,但不限於此。本領域技術人員將瞭解,與放電電極12電接觸的外部端子26允許ESD保護裝置係電連接到一電路。
The following will describe the embodiment of the present invention with reference to the cross-sectional schematic diagram shown in FIG. 2 . In FIG. 2 , an
在本發明的另一實施例中,前述的ESD保護裝置可以與電容耦合器形成雙功能ESD保護裝置。電容耦合器可以由至少兩個極性相反的疊合電極組成,或者電容耦合器可以採用浮動電極。當結合電容耦合器時,期望使放電電極與過電壓保護元件之間的疊合區域最小化以減小雜散電容,從而對組合的組件保持一低電容。為了方便製造,電容器元件的第一絕緣體和電介質是相同的材料。在這種情況下,分隔電容器電極的電介質厚度必須超過第一絕緣體的厚度。 In another embodiment of the present invention, the aforementioned ESD protection device can form a dual-function ESD protection device with a capacitive coupler. A capacitive coupler may consist of at least two stacked electrodes of opposite polarity, or a capacitive coupler may employ floating electrodes. When incorporating a capacitive coupler, it is desirable to minimize the overlap area between the discharge electrode and the overvoltage protection element to reduce stray capacitance, thereby maintaining a low capacitance for the combined components. For ease of manufacture, the first insulator and the dielectric of the capacitor element are the same material. In this case, the thickness of the dielectric separating the capacitor electrodes must exceed the thickness of the first insulator.
以下將參閱圖3所示的斷面擴展示意圖對本發明實施例予以說明。在圖3中顯示一雙功能ESD裝置11。該雙功能ESD裝置最多包括n個ESD保護耦合器2,其中n是裝置中ESD保護耦合器的數量。圖中示出了至少m個電容耦合器4,其中m是雙功能ESD裝置中的電容耦合器的數量。電容耦合器包括具有交替極性的平行內部電極25,其中相鄰內部電極係終止於不同的外部端子26,並且相鄰內部電極被電容器陶瓷23隔開。內部絕緣體24首選地可以位於相鄰ESD保護耦合器2之間。優選地,電容器陶瓷23在相鄰內部電極25之間的交替層中,以使得每組相鄰內部電極形成一電容耦合,因此電容耦合器的數量作為單一電容器。為了便於製造,電容器陶瓷23、外部絕緣體22、內部絕緣體24、間隙絕緣體14和第一絕緣體18優選為相同的材料。當第一絕緣體和電容器陶瓷是使用相同的成份時,優選的是,過電壓保護元件16與放電電極12之間的間隔距離係以TOVP予以表示,其係小於相鄰內部電極25之間的間隔距離TC。ESD保護耦合器2的分隔距離比電容耦合器4的分隔距離為小,可防止電
容耦合器在遇到ESD事件時受到永久性電擊穿。更佳地,TC是TOVP的兩倍。
The embodiments of the present invention will be described below with reference to the schematic diagram of the expanded section shown in FIG. 3 . A dual
以下將參閱圖4所示的斷面擴展示意圖對本發明實施例予以說明。在圖4中顯示一雙功能ESD裝置11,其類似於圖3中所示及描述的裝置。在圖4中,雙功能ESD裝置包括m個浮動電極電容耦合器41。浮動電極電容耦合器包括極性相反的共平面內部電極25,每個內部電極終止於相對的外部端子26。一浮動電極31與共平面內部電極平行,並通過電容器陶瓷23與共平面內部電極的平面隔開。當第一絕緣體和電容器陶瓷為相同成份時,優選地過電壓保護元件16與放電電極12之間的間隔係以TOVP予以表示,其係小於共平面內部電極25和浮動電極之間的間隔距離TFLO。ESD保護耦合器2的分隔距離比電容耦合器41的分隔距離為小,可在電容耦合器受到永久性電擊穿之前,提昇ESD保護耦合器的暫時性電擊穿能力。
The following will describe the embodiment of the present invention with reference to the schematic diagram of the expanded section shown in FIG. 4 . In FIG. 4 is shown a dual
優選地,ESD保護裝置的電容量為介於至少0.1至不超過23,000pF。當ESD保護裝置還包括至少一個電容耦合器時,該ESD保護裝置較佳地具有至少100pF並且更優選地至少1000pF的電容量。當ESD保護裝置不包括各別的電容耦合器時,ESD保護裝置的電容較佳地不大於100pF,優選地不大於10pF,甚至更優選地不大於2pF。 Preferably, the ESD protection device has a capacitance of at least 0.1 to no more than 23,000 pF. When the ESD protection device further comprises at least one capacitive coupler, the ESD protection device preferably has a capacitance of at least 100 pF and more preferably at least 1000 pF. When the ESD protection device does not comprise a respective capacitive coupler, the capacitance of the ESD protection device is preferably not greater than 100 pF, preferably not greater than 10 pF, even more preferably not greater than 2 pF.
ESD保護裝置可以是二端子裝置,其中單獨的外部端子係電接觸於相鄰共平面放電電極,如圖2所示。可替代地,過電壓保護元件可以一齊地或獨立地終止且電接觸於第二外部端子,以形成多端子裝置,例如四端子裝置,如圖5所示,但不限於此。在圖5中,第二外部端子28可以電接觸於相同的ESD保護耦合器、各別的ESD保護耦合器或電容耦合器,如同相對應於圖3和4的說明。
The ESD protection device may be a two-terminal device in which a single external terminal is in electrical contact with adjacent coplanar discharge electrodes, as shown in FIG. 2 . Alternatively, the overvoltage protection elements may be collectively or individually terminated and electrically contacted to the second external terminal to form a multi-terminal device, such as a four-terminal device, as shown in FIG. 5 , but not limited thereto. In FIG. 5 , the second
ESD保護裝置中的ESD保護耦合器的數量沒有特別限制。對於功能而言,至少一個ESD保護耦合器是必要的,數百個也 是在本發明的範圍內。超過大約20個ESD保護耦合器時,其好處不足以證明和大量疊層相關的成本和製造複雜性。低於約3個ESD保護耦合器的話,冗餘度不足。優選地,具有約3到約10個ESD保護耦合器是優選的,此數量在製造效率、成本、累計的裝置電容量和效益之間是一平衡點。 The number of ESD protection couplers in the ESD protection device is not particularly limited. For functionality, at least one ESD protection coupler is necessary, hundreds of are within the scope of the present invention. Beyond about 20 ESD protection couplers, the benefits do not justify the cost and manufacturing complexity associated with a large stackup. Below about 3 ESD protection couplers, there is not enough redundancy. Preferably, having about 3 to about 10 ESD protection couplers is preferred, this number being a balance between manufacturing efficiency, cost, cumulative device capacitance, and benefit.
雙功能ESD保護裝置中的電容耦合器的數量沒有特別限制。對於功能而言,至少一個電容耦合器是必要的,數百個也是在本發明的範圍內。當電容耦合器的數量超過大約100個時,其好處不足以證明和大量疊層相關的成本和製造複雜性。低於約3個電容耦合器的話,在分配的空間中所得到的電容量不足。具有約10到約20個電容耦合器是優選的,此數量在製造效率、成本和效益之間是一平衡點。 The number of capacitive couplers in the dual-function ESD protection device is not particularly limited. For function at least one capacitive coupler is necessary, hundreds are within the scope of the invention. When the number of capacitive couplers exceeds about 100, the benefits do not justify the cost and manufacturing complexity associated with the large number of stacks. Below about 3 capacitive couplers, the resulting capacitance in the allotted space is insufficient. It is preferred to have about 10 to about 20 capacitive couplers, which number is a balance between manufacturing efficiency, cost, and effectiveness.
在放電電極和過電壓保護元件之間結合一優選為絕緣介電材料的絕緣材料作為第一絕緣體,可在被動模式下維持一低效電容量,以最小化信號失真和低漏電流到接電地位。第一絕緣材料優選地是具有足夠的絕緣,以最小化漏電流。特別優選地,ESD保護耦合器的漏電流不大於5000nA,更優選地不大於2000nA,甚至更優選地不大於1000nA,甚至更優選地不大於50nA,甚至更優選地不大於5nA,且最優選地不大於1nA。此外,第一絕緣體優選地能夠承受工作電壓而不會退化,從而允許ESD保護組件在暫態事件消退之後返回到被動模式而不會退化。即使在許多ESD事件之後,尤其是第一絕緣體不會有退化狀況,這改善了電容穩定性和漏電流穩定性。 Incorporating an insulating material, preferably an insulating dielectric material, as a first insulator between the discharge electrode and the overvoltage protection element maintains an ineffective capacitance in passive mode to minimize signal distortion and low leakage current to the electrical connection status. The first insulating material is preferably sufficiently insulating to minimize leakage currents. Particularly preferably, the leakage current of the ESD protection coupler is not greater than 5000nA, more preferably not greater than 2000nA, even more preferably not greater than 1000nA, even more preferably not greater than 50nA, even more preferably not greater than 5nA, and most preferably Not greater than 1nA. Furthermore, the first insulator is preferably capable of withstanding the operating voltage without degradation, thereby allowing the ESD protection component to return to passive mode without degradation after the transient event subsides. Even after many ESD events, especially the first insulator has no degradation condition, which improves capacitance stability and leakage current stability.
使用常規的MLCC製造技術,可以將放電電極和過電壓保護元件的前體層直接沉積到一陶瓷介電前體材料的載體膜上來製造ESD保護裝置。然後可以將這些層疊合為對齊的薄片,並進行壓製和燒結,以形成單一陶瓷整體組件。以此方式,過電壓保護元件 藉由一預定厚度的絕緣材料而與放電電極分開,使得藉由載體膜材料的選擇而可控制其厚度和組成成分。控制第一絕緣體厚度的能力,加上控制組成成分的能力,而可預測地控制觸發電壓。或者,絕緣體可以以液體或膜的形式施加,以形成絕緣膜層,例如聚酰亞胺或優選地為聚合物的其他絕緣體的疊層。 Using conventional MLCC fabrication techniques, the discharge electrode and overvoltage protection element precursor layers can be deposited directly onto a carrier film of ceramic dielectric precursor material to fabricate an ESD protection device. These layers can then be stacked into aligned sheets, pressed and sintered to form a single ceramic monolithic component. In this way, the overvoltage protection element It is separated from the discharge electrode by an insulating material of predetermined thickness, so that its thickness and composition can be controlled by the choice of carrier film material. The ability to control the thickness of the first insulator, coupled with the ability to control the composition, predictably controls the trigger voltage. Alternatively, the insulator may be applied in liquid or film form to form an insulating film layer, such as a stack of polyimide or other insulators, preferably polymers.
第一絕緣體的厚度,或放電電極與過電壓保護元件之間的距離,在圖3和4中係以TOVP予以表示,其可以遠小於火花間隙型ESD裝置中的典型電極間距。常規的火花間隙型ESD裝置在電極之間的間距通常至少約為6μm(微米),並且可能超過50μm。對於本發明的ESD保護裝置,放電電極與過電壓保護元件之間的距離優選地不大於10μm,以使8kV脈波在暫態轉移到小於5000V時保持觸發電壓。第一絕緣體的厚度約為1μm適合作為本發明的例示。 The thickness of the first insulator, or the distance between the discharge electrode and the overvoltage protection element, denoted T OVP in FIGS. 3 and 4 , can be much smaller than the typical electrode spacing in spark gap type ESD devices. Conventional spark gap type ESD devices typically have a spacing between electrodes of at least about 6 μm (micrometers), and may exceed 50 μm. For the ESD protection device of the present invention, the distance between the discharge electrode and the overvoltage protection element is preferably not greater than 10 μm, so that the 8kV pulse wave maintains the trigger voltage when it is transiently transferred to less than 5000V. A thickness of about 1 μm for the first insulator is suitable as an example of the present invention.
觸發電壓是低於電容耦合器(如果有的話)執行濾波電容器功能、而ESD保護耦合器處於被動時的電壓值。達到或高於觸發電壓時,ESD保護耦合器將多餘的電流分流到接地電位。觸發電壓取決於第一絕緣體的成分和厚度以及過電壓保護元件的成分。第一絕緣體厚度增加時,觸發電壓即隨著該給定的第一絕緣體和過電壓保護元件而增加。本領域技術人員將理解,通過初步製備一系列第一絕緣體厚度的多個ESD保護裝置,然後進行測試確定最佳的第一絕緣體厚度,可以針對首選的第一絕緣體成分和過電壓保護元件得到所需的觸發電壓。觸發電壓較佳地能比該部件在本領域技術人員於不同應用時所設計的工作電壓高至少20%。 The trigger voltage is the voltage below which the capacitive coupler (if present) performs the filter capacitor function and the ESD protection coupler is passive. At or above the trigger voltage, the ESD protection coupler shunts excess current to ground potential. The trigger voltage depends on the composition and thickness of the first insulator and the composition of the overvoltage protection element. As the thickness of the first insulator increases, the trigger voltage increases with the given first insulator and overvoltage protection element. Those skilled in the art will understand that by initially preparing a series of multiple ESD protection devices with a first insulator thickness, and then conducting tests to determine the optimum first insulator thickness, the desired first insulator composition and overvoltage protection element can be obtained. required trigger voltage. The trigger voltage is preferably at least 20% higher than the working voltage designed by those skilled in the art for different applications.
藉由放電電極與過電壓保護元件之間的不直接接觸,絕緣電阻比過電壓保護材料與放電電極直接接觸製成的ESD裝置高幾個數量級。分立的絕緣體層作為疊層有助於在非作動模式下對重複的ESD脈波保持低漏電流性能。模塊化的多層特性還提供了另一個 優勢,因為可以疊合許多ESD保護耦合器形成組件的保護元件,從而提高裝置在性能下降之前承受多個ESD脈波的能力。 With no direct contact between the discharge electrode and the overvoltage protection element, the insulation resistance is several orders of magnitude higher than that of an ESD device made of direct contact between the overvoltage protection material and the discharge electrode. Discrete insulator layers are used as a stack to help maintain low leakage current performance for repeated ESD pulses in non-active mode. The modular multi-layer nature also provides another Advantage, because many ESD protection couplers can be stacked to form the protection element of the assembly, thereby increasing the ability of the device to withstand multiple ESD pulses before performance degradation.
在該裝置的另一實施例中,所示的放電電極層可以交替地疊合以在如上所述的組件內提供電容耦合器。還應該注意的是,較佳地使用不同於端子間所用的火花間隙元件電容器的介電常數的更高介電常數(“K”)的電介質,如此可以根據信號傳輸的速度而增加電容至組件。通過控制電容耦合器的電容量,ESD保護裝置可以對較低傳輸速度抑制某些雜訊。 In another embodiment of the device, the discharge electrode layers shown may be stacked alternately to provide capacitive couplers within the assembly as described above. It should also be noted that it is preferable to use a dielectric with a higher dielectric constant ("K") than the dielectric constant of the spark gap element capacitor used between the terminals, as this can add capacitance to the component depending on the speed of signal transmission . By controlling the capacitance of the capacitive coupler, the ESD protection device can suppress certain noises at lower transmission speeds.
為了使ESD保護耦合器保持較低的電容量,期望減小過電壓保護元件與放電電極之間的疊合區域。這是因為第一絕緣體相對較薄。同樣的原因,希望該絕緣體具有較低的介電常數,最好小於100。這可以藉由將通用電容方程式應用於通過第一絕緣體的放電電極耦合來解釋,其中:C=K*K0*A*n/t其中:C=電容量;K=第一絕緣體的介電常數;K0=自由空間的介電常數(8.854 x 10-12F/m);A=放電電極和過電壓保護元件的疊合面積;n=放電電極和過電壓保護元件的層數;和t=第一絕緣體的厚度。因此,在給定的疊合處,隨著第一絕緣體厚度的減小,電容量會增加,這可以通過減小疊合面積來克服。疊合保護元件本身可以包含具有相對高的介電常數的材料,例如鈦酸鋇,期使疊合面積最小化。 In order to keep the capacitance of the ESD protection coupler low, it is desirable to reduce the overlap area between the overvoltage protection element and the discharge electrode. This is because the first insulator is relatively thin. For the same reason, it is desirable for the insulator to have a low dielectric constant, preferably less than 100. This can be explained by applying the general capacitance equation to the discharge electrode coupling through the first insulator, where: C=K*K 0 *A* n /t where: C=capacitance; K=dielectric of the first insulator constant; K 0 = dielectric constant of free space (8.854 x 10 -12 F/m); A = overlapping area of discharge electrode and overvoltage protection element; n = number of layers of discharge electrode and overvoltage protection element; and t = thickness of the first insulator. Therefore, at a given overlap, as the thickness of the first insulator decreases, the capacitance increases, which can be overcome by reducing the overlap area. The overlay protection element itself may comprise a material with a relatively high dielectric constant, such as barium titanate, in order to minimize the overlay area.
本發明ESD保護裝置的一個有利特性是該裝置中使用材料的特性具有在高工作溫度和電壓下起作用的優越能力。可以製備 能夠在高電壓(例如500V)和高溫(例如200℃)下連續運行的ESD保護裝置。 An advantageous characteristic of the ESD protection device of the present invention is the superior ability of the characteristics of the materials used in the device to function at high operating temperatures and voltages. can be prepared An ESD protection device capable of continuous operation at high voltage (eg 500V) and high temperature (eg 200°C).
第一絕緣體、第二絕緣體和間隙絕緣體分別選自具有低介電常數的材料,且優選地各別地或包含絕緣陶瓷或玻璃。低介電常數的電介質是優選的,並且優選地絕緣陶瓷的介電常數不大於100,並且優選地不大於50。C0G電介質是特別優選的。用於第一絕緣體、第二絕緣體、間隙絕緣體和電容器陶瓷的特別優選材料包括鋯酸鈣、非化學計量的鋇鈦氧化物,例如Ba2Ti9O20;BaTi4O9;包含釹或鐠的鋇稀土氧化物,摻雜有各種添加劑的二氧化鈦,鈦酸鈣,鈦酸鍶,鈦酸鋅鎂,鈦酸鋯錫及其組合。如本領域技術人員所知,用於第一絕緣體、第二絕緣體、間隙絕緣體和電容器陶瓷的材料必須與放電電極熱相容,以避免在燒結陶瓷期間造成放電電極的劣化。 The first insulator, the second insulator and the gap insulator are respectively selected from materials having a low dielectric constant, and preferably each individually or comprise insulating ceramics or glass. Low dielectric constant dielectrics are preferred, and preferably the dielectric constant of the insulating ceramic is no greater than 100, and preferably no greater than 50. COG dielectrics are particularly preferred. Particularly preferred materials for the first insulator, second insulator, gap insulator, and capacitor ceramic include calcium zirconate, non-stoichiometric barium titanium oxides such as Ba2Ti9O20 ; BaTi4O9 ; containing neodymium or Barium rare earth oxides, titanium dioxide doped with various additives, calcium titanate, strontium titanate, zinc magnesium titanate, zirconium tin titanate and combinations thereof. As is known to those skilled in the art, the materials used for the first insulator, second insulator, gap insulator and capacitor ceramic must be thermally compatible with the discharge electrode to avoid degradation of the discharge electrode during sintering of the ceramics.
內部絕緣體和外部絕緣體並不受特別限制,因為其材料可基於成本和與其他材料的相容性來選擇。在一個實施例中,內部絕緣體和外部絕緣體與第一絕緣體、第二絕緣體層或間隙絕緣體中的至少一個是相同材料,以便於製造。 The inner and outer insulators are not particularly limited because their materials can be selected based on cost and compatibility with other materials. In one embodiment, the inner and outer insulators are the same material as at least one of the first insulator, the second insulator layer or the gap insulator for ease of manufacture.
過電壓保護元件包括導體,該導體優選地選自金屬和不是導體的第二材料。第二材料優選包括陶瓷、玻璃或半導體中的至少一種。絕緣材料會降低傳導性,從而使ESD保護裝置中的漏電流最小化。在期望最小化電容量的情況下,過電壓保護元件最好不與放電電極明顯疊合。在一些實施例中,過電壓保護元件是多孔的。過電壓保護元件可以包括La,Ni,Co,Cu,Zn,Ru,Ag,Pd,Pt,W,Fe或Bi中的至少一種。特別優選的絕緣陶瓷包括鈦酸鋇或氮化鉭。為了說明本發明,由75體積%的Ni與25體積%的鈦酸鋇組合構成的過電壓保護元件是合適的。金屬含量必須高於50體積%至不超過90體積%。低於50體積%時,電導率不足以用作過電壓保護元件, 而高於90體積%時,電導率太高而不能實現足夠的低漏電。優選地,金屬含量為至少70體積%至不超過80體積%,並且第二材料佔至少20體積%至30體積%。 The overvoltage protection element comprises a conductor which is preferably selected from a metal and a second material which is not a conductor. The second material preferably includes at least one of ceramics, glass or semiconductors. Insulating materials reduce conductivity, thereby minimizing leakage currents in ESD protection devices. Where it is desired to minimize capacitance, the overvoltage protection element preferably does not overlap significantly with the discharge electrode. In some embodiments, the overvoltage protection element is porous. The overvoltage protection element may include at least one of La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe or Bi. Particularly preferred insulating ceramics include barium titanate or tantalum nitride. To illustrate the invention, an overvoltage protection element consisting of 75% by volume of Ni in combination with 25% by volume of barium titanate is suitable. The metal content must be higher than 50% by volume and not more than 90% by volume. Below 50% by volume, the conductivity is insufficient to be used as an overvoltage protection element, Whereas, above 90% by volume, the electrical conductivity is too high to achieve sufficiently low leakage. Preferably, the metal content is at least 70% to no more than 80% by volume and the second material comprises at least 20% to 30% by volume.
放電電極和內部電極可以由任何貴金屬或卑金屬製備,優選可以在空氣中燃燒的卑金屬。優選的卑金屬選自鎳,鎢,鉬,鋁,鉻,銅,鈀,銀或其合金。最優選地,放電電極包括鎳。 The discharge electrodes and internal electrodes can be made of any noble or base metal, preferably a base metal that burns in air. Preferred base metals are selected from nickel, tungsten, molybdenum, aluminium, chromium, copper, palladium, silver or alloys thereof. Most preferably, the discharge electrode comprises nickel.
ESD保護裝置可以採用與製造多層陶瓷電容器相似的方式製造,此方式已經被充分證明並且是本領域技術人員眾所周知的,其中包括有主動層的印刷圖案的大分離層在對準疊合後,經壓製,切塊,燒製和端接後形成單體式組件。在本發明中,主動層是過電壓保護元件,放電電極,內部電極和浮動電極。MLCC製造領域的技術人員將瞭解到,裝置的頂部和底部可形成由空白電介質組成的覆蓋層,以形成本文所述的外部絕緣體,從而使部件的元件與外部絕緣表面。可以使用常規技術和材料對外部端子進行電鍍,並在表面上安裝組件。 ESD protection devices can be manufactured in a manner similar to the manufacture of multilayer ceramic capacitors, which is well documented and well known to those skilled in the art, in which a large separation layer comprising a printed pattern of the active layer is laminated in alignment, by Pressed, diced, fired and terminated to form a monolithic component. In the present invention, the active layers are the overvoltage protection element, the discharge electrode, the internal electrode and the floating electrode. Those skilled in the art of MLCC fabrication will appreciate that the top and bottom of the device may be formed with capping layers of blank dielectric to form the external insulators described herein to insulate the components of the component from the external surfaces. External terminals can be plated and surface mounted components using conventional techniques and materials.
以上將參閱圖6對本發明的實施例作一說明,其係以流程圖表示製造ESD保護裝置的製程。在圖6中,在標示位置100處準備了一系列的層。層102和102'包括外部絕緣體的前體,並且根據本領域公知用於MLCC電容器中的陶瓷層的標準製造程序來製備。層104是表示當位置104A和104B合在一起且經燒結後所形成ESD保護耦合器的層。在一個優選的實施例中,在位置104A處,在第一絕緣體前體層上形成包括過電壓保護元件前體和第二絕緣體前體作為一塗層。在位置104B處,形成一包括放電電極的前體和內部絕緣體的前體上的間隙絕緣體的層。如果要包括電容耦合器,則在位置105處形成包括在陶瓷介電前體上的內部電極的交替層。通過將用於形成內部電極和陶瓷的交替層經對準疊合後可以形成一浮動電極,或
者如本領域所公知的,其可以在陶瓷介電前體上包括不同的印刷圖案。這些層在位置106處以對準的方式疊合,使得放電電極、絕緣體層前體和過電壓保護元件如內部電極的前體一樣在本文中其他地方所討論和示出的方式對準,以形成對準的疊層。在過電壓保護元件的前體對準時,會覆蓋間隙絕緣體,如同由圖1和圖2所理解的。對準的疊層在位置108處受加壓並加熱至粘合絕緣體前體所需的程度,從而形成絕緣體,並將相鄰的層粘合在一起以形成複合疊層板。在位置110處將復合疊層板切成小塊以提供分離的ESD保護裝置前體,然後在位置112處進行熱處理。在位置114處對ESD保護裝置前體進行精加工步驟,包括添加外部端子,如果需要的話進行覆蓋,以形成ESD保護裝置,在精加工步驟中也可以包括測試和包裝。
An embodiment of the present invention will be described above with reference to FIG. 6 , which is a flow chart showing the manufacturing process of the ESD protection device. In Fig. 6, a series of layers are prepared at
使用主要由介電常數大約32的鋯酸鈣組成的I類C0G介電質作為間隙絕緣體、第一絕緣體、第二絕緣體、內部絕緣體和外部絕緣體,生產一系列0603 EIA尺寸的ESD保護裝置。製造出具有不同厚度的第一絕緣體的ESD保護裝置。過電壓保護元件主要包括體積比為3:1的鈦酸鎳和鈦酸鋇。用3或10對共平面的放電電極製成過電壓保護元件,每對共平面的放電電極具有一個由第一絕緣體隔開的放電電極的過電壓保護元件。過電壓保護元件在裝置內共燒。根據國際電工委員會的測試程序IEC 61000-4-2對ESD保護裝置施加8kV ESD脈波,並分析對脈波的響應。典型的測試設置包括Noiseken ESS S3011/GT30R ESD模擬器(150pF 330歐姆組合)和具有適當的高頻帶寬衰減的Keysight MSOS 804A高清晰度示波器。 A series of 0603 EIA size ESD protection devices were produced using a Class I COG dielectric mainly composed of calcium zirconate with a dielectric constant of approximately 32 as gap insulator, primary insulator, secondary insulator, inner insulator and outer insulator. ESD protection devices were fabricated with different thicknesses of the first insulator. The overvoltage protection component mainly includes nickel titanate and barium titanate with a volume ratio of 3:1. The overvoltage protection element is made with 3 or 10 pairs of coplanar discharge electrodes, each pair having an overvoltage protection element with a discharge electrode separated by a first insulator. The overvoltage protection element is co-fired inside the device. According to the test procedure IEC 61000-4-2 of the International Electrotechnical Commission, an 8kV ESD pulse wave is applied to the ESD protection device, and the response to the pulse wave is analyzed. A typical test setup includes a Noiseken ESS S3011/GT30R ESD simulator (150pF 330 ohms combined) and a Keysight MSOS 804A high-definition oscilloscope with appropriate high frequency bandwidth attenuation.
製備並評估具有3對和10對鎳基放電電極,厚度為9μm的ESD保護裝置。如表1所示,具有10個保護層的ESD保護裝置將觸發 電壓降低到約20%,而使用3對放電電極時,漏電流保持在1nA以下。此外,增加ESD保護耦合的數量可以將1000個8kV脈波中的觸發電壓由1.7kV降低到1.3kV。 ESD protection devices with 3 pairs and 10 pairs of nickel-based discharge electrodes with a thickness of 9 μm were prepared and evaluated. As shown in Table 1, an ESD protection device with 10 protection layers will trigger The voltage drops to about 20%, while the leakage current remains below 1nA when using 3 pairs of discharge electrodes. In addition, increasing the number of ESD protection couplings can reduce the trigger voltage from 1.7kV to 1.3kV in 1000 8kV pulses.
圖7顯示8kV ESD脈波的響應電壓與時間的關係。除了降低峰值電壓外,具有額外ESD保護耦合的零件在1000次重複的8kV ESD脈波後,在電壓響應方面具有更佳的耐用性,如圖8所示,其中以圖形方式表現了1000個8kV ESD脈波後的平均電壓與時間的關係。 Figure 7 shows the response voltage versus time for an 8kV ESD pulse. In addition to reducing the peak voltage, parts with additional ESD protection coupling have better robustness in terms of voltage response after 1000 repeated 8kV ESD pulses, as shown in Figure 8, which graphically represents 1000 8kV ESD pulses Average voltage vs. time after an ESD pulse.
如上所述,期望能實現低觸發電壓,同時能在暴露於多個脈沖之後仍能保持穩定性及連續低漏流。為了測試第一絕緣體的有效性,製造了具有三對鎳放電電極的ESD保護裝置,其中三對鎳放電電極具有不同的第一絕緣體厚度。 As mentioned above, it is desirable to achieve a low trigger voltage while maintaining stability and continuous low leakage current after exposure to multiple pulses. To test the effectiveness of the first insulator, an ESD protection device with three pairs of nickel discharge electrodes having different thicknesses of the first insulator was fabricated.
在另一個實例中,使用主要由介電常數大約32的鋯酸鈣組成的I類C0G介電質作為間隙絕緣體、第一絕緣體、第二絕緣體、內部絕緣體和外部絕緣體,生產一系列0603 EIA尺寸的相似ESD保護裝置。製造出具有不同厚度的第一絕緣體的ESD保護裝置。以包括主要為體積比為3:1的鎳和鈦酸鹽的過電壓元件製造一組ESD保護裝置,而以包括主要為體積比3:1的鎳和氮化鉭的過電壓元件製 造另一組ESD保護裝。過電壓保護元件在裝置內共燒。根據國際電工委員會的測試程序IEC 61000-4-2對每個結構的五個ESD保護裝置施加8kV ESD脈波,並分析對脈波的響應。典型的測試設置包括Noiseken ESS S3011/GT30R ESD模擬器(150pF 330歐姆組合)和具有適當的高頻帶寬衰減的Keysight MSOS 804A高清晰度示波器。 In another example, a series of 0603 EIA sizes were produced using a Class I COG dielectric consisting primarily of calcium zirconate with a dielectric constant of approximately 32 as the gap insulator, first insulator, second insulator, inner insulator, and outer insulator. similar ESD protection devices. ESD protection devices were fabricated with different thicknesses of the first insulator. Manufacture of a set of ESD protection devices consisting of an overvoltage element mainly consisting of nickel and titanate in a volume ratio of 3:1 and an overvoltage element consisting mainly of nickel and tantalum nitride in a volume ratio of 3:1 Build another set of ESD protection. The overvoltage protection element is co-fired inside the device. According to the test procedure IEC 61000-4-2 of the International Electrotechnical Commission, an 8kV ESD pulse wave was applied to the five ESD protection devices of each structure, and the response to the pulse wave was analyzed. A typical test setup includes a Noiseken ESS S3011/GT30R ESD simulator (150pF 330 ohms combined) and a Keysight MSOS 804A high-definition oscilloscope with appropriate high frequency bandwidth attenuation.
如表2所示,增加第一絕緣體的厚度可減少1000個8kV脈波後的漏電流。從表2中還可以看出,當使用氮化鉭作為過電壓保護元件中的第二材料時,在維持觸發電壓時,經過1000個脈波後,漏電流仍然很小。 As shown in Table 2, increasing the thickness of the first insulator can reduce the leakage current after 1000 8kV pulses. It can also be seen from Table 2 that when tantalum nitride is used as the second material in the overvoltage protection element, when the trigger voltage is maintained, the leakage current is still very small after 1000 pulses.
為了確定ESD保護裝置保護諸如積體電路(IC)之類的敏感電子組件免受高壓ESD脈波影響的能力,設計了一種測試電路,其中ESD保護裝置和敏感組件安裝在並聯電路架構中並承受ESD脈波。用來測試的ESD脈波產生器係為NoiseKen ESS-S3011A,其具有GT-30RA放電槍,配置於可產生EIC 61000-4-2規格中所述的ESD電流脈波。ESD脈波發生器具有一個150pF的電源電容器,一個1M歐姆的充電電阻和一個330歐姆的放電電阻。圖9是電路示意圖。 To determine the ability of an ESD protection device to protect sensitive electronic components such as integrated circuits (ICs) from high-voltage ESD pulses, a test circuit was designed in which the ESD protection device and sensitive components were mounted in a parallel circuit configuration and subjected to ESD pulse. The ESD pulse generator used for the test is NoiseKen ESS-S3011A, which has a GT-30RA discharge gun and is configured to generate the ESD current pulse described in the EIC 61000-4-2 specification. The ESD pulse generator has a 150pF supply capacitor, a 1M ohm charging resistor and a 330 ohm discharging resistor. Fig. 9 is a schematic circuit diagram.
在圖9中,ESD放電槍30對著與敏感組件34並聯的ESD保護裝置32提供脈波。在圖10中,一高壓脈波發生器36經由一充電電阻器40向一電源電容器38充電,開關42在充電週期時閉合,而在作為測試脈波時開路。充電完成後,該開關會在充電週期中打開,並在作為測試脈波時閉合,使電容器通過放電電阻器44放電,從而施加脈波至ESD保護裝置32和敏感組件34。ESD放電槍通常包括作為積體裝置的高壓脈波發生器36、電源電容器38、充電電阻器40和開關42。
In FIG. 9 , an
為了執行測試,將ESD放電槍中的電源電容器充電至該測試電壓,然後通過放電電阻器放電進入測試電路。ESD保護裝置和敏感測試組件之間的電壓會增加,直到達到ESD保護裝置觸發電壓為止,這時ESD保護裝置會將多餘的電壓分流到地,從而保護敏感組件免受損壞。如果ESD保護裝置的電壓高於敏感組件的電壓能力,或者無法將足夠的電流分流到地,則敏感組件即可能會受到該電壓脈波的損壞。 To perform the test, the supply capacitor in the ESD gun is charged to this test voltage and then discharged through the discharge resistor into the test circuit. The voltage between the ESD protection device and sensitive test components increases until the ESD protection device trigger voltage is reached, at which point the ESD protection device shunts the excess voltage to ground, protecting sensitive components from damage. Sensitive components can be damaged by the voltage pulse if the ESD protection device's voltage is higher than the voltage capability of the sensitive component, or if it fails to shunt enough current to ground.
使用圖9所示的測試電路評估了包含用鈦酸鋇製造的過電壓保護元件和另一個包含氮化鉭作為第二材料的ESD保護裝置,以確定ESD保護裝置能保護敏感組件免受8kV ESD脈波影響的能力。選擇用於測試的敏感組件是兩個EIA 0603 C0G型MLCC,它們以 串聯方式佈置,當ESD放電槍充電至2000V時,在經過大約100個ESD脈波後,它會失效。通過測量一系列ESD脈波後的絕緣電阻來確定敏感組件的故障。通常,所使用的敏感組件的絕緣電阻大於100G歐姆。確定損壞的電容器是絕緣電阻小於100M歐的電容器。此外,還測試了兩個市售的ESD保護組件以進行比較。 An ESD protection device consisting of an overvoltage protection element made of barium titanate and another containing tantalum nitride as a second material was evaluated using the test circuit shown in Figure 9 to determine that the ESD protection device can protect sensitive components from 8kV ESD The ability of pulse influence. The sensitive components chosen for testing were two EIA 0603 C0G type MLCCs with Arranged in series, when the ESD discharge gun is charged to 2000V, it will fail after about 100 ESD pulses. Identify the failure of sensitive components by measuring the insulation resistance after a series of ESD pulses. Typically, the insulation resistance of the sensitive components used is greater than 100G ohms. It is determined that the damaged capacitor is a capacitor with an insulation resistance of less than 100M ohms. Additionally, two commercially available ESD protection components were tested for comparison.
表3列示了證明ESD保護組件保護敏感組件不受損壞的能力的測試結果。每個測試包含五個組件的樣本。從表3中可以看出,與市售的ESD保護組件相比,使用本發明所述的陶瓷材料和工藝製造的ESD保護組件可以提供優異的ESD脈波保護能力。 Table 3 lists test results demonstrating the ability of ESD protection components to protect sensitive components from damage. Each test contains samples of five components. It can be seen from Table 3 that, compared with commercially available ESD protection components, the ESD protection components manufactured using the ceramic material and process described in the present invention can provide excellent ESD pulse protection capability.
本發明已經參閱優選實施例予以描述,但不限於此。本領域技術人員將瞭解到本文未具體描述但在所附申請專利範圍中更具體闡述的本發明專利範圍內的其他實施例和改良。 The present invention has been described with reference to preferred embodiments, but is not limited thereto. Those skilled in the art will recognize other embodiments and modifications within the scope of the invention not specifically described herein but more particularly set forth in the appended claims.
12:放電電極 12: Discharge electrode
14:間隙絕緣體 14: Gap insulator
16:過電壓保護元件 16:Overvoltage protection element
18:第一絕緣體 18: The first insulator
2:ESD保護耦合器 2:ESD protection coupler
20:第二絕緣體 20: Second insulator
Claims (79)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/517,066 | 2019-07-19 | ||
US16/517,066 US11178800B2 (en) | 2018-11-19 | 2019-07-19 | Ceramic overvoltage protection device having low capacitance and improved durability |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202123573A TW202123573A (en) | 2021-06-16 |
TWI781418B true TWI781418B (en) | 2022-10-21 |
Family
ID=71620358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109120759A TWI781418B (en) | 2019-07-19 | 2020-06-19 | Ceramic overvoltage protection device with low capacitance and improved durability and method of making the same |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3767647A1 (en) |
TW (1) | TWI781418B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090067113A1 (en) * | 2007-05-28 | 2009-03-12 | Murata Manufacturing Co., Ltd. | Esd protection device |
US20160028227A1 (en) * | 2013-03-15 | 2016-01-28 | Tdk Corporation | Esd protection device |
TW201806277A (en) * | 2016-08-02 | 2018-02-16 | 久尹股份有限公司 | Electrostatic discharge protection device and method of producing same |
US20180124904A1 (en) * | 2015-05-07 | 2018-05-03 | Moda-Innochips Co., Ltd. | Electric shock-prevention element and electronic device provided with same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100559586C (en) * | 2004-01-30 | 2009-11-11 | Nxp股份有限公司 | Integrated circuit chip with electrostatic discharge protection device |
US20100134235A1 (en) * | 2007-06-21 | 2010-06-03 | Panasonic Corporation | Esd protector and method of manufacturing the same |
JP6107945B2 (en) * | 2013-05-23 | 2017-04-05 | 株式会社村田製作所 | ESD protection device |
US9953749B2 (en) * | 2016-08-30 | 2018-04-24 | Samsung Electro-Mechanics Co., Ltd. | Resistor element and resistor element assembly |
WO2018062839A1 (en) * | 2016-09-29 | 2018-04-05 | 주식회사 아모텍 | Static electricity protection device, method for manufacturing same and portable electronic apparatus having same |
US11393635B2 (en) * | 2018-11-19 | 2022-07-19 | Kemet Electronics Corporation | Ceramic overvoltage protection device having low capacitance and improved durability |
-
2020
- 2020-06-19 TW TW109120759A patent/TWI781418B/en not_active IP Right Cessation
- 2020-07-15 EP EP20186058.2A patent/EP3767647A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090067113A1 (en) * | 2007-05-28 | 2009-03-12 | Murata Manufacturing Co., Ltd. | Esd protection device |
US20160028227A1 (en) * | 2013-03-15 | 2016-01-28 | Tdk Corporation | Esd protection device |
US20180124904A1 (en) * | 2015-05-07 | 2018-05-03 | Moda-Innochips Co., Ltd. | Electric shock-prevention element and electronic device provided with same |
TW201806277A (en) * | 2016-08-02 | 2018-02-16 | 久尹股份有限公司 | Electrostatic discharge protection device and method of producing same |
Also Published As
Publication number | Publication date |
---|---|
TW202123573A (en) | 2021-06-16 |
EP3767647A1 (en) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101808797B1 (en) | Laminated device and electronic device having the same | |
JP6928587B2 (en) | Overvoltage protection component | |
KR101760877B1 (en) | Complex component and electronic device having the same | |
KR20170135146A (en) | Contactor for preventing electric shock | |
US11393636B2 (en) | Ceramic overvoltage protection device having low capacitance and improved durability | |
TWI781418B (en) | Ceramic overvoltage protection device with low capacitance and improved durability and method of making the same | |
JP7321259B2 (en) | Ceramic overvoltage protection device with low capacitance and improved durability | |
KR101808796B1 (en) | Laminated device | |
WO2016178524A1 (en) | Electric shock-prevention element and electronic device provided with same | |
US11682504B2 (en) | Method for producing chip varistor and chip varistor | |
TW202109577A (en) | Complex component and electronic device including the same | |
KR20180066003A (en) | Contactor for preventing electric shock | |
KR20170126840A (en) | Laminated device and electronic device having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |