TWI778572B - Heat disspation structure for factory building (2) - Google Patents
Heat disspation structure for factory building (2) Download PDFInfo
- Publication number
- TWI778572B TWI778572B TW110112974A TW110112974A TWI778572B TW I778572 B TWI778572 B TW I778572B TW 110112974 A TW110112974 A TW 110112974A TW 110112974 A TW110112974 A TW 110112974A TW I778572 B TWI778572 B TW I778572B
- Authority
- TW
- Taiwan
- Prior art keywords
- platform
- side wall
- area
- heat dissipation
- wall
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
- F24F7/013—Ventilation with forced flow using wall or window fans, displacing air through the wall or window
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H5/00—Buildings or groups of buildings for industrial or agricultural purposes
- E04H5/02—Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
- Ventilation (AREA)
Abstract
Description
本創作係有關一種廠房散熱結構,尤指一種可有效排除工廠廠房內之熱氣者。 This work is related to a heat dissipation structure of a factory building, especially one that can effectively remove the heat in the factory building.
對於高度在6m以下的中小型廠房而言,為了加強散熱效果,一般是在廠房之屋頂設有多個自旋扇,以排出熱氣並擋雨;或是在廠房內工作區作業人員的上方懸掛一系列風扇,或在低於人身高度處擺放一系列風扇,以期望能排出熱氣並吹拂人身以進行散熱。而對於大型廠房,例如高15m、寬50m、長200m的廠房而言,其所採用的自然通風,通常是在廠房之上方設有加高之太子樓,太子樓之兩側分別具有開啟之側窗,廠房下方之工作區具有側窗以進氣,且特別將廠房之屋頂拉高,以減小屋頂輻射熱的影響。 For small and medium-sized workshops with a height of less than 6m, in order to enhance the heat dissipation effect, a plurality of spinning fans are generally installed on the roof of the workshop to discharge hot air and block the rain; or hang them above the workers in the working area of the workshop A series of fans, or a series of fans placed below the height of the person, in the hope of expelling hot air and blowing the person to dissipate heat. For a large factory building, such as a factory building with a height of 15m, a width of 50m, and a length of 200m, the natural ventilation used is usually a raised Prince Building above the factory building, with open sides on both sides of the Prince Building. Windows, the work area under the workshop has side windows for air intake, and the roof of the workshop is especially raised to reduce the influence of radiant heat from the roof.
然而,傳統散熱方法因為沒有處理流體流動的細節,容易在室內形成大區塊的迴流區與或低速區,在這些區域的污染物濃度較高;而由於作業員容易有幾乎無風、悶熱的感覺,所以直覺式的會以加大風量或增加風扇數目的方式處理,但是其效果不佳、耗費能源且會增大噪音,且作業員在長時間受到高速氣流的衝擊是不舒服的。再者,由於太子樓側窗或是屋頂自旋扇的開口面積不足或分佈不佳,廠房內之大部份熱氣並無法有效排除,會在廠房內部形成大迴流泡,將上方熱氣捲至下方工作區,造 成工作區之溫度上升。此時,廠房外部空氣受到廠房內部熱氣之浮力牽引,在進入廠房下方兩邊側窗之後,由於大迴流泡之影響,即會很快的就轉折向上。因此,除了兩側窗附近短短的距離內,作業人員有一些涼爽感覺之外,廠房內部的大部份區域都是悶熱的。縱然是使用大量的風扇吹拂,也祇是將熱氣從風扇背面吸入,再從風扇前面吹出,仍無法解決因為下方大部份工作區溫度上升,造成作業人員之不舒適感,從而使工作效率下降,甚至產生職業傷害之問題。 However, because the traditional heat dissipation method does not deal with the details of fluid flow, it is easy to form a large area of recirculation area and or low-speed area in the room, and the pollutant concentration in these areas is relatively high; and because the operator is prone to almost no wind and a feeling of sultry heat Therefore, it is intuitive to increase the air volume or increase the number of fans, but it is not effective, consumes energy and increases noise, and the operator is uncomfortable when the impact of high-speed airflow for a long time. Furthermore, due to insufficient opening area or poor distribution of the side windows of the Prince Building or the roof spin fan, most of the heat in the factory building cannot be effectively removed, and large backflow bubbles will be formed inside the factory building, which will roll the hot air from the top to the bottom. work area, make The temperature of the working area rises. At this time, the air outside the factory building is pulled by the buoyancy of the hot air inside the factory building. After entering the side windows on both sides below the factory building, it will quickly turn upward due to the influence of the large backflow bubble. Therefore, except for a short distance near the windows on both sides, the workers felt a little cool, most of the interior of the workshop was stuffy. Even if a large number of fans are used to blow, the hot air is only sucked from the back of the fan, and then blown out from the front of the fan, which still cannot solve the problem because the temperature of most of the working areas below rises, which causes the discomfort of the operators and reduces the work efficiency. There are even occupational injuries.
因此,如中華民國發明公告第I659145號之「廠房散熱結構」即提出一種解決之方案,其主要係在一具有出氣口的屋頂下方設有四個側牆,並將第一、第二平台設置於廠房內,四個側牆之第一、第二側牆相互平行,第一、第二側牆之下半部分別設有進氣口;第一平台之第一端連接第一側牆,以上、下區隔成第一上迴流區域及第一下工作區;第二平台之第一端連接第二側牆,以上、下區隔成第二上迴流區域及第二下工作區;且第一平台之第二端與第二平台之第二端之間形成一間隔。藉此,即可讓廠房外之空氣分別由相對的兩個進氣口分別進入第一、第二下工作區之中,再經由熱浮力作用讓熱氣通過兩個平台之間的間隔以向上流動,由出氣口向外排出以進行散熱。 Therefore, for example, the "heat dissipation structure of the factory building" of the Republic of China Invention Bulletin No. I659145 proposes a solution, which is mainly based on the installation of four side walls under a roof with an air outlet, and the first and second platforms are installed. In the factory building, the first and second side walls of the four side walls are parallel to each other, and the lower half of the first and second side walls are respectively provided with air inlets; the first end of the first platform is connected to the first side wall, The upper and lower areas are divided into a first upper return area and a first lower working area; the first end of the second platform is connected to the second side wall, and the upper and lower areas are divided into a second upper return area and a second lower working area; and A space is formed between the second end of the first platform and the second end of the second platform. In this way, the air outside the workshop can be entered into the first and second lower working areas through the two opposite air inlets respectively, and then the hot air can flow upward through the gap between the two platforms through thermal buoyancy. , which is discharged from the air outlet to dissipate heat.
惟,在兩個相對平台之間形成間隔,並在兩個相對平台分別連接的兩個側牆之下半部分別設有進氣口的廠房結構,雖然可以在兩個進氣口同時進氣,並經由熱浮力之作用以達到散熱之效果,但此種「雙平台」之結構較為複雜,且由於兩個平台之間的間隔寬度較小,對於大型機具的 擺放數量會受到較大的限制;而傳統式以加大風量或增加風扇數目的方式進行廠房內部之散熱處理,不但效果不佳、耗費能源,且會增大噪音。有鑑於此,為了提供一種有別於習用技術之結構,並改善上述之缺點,創作人積多年的經驗及不斷的研發改進,遂有本創作之產生。 However, the workshop structure in which an interval is formed between two opposite platforms, and the lower half of the two side walls connected to the two opposite platforms are respectively provided with air inlets. , and through the action of thermal buoyancy to achieve the effect of heat dissipation, but the structure of this "dual platform" is more complicated, and due to the small width of the gap between the two platforms, it is not suitable for large equipment. The number of places to be placed will be greatly limited; and the traditional way of increasing the air volume or increasing the number of fans for heat dissipation inside the factory is not only ineffective, consumes energy, and increases noise. In view of this, in order to provide a structure that is different from the conventional technology and improve the above-mentioned shortcomings, the creator has accumulated many years of experience and continuous research and development improvement, so this creation came into being.
本創作之一目的在提供一種廠房散熱結構,俾能解決習用廠房內大部份工作區之溫度上升,造成作業人員之不舒適感,從而使工作效率下降,甚至產生職業傷害;且由於加大風量或增加風扇數目,使耗費能源及增大噪音之問題,而能提供一種有效之散熱結構,使工作區之溫度大幅下降,讓工作區內之作業人員能在涼爽舒適的環境中作業,從而提高工作效率,避免因高溫環境所產生之職業傷害;讓散熱氣流流動順暢,以節省電力消耗及減少噪音之產生,並提升作業環境品質。 One of the purposes of this creation is to provide a factory building heat dissipation structure, so as to solve the temperature rise in most of the working areas in the conventional factory building, causing discomfort to the operators, thus reducing work efficiency and even causing occupational injury; Air volume or increasing the number of fans will consume energy and increase noise, but can provide an effective heat dissipation structure, which can greatly reduce the temperature of the work area, so that the workers in the work area can work in a cool and comfortable environment, thereby Improve work efficiency and avoid occupational injuries caused by high temperature environments; make the cooling airflow flow smoothly to save power consumption and reduce noise, and improve the quality of the working environment.
為達上述之目的,本創作之廠房包括一屋頂及設於屋頂下方且依序連續設置之第一側牆、第三側牆、第二側牆及第四側牆,屋頂與各個側牆共同框圍一室內空間,且第一側牆平行第二側牆;而本創作之廠房散熱結構主要包括一第一平台、至少一進氣口以及至少一排氣口。其中之第一平台係位於廠房之室內空間中,第一平台具有第一端及反向於第一端之第二端,第一平台之第一端連接第一側牆之內牆面,供上、下區隔成一上迴流區域及一下工作區,第一平台之第二端與第二側牆的內牆面之間具有一第一間隔;至少一進氣口以橫向延伸之方式開設於第一平台下方之第一側牆下半部,總開窗比為至少一進氣口之總開口面積/第二側牆面積,總開窗比介於20%~100%之間;而至少一排氣口以橫向延伸之方式開設於第二側牆之下半部,且至少一排氣口之排氣中心高度位置介於至少一進氣口之 中心高度與頂端高度位置之間,供由至少一進氣口輸入冷空氣,再由至少一排氣口排出熱空氣。 In order to achieve the above purpose, the workshop of this creation includes a roof and a first side wall, a third side wall, a second side wall and a fourth side wall which are arranged under the roof and are successively arranged in sequence. The roof and each side wall are common. The frame encloses an indoor space, and the first side wall is parallel to the second side wall; and the heat dissipation structure of the workshop mainly includes a first platform, at least one air inlet and at least one exhaust outlet. The first platform is located in the indoor space of the factory. The first platform has a first end and a second end opposite to the first end. The first end of the first platform is connected to the inner wall of the first side wall for supplying The upper and lower areas are divided into an upper return area and a lower working area, and there is a first interval between the second end of the first platform and the inner wall of the second side wall; at least one air inlet is opened in a transversely extending manner. For the lower half of the first side wall below the first platform, the total window opening ratio is the total opening area of at least one air inlet/the second side wall area, and the total window opening ratio is between 20% and 100%; and at least An exhaust port is opened in the lower half of the second side wall in a laterally extending manner, and the center height position of the exhaust port of the at least one exhaust port is located between the at least one air inlet port. Between the height of the center and the height of the top, cold air is input from at least one air inlet, and hot air is discharged from at least one air outlet.
實施時,第一平台具有第三端及反向於第三端之第四端,第三端連接第三側牆之內牆面,第四端連接第四側牆之內牆面。 During implementation, the first platform has a third end and a fourth end opposite to the third end, the third end is connected to the inner wall of the third side wall, and the fourth end is connected to the inner wall of the fourth side wall.
實施時,本創作更包括一隔板,隔板定位於屋頂與第一平台之間,總開窗比為至少一進氣口之總開口面積/隔板下方之第二側牆面積。 When implemented, the invention further includes a partition, the partition is positioned between the roof and the first platform, and the total window opening ratio is the total opening area of the at least one air inlet/the area of the second side wall below the partition.
實施時,本創作更包括複數個通風口,複數個通風口開設於隔板與屋頂之間,供排出隔板與屋頂之間的熱氣。 During implementation, this creation further includes a plurality of vents, which are opened between the partitions and the roof to discharge the hot air between the partitions and the roof.
實施時,本創作更包括一第二平台,第二平台具有第一端及反向於第一端之第二端,第二平台之第一端連接第一側牆之內牆面,第二平台位於第一平台之上方,且第二平台與第一平台之間具有一中間迴流區域。第二平台之第二端與第二側牆的內牆面之間具有一第二間隔,第二間隔之長度小於第一間隔之長度。總開窗比為至少一進氣口之總開口面積/第二平台下方之第二側牆面積。 During implementation, this creation further includes a second platform, the second platform has a first end and a second end opposite to the first end, the first end of the second platform is connected to the inner wall of the first side wall, the second The platform is located above the first platform, and there is an intermediate return area between the second platform and the first platform. There is a second space between the second end of the second platform and the inner wall of the second side wall, and the length of the second space is smaller than the length of the first space. The total window opening ratio is the total opening area of the at least one air inlet/the area of the second side wall below the second platform.
實施時,第二平台具有第三端及反向於第三端之第四端,第三端連接第三側牆之內牆面,第四端連接第四側牆之內牆面。 During implementation, the second platform has a third end and a fourth end opposite to the third end, the third end is connected to the inner wall of the third side wall, and the fourth end is connected to the inner wall of the fourth side wall.
實施時,上述總開窗比更佳的是介於30%~100%之間。 In practice, the above-mentioned total window opening ratio is preferably between 30% and 100%.
為進一步了解本創作,以下舉較佳之實施例,配合圖式、圖號,將本創作之具體構成內容及其所達成的功效詳細說明如下。 In order to further understand the creation, a preferred embodiment is given below, and the specific components of the creation and the effects achieved are described in detail as follows in conjunction with the drawings and drawing numbers.
1:廠房散熱結構 1: Plant heat dissipation structure
2:廠房 2: Workshop
21:屋頂 21: Roof
22:第一側牆 22: First side wall
23:第三側牆 23: Third Side Wall
24:第二側牆 24: Second Side Wall
25:第四側牆 25: Fourth Side Wall
26:室內空間 26: Interior Space
27:隔板 27: Clapboard
28:通風口 28: Vents
3:第一平台 3: The first platform
31,61:第一端 31,61: First end
32,62:第二端 32,62: Second end
33,63:第三端 33,63: third end
34,64:第四端 34,64: Fourth end
W1:第一間隔 W1: first interval
35:上迴流區域 35: Upper reflow area
36:下工作區 36: Lower workspace
4:進氣口 4: Air intake
Rw:開窗比 R w : window opening ratio
Qw,t:從進氣口吸入之空氣流量 Q w,t : Air flow rate sucked from the air inlet
5:排氣口 5: exhaust port
H1:排氣中心高度 H1: exhaust center height
H2:進氣口中心高度 H2: The height of the center of the air intake
H3:進氣口頂端高度 H3: Height of the top of the air inlet
S1:高速區 S1: High Speed Zone
S2:低速區 S2: low speed zone
S3:混合層 S3: Hybrid Layer
6:第二平台 6: Second Platform
W2:第二間隔 W2: Second interval
65:中間迴流區域 65: Intermediate reflow area
〔圖1〕係為本創作之第一實施例之立體外觀示意圖。 [FIG. 1] is a three-dimensional appearance schematic diagram of the first embodiment of the present invention.
〔圖2〕係為圖1之側剖面圖。 [Fig. 2] is a side sectional view of Fig. 1. [Fig.
〔圖3〕係為本創作之第一實施例之總開窗比(Rw)與從進氣口吸入之空氣流量(Qw,t)的相關曲線圖。 [FIG. 3] is a graph showing the correlation between the total window opening ratio (R w ) and the air flow rate (Q w,t ) sucked from the air inlet in the first embodiment of the present invention.
〔圖4〕係為本創作之第一實施例之使用狀態圖。 [Fig. 4] is a state diagram of the first embodiment of the present invention.
〔圖5〕係為本創作之第一實施例以CFD電腦程式分析計算結果,在x-z截面之速度向量、流線與溫度分佈圖。 [Fig. 5] is a graph of velocity vector, streamline and temperature distribution at the x-z section of the first embodiment of the present creation using CFD computer program to analyze and calculate the result.
〔圖6〕係為本創作之第二實施例之立體外觀示意圖。 [FIG. 6] is a three-dimensional appearance schematic diagram of the second embodiment of the present invention.
〔圖7〕係為圖6之側剖面圖。 [Fig. 7] is a side sectional view of Fig. 6. [Fig.
〔圖8〕係為本創作之第二實施例之使用狀態圖。 [Fig. 8] is a state diagram of the second embodiment of the present invention.
〔圖9〕係為本創作之第二實施例以CFD電腦程式分析計算結果,在x-z截面之速度向量、流線與溫度分佈圖。 [Fig. 9] is a graph of the velocity vector, streamline and temperature distribution in the x-z section of the second embodiment of the present invention using CFD computer program to analyze and calculate the result.
請參閱圖1、圖2所示,其為本創作廠房散熱結構1之第一實施例,係供安裝於一廠房2之內部及各個牆面上。廠房2包括一屋頂21及設於屋頂21下方且依序連續環繞設置之一第一側牆22、一第三側牆23、一第二側牆24及一第四側牆25,四個側牆框圍成長方形,並與屋頂21共同框圍成一室內空間26。第一側牆22與第二側牆24相互平行,且屋頂21下方具有一隔板27,隔板27為具有高隔熱係數之天花板,藉以阻絕屋頂21所向下散發的幅射熱,讓隔板27下方之下工作區36下游的溫度不致於上升;而屋頂21與隔板27之間的側牆上更開設有複數個通風口28,藉以排出屋頂21與隔板27之間的熱氣。
Please refer to FIG. 1 and FIG. 2 , which are the first embodiment of the
本創作廠房散熱結構1主要包括一第一平台3、複數個進氣口
4以及複數個排氣口5。其中之第一平台3係水平懸空於廠房2之室內空間26中,第一平台3具有一第一端31、反向於第一端31之一第二端32、一第三端33及反向於第三端33之一第四端34,第一平台3之第一端31連接第一側牆22之內牆面,第二端32與第二側牆24的內牆面之間具有一第一間隔W1,第三端33連接第三側牆23之內牆面,第四端34連接第四側牆25之內牆面,藉以將部份室內空間26上、下區隔成一上迴流區域35及一下工作區36,上迴流區域35位於隔板27的底面與第一平台3的頂面之間。
The
複數個進氣口4係以矩形陣列狀橫向延伸開設於第一平台3下方之第一側牆22下半部,進氣口4係為可開啟之窗,藉以使廠房2外之空氣進入廠房2的下工作區36中。實施時,進氣口4亦可為單一橫向窗或是上下雙排的橫向窗,同樣可以讓廠房2外之空氣進入廠房2的室內空間26中。而對於從進氣口4被吸入廠房2內的空氣流量(Qw,t)而言,其與總開窗比(Rw)之大小具有相關。
A plurality of
如圖3所示,在本實施例中,其總開窗比(Rw)=複數個進氣口4之總開口面積/隔板27下方之第二側牆24面積;而當不具有隔板27時,其總開窗比(Rw)=複數個進氣口4之總開口面積/屋頂21下方之第二側牆24面積。總開窗比(Rw)係介於20%~100%之間,實施時,總開窗比(Rw)更佳的是介於30%~100%之間。當總開窗比(Rw)大於20%以上時,總開窗比(Rw)是愈大愈好;例如:當Rw>30%時,從窗戶被吸入廠房2內的空氣流量(Qw,t)將趨近最大的定值。亦即表示窗戶開口的壓損係數在Rw>30%以上時,接近較小的飽和值。反之,當總開窗比(Rw)在20%以下,甚至於在10%以下時,將會使得室內產生迴流區,而無法讓室內空間26內的熱空氣有效的由複數個排氣口5向
外排出。
As shown in FIG. 3 , in this embodiment, the total window opening ratio (R w )=total opening area of the plurality of
複數個排氣口5係以橫向延伸開設於第二側牆24之下半部,排氣口5係為風扇,實施時,排氣口5亦可為連接抽氣裝備之橫向出風口,複數個排氣口5之排氣中心高度H1位置介於複數個進氣口4之中心高度H2與頂端高度H3位置之間,亦即,複數個排氣口5之排氣中心高度H1位置必需高於複數個進氣口4之中心高度H2位置,同時要低於複數個進氣口4之頂端高度H3位置。
A plurality of
藉此,如圖4所示,當作業人員或是會發熱之機器分佈於下工作區36時,廠房2外之冷空氣經由複數個進氣口4輸入室內空間26內,並帶動室內空間26內的熱空氣由複數個排氣口5向外排出,由於第一平台3下方之下工作區36中所產生之空氣流動速度大於第一平台3頂面之上迴流區域35的流動速度,即會分別形成一高速區S1及一低速區S2,而高速區S1與低速區S2之分界處則會形成扇形擴大之一混合層S3,此混合層S3經由第一平台3之阻隔,可以讓第一平台3上方之熱氣在上迴流區域35形成迴流泡,且大部份限制在上迴流區域35內;而第一平台3上方之小部份熱氣與下工作區36內之大部份熱氣則會經由高速區S1內的空氣快速流動,由第一側牆22朝向第二側牆24之方向排出廠房2外部,以降低下工作區36之溫度。
Thereby, as shown in FIG. 4 , when the workers or the machines that generate heat are distributed in the
基於上述第一實施例之結構,本創作在高6m、寬50m、長75m之一般高度廠房內以下列參數進行模擬測試,並以Computational Fluid Dynamics(CFD)的電腦程式分析計算。 Based on the structure of the above-mentioned first embodiment, this creation is simulated and tested with the following parameters in a factory with a height of 6m, a width of 50m and a length of 75m, and is analyzed and calculated by the computer program of Computational Fluid Dynamics (CFD).
窗戶(進氣口)總數:80個、2列 Total number of windows (air intakes): 80, 2 columns
窗戶(複數個進氣口)上緣與下緣之間的距離:1.8m The distance between the upper edge and the lower edge of the window (multiple air intakes): 1.8m
窗戶(進氣口)入口風速:2.6m/s Window (air inlet) inlet wind speed: 2.6m/s
第一平台長度:8m Length of the first platform: 8m
風扇(排氣口)總數:55個、1列 Total number of fans (exhaust ports): 55, 1 row
單個風扇(排氣口)風量:363CMM Air volume of a single fan (exhaust port): 363CMM
單個風扇(排氣口)出口軸向風速:7.0m/s Axial wind speed at the outlet of a single fan (exhaust port): 7.0m/s
複數個風扇(排氣口)總風量:19974CMM The total air volume of multiple fans (exhaust ports): 19974CMM
依據以上設計的窗戶,其總開窗比(Rw)>60%。經CFD電腦程式分析計算結果,速度向量、流線與溫度分佈圖係如圖5在x-z截面中所示。其中箭頭代表速度向量,沿著速度向量切線方向的黑色區線代表流線;彩色部分代表溫度的高低,屋頂指定一個溫度60℃,紅色為最高溫(屋頂內側溫度指定為60℃),依次為棕、黃、淺綠、艷綠、淺藍至深藍(深藍色的溫度為大氣的溫度,指定為29℃)。經由總開窗比(Rw)之窗戶大小控制,下工作區的速度向量與流線顯示從左到右幾乎是平行流,沒有產生迴流區或低速區;彩色溫度分佈顯示:在下游區,離地板3公尺高以下,氣流的溫度頂多比大氣溫度高約0.1~0.2℃,在下工作區內則維持幾乎大氣溫度(深藍色),顯示上方的高溫空氣不會被捲至下工作區,確實可以有效降低下工作區36之溫度。
According to the above designed windows, the total window opening ratio (R w ) is >60%. After analyzing the calculation results by CFD computer program, the velocity vector, streamline and temperature distribution diagram are shown in the xz section in Figure 5. The arrow represents the velocity vector, and the black line along the tangent direction of the velocity vector represents the streamline; the colored part represents the temperature, the roof is assigned a temperature of 60°C, and the red is the highest temperature (the temperature inside the roof is assigned as 60°C), in order Brown, yellow, light green, vivid green, light blue to dark blue (the temperature of dark blue is the temperature of the atmosphere and is designated as 29°C). Through the window size control of the total window opening ratio (Rw), the velocity vector and streamline of the lower working area show that the flow is almost parallel from left to right, and no recirculation area or low-velocity area is generated; color temperature distribution display: in the downstream area, away from Below the floor is 3 meters high, the temperature of the airflow is at most about 0.1~0.2°C higher than the atmospheric temperature. In the lower working area, it maintains almost the atmospheric temperature (dark blue), indicating that the high-temperature air above will not be rolled into the lower working area. Indeed, the temperature of the lower working
請參閱圖6、圖7所示,其為本創作廠房散熱結構1之第二實施例,其與第一實施例不同之處在於:本創作更包括一第二平台6,第二平台6具有一第一端61及反向於第一端61之一第二端62、一第三端63及反向於第三端63之一第四端64,第二平台6之第一端61連接第一側牆22之內牆面,第二平台6之第二端62與第二側牆24的內牆面之間具有一第二間隔W2,第三
端63連接第三側牆23之內牆面,第四端64連接第四側牆25之內牆面。第二平台6位於第一平台3之上方,第二平台6與第一平台3之間具有一中間迴流區域65,且第二間隔W2之長度小於第一間隔W1之長度。第二平台6為具有高隔熱係數之材料或結構,藉以防止第二平台6上方的熱氣將第二平台6加溫,讓第二平台6之輻射熱向下影響而提高中間迴流區域65之空氣溫度,而總開窗比(Rw)=複數個進氣口4之總開口面積/第二平台6下方之第二側牆24面積。
Please refer to FIG. 6 and FIG. 7 , which are the second embodiment of the
藉此,如圖8所示,對於6m以上的挑高廠房而言,經由第二平台6之設置,除了可以透過第二間隔W2之開放空間以容納並放置較高的大型機器之外,更可以有效避免第二平台6上方之熱空氣與中間迴流區域65之空氣氣流產生交換現象,防止上方熱氣下捲至下工作區36內,而能維持下工作區36之通風散熱效果。
Thereby, as shown in FIG. 8 , for a factory building with a height of more than 6m, through the setting of the
基於上述第二實施例之結構,本創作在高9m、寬50m、長75m之挑高廠房內以下列參數進行模擬測試,並以Computational Fluid Dynamics(CFD)的電腦程式分析計算。 Based on the structure of the second embodiment mentioned above, the simulation test is carried out in the workshop with a height of 9m, a width of 50m and a length of 75m with the following parameters, and the computer program of Computational Fluid Dynamics (CFD) is used for analysis and calculation.
窗戶(進氣口)總數:80個、2列 Total number of windows (air intakes): 80, 2 columns
窗戶(複數個進氣口)上緣與下緣之間的距離:1.8m The distance between the upper edge and the lower edge of the window (multiple air intakes): 1.8m
窗戶(進氣口)入口風速:2.6m/s Window (air inlet) inlet wind speed: 2.6m/s
第一平台長度:6m Length of the first platform: 6m
風扇(排氣口)總數:55個、1列 Total number of fans (exhaust ports): 55, 1 row
單個風扇(排氣口)風量:363CMM Air volume of a single fan (exhaust port): 363CMM
單個風扇(排氣口)出口軸向風速:7.0m/s Axial wind speed at the outlet of a single fan (exhaust port): 7.0m/s
複數個風扇(排氣口)總風量:19974CMM The total air volume of multiple fans (exhaust ports): 19974CMM
經CFD電腦程式分析計算結果,速度向量、流線與溫度分佈圖係如圖9在x-z截面中所示。其中箭頭代表速度向量,沿著速度向量切線方向的黑色區線代表流線;彩色部分代表溫度的高低,屋頂指定一個溫度60℃,紅色為最高溫(屋頂內側溫度指定為60℃),依次為棕、黃、淺綠、艷綠、淺藍至深藍(深藍色的溫度為大氣的溫度,指定為29℃)。第一平台與第二平台之間形成一個扁平的回流區,但不會下垂至下工作區。下工作區的速度向量與流線顯示從左到右幾乎是平行流,沒有產生迴流區或低速區;彩色溫度分佈顯示:在下游區,離地板3公尺高以下,氣流的溫度維持幾乎大氣溫度(深藍色),顯示上方的高溫空氣不會被捲至下工作區,確實可以有效降低下工作區36之溫度。
After analyzing the calculation results with the CFD computer program, the velocity vector, streamline and temperature distribution diagram are shown in Figure 9 in the x-z section. The arrow represents the velocity vector, and the black line along the tangent direction of the velocity vector represents the streamline; the colored part represents the temperature, the roof is assigned a temperature of 60°C, and the red is the highest temperature (the temperature inside the roof is assigned as 60°C), in order Brown, yellow, light green, vivid green, light blue to dark blue (the temperature of dark blue is the temperature of the atmosphere and is designated as 29°C). A flat reflow area is formed between the first platform and the second platform, but does not sag to the lower working area. Velocity vectors and streamlines in the lower working area show almost parallel flow from left to right, no recirculation area or low velocity area is generated; color temperature distribution shows: in the downstream area, below 3 meters above the floor, the temperature of the airflow maintains almost atmospheric temperature The temperature (dark blue) shows that the high temperature air above will not be rolled into the lower working area, which can indeed effectively reduce the temperature of the lower working
因此,本創作具有以下之優點: Therefore, this creation has the following advantages:
1、本創作可以經由和緩順暢的氣流以阻擋廠房上方之熱氣下捲至下工作區,讓下工作區之溫度大幅下降,因此,不但能降低排氣風扇之轉速以節省電力之消耗、減少噪音之產生以提升作業環境品質,且能使下工作區內之作業人員在涼爽舒適的環境中作業,以提高工作效率,並避免因高溫環境所產生之職業傷害。 1. This creation can block the hot air above the workshop and roll down to the lower working area through a gentle and smooth airflow, so that the temperature of the lower working area can be greatly reduced. Therefore, it can not only reduce the speed of the exhaust fan to save power consumption and reduce noise It is produced to improve the quality of the working environment, and enables the workers in the lower working area to work in a cool and comfortable environment, so as to improve work efficiency and avoid occupational injuries caused by high temperature environments.
2、本創作可在第一間隔或/及第二間隔之開放空間內容納並放置較高的大型機器,因此,能在進行有效散熱的前提下,有效增加可利用之空間。 2. This creation can accommodate and place tall and large machines in the open space of the first compartment or/and the second compartment, therefore, the available space can be effectively increased on the premise of effective heat dissipation.
綜上所述,依上文所揭示之內容,本創作確可達到預期之目的,提供一種可有效降低機器與人員作業之工作區溫度、節省電力、減少噪音及有效利用空間之廠房散熱結構,極具產業上利用之價值,爰依法提出發明專利申請。 To sum up, according to the content disclosed above, this creation can indeed achieve the expected purpose, providing a plant heat dissipation structure that can effectively reduce the temperature of the work area where machines and personnel work, save electricity, reduce noise and effectively utilize space, It is of great value for industrial use, and it is necessary to file an application for an invention patent in accordance with the law.
1:廠房散熱結構 1: Plant heat dissipation structure
2:廠房 2: Workshop
21:屋頂 21: Roof
22:第一側牆 22: First side wall
24:第二側牆 24: Second Side Wall
26:室內空間 26: Interior Space
27:隔板 27: Clapboard
28:通風口 28: Vents
3:第一平台 3: The first platform
31:第一端 31: First End
32:第二端 32: Second End
W1:第一間隔 W1: first interval
35:上迴流區域 35: Upper reflow area
36:下工作區 36: Lower workspace
4:進氣口 4: Air intake
5:排氣口 5: exhaust port
H1:排氣中心高度 H1: exhaust center height
H2:進氣口中心高度 H2: The height of the center of the air intake
H3:進氣口頂端高度 H3: Height of the top of the air inlet
Claims (8)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110112974A TWI778572B (en) | 2021-04-09 | 2021-04-09 | Heat disspation structure for factory building (2) |
CN202210259882.8A CN115200132A (en) | 2021-04-09 | 2022-03-16 | Plant cooling structure |
CN202220577734.6U CN217715298U (en) | 2021-04-09 | 2022-03-16 | Factory building heat radiation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110112974A TWI778572B (en) | 2021-04-09 | 2021-04-09 | Heat disspation structure for factory building (2) |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI778572B true TWI778572B (en) | 2022-09-21 |
TW202240056A TW202240056A (en) | 2022-10-16 |
Family
ID=83574341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110112974A TWI778572B (en) | 2021-04-09 | 2021-04-09 | Heat disspation structure for factory building (2) |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN217715298U (en) |
TW (1) | TWI778572B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201837285A (en) * | 2017-04-12 | 2018-10-16 | 黃榮芳 | A plant cooling structure |
CN212585163U (en) * | 2020-06-12 | 2021-02-23 | 武汉日海通讯技术有限公司 | Air duct type constant-temperature machine room |
-
2021
- 2021-04-09 TW TW110112974A patent/TWI778572B/en active
-
2022
- 2022-03-16 CN CN202220577734.6U patent/CN217715298U/en active Active
- 2022-03-16 CN CN202210259882.8A patent/CN115200132A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201837285A (en) * | 2017-04-12 | 2018-10-16 | 黃榮芳 | A plant cooling structure |
CN212585163U (en) * | 2020-06-12 | 2021-02-23 | 武汉日海通讯技术有限公司 | Air duct type constant-temperature machine room |
Also Published As
Publication number | Publication date |
---|---|
CN217715298U (en) | 2022-11-01 |
TW202240056A (en) | 2022-10-16 |
CN115200132A (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI659145B (en) | Factory heat dissipation structure | |
CN104582441A (en) | Smart cabinet | |
CN204425865U (en) | Intelligent cabinet | |
TWI773240B (en) | Heat dissipation structure for factory building (3) | |
TWI778572B (en) | Heat disspation structure for factory building (2) | |
TWI755893B (en) | A ventilation and heat dissipation structure for a factory building | |
TWI780952B (en) | A ventilation and heat dissipation structure for a long-distance factory building | |
TWI780652B (en) | Heat dissipation structure for factory building (1) | |
CN207109039U (en) | A kind of circulating casting air-cooling apparatus | |
CN214370742U (en) | Plant ventilation and heat dissipation structure | |
TWI873071B (en) | A structure for improvement of ventilation and heat dissipation in a factory building | |
CN210624799U (en) | Closed cold channel of computer room | |
CN115247852B (en) | Factory space heat dissipation structure | |
CN204513581U (en) | A kind of data center supply air system | |
CN204104246U (en) | Fan cooled formula outdoor cabinet | |
CN216262618U (en) | Walk-in type exhaust cabinet | |
TWI798014B (en) | Heat dissipation structure for factory building | |
CN205909459U (en) | Air conditionerization frost cover and off -premises station defrosting apparatus | |
CN105873413B (en) | A kind of sealing space intelligent ventilation energy-saving heat sink | |
TWI814603B (en) | A factory building ventilation and diversion structure | |
CN203022194U (en) | Natural ventilator used in plant in tropical monsoon areas | |
TWI785928B (en) | A method for factory ventilation and heat dissipation | |
CN206831824U (en) | A kind of hot-blast heater | |
CN216282244U (en) | Freezer of hidden air-out | |
CN116772340A (en) | Heat radiation structure of factory building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |