[go: up one dir, main page]

TWI775121B - High electron mobility transistor - Google Patents

High electron mobility transistor Download PDF

Info

Publication number
TWI775121B
TWI775121B TW109125266A TW109125266A TWI775121B TW I775121 B TWI775121 B TW I775121B TW 109125266 A TW109125266 A TW 109125266A TW 109125266 A TW109125266 A TW 109125266A TW I775121 B TWI775121 B TW I775121B
Authority
TW
Taiwan
Prior art keywords
layer
compound semiconductor
semiconductor layer
electron mobility
high electron
Prior art date
Application number
TW109125266A
Other languages
Chinese (zh)
Other versions
TW202205668A (en
Inventor
釩達 盧
黃嘉慶
陳志諺
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109125266A priority Critical patent/TWI775121B/en
Publication of TW202205668A publication Critical patent/TW202205668A/en
Application granted granted Critical
Publication of TWI775121B publication Critical patent/TWI775121B/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)

Abstract

A high electron mobility transistor includes a channel layer, a barrier layer, a first compound semiconductor layer, and a second compound semiconductor layer. The channel layer is disposed on the substrate, and the barrier layer is disposed on the channel layer. The first compound semiconductor layer is disposed on the barrier layer. The second compound semiconductor layer is disposed between the barrier layer and the first compound semiconductor layer, where the first compound semiconductor layer and the second compound semiconductor layer include a concentration distribution of metal dopant, and the concentration distribution of metal dopant includes a first peak in the first compound semiconductor layer and a second peak in the second compound semiconductor layer.

Description

高電子遷移率電晶體High Electron Mobility Transistor

本揭露涉及半導體裝置的領域,特別是涉及一種高電子遷移率電晶體。 The present disclosure relates to the field of semiconductor devices, and in particular, to a high electron mobility transistor.

在半導體技術中,III-V族的半導體化合物可用於形成各種積體電路裝置,例如:高功率場效電晶體、高頻電晶體或高電子遷移率電晶體(high electron mobility transistor,HEMT)。HEMT是屬於具有二維電子氣(two dimensional electron gas,2-DEG)的一種電晶體,其2-DEG會鄰近於能隙不同的兩種材料之間的接合面(亦即,異質接合面)。由於HEMT並非使用摻雜區域作為電晶體的載子通道,而是使用2-DEG作為電晶體的載子通道,因此相較於習知的金氧半場效電晶體(MOSFET),HEMT具有多種吸引人的特性,例如:高電子遷移率及以高頻率傳輸信號之能力。 In semiconductor technology, group III-V semiconductor compounds can be used to form various integrated circuit devices, such as high power field effect transistors, high frequency transistors or high electron mobility transistors (HEMTs). HEMT is a transistor with two dimensional electron gas (2-DEG), and its 2-DEG will be adjacent to the junction between two materials with different energy gaps (ie, heterojunction) . Since HEMT does not use the doped region as the carrier channel of the transistor, but uses 2-DEG as the carrier channel of the transistor, compared with the conventional MOSFET, HEMT has various attractive Human characteristics such as high electron mobility and the ability to transmit signals at high frequencies.

為了使得HEMT在導通狀態(on-state)和截止狀態(off-state)間被切換,通常會對HEMT的閘極施予正電壓或負電壓。然而,對於習知的HEMT而言,由於閘極延遲效應(gate-lag),導致閾值電壓(threshold voltage,Vt)通常會隨著閘極電壓的數值大小而有所變動。舉例而言,在導通狀態和截止狀態所對應的閾值電壓偏離度(△Vt)通常會有所不同,此不利於HEMT的快速切換,因而影響了半導體裝置的效能。 In order for the HEMT to be switched between an on-state and an off-state, a positive or negative voltage is usually applied to the gate of the HEMT. However, for the conventional HEMT, the threshold voltage (Vt) usually varies with the value of the gate voltage due to the gate-lag effect. For example, the threshold voltage deviation (ΔVt) corresponding to the on-state and the off-state is usually different, which is not conducive to the fast switching of the HEMT, thus affecting the performance of the semiconductor device.

有鑑於此,有必要提出一種改良的高電子遷移率電晶體,以改善習知高電子遷移率電晶體所存在之缺失。 In view of this, it is necessary to propose an improved high electron mobility transistor to improve the shortcomings of the conventional high electron mobility transistor.

根據本揭露的一實施例,係提供一種高電子遷移率電晶體,包括通道層、阻障層、第一化合物半導體層、及第二化合物半導體層。其中,通道層設置於基底上,阻障層設置於通道層上。第一化合物半導體層設置於阻障層上。第二化合物半導體層設置於阻障層和第一化合物半導體層之間,其中第一化合物半導體層與第二化合物半導體層包括一金屬摻質的一濃度分佈,濃度分佈於第一化合物半導體層具有第一波峰,且濃度分佈於第二化合物半導體層具有第二波峰。 According to an embodiment of the present disclosure, a high electron mobility transistor is provided, including a channel layer, a barrier layer, a first compound semiconductor layer, and a second compound semiconductor layer. Wherein, the channel layer is arranged on the substrate, and the barrier layer is arranged on the channel layer. The first compound semiconductor layer is disposed on the barrier layer. The second compound semiconductor layer is disposed between the barrier layer and the first compound semiconductor layer, wherein the first compound semiconductor layer and the second compound semiconductor layer include a concentration distribution of a metal dopant, and the concentration distribution in the first compound semiconductor layer has The first wave peak, and the concentration distribution in the second compound semiconductor layer has a second wave peak.

根據本揭露的實施例,由於第二化合物半導體層會設置於第一化合物半導體層和阻障層之間,藉由在第二化合物半導體層中形成金屬摻質的濃度波峰,可以增加第二化合物半導體層的最高價帶和阻障層的最高價帶(maximum Ev)之間的能障。因此,來自於第一化合物半導體層的電洞便不容易被注入至阻障層,因而避免在阻障層中產生捕捉電荷(trapped charge),進而降低了高電子遷移率電晶體的閾值電壓偏離度,並避免了閘極延遲效應。 According to the embodiments of the present disclosure, since the second compound semiconductor layer is disposed between the first compound semiconductor layer and the barrier layer, by forming a concentration peak of the metal dopant in the second compound semiconductor layer, the second compound semiconductor layer can be increased The energy barrier between the highest valence band of the semiconductor layer and the highest valence band (maximum Ev) of the barrier layer. Therefore, holes from the first compound semiconductor layer are not easily injected into the barrier layer, thus avoiding trapped charges in the barrier layer, thereby reducing the threshold voltage deviation of the high electron mobility transistor degree, and avoid the gate delay effect.

100-1:高電子遷移率電晶體 100-1: High Electron Mobility Transistor

100-2:高電子遷移率電晶體 100-2: High Electron Mobility Transistor

100-3:高電子遷移率電晶體 100-3: High Electron Mobility Transistor

100-4:高電子遷移率電晶體 100-4: High Electron Mobility Transistor

100-5:高電子遷移率電晶體 100-5: High Electron Mobility Transistor

102:基底 102: Substrate

104:氮化物層 104: Nitride layer

106:第一氮化物層 106: first nitride layer

108:第二氮化物層 108: Second nitride layer

110:超晶格層 110: Superlattice layer

112:第一超晶格層 112: first superlattice layer

114:第二超晶格層 114: Second superlattice layer

116:高電阻層 116: High resistance layer

118:三五族通道層 118: Three or five family channel layer

120:三五族阻障層 120: Three-five barrier layer

122:第二化合物半導體層 122: the second compound semiconductor layer

124:第一化合物半導體層 124: the first compound semiconductor layer

126:結晶矽化合物半導體層 126: Crystalline silicon compound semiconductor layer

128:P型三五族化合物半導體層 128: P-type III-V compound semiconductor layer

130:二維電子氣區域 130: Two-dimensional electron gas region

132:二維電洞氣區域 132: Two-dimensional hole-gas region

134:P型三五族阻障層 134: P-type III-V barrier layer

210:曲線 210: Curves

212:曲線 212: Curves

220:曲線 220: Curves

222:曲線 222: Curves

△V1:第一閾值電壓偏離度 △V 1 : Deviation of the first threshold voltage

△V2:第二閾值電壓偏離度 △V 2 : Deviation of the second threshold voltage

Vg1:第一閘極電壓 V g1 : the first gate voltage

Vg2:第二閘極電壓 V g2 : the second gate voltage

D:汲極 D: drain

G:閘極 G: gate

P1:波峰 P1: crest

P2:波峰 P2: Crest

S:源極 S: source

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵 的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, reference is made to both the drawings and their detailed description while reading the present disclosure. The specific embodiments of the present disclosure will be explained in detail through the specific embodiments herein and the corresponding drawings will be referred to, and the working principles of the specific embodiments of the present disclosure will be described. Furthermore, for clarity, the various features in the drawings may not be drawn to scale, so some of the may be intentionally enlarged or reduced in size.

第1圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層。 FIG. 1 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer.

第2圖繪示了本揭露半導體堆疊層中的摻質濃度和深度間的關係圖。 FIG. 2 is a graph showing the relationship between dopant concentration and depth in the semiconductor stack of the present disclosure.

第3圖繪示了本揭露實施例1、2和比較例1的閾值電壓偏離值和閘極電壓間的關係圖。 FIG. 3 is a graph showing the relationship between the threshold voltage deviation value and the gate voltage of Embodiments 1 and 2 and Comparative Example 1 of the present disclosure.

第4圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括矽蓋層。 FIG. 4 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the disclosure, wherein the semiconductor stack at least includes a silicon capping layer.

第5圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層和P型三五族化合物半導體層。 5 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer and a P-type IIIV compound semiconductor layer.

第6圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層和P型三五族阻障層。 6 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer and a P-type IIIV barrier layer.

第7圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層、P型三五族阻障層、和P型三五族化合物半導體層。 7 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer, a P-type III-V barrier layer, and a P-type III barrier layer. Group V compound semiconductor layer.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵 與第二特徵並不直接接觸。 The present disclosure provides several different embodiments for implementing different features of the present disclosure. For simplicity of illustration, the present disclosure also describes examples of specific components and arrangements. These examples are provided for illustrative purposes only and are not intended to be limiting in any way. For example, the following description of "the first feature is formed on or over the second feature" may mean "the first feature is in direct contact with the second feature" or "the first feature is in direct contact with the second feature". There are other features between features", resulting in the first feature There is no direct contact with the second feature.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the space-related narrative words mentioned in this disclosure, for example: "below", "low", "below", "above", "above", "below", "top" ”, “bottom” and similar words, for ease of description, are used to describe the relative relationship of one element or feature to another (or more) elements or features in the drawings. In addition to the pendulum shown in the drawings, these space-related terms are also used to describe the possible pendulum orientations of the semiconductor device during use and operation. With the different swing directions of the semiconductor device (rotated by 90 degrees or other orientations), the space-related descriptions used to describe the swing directions should also be interpreted in a similar manner.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that such elements, components, regions, layers, and/or blocks should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and do not by themselves imply or represent that element The presence of any preceding ordinal numbers does not imply the order in which an element is arranged relative to another element, or the order of the method of manufacture. Thus, a first element, component, region, layer or block discussed below could be termed a second element, component, region, layer or block without departing from the scope of the specific embodiments of the present disclosure Of.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The terms "about" or "substantially" referred to in this disclosure generally mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range, or Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, the meaning of "about" or "substantially" can still be implied without the specific description of "about" or "substantially".

在本揭露中,「三五族半導體(group III-V semiconductor)」係指包含至少一III族元素與至少一V族元素的化合物半導體。其中,III族元素可以是硼(B)、鋁(Al)、鎵(Ga)或銦(In),而V族元素可以是氮(N)、磷(P)、砷(As)或銻(Sb)。進一 步而言,「三五族半導體」可以包括:氮化鎵(GaN)、磷化銦(InP)、砷化鋁(AlAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)、氮化銦鎵(InGaN)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、其類似物或上述化合物的組合,但不限於此。此外,端視需求,三五族半導體內亦可包括摻質,而為具有特定導電型的三五族半導體,例如N型或P型III-V族半導體。 In the present disclosure, "group III-V semiconductor" refers to a compound semiconductor including at least one group III element and at least one group V element. Among them, the group III element can be boron (B), aluminum (Al), gallium (Ga) or indium (In), and the group V element can be nitrogen (N), phosphorus (P), arsenic (As) or antimony ( Sb). further In further terms, "group III and V semiconductors" may include: gallium nitride (GaN), indium phosphide (InP), aluminum arsenide (AlAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), nitrogen Indium Aluminum Gallium (InAlGaN), Indium Gallium Nitride (InGaN), Aluminum Nitride (AlN), Gallium Indium Phosphide (GaInP), Aluminum Gallium Arsenide (AlGaAs), Aluminum Indium Arsenide (InAlAs), Gallium Arsenide Indium (InGaAs), aluminum nitride (AlN), gallium indium phosphide (GaInP), aluminum gallium arsenide (AlGaAs), aluminum indium arsenide (InAlAs), indium gallium arsenide (InGaAs), analogs thereof, or compounds of the foregoing combination, but not limited to this. In addition, depending on the requirements, dopants may also be included in the III-V semiconductor, which is a III-V semiconductor with a specific conductivity type, such as an N-type or P-type III-V semiconductor.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention of the present disclosure is described below with reference to specific embodiments, the inventive principles of the present disclosure can also be applied to other embodiments. Furthermore, in order not to obscure the spirit of the present invention, certain details will be omitted, which are within the knowledge of those having ordinary skill in the art.

本揭露係關於一種高壓半導體裝置或高電子遷移率電晶體(HEMT),例如是可以作為電壓轉換器應用之功率切換電晶體或電信高功率應用,本發明並不以此為限。相較於矽功率電晶體,由於III-V HEMT具有較寬的能帶間隙,因此具有低導通電阻(on-state resistance,RON)與低切換損失之特徵。 The present disclosure relates to a high voltage semiconductor device or a high electron mobility transistor (HEMT), such as a power switching transistor that can be used as a voltage converter or a telecommunication high power application, but the present invention is not limited thereto. Compared with silicon power transistors, III-V HEMTs have the characteristics of low on-state resistance (R ON ) and low switching losses due to their wider energy bandgap.

第1圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括P型三五族中間層。如第1圖所示,高電子遷移率電晶體100-1,包括基底102、半導體疊層(例如至少包括三五族通道層118、三五族阻障層120、第二化合物半導體層122、第一化合物半導體層124)、源極S、汲極D以及閘極G。基底102和半導體疊層間可以選擇性的另設置其他層,例如氮化物層104、超晶格層110、及高電阻層116。 FIG. 1 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a P-type III-V intermediate layer. As shown in FIG. 1 , the high electron mobility transistor 100 - 1 includes a substrate 102 , a semiconductor stack (for example, at least a group 35 channel layer 118 , a group 35 barrier layer 120 , a second compound semiconductor layer 122 , The first compound semiconductor layer 124), the source electrode S, the drain electrode D, and the gate electrode G. Other layers such as the nitride layer 104 , the superlattice layer 110 , and the high resistance layer 116 may optionally be disposed between the substrate 102 and the semiconductor stack.

根據本揭露的一實施例,基底102可以是如碳化矽(SiC)、氧化鋁(Al2O3)、藍寶石(sapphire)、氮化鋁等陶瓷基底。於一實施例中,基底102表面可設置接合層,其中接合層材料例如包括矽。根據本揭露一實施例中,基底102更 包含一核心層以及包覆住核心層的單一或多層的絕緣材料層以及/或其他合適的材料層,核心層可以是氮化鋁或氧化鋁,絕緣材料層可以是氧化物、氮化物、氮氧化物、或其他合適的絕緣材料。 According to an embodiment of the present disclosure, the substrate 102 may be a ceramic substrate such as silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), sapphire, or aluminum nitride. In one embodiment, a bonding layer may be disposed on the surface of the substrate 102 , wherein the bonding layer material includes silicon, for example. According to an embodiment of the present disclosure, the substrate 102 further includes a core layer and a single or multiple layers of insulating material and/or other suitable material layers covering the core layer. The core layer may be aluminum nitride or aluminum oxide. The material layers may be oxides, nitrides, oxynitrides, or other suitable insulating materials.

氮化物層104可以選擇性地被設置於基底102上,其具有較少的晶格缺陷,因此可以增進設置於氮化物層104上的半導體堆疊層的磊晶品質。其中,氮化物層104可以包括一氮化物堆疊層,例如包括第一氮化物層106及第二氮化物層108。根據本揭露一實施例,第一氮化物層106可例如是低溫氮化鋁層(LT-AlN),此低溫氮化鋁層可以經由有機金屬化學氣相沉積(metal-organic CVD,MOCVD),在800℃-1100℃的環境溫度下而形成;第二氮化物層108可例如是高溫氮化鋁層(HT-AlN),此高溫氮化鋁層可以經由有機金屬化學氣相沉積,在1100℃-1400℃的環境溫度下而形成,但不限定於此。 The nitride layer 104 can be selectively disposed on the substrate 102 , which has less lattice defects, and thus can improve the epitaxial quality of the semiconductor stacked layer disposed on the nitride layer 104 . The nitride layer 104 may include a nitride stack layer, such as a first nitride layer 106 and a second nitride layer 108 . According to an embodiment of the present disclosure, the first nitride layer 106 may be, for example, a low temperature aluminum nitride layer (LT-AlN), and the low temperature aluminum nitride layer may be deposited by metal-organic chemical vapor deposition (MOCVD), Formed at an ambient temperature of 800°C-1100°C; the second nitride layer 108 can be, for example, a high temperature aluminum nitride layer (HT-AlN), which can be deposited by organometallic chemical vapor deposition at 1100°C. It is formed under the ambient temperature of ℃-1400℃, but it is not limited to this.

超晶格層(superlattice layer,SL)110可以選擇性地被設置於基底102上,例如被設置於氮化物層104上。超晶格層110可用以降低基底102和設置於超晶格層110上的半導體層之間的晶格不匹配(lattice mismatch)的程度,以及降低晶格不匹配所產生之應力。根據本揭露一實施例,超晶格層110可以是一超晶格堆疊層,例如包括第一超晶格層112及第二超晶格層114。根據不同需求,第一超晶格層112或第二超晶格層114可以各自是由至少兩種III-V化合物半導體所構成的周期性交替層結構,例如由AlN薄層/GaN薄層交替堆疊而成的結構,或是各自是組成比例漸變的III-V化合物半導體,例如是鋁組成比例由下至上漸減的氮化鋁鎵(AlxGa1-xN,0.15≦x≦0.9),但不限定於此。 A superlattice layer (SL) 110 may be selectively disposed on the substrate 102 , such as on the nitride layer 104 . The superlattice layer 110 can be used to reduce the degree of lattice mismatch between the substrate 102 and the semiconductor layer disposed on the superlattice layer 110, and to reduce the stress caused by the lattice mismatch. According to an embodiment of the present disclosure, the superlattice layer 110 may be a superlattice stacked layer, for example, including a first superlattice layer 112 and a second superlattice layer 114 . According to different requirements, the first superlattice layer 112 or the second superlattice layer 114 can each be a periodically alternating layer structure composed of at least two kinds of III-V compound semiconductors, such as AlN thin layers/GaN thin layers alternating The stacked structure, or each is a III-V compound semiconductor with a graded composition ratio, such as aluminum gallium nitride (Al x Ga 1-x N, 0.15≦x≦0.9) whose aluminum composition ratio decreases from bottom to top, But not limited to this.

高電阻層116可以選擇性地被設置於基底102上,例如是被設置於超晶格層110上。高電阻層116相較於其他的層具有較高的電阻率,因此可避免設置於高電阻層116上的半導體層和基底102間產生漏電流。根據本揭露一實施例,高電阻層116可以是具有摻質的III-V半導體層,例如碳摻雜氮化鎵(c-GaN),但不限 定於此。 The high resistance layer 116 may be selectively disposed on the substrate 102 , such as on the superlattice layer 110 . Compared with other layers, the high-resistance layer 116 has higher resistivity, so that leakage current can be avoided between the semiconductor layer disposed on the high-resistance layer 116 and the substrate 102 . According to an embodiment of the present disclosure, the high resistance layer 116 may be a doped III-V semiconductor layer, such as carbon-doped gallium nitride (c-GaN), but not limited to Set here.

通道層(即以下內文所述三五族通道層)118可以被設置於基底102上,例如是被設置於高電阻層116上。三五族通道層118可包含一層或多層III-V族半導體層,且III-V族半導體層的成份可以是GaN、AlGaN、InGaN或InAlGaN,但不限定於此。根據本揭露的一實施例,三五族通道層118係為未摻雜的III-V族半導體,例如是未摻雜的GaN(undoped-GaN,u-GaN)。根據本揭露的其他實施例,三五族通道層118亦可以是被摻雜的一層或多層III-V族半導體層,例如是P型的III-V族半導體層。對P型的III-V族半導體層而言,其摻質可以是Cd、Fe、Mg或Zn,但不限定於此。 A channel layer (ie, the III-V channel layer described below) 118 may be disposed on the substrate 102 , for example, on the high-resistance layer 116 . The III-V group channel layer 118 may include one or more III-V group semiconductor layers, and the composition of the III-V group semiconductor layer may be GaN, AlGaN, InGaN or InAlGaN, but is not limited thereto. According to an embodiment of the present disclosure, the III-V channel layer 118 is an undoped III-V semiconductor, such as undoped GaN (undoped-GaN, u-GaN). According to other embodiments of the present disclosure, the III-V channel layer 118 may also be one or more doped III-V semiconductor layers, such as P-type III-V semiconductor layers. For the P-type III-V semiconductor layer, the dopant may be Cd, Fe, Mg or Zn, but is not limited thereto.

阻障層(即以下內文所述三五族阻障層)120可被設置於三五族通道層118上。三五族阻障層120可包含一層或多層III-V族半導體層,且其組成會不同於III-V族主體層104的III-V族半導體。舉例來說,三五族阻障層120可包含AlN、AlyGa(1-y)N(0<y<1)或其組合。根據一實施例,三五族阻障層120可以是N型III-V族半導體,例如是本質上為N型的AlGaN層,但不限定於此。 A barrier layer (ie, a Group 35 barrier layer described below) 120 may be disposed on the Group 35 channel layer 118 . The III-V barrier layer 120 may include one or more III-V semiconductor layers, and its composition may be different from that of the III-V body layer 104 . For example, the IIIV barrier layer 120 may include AlN, AlyGa (1-y) N (0<y<1), or a combination thereof. According to an embodiment, the III-V barrier layer 120 may be an N-type III-V group semiconductor, such as an essentially N-type AlGaN layer, but is not limited thereto.

由於三五族通道層118和三五族阻障層120間具有不連續的能隙,藉由將III-V族通道層118和III-V族阻障層120互相堆疊設置,電子會因壓電效應(piezoelectric effect)而聚集於III-V族通道層118中,且鄰近於三五族通道層118和三五族阻障層120間的異質接面。此聚集的電子可構成具有高載子遷移率的薄層,亦即二維電子氣(2-DEG)區域130。 Since there is a discontinuous energy gap between the group III-V channel layer 118 and the group III-V barrier layer 120, by stacking the group III-V channel layer 118 and the group III-V barrier layer 120 on each other, electrons will The piezoelectric effect is concentrated in the III-V channel layer 118 and is adjacent to the heterojunction between the III-V channel layer 118 and the III-V barrier layer 120 . The collected electrons can form a thin layer with high carrier mobility, ie, a two-dimensional electron gas (2-DEG) region 130 .

第一化合物半導體層124可被設置於三五族阻障層120上,以空乏二維電子氣(2-DEG)區域130,達成半導體裝置的常關(normally-off)狀態。第一化合物半導體層124可以是P型III-V族半導體,例如是P型的GaN層,但不限定於此。此外,第一化合物半導體層124的能隙可小於三五族阻障層120的能隙,使得第一化合物半導體層124和三五族阻障層120間可具有不連續的能隙。 The first compound semiconductor layer 124 may be disposed on the III-V barrier layer 120 to deplete the two-dimensional electron gas (2-DEG) region 130 to achieve a normally-off state of the semiconductor device. The first compound semiconductor layer 124 may be a P-type III-V semiconductor, such as a P-type GaN layer, but is not limited thereto. In addition, the energy gap of the first compound semiconductor layer 124 may be smaller than that of the IIIV barrier layer 120 , so that there may be discontinuous energy gaps between the first compound semiconductor layer 124 and the IIIV barrier layer 120 .

第二化合物半導體層122(例如是P型三五族中間層)可以被設置於三五族阻障層120和第一化合物半導體層124之間,且第二化合物半導體層122的厚度會薄於三五族阻障層120和第一化合物半導體層124的厚度。舉例來說,第二化合物半導體層122的厚度可以是20nm,而三五族阻障層120和第一化合物半導體層124的厚度可以分別是50nm和35nm,但不限定於此。根據本揭露的一實施例,第二化合物半導體層122是P型III-V族半導體,例如是P型的GaN層,且摻質可以是選自Mg、Cd或Zn的金屬摻質。根據本揭露的一實施例,第二化合物半導體層122的摻質波峰濃度範圍為9E18(cm-3)至2E19(cm-3),且低於第一化合物半導體層124的摻質波峰濃度範圍(例如1E19(cm-3)至1E20(cm-3))。 The second compound semiconductor layer 122 (eg, a P-type III-V intermediate layer) may be disposed between the III-V barrier layer 120 and the first compound semiconductor layer 124 , and the thickness of the second compound semiconductor layer 122 may be thinner than Thickness of the group III-V barrier layer 120 and the first compound semiconductor layer 124 . For example, the thickness of the second compound semiconductor layer 122 may be 20 nm, and the thicknesses of the IIIV barrier layer 120 and the first compound semiconductor layer 124 may be 50 nm and 35 nm, respectively, but not limited thereto. According to an embodiment of the present disclosure, the second compound semiconductor layer 122 is a P-type III-V semiconductor, such as a P-type GaN layer, and the dopant can be a metal dopant selected from Mg, Cd or Zn. According to an embodiment of the present disclosure, the dopant peak concentration range of the second compound semiconductor layer 122 is 9E18 (cm −3 ) to 2E19 (cm −3 ), and is lower than the dopant peak concentration range of the first compound semiconductor layer 124 (eg 1E19 (cm -3 ) to 1E20 (cm -3 )).

由於第二化合物半導體層122和三五族阻障層120間具有不連續的能隙,藉由將第二化合物半導體層122和III-V族阻障層120互相堆疊設置,電洞會因壓電效應而聚集於第二化合物半導體層122中,且鄰近於第二化合物半導體層122和三五族阻障層120間的異質接面。此聚集的電洞可構成具有高載子遷移率的薄層,亦即二維電洞氣(2-DHG)區域132。 Since there is a discontinuous energy gap between the second compound semiconductor layer 122 and the III-V group barrier layer 120 , by stacking the second compound semiconductor layer 122 and the III-V group barrier layer 120 on each other, holes will be reduced due to pressure. The electrical effect is concentrated in the second compound semiconductor layer 122 and is adjacent to the heterojunction between the second compound semiconductor layer 122 and the IIIV barrier layer 120 . The aggregated holes can form a thin layer with high carrier mobility, ie, two-dimensional hole gas (2-DHG) region 132 .

源極S和汲極D可以分別電連接至三五族通道層118,而閘極G可以電連接至第一化合物半導體層124。其中,源極S和汲極D可以和三五族通道層118構成歐姆接觸,而閘極G可以和第一化合物半導體層124構成蕭特基接觸,但不限定於此。 The source electrode S and the drain electrode D may be electrically connected to the IIIV channel layer 118 , respectively, and the gate electrode G may be electrically connected to the first compound semiconductor layer 124 . The source electrode S and the drain electrode D may form ohmic contact with the IIIV channel layer 118, and the gate electrode G may form Schottky contact with the first compound semiconductor layer 124, but not limited thereto.

為了分析半導體疊層之中的濃度分佈,可藉由二次離子質譜儀(secondary ion mass spectroscopy,SIMS)以分析第1圖所示的半導體疊層的金屬成份濃度和深度間的關係,量測的結果顯示於第2圖。第2圖是根據本揭露一實施例半導體堆疊層中的摻質濃度和深度間的關係圖。如第2圖所示,曲線210和曲線212分別是本揭露一實施例的半導體堆疊層中的Mg、Al對應於不同深度的濃度分佈,曲線220和曲線222分別是比較例1半導體堆疊層(不具有第二化合物半導體層 122)中的Mg、Al對應於不同深度的濃度分佈。其中,第2圖中深度0-70nm大致對應第1圖的第一化合物半導體層124、深度70-85nm大致對應第1圖的第二化合物半導體層122、深度85-120nm大致對應第1圖的三五族阻障層120、深度120-140nm大致對應第1圖的三五族通道層118。就曲線210而言,在深度70-85nm區間內(即對應第二化合物半導體層)具有濃度波峰P2,此濃度波峰P2的半高寬(full width half maximum,FWHM)大致為5nm至15nm,且最高濃度(或稱波峰濃度)大致約為至1.5E19 cm-3;而在深度0-70nm區間內(即對應第一化合物半導體層)具有濃度波峰P1,該區間內的最高濃度大致為5E19 cm-3(對應深度2-5nm區間),且最低濃度大致7E18 cm-3(對應深度70nm)。相較之下,曲線220的Mg濃度在深度40-100nm區間並不存在任何濃度波峰。需注意的是,第2圖所示的金屬摻質的濃度分佈較佳係以二次離子質譜儀或解析度更高的偵測裝置進行量側。若以解析度較差的偵測裝置進行量側,則可能無法量測到第二化合物半導體層的濃度波峰。 In order to analyze the concentration distribution in the semiconductor stack, secondary ion mass spectroscopy (SIMS) can be used to analyze the relationship between the concentration of metal components and the depth of the semiconductor stack as shown in Figure 1. The results are shown in Figure 2. FIG. 2 is a graph showing the relationship between dopant concentration and depth in a semiconductor stacked layer according to an embodiment of the present disclosure. As shown in FIG. 2, the curve 210 and the curve 212 are the concentration distributions of Mg and Al corresponding to different depths in the semiconductor stacked layer of an embodiment of the present disclosure, and the curve 220 and the curve 222 are respectively the semiconductor stacked layer of Comparative Example 1 ( Mg, Al in the second compound semiconductor layer 122) without the second compound semiconductor layer corresponds to the concentration distribution of different depths. Among them, the depth of 0-70 nm in Fig. 2 roughly corresponds to the first compound semiconductor layer 124 in Fig. 1, the depth of 70-85 nm roughly corresponds to the second compound semiconductor layer 122 in Fig. 1, and the depth of 85-120 nm roughly corresponds to the The group 35 barrier layer 120 with a depth of 120-140 nm roughly corresponds to the group 35 channel layer 118 in FIG. 1 . As far as the curve 210 is concerned, there is a concentration peak P2 in the depth range of 70-85 nm (that is, corresponding to the second compound semiconductor layer), and the full width half maximum (FWHM) of the concentration peak P2 is approximately 5 nm to 15 nm, and The highest concentration (or peak concentration) is approximately up to 1.5E19 cm -3 ; and in the depth range of 0-70 nm (that is, corresponding to the first compound semiconductor layer), there is a concentration peak P1, and the highest concentration in this interval is approximately 5E19 cm -3 (corresponding to a depth of 2-5 nm interval), and the lowest concentration is approximately 7E18 cm -3 (corresponding to a depth of 70 nm). In contrast, the Mg concentration of the curve 220 does not have any concentration peak in the depth range of 40-100 nm. It should be noted that the concentration distribution of the metal dopant shown in FIG. 2 is preferably measured by a secondary ion mass spectrometer or a detection device with a higher resolution. If the measurement is performed by a detection device with poor resolution, the concentration peak of the second compound semiconductor layer may not be measured.

為了判別高電子遷移率電晶體中第二化合物半導體層對於閘極延遲效應的影響,可以進一步分析在不同閘極電壓(gate stress voltage)下的閾值電壓偏離度,量測的結果顯示於第3圖。第3圖繪示了本揭露實施例1、2和比較例1、2的閾值電壓偏離值和閘極電壓間的關係圖。請同時參照第1圖、第3圖、及第4圖。其中,第3圖中實施例1的結構類似第1圖所示的結構;第3圖中實施例2的結構類似第4圖所示的結構,第4圖所示的結構和第1圖的主要差異在於半導體疊層中不包括第二化合物半導體層122,但包括設置於第一化合物半導體層124上的結晶矽化合物半導體層126;第3圖中比較例1的結構則是半導體疊層中不包括任何第二化合物半導體層122。 In order to determine the influence of the second compound semiconductor layer on the gate delay effect in high electron mobility transistors, the threshold voltage deviation under different gate stress voltages can be further analyzed. The measurement results are shown in Section 3 picture. FIG. 3 is a graph showing the relationship between the threshold voltage deviation value and the gate voltage of Embodiments 1 and 2 and Comparative Examples 1 and 2 of the present disclosure. Please refer to Figure 1, Figure 3, and Figure 4 at the same time. The structure of Embodiment 1 in Figure 3 is similar to the structure shown in Figure 1; the structure of Embodiment 2 in Figure 3 is similar to the structure shown in Figure 4. The main difference is that the semiconductor stack does not include the second compound semiconductor layer 122, but includes a crystalline silicon compound semiconductor layer 126 disposed on the first compound semiconductor layer 124; the structure of Comparative Example 1 in FIG. 3 is in the semiconductor stack Any second compound semiconductor layer 122 is not included.

如第3圖所示,當閘極電壓分別為第一閘極電壓Vg1和第二閘極電壓Vg1時,例如分別對應至-6V和6V時,高電子遷移率電晶體可以分別對應至截止狀態和導通狀態。對於實施例1而言,當閘極電壓分別為第一閘極電壓Vg1和第二閘 極電壓Vg1時,其對應的閾值電壓偏離值大致相等,而位於第一閾值電壓偏離值△V1和第二閾值電壓偏離值△V2之間,表示實施例1的高電子遷移率電晶體不具有明顯的閘極延遲效應。對於實施例2而言,當閘極電壓為第二閘極電壓Vg2時,其對應的閾值電壓偏離值會略低於第一閾值電壓偏離值△V1,而非位於第一閾值電壓偏離值△V1和第二閾值電壓偏離值△V2之間,表示實施例2的高電子遷移率電晶體在導通狀態時具有閘極延遲效應。相較之下,對於比較例1而言,當閘極電壓為第一閘極電壓Vg1時,其對應的閾值電壓偏離值遠大於第一閾值電壓偏離值△V1。因此,比較例1的閘極延遲效應較實施例1、2的閘極延遲效應顯著。 As shown in FIG. 3 , when the gate voltages are the first gate voltage V g1 and the second gate voltage V g1 respectively, for example, when they correspond to -6V and 6V, respectively, the high electron mobility transistor can correspond to OFF state and ON state. For Embodiment 1, when the gate voltages are the first gate voltage V g1 and the second gate voltage V g1 respectively, the corresponding threshold voltage deviation values are approximately equal, and the first threshold voltage deviation value ΔV The difference between 1 and the second threshold voltage deviation value ΔV 2 indicates that the high electron mobility transistor of Example 1 does not have a significant gate delay effect. For the second embodiment, when the gate voltage is the second gate voltage V g2 , the corresponding threshold voltage deviation value is slightly lower than the first threshold voltage deviation value ΔV 1 , rather than at the first threshold voltage deviation value The value between the value ΔV 1 and the second threshold voltage deviation value ΔV 2 indicates that the high electron mobility transistor of Example 2 has a gate delay effect in the on-state. In contrast, for Comparative Example 1, when the gate voltage is the first gate voltage V g1 , the corresponding threshold voltage deviation value is much larger than the first threshold voltage deviation value ΔV 1 . Therefore, the gate delay effect of Comparative Example 1 is more significant than that of Examples 1 and 2.

本技術領域中具有通常知識者應可輕易了解,為能滿足實際產品需求的前提下,本發明的高電子遷移率電晶體亦可能有其它態樣,而不限於前述。下文將進一步針對高電子遷移率電晶體的其他實施例或變化型進行說明。且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 Those with ordinary knowledge in the technical field should easily understand that the high electron mobility transistor of the present invention may also have other aspects under the premise of meeting the requirements of actual products, which is not limited to the above. Further embodiments or variations of high electron mobility transistors are described further below. In order to simplify the description, the following description mainly focuses on the differences of the embodiments, and does not repeat the same points. Additionally, various embodiments in the present disclosure may use repeated reference symbols and/or textual notation. These repeated reference signs and notations are used for brevity and clarity of description, rather than to indicate associations between different embodiments and/or configurations.

第4圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括矽化合物半導體層。如第4圖所示,第4圖所示的結構100-2類似第1圖所示的結構100-1,主要差異在於第4圖的三五族阻障層120和第一化合物半導體層124間不包括第二化合物半導體層122,但化合物半導體層會被設置於第一化合物半導體層124上。根據本揭露一實施例,化合物半導體層可以是結晶矽化合物半導體層126。由於結晶矽化合物半導體層126和第一化合物半導體層124間的能隙不連續,因此可以讓電洞更容易自閘極傳遞至第一化合物半導體層124。 4 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a silicon compound semiconductor layer. As shown in FIG. 4, the structure 100-2 shown in FIG. 4 is similar to the structure 100-1 shown in FIG. 1, and the main difference lies in the group III-V barrier layer 120 and the first compound semiconductor layer 124 in FIG. 4 The second compound semiconductor layer 122 is not included, but the compound semiconductor layer is disposed on the first compound semiconductor layer 124 . According to an embodiment of the present disclosure, the compound semiconductor layer may be the crystalline silicon compound semiconductor layer 126 . Since the energy gap between the crystalline silicon compound semiconductor layer 126 and the first compound semiconductor layer 124 is discontinuous, holes can be more easily transferred from the gate to the first compound semiconductor layer 124 .

第5圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆 疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層和P型三五族化合物半導體層。如第5圖所示,第5圖所示的結構100-3類似第1圖所示的結構100-1,主要差異在於第5圖的三五族阻障層120和第一化合物半導體層124間除了包括第二化合物半導體層122之外,還包括設置於第一化合物半導體層124上的半導體蓋層,例如P型III-V族化合物半導體層128。根據本揭露一實施例,P型三五族化合物半導體層128可以是高摻質濃度的P+型GaN,其可用於促進電洞的注入。其中,P型三五族化合物半導體層128和第一化合物半導體層124可包括相同的金屬摻質,例如Mg,且P型三五族化合物半導體層128的摻雜濃度高於第一化合物半導體層124的摻雜濃度。 5 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer and a P-type IIIV compound semiconductor layer. As shown in FIG. 5, the structure 100-3 shown in FIG. 5 is similar to the structure 100-1 shown in FIG. 1, and the main difference lies in the group III-V barrier layer 120 and the first compound semiconductor layer 124 in FIG. 5 In addition to the second compound semiconductor layer 122 , the space also includes a semiconductor capping layer disposed on the first compound semiconductor layer 124 , such as a P-type III-V group compound semiconductor layer 128 . According to an embodiment of the present disclosure, the P-type IIIV compound semiconductor layer 128 may be P + -type GaN with a high dopant concentration, which may be used to facilitate the injection of holes. Wherein, the P-type IIIV compound semiconductor layer 128 and the first compound semiconductor layer 124 may include the same metal dopant, such as Mg, and the doping concentration of the P-type IIIV compound semiconductor layer 128 is higher than that of the first compound semiconductor layer 124 doping concentration.

第6圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層和P型三五族阻障層。如第6圖所示,第6圖所示的結構100-4類似第1圖所示的結構100-1,主要差異在於第6圖的III-V族阻障層120和第一化合物半導體層124間除了包括第二化合物半導體層122之外,還包括設置於三五族阻障層120和第二化合物半導體層122之間的P型三五族阻障層134。根據本揭露一實施例,P型三五族阻障層134可以是低摻質濃度的P-型AlGaN,其可以用於增加閾值電壓(Vth),降低電子被III-V族阻障層120捕捉的程度。其中,P型三五族阻障層134和第二化合物半導體層122可包括相同的金屬摻質,例如Mg,且P型III-V族阻障層134的摻雜濃度低於第二化合物半導體層122的摻雜濃度。 6 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer and a P-type IIIV barrier layer. As shown in FIG. 6, the structure 100-4 shown in FIG. 6 is similar to the structure 100-1 shown in FIG. 1, and the main difference lies in the III-V barrier layer 120 and the first compound semiconductor layer in FIG. 6 In addition to the second compound semiconductor layer 122 , the space 124 also includes a P-type III-V group barrier layer 134 disposed between the III-V group barrier layer 120 and the second compound semiconductor layer 122 . According to an embodiment of the present disclosure, the P-type III-V barrier layer 134 may be P - type AlGaN with a low dopant concentration, which may be used to increase the threshold voltage (Vth) and reduce electron penetration by the III-V group barrier layer 120 degree of capture. Wherein, the P-type III-V group barrier layer 134 and the second compound semiconductor layer 122 may include the same metal dopant, such as Mg, and the doping concentration of the P-type III-V group barrier layer 134 is lower than that of the second compound semiconductor layer Doping concentration of layer 122 .

第7圖是根據本揭露一實施例所繪示的高壓半導體裝置的半導體堆疊層的剖面示意圖,其中半導體堆疊層至少包括第二化合物半導體層、P型三五族阻障層、和P型三五族化合物半導體層。如第7圖所示,第7圖所示的結構100-5類似第1圖所示的結構100-1,主要差異在於第7圖的三五族阻障層120和第一化合物半導體層124間除了包括第二化合物半導體層122之外,還包括設置於第一化合 物半導體層124上的P型三五族化合物半導體層128,以及包括設置於三五族阻障層120和第二化合物半導體層122之間的P型三五族阻障層134。 7 is a schematic cross-sectional view of a semiconductor stack of a high-voltage semiconductor device according to an embodiment of the present disclosure, wherein the semiconductor stack at least includes a second compound semiconductor layer, a P-type III-V barrier layer, and a P-type III barrier layer. Group V compound semiconductor layer. As shown in FIG. 7, the structure 100-5 shown in FIG. 7 is similar to the structure 100-1 shown in FIG. 1, and the main difference lies in the group III-V barrier layer 120 and the first compound semiconductor layer 124 in FIG. 7 In addition to the second compound semiconductor layer 122, the The P-type III-V compound semiconductor layer 128 on the material semiconductor layer 124 includes a P-type III-V barrier layer 134 disposed between the III-V barrier layer 120 and the second compound semiconductor layer 122 .

根據上述實施例,由於第二化合物半導體層會被設置於第一化合物半導體層和三五族阻障層之間,藉由在第二化合物半導體層中形成金屬摻質的濃度波峰,可以增加第二化合物半導體層的最高價帶和阻障層的最高價帶之間的能障。因此,來自於第一化合物半導體層的電洞便不容易被注入至阻障層,因而避免在三五族阻障層中產生捕捉電荷(trapped charge),進而降低了高電子遷移率電晶體的閾值電壓偏離度。因此,可避免閘極延遲效應,而有利於高電子遷移率電晶體的快速切換。 According to the above-mentioned embodiment, since the second compound semiconductor layer is disposed between the first compound semiconductor layer and the Group III-V barrier layer, by forming the concentration peak of the metal dopant in the second compound semiconductor layer, the first compound semiconductor layer can be increased. The energy barrier between the highest valence band of the two compound semiconductor layer and the highest valence band of the barrier layer. Therefore, the holes from the first compound semiconductor layer are not easily injected into the barrier layer, thereby avoiding the generation of trapped charges in the III-V barrier layer, thereby reducing the high electron mobility transistor's performance. Threshold voltage deviation. Therefore, the gate delay effect can be avoided, and the fast switching of the high electron mobility transistor is facilitated.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100-1:高電子遷移率電晶體100-1: High Electron Mobility Transistor

102:基底102: Substrate

104:氮化物層104: Nitride layer

106:第一氮化物層106: first nitride layer

108:第二氮化物層108: Second nitride layer

110:超晶格層110: Superlattice layer

112:第一超晶格層112: first superlattice layer

114:第二超晶格層114: Second superlattice layer

116:高電阻層116: High resistance layer

118:通道層118: channel layer

120:阻障層120: Barrier layer

122:第二化合物半導體層122: the second compound semiconductor layer

124:第一化合物半導體層124: the first compound semiconductor layer

130:二維電子氣區域130: Two-dimensional electron gas region

132:二維電洞氣區域132: Two-dimensional hole-gas region

D:汲極D: drain

G:閘極G: gate

S:源極S: source

Claims (13)

一種高電子遷移率電晶體,包括:一通道層,設置於一基底上;一阻障層,設置於該通道層上;一第一化合物半導體層,設置於該阻障層上;以及一第二化合物半導體層,設置於該阻障層和該第一化合物半導體層之間,其中該第一化合物半導體層包括一金屬摻質的一第一濃度分佈,該第二化合物半導體層包括該金屬摻質的一第二濃度分佈,該第一濃度分佈於該第一化合物半導體層具有一第一波峰,且該第二濃度分佈於該第二化合物半導體層具有一第二波峰,其中該第一化合物半導體層內的該第一波峰之該金屬摻質的最高濃度大於該第二化合物半導體層內的該第二波峰之該金屬摻質的最高濃度。 A high electron mobility transistor, comprising: a channel layer disposed on a substrate; a barrier layer disposed on the channel layer; a first compound semiconductor layer disposed on the barrier layer; and a first Two compound semiconductor layers are disposed between the barrier layer and the first compound semiconductor layer, wherein the first compound semiconductor layer includes a first concentration distribution of a metal dopant, and the second compound semiconductor layer includes the metal dopant A second concentration distribution of the substance, the first concentration distribution has a first peak in the first compound semiconductor layer, and the second concentration distribution has a second peak in the second compound semiconductor layer, wherein the first compound The highest concentration of the metal dopant in the first peak in the semiconductor layer is greater than the highest concentration of the metal dopant in the second peak in the second compound semiconductor layer. 如請求項1所述的高電子遷移率電晶體,其中該金屬摻質為鎂、鎘、碳或鋅。 The high electron mobility transistor of claim 1, wherein the metal dopant is magnesium, cadmium, carbon or zinc. 如請求項1所述的高電子遷移率電晶體,其中該第一波峰的濃度範圍為1E19(cm-3)至1E20(cm-3),該第二波峰的濃度範圍為9E18(cm-3)至2E19(cm-3)。 The high electron mobility transistor according to claim 1, wherein the concentration range of the first peak is 1E19 (cm -3 ) to 1E20 (cm -3 ), and the concentration range of the second peak is 9E18 (cm -3 ) to 2E19 (cm -3 ). 如請求項1所述的高電子遷移率電晶體,其中該第二波峰的半高寬(FWHM)為5nm至15nm。 The high electron mobility transistor of claim 1, wherein the second peak has a full width at half maximum (FWHM) of 5 nm to 15 nm. 如請求項1所述的高電子遷移率電晶體,其中該通道層為未摻雜的三五族通道層。 The high electron mobility transistor according to claim 1, wherein the channel layer is an undoped IIIV channel layer. 如請求項1所述的高電子遷移率電晶體,其中該通道層中會形成二維電子氣(2-DEG)區域,且該二維電子氣區域鄰近於該通道層和該阻障層的接面。 The high electron mobility transistor of claim 1, wherein a two-dimensional electron gas (2-DEG) region is formed in the channel layer, and the two-dimensional electron gas region is adjacent to the channel layer and the barrier layer. junction. 如請求項1所述的高電子遷移率電晶體,其中該第二化合物半導體層的厚度分別小於該阻障層及該第一化合物半導體層的厚度。 The high electron mobility transistor of claim 1, wherein the thickness of the second compound semiconductor layer is smaller than the thicknesses of the barrier layer and the first compound semiconductor layer, respectively. 如請求項1所述的高電子遷移率電晶體,其中該第二化合物半導體層中會形成二維電洞氣(2-DHG)區域,且該二維電洞氣區域鄰近於該阻障層和該第二化合物半導體層的接面。 The high electron mobility transistor of claim 1, wherein a two-dimensional hole gas (2-DHG) region is formed in the second compound semiconductor layer, and the two-dimensional hole gas region is adjacent to the barrier layer and the junction of the second compound semiconductor layer. 如請求項1所述的高電子遷移率電晶體,另包括一半導體蓋層,設置於該第二化合物半導體層上。 The high electron mobility transistor according to claim 1, further comprising a semiconductor cap layer disposed on the second compound semiconductor layer. 如請求項9所述的高電子遷移率電晶體,其中該半導體蓋層為一P型蓋層,其中該P型蓋層和該第一化合物半導體層包括該金屬摻質,且該P型蓋層的摻雜濃度高於該第一化合物半導體層的摻雜濃度。 The high electron mobility transistor of claim 9, wherein the semiconductor cap layer is a P-type cap layer, wherein the P-type cap layer and the first compound semiconductor layer include the metal dopant, and the P-type cap layer The doping concentration of the layer is higher than the doping concentration of the first compound semiconductor layer. 如請求項1所述的高電子遷移率電晶體,另包括一P型阻障層,設置於該阻障層和該第二化合物半導體層之間,且該P型阻障層包括該金屬摻質。 The high electron mobility transistor of claim 1, further comprising a P-type barrier layer disposed between the barrier layer and the second compound semiconductor layer, and the P-type barrier layer includes the metal doped quality. 如請求項11所述的高電子遷移率電晶體,其中該P型阻障層的該金 屬摻質的摻雜濃度低於該第二化合物半導體層的該金屬摻質的摻雜濃度。 The high electron mobility transistor of claim 11, wherein the gold of the P-type barrier layer The doping concentration of the metal dopant is lower than the doping concentration of the metal dopant of the second compound semiconductor layer. 如請求項1所述的高電子遷移率電晶體,另包括:一閘極,電連接至該第一化合物半導體層;以及至少二源/汲極,分別電連接至該通道層。 The high electron mobility transistor of claim 1, further comprising: a gate electrode electrically connected to the first compound semiconductor layer; and at least two source/drain electrodes electrically connected to the channel layer respectively.
TW109125266A 2020-07-27 2020-07-27 High electron mobility transistor TWI775121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109125266A TWI775121B (en) 2020-07-27 2020-07-27 High electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109125266A TWI775121B (en) 2020-07-27 2020-07-27 High electron mobility transistor

Publications (2)

Publication Number Publication Date
TW202205668A TW202205668A (en) 2022-02-01
TWI775121B true TWI775121B (en) 2022-08-21

Family

ID=81323757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125266A TWI775121B (en) 2020-07-27 2020-07-27 High electron mobility transistor

Country Status (1)

Country Link
TW (1) TWI775121B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI849505B (en) * 2022-09-14 2024-07-21 瑞礱科技股份有限公司 GaN POWER DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022128A (en) * 2006-02-16 2007-08-22 松下电器产业株式会社 Nitride semiconductor device and method for manufacturing same
TW201103077A (en) * 2009-04-08 2011-01-16 Efficient Power Conversion Corp Dopant diffusion modulation in GaN buffer layers
US8383471B1 (en) * 2011-04-11 2013-02-26 Hrl Laboratories, Llc Self aligned sidewall gate GaN HEMT
TW201340324A (en) * 2012-03-28 2013-10-01 Fujitsu Ltd Compound semiconductor device and method of manufacturing same
US20140097470A1 (en) * 2012-10-09 2014-04-10 Samsung Electronics Co., Ltd. High-electron mobility transistor and method of manufacturing the same
TW201630187A (en) * 2015-02-03 2016-08-16 Powdec股份有限公司 Semiconductor components, electrical equipment, bidirectional field effect transistors, and mounting structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022128A (en) * 2006-02-16 2007-08-22 松下电器产业株式会社 Nitride semiconductor device and method for manufacturing same
TW201103077A (en) * 2009-04-08 2011-01-16 Efficient Power Conversion Corp Dopant diffusion modulation in GaN buffer layers
US8383471B1 (en) * 2011-04-11 2013-02-26 Hrl Laboratories, Llc Self aligned sidewall gate GaN HEMT
TW201340324A (en) * 2012-03-28 2013-10-01 Fujitsu Ltd Compound semiconductor device and method of manufacturing same
US20140097470A1 (en) * 2012-10-09 2014-04-10 Samsung Electronics Co., Ltd. High-electron mobility transistor and method of manufacturing the same
TW201630187A (en) * 2015-02-03 2016-08-16 Powdec股份有限公司 Semiconductor components, electrical equipment, bidirectional field effect transistors, and mounting structures

Also Published As

Publication number Publication date
TW202205668A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US20220173235A1 (en) Breakdown Resistant HEMT Substrate and Device
US7498618B2 (en) Nitride semiconductor device
CN104241260B (en) High-voltage cascade diode with HEMT and single-slice integrated semiconductor diode
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US20140110759A1 (en) Semiconductor device
JP5810293B2 (en) Nitride semiconductor device
US9059266B2 (en) Semiconductor device and manufacturing method of the same
US20090189191A1 (en) Semiconductor device
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
JP5190923B2 (en) Nitride semiconductor transistor having GaN as channel layer and manufacturing method thereof
US8330187B2 (en) GaN-based field effect transistor
CN102239550A (en) Field effect transistor
US20100102357A1 (en) Nitride semiconductor device
US20120091508A1 (en) Compound semiconductor device
US20150228773A1 (en) Switching element
US12176430B2 (en) Semiconductor structure and semiconductor device
JP2012231002A (en) Semiconductor device
JP4474292B2 (en) Semiconductor device
TWI775121B (en) High electron mobility transistor
US8975641B1 (en) Transistor having an ohmic contact by gradient layer and method of making the same
JP7231826B2 (en) Semiconductor device, method for manufacturing semiconductor device, and electronic device
US20150053990A1 (en) Transistor having an ohmic contact by screen layer and method of making the same
US11935947B2 (en) Enhancement mode high electron mobility transistor
TW202201788A (en) High electron mobility transistor
US20120241759A1 (en) Nitride semiconductor device and electronic device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent