TWI773982B - Beamforming device, calibration method and calibration system for the same - Google Patents
Beamforming device, calibration method and calibration system for the same Download PDFInfo
- Publication number
- TWI773982B TWI773982B TW109112569A TW109112569A TWI773982B TW I773982 B TWI773982 B TW I773982B TW 109112569 A TW109112569 A TW 109112569A TW 109112569 A TW109112569 A TW 109112569A TW I773982 B TWI773982 B TW I773982B
- Authority
- TW
- Taiwan
- Prior art keywords
- codebook
- correction
- calibration
- predetermined
- codebooks
- Prior art date
Links
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
相關申請案 related applications
本發明係主張美國專利臨時申請案第62/851,111號(申請日:2019年5月22日)之優先權,該申請案之完整內容納入為本發明專利說明書的一部分以供參照。 The present invention claims the priority of US Patent Provisional Application No. 62/851,111 (filing date: May 22, 2019), the entire content of which is incorporated as a part of the patent specification of the present invention for reference.
本發明涉及一種波束成型裝置、用於其之校正方法及校正系統,特別是涉及一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。 The present invention relates to a beamforming device, a calibration method and a calibration system therefor, and in particular to a beamforming device capable of correcting the phase difference between antenna modules, a calibration method and a calibration system therefor.
在毫米波通訊領域中,與波束成型裝置的天線模組相關的路徑損耗遠遠大於運作頻率較低的同類設備。波束成形技術通常用於增加通信範圍,最常見的架構是一個基頻模組控制多個天線模組。在高頻應用中,由於波長較小,使得在製造時難以滿足設備需求。例如,在運作頻率60GHz下,其波長只有5mm左右。這意味著,每當發生0.1mm的路徑變化,將在天線模組之間造成36度的相位差。 In mmWave communications, the path loss associated with the antenna module of a beamforming device is much greater than that of similar devices operating at lower frequencies. Beamforming techniques are often used to increase communication range, and the most common architecture is one baseband module controlling multiple antenna modules. In high frequency applications, the smaller wavelengths make it difficult to meet device requirements at the time of manufacture. For example, at an operating frequency of 60 GHz, the wavelength is only about 5 mm. This means that every time a 0.1mm path change occurs, there will be a 36-degree phase difference between the antenna modules.
當天線模組之間產生相位差時,該相位差將在波束成形期間導致較低的等效全向輻射功率(equivalent isotropically radiated power,EIRP),更甚至導致不良的旁瓣電平(Side-lobe Level,SLL),進而使實際上運作產生的波 束成型的場型與理想上的波束成型的場型之間產生偏差。 When there is a phase difference between the antenna modules, the phase difference will lead to lower equivalent isotropically radiated power (EIRP) during beamforming, and even lead to poor side lobe level (Side- lobe Level, SLL), and then make the waves generated by the actual operation The beamforming pattern deviates from the ideal beamforming pattern.
故,通過校正的方式來修正波束成型裝置的天線模組之間的相位差,來克服上述的缺陷,已成為該項事業所欲解決的重要課題之一。 Therefore, correcting the phase difference between the antenna modules of the beamforming device by means of calibration to overcome the above-mentioned defects has become one of the important issues to be solved by this project.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種可修正天線模組之間的相位差的波束成型裝置、用於其之校正方法及校正系統。 The technical problem to be solved by the present invention is to provide a beamforming device capable of correcting the phase difference between antenna modules, a calibration method and a calibration system therefor, aiming at the deficiencies of the prior art.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種用於波束成型裝置的校正方法,用於包括一處理器、一記憶單元、一基頻電路及多個天線模組的一波束成型裝置,所述校正方法包括:儲存一參考編碼本(codebook)於該記憶單元,其中所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器;依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料;選定一預定目標場型,並配置所述基頻電路依據所述預定目標場型,以多個所述校正編碼本中對應於所述預定目標場型的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號;配置一接收器接收多個所述測試訊號;配置所述計算裝置處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power,EIRP),並產生多個測試結果;以及配置所述計算裝置依據多個所述測試結果,將具有最大等效全向輻射功率的所述校正編碼本設定為所述波束成 型裝置於所述預定目標場型進行收發訊號時所使用的一預定編碼本。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a calibration method for a beamforming device, which is used for a device including a processor, a memory unit, a baseband circuit and a plurality of antenna modules. A beamforming device, the calibration method includes: storing a reference codebook (codebook) in the memory unit, wherein the reference codebook includes a plurality of reference control data, divided by a plurality of target patterns, and the plurality of The reference control data is used to set a plurality of antenna units of each of the antenna modules and a plurality of phase shifters and a plurality of amplifiers corresponding to the plurality of the antenna units respectively; according to the reference codebook and a plurality of predetermined phases The difference generates a plurality of correction codebooks and stores them in the memory unit, wherein a plurality of the predetermined phase differences are different from each other, and each of the plurality of the correction codebooks includes a plurality of strokes divided by a plurality of the target patterns Correction control data; select a predetermined target pattern, and configure the fundamental frequency circuit to control the correction with a plurality of correction codebooks corresponding to the predetermined target pattern according to the predetermined target pattern The data respectively controls a plurality of the antenna modules to generate a plurality of test signals; configures a receiver to receive a plurality of the test signals; configures the computing device to process a plurality of the test signals to calculate a plurality of the test signals respectively testing the equivalent isotropically radiated power (EIRP) of the signal in the predetermined target area, and generating a plurality of test results; and configuring the computing device to have a maximum equivalent value according to the plurality of test results The corrected codebook of isotropic radiated power is set to the beamforming It is a predetermined codebook used by the device to transmit and receive signals in the predetermined target pattern.
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種用於波束成型裝置的校正系統,其包括計算裝置、波束成型裝置及接收器。波束成型裝置,連接於計算裝置,波束成型裝置包括處理器、記憶單元、基頻電路及多個天線模組。多個天線模組各包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。其中,計算裝置經配置以將一參考編碼本(codebook)儲存於所述記憶單元,所述參考編碼本包括多筆參考控制資料,以多個目標場型進行劃分,且多筆所述參考控制資料用於設定各所述天線模組的多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。其中,計算裝置依據所述參考編碼本及多個預定相位差產生多個校正編碼本,並儲存於所述記憶單元,其中多個所述預定相位差彼此不同,且多個所述校正編碼本各包括以多個所述目標場型進行劃分的多筆校正控制資料。其中,基頻電路經配置以依據所選定的預定目標區域,以多個所述校正編碼本中對應於所述預定目標區域的多筆所述校正控制資料分別控制多個所述天線模組,以產生多個測試訊號。其中,接收器經配置以接收多個所述測試訊號。其中,計算裝置經配置以處理多個所述測試訊號,以分別計算多個所述測試訊號於所述預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power,EIRP),並產生多個測試結果。其中,計算裝置經配置以依據多個所述測試結果,將具有最大等效全向輻射功率的所述校正編碼本設定為所述波束成型裝置於所述預定目標場型進行收發訊號時所使用的預定編碼本。 In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a calibration system for a beamforming device, which includes a computing device, a beamforming device and a receiver. The beam forming device is connected to the computing device. The beam forming device includes a processor, a memory unit, a baseband circuit and a plurality of antenna modules. Each of the plurality of antenna modules includes a plurality of antenna units, a plurality of phase shifters and a plurality of amplifiers respectively corresponding to the plurality of the antenna units. Wherein, the computing device is configured to store a reference codebook (codebook) in the memory unit, the reference codebook includes a plurality of reference control data, divided into a plurality of target patterns, and a plurality of the reference control data The data is used to set a plurality of antenna units of each of the antenna modules and a plurality of phase shifters and a plurality of amplifiers corresponding to the plurality of the antenna units respectively. The computing device generates a plurality of correction codebooks according to the reference codebook and a plurality of predetermined phase differences, and stores them in the memory unit, wherein a plurality of the predetermined phase differences are different from each other, and a plurality of the correction codebooks Each includes a plurality of correction control data divided by a plurality of the target patterns. Wherein, the baseband circuit is configured to control a plurality of the antenna modules respectively according to the selected predetermined target area with a plurality of pieces of the correction control data corresponding to the predetermined target area in the plurality of correction codebooks, to generate multiple test signals. wherein the receiver is configured to receive a plurality of the test signals. The computing device is configured to process a plurality of the test signals, so as to calculate the equivalent isotropically radiated power (EIRP) of the plurality of test signals in the predetermined target area, and generate a plurality of Test Results. The computing device is configured to, according to a plurality of the test results, set the correction codebook with the maximum equivalent isotropic radiation power to be used by the beamforming device to transmit and receive signals in the predetermined target pattern predetermined codebook.
為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種波束成型裝置,其包括處理器、記憶單元、基頻電路及多個天線模組。多個天線模組各包括多個天線單元,以及分別對應於多個天線單元的 多個相移器及多個放大器。其中,記憶單元儲存有一參考編碼本、多個校正編碼本及指示資料,多個校正編碼本各包括以多個目標場型進行劃分的多筆校正控制資料,且多個校正編碼本與參考編碼本分別相差彼此不同的多個預定相位差。指示資料用於指示基頻電路於多個預定目標場型進行收發訊號時所分別使用的多個校正編碼本中的多個預定編碼本。 In order to solve the above-mentioned technical problem, another technical solution adopted by the present invention is to provide a beamforming device, which includes a processor, a memory unit, a baseband circuit and a plurality of antenna modules. Each of the plurality of antenna modules includes a plurality of antenna units, and Multiple phase shifters and multiple amplifiers. The memory unit stores a reference codebook, a plurality of calibration codebooks, and instruction data, each of the plurality of calibration codebooks includes a plurality of calibration control data divided by a plurality of target field patterns, and the plurality of calibration codebooks and the reference code The present are respectively different from each other by a plurality of predetermined phase differences different from each other. The instruction data is used to indicate a plurality of predetermined codebooks among a plurality of correction codebooks respectively used by the baseband circuit when transmitting and receiving signals in a plurality of predetermined target field patterns.
本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,可依據多個預定相位差及參考編碼本,產生對應於多個天線模組的多個校正編碼本,並通過測試結果設定波束成型裝置進行訊號收發時使用的預定編碼本,當實際上運作產生的波束成型的場型與理想上的波束成型的場型之間因天線模組之間的誤差而產生偏差時,可通過校正來重新將輻射場型定向到所需方向,使總體性能與原始設計規格相匹配。 One of the beneficial effects of the present invention is that the beamforming device, the calibration method and the calibration system for the beamforming device provided by the present invention can generate multiple signals corresponding to multiple antenna modules according to multiple predetermined phase differences and reference codebooks. A calibration codebook is used, and the predetermined codebook used by the beamforming device for signal transmission and reception is set based on the test results. Correction can be used to re-orient the radiation pattern in the desired direction, so that the overall performance matches the original design specification when deviations occur due to the error between the two.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 For a further understanding of the features and technical content of the present invention, please refer to the following detailed descriptions and drawings of the present invention. However, the drawings provided are only for reference and description, and are not intended to limit the present invention.
1:波束成型裝置的校正系統 1: Correction system of beamforming device
10:波束成型裝置 10: Beamforming device
12:計算裝置 12: Computing Devices
14:接收器 14: Receiver
100:處理器 100: Processor
102:記憶單元 102: Memory Unit
104:基頻電路 104: Fundamental frequency circuit
106-1、106-2…106-M:天線模組 106-1, 106-2…106-M: Antenna Module
AT11、AT12、AT13、AT14…AT1N、AT21、AT22、AT23、AT24…AT2N:天線單元 AT11, AT12, AT13, AT14…AT1N, AT21, AT22, AT23, AT24…AT2N: Antenna Unit
PS11、PS12…PS1N、PS21、PS22…PS2N:相移器 PS11, PS12…PS1N, PS21, PS22…PS2N: Phase shifters
AP11、AP12…AP1N、AP21、AP22…AP2N:放大器電路 AP11, AP12…AP1N, AP21, AP22…AP2N: Amplifier circuit
θ2:相位差 θ2: Phase difference
θ1:相位差 θ1: phase difference
REF:參考編碼本 REF: Reference Codebook
CAL:校正編碼本 CAL: Correction codebook
108-1、108-2...108-M:可調移相器 108-1, 108-2...108-M: Adjustable Phase Shifter
SPDT:單埠雙切開關 SPDT: Shubu double cut switch
SP4T:單埠四切開關 SP4T: Shubu four-way switch
In:輸入端 In: input terminal
INS:指示資料 INS:Instruction data
Out:輸出端 Out: output terminal
圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。 FIG. 1 is a block diagram of a correction system for a beamforming apparatus according to an embodiment of the present invention.
圖2為本發明實施例的波束成型裝置的架構示意圖。 FIG. 2 is a schematic structural diagram of a beamforming apparatus according to an embodiment of the present invention.
圖3為本發明實施例的用於波束成型裝置的校正方法的流程圖。 FIG. 3 is a flowchart of a calibration method for a beamforming apparatus according to an embodiment of the present invention.
圖4A至4C為本發明實施例的用於產生參考編碼本的多個相位的示意圖。 4A to 4C are schematic diagrams for generating multiple phases of a reference codebook according to an embodiment of the present invention.
圖5A至5C為本發明實施例的用於產生其中一個校正編碼本的多個相位的示意圖。 5A to 5C are schematic diagrams for generating a plurality of phases of one of the correction codebooks according to an embodiment of the present invention.
圖6為本發明實施例的測試結果中,EIRP對多個預定相位差的作圖。 FIG. 6 is a graph of EIRP versus a plurality of predetermined phase differences in a test result of an embodiment of the present invention.
圖7A及7B分別為應用本發明的用於波束成型裝置的校正方法前後的性能量測圖。 7A and 7B are performance measurement charts before and after applying the calibration method for a beamforming device of the present invention, respectively.
圖8A為本發明實施例的基頻電路、可調移相器及天線模組的硬體架構示意圖。 8A is a schematic diagram of a hardware structure of a baseband circuit, an adjustable phase shifter, and an antenna module according to an embodiment of the present invention.
圖8B及8C為本發明實施例的可調移相器的示意圖。 8B and 8C are schematic diagrams of an adjustable phase shifter according to an embodiment of the present invention.
以下是通過特定的具體實施例來說明本發明所公開有關“波束成型裝置、用於其之校正方法及校正系統”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 The following are specific embodiments to illustrate the embodiments of the “beamforming device, calibration method therefor and calibration system” disclosed in the present invention. Those skilled in the art can understand the advantages of the present invention from the content disclosed in this specification. with effect. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to the actual size, and are stated in advance. The following embodiments will further describe the related technical contents of the present invention in detail, but the disclosed contents are not intended to limit the protection scope of the present invention. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.
圖1為本發明實施例的用於波束成型裝置的校正系統的方塊圖。參閱圖1所示,本發明第一實施例提供一種用於波束成型裝置的校正系統1,其包括波束成型裝置10、計算裝置12及接收器14。
FIG. 1 is a block diagram of a correction system for a beamforming apparatus according to an embodiment of the present invention. Referring to FIG. 1 , a first embodiment of the present invention provides a calibration system 1 for a beamforming device, which includes a
波束成型裝置10可包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1、106-2...106-M。可進一步參照圖2,圖2為本發明實施例的波束成型裝置的架構示意圖。如圖2所示,天線模組106-1、106-2...106-M
各自包括多個天線單元及分別對應於多個所述天線單元的多個相移器及多個放大器。例如,天線模組106-1可包括天線單元AT11、AT12...AT1N,以及分別對應於天線單元AT11、AT12...AT1N的相移器PS11、PS12...PS1N以及放大器電路AP11、AP12...AP1N。相移器PS11、PS12...PS1N可對於個別天線單元AT11、AT12...AT1N設定不同的移動相位,而放大器電路AP11、AP12...AP1N可各自包括多個放大器,以放大經相移器PS11、PS12...PS1N移相後的訊號,而不以圖2所示的數量為限,藉此達到想要的波束成型。
The
此外,處理器100可例如為是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP),其用於從記憶單元102中取得稱為編碼本(codebook)的控制資料,以將對應的相位及放大器參數分配給天線單元AT11、AT12...AT1N,而基頻電路104可例如為基頻處理器,其基於上述分配的相位及放大器參數控制天線模組106-1、106-2...106-M。
In addition, the
天線模組106-1亦可包括射頻電路,射頻電路包含數位類比轉換器(Digital to Analog Converter,DAC),以將來自基頻電路104的基頻數位訊號轉換為類比射頻訊號。類似的,天線模組106-2可包括天線單元AT21、AT22...AT2N,以及分別對應於天線單元AT21、AT22...AT2N的相移器PS21、PS22...PS2N以及放大器電路AP21、AP22...AP2N。
The antenna module 106-1 may also include a radio frequency circuit. The radio frequency circuit includes a digital to analog converter (DAC) for converting the base frequency digital signal from the
如圖2所示的波束成型裝置10包括多個天線模組106-1、106-2...106-M,而天線模組106-1、106-2...106-M中由於製程偏移,可能存在許多誤差。當波束成型裝置10存在這些硬體誤差時,有可能因為硬體的增益及相位誤差,而造成合成波束的主要傳遞方向產生偏移、往錯誤方向傳輸、或造成波束能量衰減,如此將難以達到正確的波束成型。例如,當設計用於天線模組106-1的編碼本時,預設基頻電路104加上天線模組106-1本身的相位
差θ1為定值,而天線模組106-2的架構與天線模組106-1相同,理論上,基頻電路104加上天線模組106-2本身的相位差θ2應與相位差θ1相同,然而,實際上,不同的射頻電路會帶來不可預測的相位偏差,若採用相同的編碼本進行控制,可能則會直接影響到波束成型的EIRP最大值的角度與SLL。考慮硬體誤差所造成的影響,需要採用本發明的用於波束成型裝置的校正系統與校正方法。
The
在本實施例中,計算裝置12可以是微控制器(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、特殊應用積體電路(application specific integrated circuit,ASIC)、數位邏輯電路、行動運算裝置、電腦等可提供運算能力的電子裝置。在一實施例中,計算裝置12可以是電腦,經配置以與接收器14電性連接,以從接收器14取得需要的資訊。
In this embodiment, the
接收器14例如是喇叭天線(horn antenna)、無線基站、或行動裝置,波束成型裝置10與接收器14可通過無線訊號傳輸進行通訊。接收器14例如可包括功率感測器(power sensor),用以檢測來自波束成型裝置10的無線訊號強度。接收器20可量測波束成型裝置10在不同角度的訊號強度。
The
以下請參照圖3,其為本發明實施例的用於波束成型裝置的校正方法的流程圖。參閱圖3所示,本發明實施例提供一種用於波束成型裝置的校正方法,其適用於前述實施例的校正系統1,且至少包括下列幾個步驟: Please refer to FIG. 3 below, which is a flowchart of a calibration method for a beamforming apparatus according to an embodiment of the present invention. Referring to FIG. 3 , an embodiment of the present invention provides a calibration method for a beamforming device, which is applicable to the calibration system 1 of the foregoing embodiment, and includes at least the following steps:
步驟S100:配置計算裝置儲存參考編碼本(codebook)REF於記憶單元。其中,參考編碼本REF包括多筆參考控制資料,以多個目標場型進行劃分,且多筆參考控制資料用於設定各天線模組的多個天線單元及分別對應於多個天線單元的多個相移器及多個放大器。 Step S100: Configure the computing device to store the reference codebook (codebook) REF in the memory unit. The reference codebook REF includes multiple pieces of reference control data, which are divided into multiple target field patterns, and the multiple pieces of reference control data are used to set multiple antenna units of each antenna module and multiple pieces of information corresponding to the multiple antenna units respectively. phase shifters and multiple amplifiers.
以兩個天線模組為例,參考編碼本REF可如下表1所示:
在參考編碼本REF中,多筆參考控制資料各包括用於設定各天線模組的多個相移器參考參數及多個放大器參考參數,且多個相移器參考參數對應多個參考相位,且多個放大器參考參數對應用於指示多個所述放大器的開關狀態的多個開關狀態代碼(例如開啟以1代表,關閉以0代表)。如表1所示,參考編碼本REF可包括用於場型1至場型L的多筆參考控制資料,場型1至場型L為指向不同角度的輻射場型。例如以兩個天線模組106-1及106-2為例,共包括天線單元AT11、天線單元AT12至天線單元AT2N(如圖2所示),且各筆控制資料包括對應於天線單元AT11、天線單元AT12至天線單元AT2N的相移器的相位及放大器的開啟或關閉的參數。其中,相移器可例如為2位元的相移器,可切換相位分別為0度、90度、180度、270度,即可作為上述的參考相位,但本發明不以此為限。 In the reference codebook REF, multiple pieces of reference control data each include multiple phase shifter reference parameters and multiple amplifier reference parameters for setting each antenna module, and multiple phase shifter reference parameters correspond to multiple reference phases, And a plurality of amplifier reference parameters are corresponding to a plurality of switch state codes indicating the switch states of a plurality of the amplifiers (for example, ON is represented by 1, and OFF is represented by 0). As shown in Table 1, the reference code REF may include multiple reference control data for field type 1 to field type L, where field type 1 to field type L are radiation patterns directed at different angles. For example, taking two antenna modules 106-1 and 106-2 as an example, they include the antenna unit AT11, the antenna unit AT12 to the antenna unit AT2N (as shown in FIG. 2), and each control data includes the corresponding antenna unit AT11, Parameters of the phase shifters of the antenna unit AT12 to the antenna unit AT2N and the on or off of the amplifiers. The phase shifter can be, for example, a 2-bit phase shifter, and the switchable phases are 0, 90, 180, and 270 degrees, which can be used as the reference phase, but the invention is not limited to this.
其中,以兩個天線模組106-1、106-2為例,且每個天線模組具有四個天線單元,例如天線模組106-1包括天線單元AT11、AT12、AT13及 AT14,且天線模組106-2則包括AT21、AT22、AT23及AT24。參考編碼本REF的產生方式可參照圖4A、圖4B及圖4C,圖4A至4C為本發明實施例的用於產生參考編碼本的多個相位的示意圖。如圖4A、圖4B及圖4C所示,舉例而言,設定場型1,例如0度角時量測的電場資訊,可測得圖4A所示的天線模組106-1的天線單元AT11、AT12、AT13及AT14的初始相位分別為90、95、-180、30度,其中又以天線單元AT14產生的訊號增益最強,故以天線單元AT14為基準,將天線單元AT11、AT12、AT13及AT14的初始相位90、95、-180、30度分別平移-30度,使天線單元AT11、AT12、AT13及AT14的相位變為60、65、-210、0度,如圖4B所示。而在參考編碼本REF中,天線單元AT21、AT22、AT23及AT24係沿用平移後的相位,分別為60、65、-210、0度。 Among them, two antenna modules 106-1 and 106-2 are taken as examples, and each antenna module has four antenna units. For example, the antenna module 106-1 includes antenna units AT11, AT12, AT13 and AT14, and the antenna module 106-2 includes AT21, AT22, AT23 and AT24. 4A , 4B and 4C may be referred to for the generation method of the reference codebook REF. FIGS. 4A to 4C are schematic diagrams for generating multiple phases of the reference codebook according to an embodiment of the present invention. As shown in FIG. 4A , FIG. 4B and FIG. 4C , for example, if the field type 1 is set, such as the electric field information measured when the angle is 0 degrees, the antenna unit AT11 of the antenna module 106 - 1 shown in FIG. 4A can be measured. The initial phases of , AT12, AT13 and AT14 are 90, 95, -180, 30 degrees respectively, and the signal gain generated by the antenna unit AT14 is the strongest, so the antenna unit AT14 is used as the benchmark, and the antenna units AT11, AT12, AT13 and The initial phases of AT14 of 90, 95, -180, and 30 degrees are shifted by -30 degrees, respectively, so that the phases of the antenna units AT11, AT12, AT13, and AT14 become 60, 65, -210, and 0 degrees, as shown in Figure 4B. In the reference codebook REF, the antenna elements AT21, AT22, AT23, and AT24 use the shifted phases, which are 60, 65, -210, and 0 degrees, respectively.
接著,通過調整對應天線單元AT11、AT12、AT13及AT14的相移器,使天線單元AT11、AT12、AT13及AT14的相位基於一相位基準值,例如0度進行最小化。需要說明的是,由於天線模組之射頻電路具有內建精密度為2位元的相移器PS11~PS2N,可進行360/22度(即90度)之最小化相位匹配,亦即,分別以270度、270度、180度及0度的相移器參數調整天線單元AT11、AT12、AT13及AT14的相位,得到-30度、-25度、-30度及0度。此時,得到參考編碼本REF於場型1,即0度角的場型下,用於控制天線模組106-1的天線單元AT11、AT12、AT13及AT14的相移器參數分別為270度、270度、180度及0度。此外,天線單元AT21、AT22、AT23及AT24以相同方式平移-30度及對0度進行最小化後,同樣獲得分別為-30度、-25度、-30度及0度的相位,且對應的相移器參數亦分別為270度、270度、180度及0度。 Next, by adjusting the phase shifters corresponding to the antenna units AT11 , AT12 , AT13 and AT14 , the phases of the antenna units AT11 , AT12 , AT13 and AT14 are minimized based on a phase reference value, eg, 0 degrees. It should be noted that since the RF circuit of the antenna module has built-in phase shifters PS11~PS2N with a precision of 2 bits, the minimum phase matching of 360/2 2 degrees (ie 90 degrees) can be performed, that is, Adjust the phases of the antenna units AT11, AT12, AT13 and AT14 with the phase shifter parameters of 270 degrees, 270 degrees, 180 degrees and 0 degrees, respectively, to obtain -30 degrees, -25 degrees, -30 degrees and 0 degrees. At this time, it is obtained that the reference codebook REF is in the field type 1, that is, the field type with an angle of 0 degrees, and the phase shifter parameters used to control the antenna units AT11, AT12, AT13 and AT14 of the antenna module 106-1 are respectively 270 degrees , 270 degrees, 180 degrees and 0 degrees. In addition, after the antenna units AT21, AT22, AT23 and AT24 are translated by -30 degrees and minimized by 0 degrees in the same way, the phases of -30 degrees, -25 degrees, -30 degrees and 0 degrees are obtained, respectively, and the corresponding The phase shifter parameters of are also 270 degrees, 270 degrees, 180 degrees and 0 degrees, respectively.
接著,針對其他角度,即場型2~場型L,可通過旋轉波束成型裝置10或接收器14,通過相同方式產生其他場型下的相移器參數,藉此獲得參考編碼本REF。
Next, for other angles, ie, field type 2 to field type L, the reference codebook REF can be obtained by rotating the
回到本發明的校正方法,進入步驟S101:配置計算裝置依據參考編碼本REF及多個預定相位差產生多個校正編碼本CAL,並儲存於記憶單元。其中,多個預定相位差彼此不同,且多個校正編碼本CAL各包括以多個所述目標場型進行劃分的多筆校正控制資料。 Returning to the calibration method of the present invention, go to step S101 : configure the computing device to generate a plurality of calibration codebooks CAL according to the reference codebook REF and a plurality of predetermined phase differences, and store them in the memory unit. The plurality of predetermined phase differences are different from each other, and each of the plurality of calibration codebooks CAL includes a plurality of calibration control data divided by a plurality of the target patterns.
以兩個天線模組為例,校正編碼本CAL可如下表2所示,包括多筆校正控制資料。校正控制資料各包括用於設定各天線模組的多個相移器校正參數及多個放大器校正參數。 Taking two antenna modules as an example, the calibration codebook CAL can be as shown in Table 2 below, including multiple calibration control data. Each of the calibration control data includes a plurality of phase shifter calibration parameters and a plurality of amplifier calibration parameters for setting each antenna module.
舉例而言,對於天線模組106-1及106-2而言,多個校正編碼本CAL係用於消除天線模組106-1及106-2之間的相位誤差。可進一步參考圖5A、5B及5C,圖5A、5B及5C為本發明實施例的用於產生其中一個校正編碼本的多個相位的示意圖。 For example, for the antenna modules 106-1 and 106-2, multiple correction codebooks CALs are used to cancel the phase error between the antenna modules 106-1 and 106-2. Further reference may be made to FIGS. 5A , 5B and 5C, which are schematic diagrams of generating a plurality of phases of one of the correction codebooks according to an embodiment of the present invention.
在本實施例中,同樣以兩個天線模組106-1及106-2為例進行說明,且每個天線模組仍具有四個天線單元。由於在產生參考編碼本REF的過程 中,已將天線單元AT11、AT12、AT13及AT14的初始相位差90、95、-180、30度分別平移-30度,使天線單元AT11、AT12、AT13及AT14的相位變為60、65、-210、0度。而在產生用於天線模組106-2的校正編碼本CAL時,如圖5A所示,天線單元AT11、AT12、AT13及AT14可直接沿用圖4C中對0度進行最小化後的結果,即-30度、-25度、-30度及0度的相位。 In this embodiment, two antenna modules 106-1 and 106-2 are also used as examples for description, and each antenna module still has four antenna units. Due to the process of generating the reference codebook REF , the initial phase differences of the antenna units AT11, AT12, AT13 and AT14 have been shifted by -30 degrees by 90, 95, -180, and 30 degrees, respectively, so that the phases of the antenna units AT11, AT12, AT13 and AT14 become 60, 65, -210, 0 degrees. When generating the correction codebook CAL for the antenna module 106-2, as shown in FIG. 5A, the antenna units AT11, AT12, AT13, and AT14 can directly use the result of minimizing 0 degrees in FIG. 4C, that is, Phases of -30 degrees, -25 degrees, -30 degrees and 0 degrees.
在本步驟中,已經描述過依據預定相位差產生校正編碼本CAL。詳細而言,多個預定相位差的範圍可在0度至360度之間,且多個預定相位差係由360度除以一測試數量來決定,且校正編碼本CAL的數量對應於測試數量。例如,可將360度除以數量為36的測試數量,可從0度至360度,每隔10度為一區間,獲得多個預定相位差分別為0、10、....、350度。而測試數量取決於所能接受的測試時間,本發明不以此為限。 In this step, it has been described that the correction codebook CAL is generated in accordance with the predetermined phase difference. Specifically, the range of the plurality of predetermined phase differences may be between 0 degrees and 360 degrees, and the plurality of predetermined phase differences are determined by dividing 360 degrees by a test number, and the number of calibration codebooks CAL corresponds to the number of tests . For example, 360 degrees can be divided by the number of tests with a number of 36, from 0 degrees to 360 degrees, every 10 degrees is an interval, and a plurality of predetermined phase differences of 0, 10, ...., 350 degrees can be obtained. . The number of tests depends on the acceptable test time, which is not limited in the present invention.
接著,可基於預定相位差,例如90度,以及參考相位產生多個相移器校正參數。以圖5B為例,當預定相位差為90度,則將天線單元AT21、AT22、AT23及AT24的相位60、65、-210、0度分別加上預定相位差90度,而天線單元AT11、AT12、AT13及AT14的相位差維持不變,獲得如圖5B所示的相位150、155、-120、90度。 Next, a plurality of phase shifter correction parameters may be generated based on a predetermined phase difference, eg, 90 degrees, and the reference phase. Taking FIG. 5B as an example, when the predetermined phase difference is 90 degrees, the phases 60, 65, -210, and 0 degrees of the antenna elements AT21, AT22, AT23, and AT24 are respectively added with the predetermined phase difference of 90 degrees, and the antenna elements AT11, The phase differences of AT12, AT13, and AT14 remain unchanged, and the phases of 150, 155, -120, and 90 degrees as shown in FIG. 5B are obtained.
接著,通過調整對應天線單元AT21、AT22、AT23及AT24的相移器,使天線單元AT21、AT22、AT23及AT24的相位差相對於0度,進行用於預定相位差90度之最小化相位匹配。與參考編碼本REF不同的,此時需要分別以180度、180度、90度及270度的相移器參數調整天線單元AT21、AT22、AT23及AT24的相位差,得到330度、335度、-30度及360度。其中,由於相位係以360度為一週期,相位差330度即是-30度,相位差335度則是-25度,相位差360度則是0度,相對於0度均為最小化結果。此時,得到校正編碼本CAL於場型1,即0度角的相移器參數分別為180度、180度、90度及270度。接著,針
對其他角度,可通過旋轉波束成型裝置10或接收器14,通過相同方式產生其他場型下的相移器參數,藉此獲得其中一個校正編碼本CAL。
Next, by adjusting the phase shifters corresponding to the antenna units AT21, AT22, AT23 and AT24 so that the phase differences of the antenna units AT21, AT22, AT23 and AT24 are relative to 0 degrees, minimum phase matching for a predetermined phase difference of 90 degrees is performed . Different from the reference codebook REF, it is necessary to adjust the phase difference of the antenna units AT21, AT22, AT23 and AT24 with the phase shifter parameters of 180 degrees, 180 degrees, 90 degrees and 270 degrees, respectively, to obtain 330 degrees, 335 degrees, -30 degrees and 360 degrees. Among them, since the phase system takes 360 degrees as a cycle, a phase difference of 330 degrees is -30 degrees, a phase difference of 335 degrees is -25 degrees, and a phase difference of 360 degrees is 0 degrees, all of which are minimized relative to 0 degrees. . At this time, the phase shifter parameters of the corrected codebook CAL in field type 1, that is, 0 degrees, are 180 degrees, 180 degrees, 90 degrees, and 270 degrees, respectively. Next, the needle
For other angles, one of the correction codebooks CAL can be obtained by rotating the
以此類推,可依據多個預定相位差分別為10、....、350度,產生對應於預定相位差分別為10、....、350度的36個校正編碼本CAL,並且,可針對所有的天線模組106-2至106-M執行上述流程,以分別產生對應天線模組106-2至106-M的多個校正編碼本CAL。其中,對於預定相位差0度,可直接採用參考編碼本REF。 By analogy, 36 correction codebooks CAL corresponding to the predetermined phase differences of 10, ...., 350 degrees can be generated according to a plurality of predetermined phase differences of 10, ..., 350 degrees, respectively, and, The above process may be performed for all the antenna modules 106-2 to 106-M to generate a plurality of correction codebooks CAL corresponding to the antenna modules 106-2 to 106-M, respectively. Wherein, for the predetermined phase difference of 0 degrees, the reference codebook REF can be directly used.
步驟S102:選定預定目標場型,例如:0度角,並配置基頻電路依據預定目標場型,以參考編碼本REF或多個校正編碼本CAL中對應於預定目標場型的多筆校正控制資料分別控制多個天線模組,以產生多個測試訊號。 Step S102: Select a predetermined target pattern, for example, an angle of 0 degrees, and configure the baseband circuit according to the predetermined target pattern to refer to the codebook REF or multiple correction codebooks CAL corresponding to the predetermined target pattern for multiple correction control The data respectively controls multiple antenna modules to generate multiple test signals.
步驟S103:配置接收器14接收多個測試訊號。
Step S103: Configure the
步驟S104:配置計算裝置12處理多個測試訊號,以分別計算多個測試訊號於預定目標區域的等效全向輻射功率(Equivalent isotropically radiated power,EIRP),並產生多個測試結果。其中,可參考圖6,其為本發明實施例的測試結果中,EIRP對多個預定相位差的作圖。
Step S104 : Configuring the
步驟S105:配置計算裝置12依據多個測試結果,將具有最大等效全向輻射功率的參考編碼本REF或校正編碼本CAL設定為波束成型裝置於預定目標場型進行收發訊號時所使用的預定編碼本。例如,如圖6所示,在預定相位差為240度時,採用的校正編碼本CAL可獲得最大等效全向輻射功率,因此,可將經過預定相位差240度調整後的該校正編碼本CAL設定為波束成型裝置於預定目標場型進行收發訊號時所使用的預定編碼本;在此,可搭配圖2來說明,天線模組106-1與天線模組106-2兩者之間可能相差240度左右,即θ1與θ2之間的相位差。而透過本發明的校正方法,可以找到用來補償此240度相位差的校正編碼本CAL。特別說明的是,若校正編碼本CAL的數量愈多,即
預定相位差的數量愈多,則校正的精確度會愈高。
Step S105: Configure the
較佳的,可配置計算裝置12基於上述步驟產生指示資料INS並儲存於記憶單元102,在波束成型裝置10於多個預定目標場型進行收發訊號時,依據指示資料INS指示使用多個校正編碼本CAL中,能夠獲得最大等效全向輻射功率的校正編碼本CAL進行收發訊號。
Preferably, the
請進一步參閱圖7A、7B,其分別為應用本發明的用於波束成型裝置的校正方法前後的性能量測圖,如圖所示,原始設計規格為針對預定場型在0度具有EIRP最大值的場型。然而,在應用本發明的用於波束成型裝置的校正方法前,波束成型裝置的輻射場型的主瓣偏移預定場型,並非在0度具有EIRP最大值。而在應用了本發明的用於波束成型裝置的校正方法後,可重定向到所需方向,使總體性能與原始設計規格相匹配。 Please further refer to FIGS. 7A and 7B , which are performance measurement charts before and after applying the calibration method for a beamforming device of the present invention, respectively. As shown in the figures, the original design specification is to have an EIRP maximum value at 0 degrees for a predetermined field pattern field type. However, before applying the correction method for a beamforming device of the present invention, the main lobe of the radiation pattern of the beamforming device is shifted from a predetermined pattern and does not have an EIRP maximum value at 0 degrees. However, after applying the correction method for the beamforming device of the present invention, it can be redirected to the desired direction, so that the overall performance can be matched with the original design specification.
換言之,在應用了本發明的用於波束成型裝置的校正方法後,可進一步提供如圖1所示的波束成型裝置10,其包括處理器100、記憶單元102、基頻電路104及多個天線模組106-1~106-M。記憶單元102儲存有參考編碼本REF、多個校正編碼本CAL及指示資料INS,多個校正編碼本CAL各包括以多個目標場型進行劃分的多筆校正控制資料,且多個校正編碼本CAL與參考編碼本REF分別相差彼此不同的多個預定相位差。指示資料INS用於指示基頻電路於多個預定目標場型進行收發訊號時使用多個校正編碼本CAL中的其中之一。
In other words, after applying the calibration method for a beamforming device of the present invention, the
在替代實施例中,可參照圖8A、8B及8C,圖8A為本發明實施例的基頻電路、可調移相器及天線模組的硬體架構示意圖,圖8B及8C為本發明實施例的可調移相器的示意圖。如圖8A所示,可調移相器108-1、108-2...108-M可進一步分別設置於天線模組106-1、106-2...106-M與基頻電路104之間,可調移相器108-1、108-2...108-M可分別為數位相移器或機械式相
移器等,將被添加到用於相位調整的設計中。須注意的是,可調移相器108-1、108-2...108-M的分辨率取決於可調移相器的規格。
In an alternative embodiment, please refer to FIGS. 8A , 8B and 8C. FIG. 8A is a schematic diagram of a hardware structure of a baseband circuit, an adjustable phase shifter and an antenna module according to an embodiment of the present invention, and FIGS. 8B and 8C are an implementation of the present invention. Example of a schematic diagram of an adjustable phase shifter. As shown in FIG. 8A , the adjustable phase shifters 108-1, 108-2...108-M can be further disposed on the antenna modules 106-1, 106-2...106-M and the
可調移相器108-1、108-2...108-M如圖8B所示,可設置多個單埠雙切開關SPDT在多個相位延遲線路(例如,0、30、60、120度)、輸入端In及輸出端Out之間,或如圖8C設置多個單埠四切開關SP4T在多個相位延遲線路(例如,0、30、60、120度)、輸入端In及輸出端Out之間,且該些單埠雙切開關SPDT及該些單埠四切開關SP4T可由基頻電路104所控制,其控制原理類似於前述實施例,控制該些該些單埠雙切開關SPDT及該些單埠四切開關SP4T以針對天線模組106-1、106-2...106-M,在多個預定場型下產生多個預定相位差,並以計算單元12及接收器14進行檢測,以找出具有最大EIRP的預定相位差,並設定此相位差為波束成型裝置10進行訊號收發時使用的配置,藉此減少不同天線模組之間因製程導致的相位差。在部份實施例中,可調分辨率將是360度/n,其中n是對應於前述測試數量的正整數,並且n越大,則分辨率越高。
The adjustable phase shifters 108-1, 108-2 . . . 108-M are shown in FIG. 8B, and can set a plurality of port double switch SPDTs in a plurality of phase delay lines (for example, 0, 30, 60, 120 degrees), between the input terminal In and the output terminal Out, or as shown in Figure 8C, set up multiple port four-way switches SP4T on multiple phase delay lines (eg, 0, 30, 60, 120 degrees), the input terminal In and the output terminal Between the terminals Out, and the two port switches SPDT and the four port switches SP4T can be controlled by the
因此,除了採用軟體的方式實現本發明提供的波束成型裝置、用於其之校正方法及校正系統,亦可採用硬體的方式實現,本發明不以此為限。 Therefore, in addition to implementing the beamforming device, the calibration method and the calibration system provided by the present invention in a software manner, it can also be implemented in a hardware manner, and the present invention is not limited thereto.
[實施例的有益效果] [Advantageous effects of the embodiment]
本發明的其中一有益效果在於,本發明所提供的波束成型裝置、用於其之校正方法及校正系統,可依據多個預定相位差及參考編碼本,產生對應於多個天線模組的多個校正編碼本,並通過測試結果設定波束成型裝置進行訊號收發時使用的預定編碼本,當實際上運作產生的波束成型的場型與理想上的波束成型的場型之間因天線模組之間的誤差而產生偏差時,可通過校正來重新將輻射場型定向到所需方向,使總體性能與原始設計規格相 匹配。 One of the beneficial effects of the present invention is that the beamforming device, the calibration method and the calibration system for the beamforming device provided by the present invention can generate multiple signals corresponding to multiple antenna modules according to multiple predetermined phase differences and reference codebooks. A calibration codebook is used, and the predetermined codebook used by the beamforming device for signal transmission and reception is set based on the test results. When deviations occur due to errors between the match.
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
1:波束成型裝置的校正系統 1: Correction system of the beamforming device
10:波束成型裝置 10: Beamforming device
12:計算裝置 12: Computing Devices
14:接收器 14: Receiver
100:處理器 100: Processor
102:記憶單元 102: Memory Unit
104:基頻電路 104: Fundamental frequency circuit
106-1、106-2…106-M:天線模組 106-1, 106-2…106-M: Antenna Module
REF:參考編碼本 REF: Reference Codebook
CAL:校正編碼本 CAL: Correction codebook
INS:指示資料 INS:Instruction data
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/876,158 US11239552B2 (en) | 2019-05-22 | 2020-05-18 | Beamforming device, calibration method and calibration system for the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962851111P | 2019-05-22 | 2019-05-22 | |
US62/851,111 | 2019-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202044788A TW202044788A (en) | 2020-12-01 |
TWI773982B true TWI773982B (en) | 2022-08-11 |
Family
ID=74668211
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112569A TWI773982B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
TW109112579A TWI743744B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112579A TWI743744B (en) | 2019-05-22 | 2020-04-15 | Beamforming device, calibration method and calibration system for the same |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI773982B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1312598A (en) * | 2000-02-21 | 2001-09-12 | 日本电气株式会社 | Receiving circuit and self-adaptive array antenna system |
CN106935975A (en) * | 2017-03-14 | 2017-07-07 | 重庆大学 | A kind of heavy caliber broadband reception phased array antenna |
TW201838352A (en) * | 2016-12-21 | 2018-10-16 | 美商英特爾公司 | Wireless communication technology, equipment and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080073624A (en) * | 2007-02-06 | 2008-08-11 | 삼성전자주식회사 | Codebook generation method and apparatus for multipolarized multiple input / output system |
US8086242B2 (en) * | 2007-03-21 | 2011-12-27 | Broadcom Corporation | Method and system for adaptive allocation of feedback resources for CQI and transmit pre-coding |
US9225396B2 (en) * | 2013-02-15 | 2015-12-29 | Intel Corporation | Apparatus, system and method of transmit power control for wireless communication |
KR102374623B1 (en) * | 2015-04-24 | 2022-03-15 | 스카이라크 더블유엘 홀딩스, 엘엘씨 | Control Channel Design for Multiple Antenna MU-MIMO Systems |
WO2017059892A1 (en) * | 2015-10-07 | 2017-04-13 | Nokia Solutions And Networks Oy | Techniques to reduce radiated power for mimo wireless systems |
-
2020
- 2020-04-15 TW TW109112569A patent/TWI773982B/en active
- 2020-04-15 TW TW109112579A patent/TWI743744B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1312598A (en) * | 2000-02-21 | 2001-09-12 | 日本电气株式会社 | Receiving circuit and self-adaptive array antenna system |
TW201838352A (en) * | 2016-12-21 | 2018-10-16 | 美商英特爾公司 | Wireless communication technology, equipment and method |
CN106935975A (en) * | 2017-03-14 | 2017-07-07 | 重庆大学 | A kind of heavy caliber broadband reception phased array antenna |
Also Published As
Publication number | Publication date |
---|---|
TWI743744B (en) | 2021-10-21 |
TW202044789A (en) | 2020-12-01 |
TW202044788A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11811147B2 (en) | Method for calibrating phased array antenna and related apparatus | |
JP5933471B2 (en) | Phased array transmitter | |
CN109756282B (en) | Phased Array Amplifier Linearization | |
CN108880703B (en) | Active antenna calibration | |
KR102457109B1 (en) | Apparatus and method for calibrating phased array antenna | |
EP3591857B1 (en) | Antenna system, signal processing system and signal processing method | |
JP5815448B2 (en) | Phased array transmitter | |
US20170077613A1 (en) | Active array calibration | |
JP6580561B2 (en) | Techniques for operating phased array antennas in millimeter wave radio modules. | |
CN108234037B (en) | Phase calibration method and circuit | |
TW201528607A (en) | Wireless communication device and method of adjusting antenna matching | |
CN103856235A (en) | Wireless communication unit, integrated circuit and method for calibrating transceiver | |
US11128331B2 (en) | Methods and systems for utilizing ultra-efficiency low noise configurations for phased array antennas | |
US11239552B2 (en) | Beamforming device, calibration method and calibration system for the same | |
CN115812281A (en) | Calibration circuit for inter-channel phase and gain calibration in multi-channel beamforming system, multi-channel beamforming system including the same, and channel calibration method using the same | |
TWI773982B (en) | Beamforming device, calibration method and calibration system for the same | |
JP6532017B2 (en) | Phased array transmitter | |
EP3614572B1 (en) | Method and apparatus for detecting beam | |
KR20210022362A (en) | Control apparatus of transmit antenna for improving wirless-power transfer efficiency and control method thereof | |
US11394115B2 (en) | Array calibration thru polarization cross-coupling | |
KR101662414B1 (en) | Method and apparatus to generate virtual sector wide static beams using phase shift transmit diversity | |
EP4186167A1 (en) | Beamforming method and apparatus | |
US11329376B2 (en) | Beamforming device, calibration method and calibration system for the same | |
CN113708809B (en) | Power adjustment method and device, and computer storage medium | |
WO2019176388A1 (en) | Wireless communication system, wireless communication device, wireless communication method, and non-transitory computer-readable medium |