TWI770631B - Biodegrable and injectable bone composite and uses thereof - Google Patents
Biodegrable and injectable bone composite and uses thereof Download PDFInfo
- Publication number
- TWI770631B TWI770631B TW109135063A TW109135063A TWI770631B TW I770631 B TWI770631 B TW I770631B TW 109135063 A TW109135063 A TW 109135063A TW 109135063 A TW109135063 A TW 109135063A TW I770631 B TWI770631 B TW I770631B
- Authority
- TW
- Taiwan
- Prior art keywords
- bone
- composite material
- biodegradable
- poly
- shell
- Prior art date
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 89
- 239000002131 composite material Substances 0.000 title claims abstract description 74
- 239000000316 bone substitute Substances 0.000 claims abstract description 38
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 34
- 238000002347 injection Methods 0.000 claims abstract description 9
- 239000007924 injection Substances 0.000 claims abstract description 9
- 239000003814 drug Substances 0.000 claims abstract description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 18
- 239000004632 polycaprolactone Substances 0.000 claims description 17
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 17
- 239000001506 calcium phosphate Substances 0.000 claims description 13
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 13
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 13
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 13
- 208000001132 Osteoporosis Diseases 0.000 claims description 12
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 12
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 12
- -1 Poly(caprolactone) Polymers 0.000 claims description 11
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims description 10
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 229920000954 Polyglycolide Polymers 0.000 claims description 7
- 229920002732 Polyanhydride Polymers 0.000 claims description 6
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 6
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 6
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 6
- 239000004633 polyglycolic acid Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 5
- 239000000622 polydioxanone Substances 0.000 claims description 5
- 239000004626 polylactic acid Substances 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229920001710 Polyorthoester Polymers 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 230000003115 biocidal effect Effects 0.000 claims description 4
- 239000005312 bioglass Substances 0.000 claims description 4
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 claims description 4
- 235000019821 dicalcium diphosphate Nutrition 0.000 claims description 4
- 229910000393 dicalcium diphosphate Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002872 contrast media Substances 0.000 claims description 3
- 229920001432 poly(L-lactide) Polymers 0.000 claims description 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 235000010384 tocopherol Nutrition 0.000 claims 2
- 235000019738 Limestone Nutrition 0.000 claims 1
- DMGNFLJBACZMRM-UHFFFAOYSA-N O[P] Chemical compound O[P] DMGNFLJBACZMRM-UHFFFAOYSA-N 0.000 claims 1
- 235000011132 calcium sulphate Nutrition 0.000 claims 1
- 239000006028 limestone Substances 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 229920000120 polyethyl acrylate Polymers 0.000 claims 1
- 208000010392 Bone Fractures Diseases 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 206010017076 Fracture Diseases 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 12
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 10
- 239000004926 polymethyl methacrylate Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 206010010214 Compression fracture Diseases 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 210000002449 bone cell Anatomy 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 229920000249 biocompatible polymer Polymers 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000001009 osteoporotic effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 206010041541 Spinal compression fracture Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 206010041569 spinal fracture Diseases 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
Images
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
本發明整體上是關於一種骨複合材料及其用途。具體來說,本發明是關於一種可以注射式投予至治療部位的生物可分解式的骨複合材料及其用途。The present invention generally relates to a bone composite material and its use. Specifically, the present invention relates to a biodegradable bone composite that can be injected into a treatment site and uses thereof.
脊椎壓迫性骨折(spine compression fracture),是年紀大骨質疏鬆者非常常見的骨折形式,造成生活上莫大的疼痛及功能影響。治療方法有保守治療疼痛控制及手術治療,脊椎骨折處注射骨水泥(vertebroplasty 或 kyphoplasty) 是一種微創手術方式,於X光機定位下將引導針插入骨折處,注射聚甲基丙烯酸甲酯(Poly(methyl methacrylate, PMMA)) ,俗稱壓克力骨水泥,可將骨折處支撐住,以減輕疼痛及避免骨折處繼續坍崩變形。但是,注射壓克力骨水泥也有其風險與缺點,因壓克力在硬化前會流動造成骨水泥外漏至神經及血管,硬化時會發出高熱(60~90度) ,硬度過大則會造成鄰近骨節再次發生骨折,此外PMMA為生物不可吸收材質,會影響骨生成並成為體內永久外來物。近年已有文獻指出脊椎壓迫性骨折注射PMMA效果並不比保守治療好,因此,相關領域一直在尋求一種更好的脊椎注射材質,以解決目前以PMMA來治療或修復骨折的不足處。Spine compression fracture is a very common form of fracture in elderly patients with osteoporosis, which causes great pain and functional impact in life. The treatment methods include conservative pain control and surgical treatment. The injection of bone cement (vertebroplasty or kyphoplasty) at the vertebral fracture is a minimally invasive surgical method. Under the positioning of the X-ray machine, a guide pin is inserted into the fracture, and polymethyl methacrylate (polymethyl methacrylate) is injected. Poly(methyl methacrylate, PMMA)), commonly known as acrylic bone cement, can support the fracture to relieve pain and prevent the fracture from continuing to collapse and deform. However, injection of acrylic bone cement also has its risks and disadvantages. Because the acrylic will flow before hardening, the bone cement will leak to the nerves and blood vessels. When hardening, it will emit high heat (60~90 degrees). Fractures occur again in adjacent condyles, and PMMA is a bioabsorbable material that affects bone formation and becomes a permanent foreign body in the body. In recent years, it has been pointed out that the effect of injection of PMMA in spinal compression fractures is not better than that of conservative treatment. Therefore, related fields have been seeking a better material for spinal injection to solve the shortcomings of the current treatment or repair of fractures with PMMA.
本案發明人意外發現使用熱塑性生物相容聚合物來包封骨骼替代物,可形成一生物可分解的骨複合材料,其經加熱後因聚合物液化而形成容易操作的可注射材料,待冷卻固化後則擁有接近人體疏鬆骨的機械支持力,因此,除可替代PMMA用於治療脊椎壓迫性骨折外,也可用於身體內其他需要骨骼填充物的地方。The inventors of the present application have unexpectedly discovered that the use of thermoplastic biocompatible polymers to encapsulate bone substitutes can form a biodegradable bone composite material, which is heated to form an injectable material that is easy to handle due to the liquefaction of the polymer, and is cooled to solidify The latter has a mechanical support close to the human body's loose bone. Therefore, in addition to replacing PMMA for the treatment of vertebral compression fractures, it can also be used in other places in the body that require bone fillers.
本發明第一態樣係有關一種生物可分解之注射式骨複合材料,包含一生物可分解之熱塑性高分子製成的外殼,以及一骨骼替代物,包覆在該外殼所形成的空間內;其中,該生物可分解之熱塑性高分子的分子量介於7,000 至150,000間,且該外殼與該骨骼替代物在該骨複合材料中的重量比與體積比均為1:1至1:19間。The first aspect of the present invention relates to a biodegradable injectable bone composite material, comprising a shell made of a biodegradable thermoplastic polymer, and a bone substitute encapsulated in the space formed by the shell; Wherein, the molecular weight of the biodegradable thermoplastic polymer is between 7,000 and 150,000, and the weight ratio and volume ratio of the shell and the bone substitute in the bone composite material are both between 1:1 and 1:19.
依據本發明實施方式,適合製成外殼的生物可分解之熱塑性高分子例子包括,但不限於,矽膠、聚己内酯(Polycaprolactone, PCL)、聚甘醇酸(Poly(glycolic acid))、聚乳酸(Polylactic acid, PLA)、聚(L-乳酸)、聚(D-, L-乳酸)、聚(乳酸-共-甘醇酸)(Poly(lactic-co-glycolic acid), PLGA)、聚羥基丁酸酯(Polyhydroxybutyrate)、聚對二氧六環酮(Polydioxanone)、聚(己內酯-共-甘醇酸(poly(ε-caprolactone-co-glycolide))、聚醯胺酯(Poly(ester amide), PEA)、聚乙二醇(Polyethylene glycol, PEG)、聚磷氮烯(Polyphosphazene)、聚原磷酯(Polyorthoesters)、聚酐(polyanhydrides)及其組合。依據特定實施方式,適合作為外殼的生物可分解熱塑性高分子為PCL。Examples of biodegradable thermoplastic polymers suitable for making shells according to embodiments of the present invention include, but are not limited to, silica gel, polycaprolactone (PCL), polyglycolic acid (polyglycolic acid), Lactic acid (Polylactic acid, PLA), poly (L-lactic acid), poly (D-, L-lactic acid), poly (lactic-co-glycolic acid) (Poly(lactic-co-glycolic acid), PLGA), poly Polyhydroxybutyrate (Polyhydroxybutyrate), Polydioxanone (Polydioxanone), Poly(caprolactone-co-glycolide), Polyamide (Poly( ester amide), PEA), polyethylene glycol (Polyethylene glycol, PEG), polyphosphazene (Polyphosphazene), polyorthophosphoric esters (Polyorthoesters), polyanhydrides (polyanhydrides) and combinations thereof. According to certain embodiments, suitable as The biodegradable thermoplastic polymer of the shell is PCL.
依據本發明實施方式,適合作為骨骼替代物的例子包括,但不限於,陶瓷、生物玻璃、矽、鍶、鎂、羥基磷灰石(Hydroxyapatite, HA)、三鈣磷酸鹽(Tricalcium phosphate, TCP)、硫酸鈣、焦磷酸二鈣、四鈣磷酸鹽及其組合。依據特定實施方式,適合作為骨骼替代物的是HA與TCP的混合物。Examples of suitable bone substitutes according to embodiments of the present invention include, but are not limited to, ceramics, bioglass, silicon, strontium, magnesium, hydroxyapatite (HA), tricalcium phosphate (TCP) , calcium sulfate, dicalcium pyrophosphate, tetracalcium phosphate, and combinations thereof. According to certain embodiments, suitable as a bone substitute is a mixture of HA and TCP.
依據特定實施方式,本發明骨複合材料係以PCL製成外殼,其內填充以HA/TCP(HA:TCP =2:3, 重量比)組成的骨骼替代物,且該外殼與該骨骼替代物在該骨複合材料中的重量比為1:4且體積比為1:9。According to a specific embodiment, the bone composite material of the present invention is made of PCL as a shell, which is filled with a bone substitute composed of HA/TCP (HA:TCP = 2:3, weight ratio), and the shell and the bone substitute are filled. The weight ratio in this bone composite was 1:4 and the volume ratio was 1:9.
依據某些實施方式,本發明之骨複合材料可更包含一顯影劑、一抗生素或其之組合,其係與骨骼替代物一起被包覆在該外殼所形成的空間內。According to certain embodiments, the bone composite material of the present invention may further comprise a contrast agent, an antibiotic or a combination thereof, which are coated with the bone substitute in the space formed by the shell.
本發明第二態樣係提供一種以上述骨複合材料來製備一用以治療骨折或骨疏鬆之藥物的用途。所述藥物內 的骨複合材料於90℃下受熱1分鐘後會形成熔融狀態,進而使該骨複合材料能以熔融狀態被投予至一個體之骨折或骨疏鬆處。The second aspect of the present invention provides a use of the above-mentioned bone composite material to prepare a medicament for treating fracture or osteoporosis. The bone composite material in the drug will form a molten state after being heated at 90°C for 1 minute, thereby enabling the bone composite material to be administered in a molten state to a fractured or osteoporotic site of an individual.
依據本發明實施方式,上述熔融狀態的骨複合材料係以注射方式被投予至該骨折或骨疏鬆處。According to an embodiment of the present invention, the molten bone composite material is administered to the fractured or osteoporotic site by injection.
在參閱以下的說明及申請專利範圍後,本發明的其他態樣及優點當可輕易瞭解。Other aspects and advantages of the present invention will become readily apparent upon review of the following description and claims.
為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description for the embodiments and specific embodiments of the present invention; but this is not the only form of implementing or using the specific embodiments of the present invention. The features of various specific embodiments as well as method steps and sequences for constructing and operating these specific embodiments are encompassed in the detailed description. However, other embodiments may also be utilized to achieve the same or equivalent function and sequence of steps.
整體而言,本發明涉及發現使用熱塑性生物相容聚合物來包封骨骼替代物,可形成一生物可分解的骨複合材料,其經加熱後因聚合物液化而形成容易操作的可注射材料,待冷卻固化後則擁有接近人體疏鬆骨的機械支持力,因此,本揭示內容的骨複合材料除了可替代PMMA用於治療脊椎壓迫性骨折外,也可用於填充或修補身體內其他需要骨骼填充物的地方。In general, the present invention relates to the discovery that the use of thermoplastic biocompatible polymers to encapsulate bone substitutes results in the formation of a biodegradable bone composite which upon heating results in liquefaction of the polymer to form an easily handled injectable material, After being cooled and solidified, it has mechanical support close to the human body's loose bone. Therefore, the bone composite material of the present disclosure can not only replace PMMA for treating vertebral compression fractures, but also can be used for filling or repairing other bone fillers in the body. The place.
1.1. 生物可分解的骨複合材料Biodegradable Bone Composite
請參照圖1及圖2,其分別繪示出依據本揭示內容所製成的生物可分解的骨複合材料10,包含一由生物可分解的熱塑性高分子製成的外殼(11, 12),以及一骨骼替代物20,位於該生物可分解之熱塑性高分子製成的外殼(11, 12)所形成的空間內。Please refer to FIG. 1 and FIG. 2 , which respectively illustrate a biodegradable
依據本揭示內容之實施方式,所述生物可分解的骨複合材料10之高分子外殼(11, 12)係由分子量介於7,000 至150,000間之熱塑性高分子材料,透過擠壓成型、射出成形、熱成形、吹模、旋轉成形、壓延或澆鑄等方法製成可互相接合的上、下殼體(11, 12),共同形成一可容納骨骼替代物20於其中的內部空間,例如圖1(A)及圖2(A)所示。須知,本揭示內容之生物可分解的熱塑性高分子殼體並不僅限於圖1或圖2所示的圓柱體形,尚可製成諸如長方體柱狀、錐體狀、球狀或其他不規則形狀,此形狀並不會限制此生物可分解可注射骨複合材料之功能。According to the embodiment of the present disclosure, the polymer shells (11, 12) of the biodegradable bone
依據本揭示內容之實施方式,適合的生物可分解式熱塑性高分子材料的分子量介於7,000 至150,000間,例如7,000、8,000、9,000、10,000、15,000、20,000、25,000、30,000、35,000、40,000、45,000、50,000、55,000、60,000、65,000、70,000、75,000、80,000、85,000、90,000、95,000、100,000、105,000、110,000、115,000、12,000、125,000、130,000、135,000、140,000、145,000及150,000;較佳是介於10,000 至120,000間,例如、15,000、20,000、25,000、30,000、35,000、40,000、45,000、50,000、55,000、60,000、65,000、70,000、75,000、80,000、85,000、90,000、95,000、100,000、105,000、110,000、115,000及12,000間;更佳是介於45,000至90,000間,例如45,000、50,000、55,000、60,000、65,000、70,000、75,000、80,000、85,000、及90,000。According to embodiments of the present disclosure, suitable biodegradable thermoplastic polymer materials have molecular weights between 7,000 and 150,000, eg 50,000、55,000、60,000、65,000、70,000、75,000、80,000、85,000、90,000、95,000、100,000、105,000、110,000、115,000、12,000、125,000、130,000、135,000、140,000、145,000及150,000;較佳是介於10,000 至120,000 For example, 15,000, 20,000, 25,000, 30,000, 35,000, 45,000, 45,000, 50,000, 55,000, 65,000, 70,000, 75,000, 85,000, 95,000, 105,000, 105,000, 115,000, 115,000, 105,000, 105,000, 105,000, 105,000, 105,000, 105,000, 105,000, 105,000, 105,000, 105,000, 115,000, 115,000 and 115,000 and 115,000. The preferred range is between 45,000 and 90,000, such as 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, and 90,000.
適合的生物可分解式熱塑性高分子材料的例子包括,但不限於,矽膠、聚己内酯(Polycaprolactone, PCL)、聚甘醇酸(Poly(glycolic acid))、聚乳酸(Polylactic acid, PLA)、聚(L-乳酸)、聚(D-, L-乳酸)、聚(乳酸-共-甘醇酸)(Poly(lactic-co-glycolic acid), PLGA)、聚羥基丁酸酯(Polyhydroxybutyrate)、聚對二氧六環酮(Polydioxanone)、聚(己內酯-共-甘醇酸(poly(ε-caprolactone-co-glycolide))、聚醯胺酯(Poly(ester amide), PEA)、聚乙二醇(Polyethylene glycol, PEG)、聚磷氮烯(Polyphosphazene)、聚原磷酯(Polyorthoesters)、聚酐(polyanhydrides)及其組合。依據某些實施方式,適合製作殼體的生物可分解式熱塑性高分子為分子量介於10,000至80,000間的PCL。Examples of suitable biodegradable thermoplastic polymer materials include, but are not limited to, silicone, polycaprolactone (PCL), polyglycolic acid (polyglycolic acid), polylactic acid (PLA) , poly(L-lactic acid), poly(D-, L-lactic acid), poly(lactic-co-glycolic acid) (Poly(lactic-co-glycolic acid), PLGA), polyhydroxybutyrate (Polyhydroxybutyrate) , Polydioxanone, Poly(caprolactone-co-glycolide), Poly(ester amide, PEA), Polyethylene glycol (PEG), polyphosphazene, polyorthoesters (polyorthoesters), polyanhydrides (polyanhydrides), and combinations thereof. According to certain embodiments, biodegradable suitable for making shells The thermoplastic polymer of the formula is PCL with a molecular weight between 10,000 and 80,000.
依據某些實施方式,所揭示生物可分解式熱塑性高分子材料製成的上、下殼體(11, 12)共同形成一中空腔室,用以容納骨骼替代物20於其中。所述上、下殼體(11, 12)接合端可以任何習知方式加以黏合,例如超音波融接或是熱融接等方式,因而形成本發明的骨複合材料10,如圖1(B)及圖2(B)所示。According to certain embodiments, the disclosed upper and lower shells (11, 12) made of the biodegradable thermoplastic polymer material together form a hollow chamber for accommodating the
依據本發明實施方式,適合作為骨骼替代物的例子包括,但不限於,陶瓷、生物玻璃、矽、鍶、鎂、羥基磷灰石(Hydroxyapatite, HA)、三鈣磷酸鹽(Tricalcium phosphate, TCP)、硫酸鈣、焦磷酸二鈣、四鈣磷酸鹽及其之組合。依據某些實施方式,骨骼替代物是由兩種不同材料以重量比1:1至10:1的比例混合而成,例如1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、2:1、2:3、2:5、2:7、2:9、3:1、3:2、3:4、3:5、3:7、3:8、3:10、4:1、4:3、4:5、4:7、4:9、5:1、5:2、5:3、5:4、5:6、5:7、5:8、5:9、6:1、6:5、6:7、7:1、7:2、7:3、7:4、7:5、7:6、7:8、7:9、7:10、8:1、8:3、8:5、8:7、8:9、9:1、9:2、9:4、9:5、9:7、9:8、9:10及10:1。依據本揭示內容較佳實施方式,骨骼替代物是由HA及TCP以重量比2:3的比例混合而成。Examples of suitable bone substitutes according to embodiments of the present invention include, but are not limited to, ceramics, bioglass, silicon, strontium, magnesium, hydroxyapatite (HA), tricalcium phosphate (TCP) , calcium sulfate, dicalcium pyrophosphate, tetracalcium phosphate and combinations thereof. According to some embodiments, the bone substitute is composed of two different materials mixed in a weight ratio of 1:1 to 10:1, eg 1:1, 1:2, 1:3, 1:4, 1:1: 5, 1:6, 1:7, 1:8, 1:9, 1:10, 2:1, 2:3, 2:5, 2:7, 2:9, 3:1, 3:2, 3:4, 3:5, 3:7, 3:8, 3:10, 4:1, 4:3, 4:5, 4:7, 4:9, 5:1, 5:2, 5: 3, 5:4, 5:6, 5:7, 5:8, 5:9, 6:1, 6:5, 6:7, 7:1, 7:2, 7:3, 7:4, 7:5, 7:6, 7:8, 7:9, 7:10, 8:1, 8:3, 8:5, 8:7, 8:9, 9:1, 9:2, 9: 4, 9:5, 9:7, 9:8, 9:10 and 10:1. According to the preferred embodiment of the present disclosure, the bone substitute is prepared by mixing HA and TCP in a weight ratio of 2:3.
依據本揭示內容實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20在該骨複合材料10中的重量比為1:1至1:19,例如1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、及1:19。依據某些實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20在該骨複合材料10中的重量比為1:1。依據其他實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20在該骨複合材料10中的重量比為1:4。依據進一步的其他實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20在該骨複合材料10中的重量比為1:19。另外,須注意的是所述熱塑性高分子外殼(11, 12)與包覆在其中的骨骼替代物20彼此在該骨複合材料10所佔據的體積空間比也介於1:1 至 1:19間,例如1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、及1:19。依據某些實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20彼此在該骨複合材料10所佔據的體積空間比為1:4。依據較佳實施方式,該生物可分解式熱塑性高分子外殼(11, 12)與該骨骼替代物20彼此在該骨複合材料10所佔據的體積空間比為1:9。According to the embodiment of the present disclosure, the weight ratio of the biodegradable thermoplastic polymer shell (11, 12) and the
依據某些非必要的實施方式,本發明之骨複合材料可更包含一顯影劑、一抗生素或其之組合,其係與骨骼替代物一起被包覆在生物可分解式熱塑性高分子外殼所形成的空間內。According to some optional embodiments, the bone composite material of the present invention may further comprise a developer, an antibiotic or a combination thereof, which is formed by coating the biodegradable thermoplastic polymer shell together with the bone substitute. within the space.
2.生物可分解的骨複合材料之用途 2. Use of biodegradable bone composites
本發明第二態樣係關於以上述生物可分解式骨複合材料來治療骨折或骨疏鬆。依據較佳實施方式,可利用特殊器械加熱上述生物可分解式骨複合材料使其液化成熔融狀態後,再利用微創注射將之投予至所欲治療患部(即,骨折或骨疏鬆處)。The second aspect of the present invention relates to the above-mentioned biodegradable bone composite material for the treatment of fractures or osteoporosis. According to a preferred embodiment, the above-mentioned biodegradable bone composite material can be heated by special equipment to liquefy it into a molten state, and then injected into the affected part (ie, fracture or osteoporosis) by minimally invasive injection. .
依據本揭示內容較佳實施方式,上述生物可分解式骨複合材料10於約90℃的溫度下加熱約1分鐘後,其生物可分解式熱塑性高分子外殼(11, 12)會液化形成熔融狀態,並包覆住其內的骨骼替代物20,因此,可透過注射方式,將熔融狀態的骨複合材料10注入至患部,待患部處熔融之骨複合材料10再度因冷卻而固化後,即可達到治療骨折或骨疏鬆的目的。According to a preferred embodiment of the present disclosure, after the biodegradable
依據本揭示內容較佳實施方式,固化後的骨複合材料10內部呈現不規則格子狀結構,且其機械支持力強度接近人體疏鬆骨,在3-40MPa間,遠低於習知PMMA所能承受的壓力(250 MPa),因此,適合用來包覆並修補骨折及治療骨疏鬆。According to the preferred embodiment of the present disclosure, the cured
此外,相較於習知方式以高分子聚合物(如,PMMA)與骨粉的混合物來修補骨折,因聚合物固化後應力太高以及填補處因聚合物係與骨粉彼此混合造成骨細胞生長不易的缺點來說,本發明骨複合材料的特殊結構,亦即,聚合物外殼包覆骨粉於其中,彼此不互相混合,但當聚合物外殼在加熱熔融後可包裹住原先充填於其中的骨粉,再藉由聚合物熔融後所形成的柔軟可操作形式,得以注射或擠壓形式來施用本發明骨複合材料於骨折處並可調整所施用的骨複合材料使其符合待修補處的形狀,因填補的骨複合材料內部仍多數為骨粉,僅混入少許高分子聚合物,骨細胞生長較易,故不會出現習知填補處應力過高或骨細胞生長不易的缺點。In addition, compared with the conventional method of repairing fractures with a mixture of high molecular polymer (eg, PMMA) and bone powder, the stress of the polymer after curing is too high, and the mixing of the polymer system and bone powder at the filling place makes it difficult for bone cells to grow. In terms of the disadvantages of the bone composite material of the present invention, the special structure of the bone composite material of the present invention, that is, the polymer shell wraps the bone powder in it, and does not mix with each other, but when the polymer shell is heated and melted, it can wrap the bone powder originally filled therein. Then, the bone composite material of the present invention can be injected or extruded to apply the bone composite material of the present invention to the fracture by the soft and operable form formed after the polymer is melted, and the applied bone composite material can be adjusted to conform to the shape of the repaired place, because The interior of the filled bone composite material is still mostly bone powder, and only a small amount of high molecular polymer is mixed in, so that the bone cells grow easily, so there will be no disadvantages of the conventional filling place where the stress is too high or the bone cells are not easy to grow.
依據本揭示內容較佳實施方式,在修補骨折或治療骨疏鬆處時,係先藉由X光導引,以一導入針及導入針探針定出生體內欲治療部位(亦即,骨折或骨疏鬆處),同時於另一附有導管探針的導管內依序充填入多個本發明生物可分解骨複合材料,透過一加熱裝置,使填入導管內的生物可分解骨複合材料液化成熔融狀態,再將此裝載有熔融狀態之生物可分解骨複合材料的導管置入導入針內,以導管探針將生物可分解之骨複合材料擠壓入欲治療部位(即,骨折處),非必要地可重複多次擠壓,使欲治療部位處含有足夠量、熔融之生物可分解骨複合材料,待熔融之骨複合材料再次固化後,即可移除導入針,並達成修補骨折或強化骨疏鬆處骨機械強度的目的。According to the preferred embodiment of the present disclosure, when repairing fractures or treating osteoporosis, X-ray guidance is used first, and an introducer needle and an introducer needle probe are used to determine the part to be treated in the body (that is, the fracture or bone). At the same time, a plurality of biodegradable bone composite materials of the present invention are sequentially filled in another catheter with a catheter probe, and a heating device is used to liquefy the biodegradable bone composite materials filled into the catheter into In the molten state, the catheter loaded with the biodegradable bone composite material in the molten state is placed into the introduction needle, and the biodegradable bone composite material is extruded into the site to be treated (ie, the fracture site) with the catheter probe, Unnecessarily, the extrusion can be repeated several times to make the area to be treated contain a sufficient amount of molten biodegradable bone composite material. After the molten bone composite material is solidified again, the introduction needle can be removed, and the fracture or fracture can be repaired. The purpose of strengthening the mechanical strength of bone in osteoporosis.
本發明的實施方式可利用本領域所熟知的任一種適當方法來實踐之。以下說明僅提供某部分的實施例。本領域技術人員當可理解該些實施例僅供說明之用,並可在不悖離本發明範疇的前提下,對本發明進行修改及變化。Embodiments of the invention may be practiced using any suitable method known in the art. The following description provides only some examples of examples. It should be understood by those skilled in the art that these embodiments are for illustration only, and modifications and changes can be made to the present invention without departing from the scope of the present invention.
實施例 1 本發明骨複合材料之製備及特性分析Example 1 Preparation and characteristic analysis of the bone composite material of the present invention
1.11.1 製備preparation
在本實施例中,依照表1配方以不同分子量的聚己内酯(PCL)透過擠壓成型脫模方式來製造出高分子中空膠囊,其外殼直徑4毫米,高10毫米,厚度0.2毫米,內部(直徑3.8毫米 x 14.6毫米) 空間則可充填各式骨替代物,藉以形成本發明的骨複合材料。In this example, according to the formula in Table 1, polycaprolactone (PCL) with different molecular weights was used to manufacture hollow polymer capsules by extrusion molding and demoulding. The shell diameter was 4 mm, height was 10 mm, and thickness was 0.2 mm. The internal (3.8 mm diameter x 14.6 mm) space can be filled with various bone substitutes to form the bone composite of the present invention.
表1
1.21.2 分析analyze
將依據表1配方1-3所形成的骨複合材料,置於導管內於攝氏90度加熱一分鐘,高分子膠囊外殼會液化並與部分陶瓷骨粉混和,包覆住其餘未混和之骨粉,降溫後於三分鐘內固化,接著觀察其內部結構並測量其可承受的應力。The bone composite material formed according to the formula 1-3 in Table 1 is placed in the catheter and heated at 90 degrees Celsius for one minute. The polymer capsule shell will be liquefied and mixed with part of the ceramic bone powder, covering the rest of the unmixed bone powder and cooling. After curing within three minutes, the internal structure was observed and the stress it could withstand was measured.
結果顯示,依據上述配方1-3所製成的骨複合材料,其固化後的內部結構均呈現不規則格子狀,且機械支持力強度接近人體疏鬆骨,在3-40 MPa間,遠低於習知壓克力骨水泥所能承受的壓力(250 MPa),因此,適合用來包覆並修補骨折及治療骨疏鬆。The results show that the bone composite materials prepared according to the above formulas 1-3 have an irregular lattice-like internal structure after curing, and the mechanical support strength is close to that of human porous bone, between 3-40 MPa, much lower than Knowing the pressure that acrylic bone cement can withstand (250 MPa), it is suitable for covering and repairing fractures and treating osteoporosis.
儘管本發明的實施方式已經描述一定的實施方式,本發明所屬技術領域具有通常知識者當可從本發明中獲益,並可在不悖離本揭示內容範圍的情形下,理解其他經設計的實施方式。據此,本發明的範圍應以隨附的申請專利範圍為準。Although the embodiments of the invention have been described in certain embodiments, those skilled in the art to which this invention pertains will have the benefit of the invention and will appreciate other devised arrangements without departing from the scope of this disclosure. implementation. Accordingly, the scope of the present invention should be subject to the appended claims.
10:骨複合材料10: Bone Composite
11:上殼體11: Upper shell
12:下殼體12: Lower shell
20:骨骼替代物20: Bone Replacement
圖1A及1B分別繪示出依據本揭示內容一實施方式所製成的生物可分解的注射式骨複合材料10之熱塑性高分子上、下殼體(11, 12)接合前(A)與接合後(B)的示意圖);及1A and 1B respectively illustrate the thermoplastic polymer upper and lower shells ( 11 , 12 ) of the biodegradable injectable bone
圖2A及2B分別繪示出依據本揭示內容另一實施方式所製成的生物可分解的注射式骨複合材料10之熱塑性高分子上、下殼體(11, 12)接合前(A)與接合後(B)的示意圖。2A and 2B respectively illustrate the thermoplastic polymer upper and lower shells ( 11 , 12 ) of the biodegradable injectable bone
10:骨複合材料10: Bone Composite
11:上殼體11: Upper shell
12:下殼體12: Lower shell
20:骨骼替代物20: Bone Replacement
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108136681 | 2019-10-09 | ||
TW108136681 | 2019-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202116363A TW202116363A (en) | 2021-05-01 |
TWI770631B true TWI770631B (en) | 2022-07-11 |
Family
ID=77020540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109135063A TWI770631B (en) | 2019-10-09 | 2020-10-08 | Biodegrable and injectable bone composite and uses thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI770631B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113274551A (en) * | 2021-05-08 | 2021-08-20 | 赵赫凯 | Absorbable bone cement regeneration repair material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103330959A (en) * | 2013-06-04 | 2013-10-02 | 东南大学 | Prestress-reinforced light high-strength controllable-degradation medical composite material and preparation method thereof |
TW201805028A (en) * | 2017-09-08 | 2018-02-16 | 山東冠龍醫療用品有限公司 | Bone cement composition kit |
CN109803613A (en) * | 2016-06-30 | 2019-05-24 | 泰克尼梅德公司 | Bone substitute and independent injecting systems |
-
2020
- 2020-10-08 TW TW109135063A patent/TWI770631B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103330959A (en) * | 2013-06-04 | 2013-10-02 | 东南大学 | Prestress-reinforced light high-strength controllable-degradation medical composite material and preparation method thereof |
CN109803613A (en) * | 2016-06-30 | 2019-05-24 | 泰克尼梅德公司 | Bone substitute and independent injecting systems |
TW201805028A (en) * | 2017-09-08 | 2018-02-16 | 山東冠龍醫療用品有限公司 | Bone cement composition kit |
Also Published As
Publication number | Publication date |
---|---|
TW202116363A (en) | 2021-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10889029B2 (en) | Methods of augmenting, reducing, and repairing bone with thermoplastic materials | |
CN1988923B (en) | Bone substitute compositions and method of use | |
US4365357A (en) | Surgical materials suitable for use with bone cements | |
US8211458B2 (en) | Methods of performing medical procedures that promote bone growth, methods of making compositions that promote bone growth, and apparatus for use in such methods | |
CA2782044C (en) | Adhesive delivery devices, systems and methods | |
JP2011528959A (en) | Fracture fixation system | |
EP1000958A1 (en) | Shape-memory, biodegradable and absorbable material | |
CN109803613B (en) | Bone substitute and independent injection system | |
US20090062423A1 (en) | Orthopaedic cement mixtures with low weight percent polyvinyl alcohol (pva) solution | |
CN103908696A (en) | Composites For Osteosynthesis | |
US8562619B2 (en) | Injectable thermoplastic polymers for biological tissue repair | |
JP7197483B2 (en) | bone graft substitute | |
TWI770631B (en) | Biodegrable and injectable bone composite and uses thereof | |
US20150265745A1 (en) | Porous and Nonporous Materials for Tissue Grafting and Repair | |
JP5900909B2 (en) | Three-dimensional structure made from material containing polyhydroxyalkanoate and kit for preparing bone filler | |
WO2022140954A1 (en) | Biodegradable and injectable bone composite and uses thereof | |
CN107737377A (en) | It is a kind of develop for the biodegradable Bone Defect Repari of 3D printing and reconstruction biomaterialses and preparation method thereof | |
JPWO2018115128A5 (en) | ||
TWI299995B (en) | A composition for bone filling in the form of solid body, its preparation process and uses thereof as bone filler | |
Lim et al. | The use of bone adhesive for fracture fixation in long bones—a biomechanical study | |
CN108295305A (en) | A kind of filling material of bone and preparation method thereof | |
Spenciner | Biocomposite Materials for Orthopedic Sports Medicine Implants |