TWI767506B - Image recognition method, training method and equipment of recognition model - Google Patents
Image recognition method, training method and equipment of recognition model Download PDFInfo
- Publication number
- TWI767506B TWI767506B TW110101018A TW110101018A TWI767506B TW I767506 B TWI767506 B TW I767506B TW 110101018 A TW110101018 A TW 110101018A TW 110101018 A TW110101018 A TW 110101018A TW I767506 B TWI767506 B TW I767506B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- model
- detection
- classification
- recognized
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000012549 training Methods 0.000 title claims abstract description 46
- 238000001514 detection method Methods 0.000 claims abstract description 282
- 230000001575 pathological effect Effects 0.000 claims abstract description 184
- 238000000605 extraction Methods 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 22
- 201000010099 disease Diseases 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 210000004027 cell Anatomy 0.000 description 252
- 238000010586 diagram Methods 0.000 description 15
- 206010008263 Cervical dysplasia Diseases 0.000 description 13
- 230000009286 beneficial effect Effects 0.000 description 11
- 208000032124 Squamous Intraepithelial Lesions Diseases 0.000 description 9
- 230000003902 lesion Effects 0.000 description 9
- 208000007879 Atypical Squamous Cells of the Cervix Diseases 0.000 description 8
- 230000006870 function Effects 0.000 description 4
- 208000020082 intraepithelial neoplasia Diseases 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 238000003062 neural network model Methods 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000005859 cell recognition Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 208000020077 squamous cell intraepithelial neoplasia Diseases 0.000 description 3
- 210000004085 squamous epithelial cell Anatomy 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20004—Adaptive image processing
- G06T2207/20012—Locally adaptive
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Analysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
本發明關於人工智慧技術領域,特別是關於一種圖像識別方法、識別模型的訓練方法、設備。The present invention relates to the technical field of artificial intelligence, in particular to an image recognition method, a training method and equipment for a recognition model.
隨著神經網路、深度學習等人工智慧技術的發展,對神經網路模型進行訓練,並利用經訓練的神經網路模型滿足醫學領域中的相關業務需求,逐漸受到人們的青睞。With the development of artificial intelligence technologies such as neural networks and deep learning, training neural network models and using the trained neural network models to meet relevant business needs in the medical field are gradually gaining popularity.
在相關業務需求中,由於國內細胞病理醫生嚴重匱乏,故利用人工智慧技術對病理圖像進行輔助識別,以篩查其中諸如病變細胞等目標細胞,在當前細胞病理醫療資源匱乏的情況下,具有重要意義。有鑑於此,如何準確、高效地識別病理圖像中的目標細胞成為亟待解決的問題。In the related business needs, due to the serious shortage of domestic cytopathologists, artificial intelligence technology is used to assist in the identification of pathological images to screen target cells such as diseased cells. important meaning. In view of this, how to accurately and efficiently identify target cells in pathological images has become an urgent problem to be solved.
本發明實施例提供一種圖像識別方法、識別模型的訓練方法、設備。Embodiments of the present invention provide an image recognition method, a training method and equipment for a recognition model.
本發明實施例提供一種圖像識別方法,包括:獲取待識別病理圖像;採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域;利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別。An embodiment of the present invention provides an image recognition method, comprising: acquiring a pathological image to be recognized; using a detection sub-model in a recognition model to perform target detection on the pathological image to be recognized, to obtain a detection area containing target cells in the pathological image to be recognized ; Use the classification sub-model in the recognition model to perform the first classification process on the detection area to obtain the classification of the target cell.
因此,通過採用識別模型中的檢測子模型對獲取到的待識別病理圖像進行目標檢測,從而得到待識別病理圖像中包含目標細胞的檢測區域,再利用識別模型中的分析子模型對檢測區域檢修第一分類處理,得到目標細胞的類別,進而能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠準確、高效地識別病理圖像中的目標細胞。Therefore, by using the detection sub-model in the recognition model to perform target detection on the acquired pathological image to be recognized, the detection area containing the target cells in the to-be-recognized pathological image is obtained, and then the analysis sub-model in the recognition model is used to detect the target. The first classification process of regional inspection is to obtain the type of target cells, and then the detection of target cells can be carried out first, and then the classification of target cells can be carried out to separate detection and classification, so that target cells in pathological images can be accurately and efficiently identified.
在本發明的一些實施例中,採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域包括:利用檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,其中,圖像分類結果用於表示待識別病理圖像中是否包含目標細胞;若圖像分類結果表示待識別病理圖像中包含目標細胞,則利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域。In some embodiments of the present invention, using the detection sub-model in the recognition model to perform target detection on the pathological image to be recognized, and obtaining the detection area containing the target cells in the pathological image to be recognized includes: using the first part of the detection sub-model to be recognized The pathological image is subjected to a second classification process to obtain an image classification result of the pathological image to be identified, wherein the image classification result is used to indicate whether the pathological image to be identified contains target cells; if the image classification result indicates the pathological image to be identified If the image contains target cells, the second part of the detection sub-model is used to perform region detection on the pathological image to be recognized to obtain a detection region containing the target cells.
因此,通過檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,且圖像分類結果用於表示待識別病理圖像中是否包含目標細胞,當圖像分類結果表示待識別病理圖像中包含目標細胞時,再利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域,故能夠實現目標細胞的動態檢測,提高目標細胞識別的效率。Therefore, by performing the second classification process on the pathological image to be recognized by the first part of the detection sub-model, an image classification result of the pathological image to be recognized is obtained, and the image classification result is used to indicate whether the pathological image to be recognized contains target cells , when the image classification result indicates that the pathological image to be identified contains target cells, the second part of the detection sub-model is used to perform region detection on the pathological image to be identified to obtain the detection area containing the target cells, so the detection of target cells can be achieved. Dynamic detection improves the efficiency of target cell identification.
在本發明的一些實施例中,在利用檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果之後,還包括:若圖像分類結果表示待識別病理圖像中不包含目標細胞,則第一部分輸出待識別病理圖像中不包含目標細胞的檢測結果提示。In some embodiments of the present invention, after performing the second classification process on the pathological image to be recognized by using the first part of the detection sub-model to obtain the image classification result of the pathological image to be recognized, the method further includes: if the image classification result represents If the pathological image to be recognized does not contain target cells, the first part outputs a detection result prompt that the pathological image to be recognized does not contain target cells.
因此,當圖像分類結果表示待識別病理圖像中不包含目標細胞時,第一部分輸出待識別病理圖像中不包含目標細胞的檢測結果提示,故能夠實現目標細胞的動態檢測,提高目標細胞識別的效率。Therefore, when the image classification result indicates that the pathological image to be recognized does not contain target cells, the first part outputs a detection result prompt that the pathological image to be recognized does not contain target cells, so the dynamic detection of target cells can be realized, and the target cells can be improved. identification efficiency.
在本發明的一些實施例中,採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域還包括:利用檢測子模型的第三部分對待識別病理圖像進行特徵提取,得到待識別病理圖像的圖像特徵。In some embodiments of the present invention, using the detection sub-model in the recognition model to perform target detection on the pathological image to be recognized, and obtaining the detection area containing the target cells in the pathological image to be recognized further includes: using the third part of the detection sub-model Feature extraction is performed on the pathological image to be recognized to obtain image features of the pathological image to be recognized.
因此,通過檢測子模型的第三部分對待識別病理圖像進行特徵提取,得到待識別病理圖像的圖像特徵,從而能夠先對待識別病理圖像進行,進而後續在此基礎上再利用檢測子模型進行其他處理,故能夠有利於提高模型的運行效率。Therefore, by extracting the features of the pathological image to be recognized in the third part of the detection sub-model, the image features of the pathological image to be recognized can be obtained, so that the pathological image to be recognized can be processed first, and then the detection sub-model can be used on this basis. The model performs other processing, so it can help to improve the running efficiency of the model.
在本發明的一些實施例中,利用檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,包括:利用檢測子模型的第一部分對圖像特徵進行第二分類處理,得到待識別病理圖像的圖像分類結果。In some embodiments of the present invention, using the first part of the detection sub-model to perform a second classification process on the pathological image to be recognized to obtain an image classification result of the pathological image to be recognized, including: using the first part of the detection sub-model to compare the image The second classification process is performed on the image features to obtain an image classification result of the pathological image to be recognized.
因此,利用檢測子模型的第一部分對第三部分提取得到的圖像特徵進行第二分類處理,得到待識別病理圖像的圖像分類結果,能夠提高分類處理的準確性。Therefore, using the first part of the detection sub-model to perform the second classification process on the image features extracted by the third part to obtain the image classification result of the pathological image to be recognized, which can improve the accuracy of the classification process.
在本發明的一些實施例中,利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域,包括:利用檢測子模型的第二部分對圖像特徵進行區域檢測,得到包含目標細胞的檢測區域。In some embodiments of the present invention, using the second part of the detection sub-model to perform region detection on the pathological image to be recognized to obtain a detection region containing the target cells, comprising: using the second part of the detection sub-model to perform region detection on image features Detected to obtain a detection area containing the target cells.
因此,利用檢測子模型的第二部分對圖像特徵進行區域檢測,得到包含目標細胞的檢測區域,能夠有利於提高目標細胞識別的準確性。Therefore, using the second part of the detection sub-model to perform region detection on image features to obtain a detection region containing target cells can help to improve the accuracy of target cell identification.
在本發明的一些實施例中,第一部分為全域分類網路,第二部分為圖像檢測網路,第三部分為特徵提取網路;其中,特徵提取網路包括可變形卷積層、全域資訊增強模組中的至少一者。In some embodiments of the present invention, the first part is a global classification network, the second part is an image detection network, and the third part is a feature extraction network; wherein the feature extraction network includes a deformable convolution layer, global information at least one of the enhancement mods.
因此,通過將特徵提取網路設置為包括可變形卷積層,能夠提高對多形態的目標細胞進行識別的準確性,通過將特徵提取網路設置為包括全域資訊增強模組中的至少一者,能夠有利於獲取長距離的、具有依賴關係的特徵,有利於提高目標細胞識別的準確性。Therefore, by setting the feature extraction network to include a deformable convolutional layer, the accuracy of identifying polymorphic target cells can be improved, and by setting the feature extraction network to include at least one of the global information enhancement modules, It is beneficial to obtain long-distance and dependent features, and is beneficial to improve the accuracy of target cell identification.
在本發明的一些實施例中,利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別,包括:利用分類子模型對待識別病理圖像的檢測區域進行特徵提取,得到檢測區域的圖像特徵;對檢測區域的圖像特徵進行第一分類處理,得到目標細胞的類別。In some embodiments of the present invention, using the classification sub-model in the recognition model to perform a first classification process on the detection area to obtain the category of the target cell, including: using the classification sub-model to perform feature extraction on the detection area of the pathological image to be recognized, The image features of the detection area are obtained; the first classification processing is performed on the image features of the detection area to obtain the category of the target cells.
因此,通過對待識別病理圖像的檢測區域進行特徵提取,得到檢測區域的圖像特徵,並對檢測區域的圖像特徵進行第一分類處理,得到目標細胞的類別,能夠有利於提高分類處理的效率。Therefore, by performing feature extraction on the detection area of the pathological image to be recognized, the image features of the detection area are obtained, and the first classification processing is performed on the image features of the detection area to obtain the category of target cells, which can help improve the efficiency of classification processing. efficiency.
在本發明的一些實施例中,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度。In some embodiments of the present invention, the target cell includes any one of a single diseased cell and a diseased cell cluster, and the category of the target cell is used to indicate the diseased degree of the target cell.
因此,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,能夠有利於識別單個病變細胞和病變細胞團簇,且目標細胞的類別用於表示目標細胞的病變程度,有利於實現目標細胞的病變分級。Therefore, the target cell includes any one of a single diseased cell and a diseased cell cluster, which can help to identify a single diseased cell and a diseased cell cluster, and the type of the target cell is used to indicate the degree of disease of the target cell, which is conducive to achieving the target Lesion grading of cells.
本發明實施例提供一種識別模型的訓練方法,識別模型包括檢測子模型和分類子模型,訓練方法包括:獲取第一樣本圖像和第二樣本圖像,其中,第一樣本圖像中標注有與目標細胞對應的實際區域,第二樣本圖像中標注有目標細胞的實際類別;利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域,並利用分類子模型對第二樣本圖像進行第一分類處理,得到目標細胞的預測類別;基於實際區域與預測區域,確定檢測子模型的第一損失值,並基於實際類別與預測類別,確定分類子模型的第二損失值;利用第一損失值和第二損失值,對應調整檢測子模型和分類子模型的參數。An embodiment of the present invention provides a training method for an identification model, the identification model includes a detection sub-model and a classification sub-model, and the training method includes: acquiring a first sample image and a second sample image, wherein the first sample image is The actual area corresponding to the target cell is marked, and the actual category of the target cell is marked in the second sample image; the detection sub-model is used to perform target detection on the first sample image, and it is obtained that the first sample image contains the target cell and use the classification sub-model to perform the first classification process on the second sample image to obtain the predicted category of the target cell; based on the actual area and the predicted area, determine the first loss value of the detection sub-model, and based on the actual category and The category is predicted, and the second loss value of the classification sub-model is determined; the parameters of the detection sub-model and the classification sub-model are adjusted correspondingly by using the first loss value and the second loss value.
因此,在訓練過程中,能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠解決樣本資料類別不平衡的問題,進而能夠有利於提高訓練得到的模型的準確性,從而能夠有利於提高目標細胞識別的準確性和效率。Therefore, in the training process, the detection of target cells can be carried out first, and then the classification of target cells can be carried out, and the detection and classification can be separated, so as to solve the problem of unbalanced sample data categories, which can help to improve the accuracy of the model obtained by training. Therefore, it can help to improve the accuracy and efficiency of target cell identification.
在本發明的一些實施例中,利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域包括:對第一樣本圖像進行第二分類處理,得到第一樣本圖像的圖像分類結果,其中,圖像分類結果用於表示第一樣本圖像中是否包含目標細胞;若圖像分類結果表示第一樣本圖像中包含目標細胞,則對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域。In some embodiments of the present invention, using the detection sub-model to perform target detection on the first sample image, and obtaining the predicted region containing the target cells in the first sample image includes: performing a second step on the first sample image. The classification process is performed to obtain an image classification result of the first sample image, wherein the image classification result is used to indicate whether the first sample image contains target cells; if the image classification result indicates that the first sample image contains If the target cell is included, the region detection is performed on the first sample image to obtain a predicted region including the target cell.
因此,在訓練過程中,當圖像分類結果表示第一樣本圖像中包含目標細胞時,再對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域,能夠增強模型識別正負樣本的能力,降低誤檢概率,有利於提高訓練得到的模型的準確性,從而能夠有利於提高目標細胞識別的準確性。Therefore, in the training process, when the image classification result indicates that the first sample image contains target cells, the region detection is performed on the first sample image to obtain the predicted area containing the target cells, which can enhance the model to identify positive and negative The ability of the sample to reduce the probability of false detection is conducive to improving the accuracy of the model obtained by training, which can help to improve the accuracy of target cell recognition.
在本發明的一些實施例中,在利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域,並利用分類子模型對第二樣本圖像進行第一分類處理,得到目標細胞的預測類別之前,方法還包括:對第一樣本圖像和第二樣本圖像進行資料增強;和/或,將第一樣本圖像和第二樣本圖像中的圖元值進行歸一化處理;目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度。In some embodiments of the present invention, the detection sub-model is used to perform target detection on the first sample image to obtain a predicted region containing target cells in the first sample image, and the classification sub-model is used to perform target detection on the second sample image. Like performing the first classification process to obtain the predicted category of the target cell, the method further includes: performing data enhancement on the first sample image and the second sample image; and/or, combining the first sample image and the second sample image The primitive values in the sample image are normalized; the target cell includes any one of a single diseased cell and a diseased cell cluster, and the category of the target cell is used to represent the diseased degree of the target cell.
因此,通過對第一樣本圖像和第二樣本圖像進行資料增強能夠提高樣本多樣性,有利於避免過擬合,提高模型的泛化性能;通過將第一樣本圖像和第二樣本圖像中的圖元值進行歸一化處理,能夠有利於提高模型的收斂速度;目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度,能夠有利於識別單個病變細胞和病變細胞團簇,且目標細胞的類別用於表示目標細胞的病變程度,有利於實現目標細胞的病變分級。Therefore, by enhancing the data of the first sample image and the second sample image, the sample diversity can be improved, which is beneficial to avoid overfitting and improve the generalization performance of the model; The primitive values in the sample image are normalized, which can help to improve the convergence speed of the model; the target cell includes any one of a single diseased cell or a diseased cell cluster, and the category of the target cell is used to represent the target cell's The degree of lesion can help to identify a single lesion cell and a cluster of lesion cells, and the category of the target cell is used to represent the lesion degree of the target cell, which is beneficial to achieve the lesion classification of the target cell.
本發明實施例提供一種圖像識別裝置,包括:圖像獲取模組、圖像檢測模組和圖像分類別模組,圖像獲取模組配置為獲取待識別病理圖像;圖像檢測模組配置為採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域;圖像分類別模組配置為利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別。An embodiment of the present invention provides an image recognition device, including: an image acquisition module, an image detection module and an image classification module, the image acquisition module is configured to acquire pathological images to be recognized; the image detection module The group is configured to use the detection sub-model in the recognition model to perform target detection on the pathological image to be recognized, and obtain the detection area containing the target cells in the pathological image to be recognized; the image classification module is configured to use the classification sub-model in the recognition model. A first classification process is performed on the detection area to obtain the category of the target cell.
本發明實施例提供一種識別模型的訓練裝置,識別模型包括檢測子模型和分類子模型,識別模型的訓練裝置包括:圖像獲取模組、模型執行模組、損失確定模組、參數調整模組,圖像獲取模組配置為獲取第一樣本圖像和第二樣本圖像,其中,第一樣本圖像中標注有與目標細胞對應的實際區域,第二樣本圖像中標注有目標細胞的實際類別;模型執行模組配置為利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域,並利用分類子模型對第二樣本圖像進行第一分類處理,得到目標細胞的預測類別;損失確定模組配置為基於實際區域與預測區域,確定檢測子模型的第一損失值,並基於實際類別與預測類別,確定分類子模型的第二損失值;參數調整模組配置為利用第一損失值和第二損失值,對應調整檢測子模型和分類子模型的參數。An embodiment of the present invention provides a training device for an identification model. The identification model includes a detection sub-model and a classification sub-model. The training device for the identification model includes: an image acquisition module, a model execution module, a loss determination module, and a parameter adjustment module , the image acquisition module is configured to acquire a first sample image and a second sample image, wherein the first sample image is marked with the actual area corresponding to the target cell, and the second sample image is marked with the target The actual category of the cell; the model execution module is configured to use the detection sub-model to perform target detection on the first sample image, obtain the predicted area containing the target cell in the first sample image, and use the classification sub-model to detect the second sample. The image is subjected to the first classification process to obtain the predicted category of the target cell; the loss determination module is configured to determine the first loss value of the detection sub-model based on the actual area and the predicted area, and determine the classification sub-model based on the actual category and the predicted category. The parameter adjustment module is configured to use the first loss value and the second loss value to correspondingly adjust the parameters of the detection sub-model and the classification sub-model.
本發明實施例提供一種電子設備,包括相互耦接的記憶體和處理器,處理器配置為執行記憶體中儲存的程式指令,以實現上述一個或多個實施例中的圖像識別方法,或實現上述一個或多個實施例中的識別模型的訓練方法。An embodiment of the present invention provides an electronic device, including a memory and a processor coupled to each other, the processor is configured to execute program instructions stored in the memory, so as to implement the image recognition method in one or more of the foregoing embodiments, or The training method of the recognition model in one or more of the above embodiments is implemented.
本發明實施例提供一種電腦可讀儲存介質,其上儲存有程式指令,程式指令被處理器執行時實現上述一個或多個實施例中的圖像識別方法,或實現上述一個或多個實施例中的識別模型的訓練方法。An embodiment of the present invention provides a computer-readable storage medium on which program instructions are stored. When the program instructions are executed by a processor, the image recognition method in one or more of the foregoing embodiments is implemented, or one or more of the foregoing embodiments are implemented. The training method of the recognition model in .
本發明實施例提供一種電腦程式,包括電腦可讀代碼,當所述電腦可讀代碼在電子設備中運行時,所述電子設備中的處理器執行用於實現上述一個或多個實施例中的圖像識別方法,或上述一個或多個實施例中的識別模型的訓練方法。An embodiment of the present invention provides a computer program, including computer-readable code. When the computer-readable code is executed in an electronic device, a processor in the electronic device executes the program for implementing one or more of the foregoing embodiments. The image recognition method, or the training method of the recognition model in one or more of the above embodiments.
上述方案,通過採用識別模型中的檢測子模型對獲取到的待識別病理圖像進行目標檢測,從而得到待識別病理圖像中包含目標細胞的檢測區域,再利用識別模型中的分析子模型對檢測區域檢修第一分類處理,得到目標細胞的類別,進而能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠準確、高效地識別病理圖像中的目標細胞。In the above scheme, by using the detection sub-model in the recognition model to perform target detection on the acquired pathological image to be recognized, the detection area containing the target cells in the to-be-recognized pathological image is obtained, and then the analysis sub-model in the recognition model is used to detect the target cells. The detection area is inspected by the first classification process to obtain the type of the target cells, and then the detection of the target cells can be carried out first, and then the classification of the target cells can be carried out, and the detection and classification can be separated, so that the target cells in the pathological image can be accurately and efficiently identified. .
以下面結合說明書附圖,對本發明實施例的方案進行詳細說明。The solutions of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
以下描述中,為了說明而不是為了限定,提出了諸如特定系統結構、介面、技術之類的具體細節,以便透徹理解本發明實施例。In the following description, for the purpose of illustration rather than limitation, specific details, such as specific system structures, interfaces, and technologies, are set forth in order to provide a thorough understanding of the embodiments of the present invention.
本文中術語“系統”和“網路”在本文中常被可互換使用。本文中術語“和/或”,僅僅是一種描述關聯物件的關聯關係,表示可以存在三種關係,例如,A和/或B,可以表示:單獨存在A,同時存在A和B,單獨存在B這三種情況。另外,本文中字元“/”,一般表示前後關聯物件是一種“或”的關係。此外,本文中的“多”表示兩個或者多於兩個。The terms "system" and "network" are often used interchangeably herein. The term "and/or" in this article is only a relationship to describe related objects, which means that there can be three relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. three conditions. In addition, the character "/" in this text generally indicates that the contextually related objects are in an "or" relationship. Also, "multiple" herein means two or more than two.
請參閱圖1,圖1是本發明實施例提供的一種圖像識別方法的流程示意圖。具體而言,可以包括如下步驟。Please refer to FIG. 1. FIG. 1 is a schematic flowchart of an image recognition method provided by an embodiment of the present invention. Specifically, the following steps may be included.
步驟S11:獲取待識別病理圖像。Step S11: Obtain the pathological image to be identified.
待識別病理圖像可以包括但不限於:宮頸病理圖像、肝臟病理圖像、腎臟病理圖像,在此不做限定。The pathological images to be identified may include, but are not limited to: cervical pathological images, liver pathological images, and kidney pathological images, which are not limited herein.
步驟S12:採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域。Step S12: Use the detection sub-model in the recognition model to perform target detection on the pathological image to be recognized, and obtain a detection area containing the target cells in the pathological image to be recognized.
識別模型包括檢測子模型,在一個具體的實施場景中,檢測子模型可以採用Faster RCNN(Region with Convolutional Neural Networks)網路模型。在另一個具體的實施場景中,檢測子模型還可以採用Fast RCNN、YOLO(You Only Look Once)等等,在此不做限定。The recognition model includes a detection sub-model. In a specific implementation scenario, the detection sub-model can use the Faster RCNN (Region with Convolutional Neural Networks) network model. In another specific implementation scenario, the detection sub-model can also use Fast RCNN, YOLO (You Only Look Once), etc., which is not limited here.
利用檢測子模型對待識別病理圖像進行檢測,得到待識別病理圖像中包含目標細胞的檢測區域,例如,對宮頸病理圖像進行檢測,得到宮頸病理細胞中包含鱗狀上皮細胞的檢測區域;或者,對肝臟病理圖像進行檢測,得到肝臟病理圖像中包含病變細胞的檢測區域,當待識別病理圖像為其他圖像時,可以以此類推,在此不再一一舉例。在一個實施場景中,檢測區域具體可以採用一包含目標細胞的矩形的中心座標以及矩形的長寬表示,例如,可以採用(50,60,10,20)表示一位於待識別病理圖像中以圖元座標(50,60)為中心,長為10且寬為20的矩形,此外,還可以以一包含目標細胞的矩形的中心座標以及矩形的長寬分別與一預設矩形的比值進行表示,例如,預設矩形可以為一個長為10且寬為20的矩形,則可以採用(50,60,1,1)表示一位於待識別病理圖像中以圖元座標(50,60)為中心,長為10且寬為20的矩形,在此不做限定。Use the detection sub-model to detect the pathological image to be recognized, and obtain the detection area containing the target cells in the pathological image to be recognized. For example, by detecting the cervical pathological image, the detection area containing the squamous epithelial cells in the cervical pathological cells is obtained; Alternatively, the pathological image of the liver is detected to obtain the detection area containing the diseased cells in the pathological image of the liver. When the pathological image to be identified is another image, the same can be deduced, and no examples are provided here. In an implementation scenario, the detection area can be specifically represented by the center coordinates of a rectangle containing the target cells and the length and width of the rectangle. The primitive coordinates (50, 60) are the center, a rectangle with a length of 10 and a width of 20. In addition, it can also be represented by the center coordinate of a rectangle containing the target cell and the ratio of the length and width of the rectangle to a preset rectangle. , for example, the preset rectangle can be a rectangle with a length of 10 and a width of 20, then (50, 60, 1, 1) can be used to represent a pathological image that is located in the pathological image to be recognized with the primitive coordinates (50, 60) as The center is a rectangle with a length of 10 and a width of 20, which is not limited here.
在本發明的一些實施例中,待識別病理圖像還可能為一不包含目標細胞的圖像,此時採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,由於未得到檢測區域,可以輸出待識別病理圖像不包含目標細胞的提示,從而免去後續分類處理的步驟,提高模型運行效率。例如,可以直接輸出宮頸病理圖像不包含鱗狀上皮細胞的提示,其他病理圖像可以以此類推,在此不再一一舉例。In some embodiments of the present invention, the pathological image to be recognized may also be an image that does not contain target cells. In this case, the detection sub-model in the recognition model is used to perform target detection on the pathological image to be recognized. Since the detection area is not obtained , it can output a prompt that the pathological image to be recognized does not contain target cells, thereby eliminating the steps of subsequent classification processing and improving the efficiency of the model. For example, the prompt that the cervical pathological image does not contain squamous epithelial cells can be directly output, and other pathological images can be deduced in the same way, which will not be exemplified here.
在本發明的一些實施例中,請結合參閱圖2,圖2是本發明實施例提供的一種圖像識別方法的狀態示意圖。如圖2所示,待識別病理圖像為宮頸病理圖像,待識別病理圖像通過識別模型中的檢測子模型進行目標檢測,得到包含目標細胞的兩個檢測區域。In some embodiments of the present invention, please refer to FIG. 2 , which is a schematic state diagram of an image recognition method provided by an embodiment of the present invention. As shown in FIG. 2 , the pathological image to be recognized is a cervical pathological image, and the pathological image to be recognized is subjected to target detection by the detection sub-model in the recognition model, and two detection areas containing target cells are obtained.
步驟S13:利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別。Step S13: Use the classification sub-model in the recognition model to perform a first classification process on the detection area to obtain the type of the target cell.
識別模型還可以包括分類子模型,在一個具體的實施場景中,分類子模型可以採用EfficientNet網路模型。在另一個具體的實施場景中,分類子模型還可以採用ResNet、MobileNet等等,在此不做限定。The identification model may also include a classification sub-model, and in a specific implementation scenario, the classification sub-model may adopt the EfficientNet network model. In another specific implementation scenario, the classification sub-model may also use ResNet, MobileNet, etc., which is not limited here.
利用識別模型中的分類子模型對檢測區域進行分類處理,能夠得目標細胞的類別,具體地,為了提高分類效率,可以利用分類子模型對待識別病理圖像的檢測區域進行特徵提取,得到檢測區域的圖像特徵,從而對檢測區域的圖像特徵進行第一分類處理,得到目標細胞的類別。例如,可以對檢測區域的圖像特徵進行池化處理、全連接處理,從而得到目標細胞的類別,在此不再贅述。The classification sub-model in the recognition model is used to classify the detection area, and the category of the target cell can be obtained. Specifically, in order to improve the classification efficiency, the classification sub-model can be used to perform feature extraction on the detection area of the pathological image to be recognized to obtain the detection area. The first classification process is performed on the image features of the detection area to obtain the category of the target cell. For example, the image features of the detection area can be pooled and fully connected to obtain the category of the target cell, which will not be repeated here.
在本發明的一些實施例中,為了實現對目標細胞進行病變分級,目標細胞的類別可以表示目標細胞的病變程度。以待識別病變圖像為宮頸病理圖像為例,目標細胞具體可以包括但不限於如下類別:高度鱗狀細胞上皮內瘤變(High-grade Squamous Intraepithelial Lesion,HSIL)、輕度鱗狀細胞上皮內瘤變(Low-grade Squamous Intraepithelial Lesion,LSIL)、意義未明的非典型鱗狀細胞(Atypical Squamous Cells of Undetermined Significance,ASC-US)、不能排除高度上皮內瘤變的非典型鱗狀細胞(Atypical Squamous Cells-cannot exclude HSIL,ASC-H)。當待識別病理圖像為其他病理圖像時,可以以此類推,在此不再一一舉例。在一個實施場景中,目標細胞可以包括單個病變細胞、病變細胞團簇中的任一者,從而能夠實現對單個病變細胞或病變細胞團簇進行識別。In some embodiments of the present invention, in order to achieve grading of the target cells, the category of the target cells may represent the degree of the target cells' lesions. Taking the image of the lesion to be identified as a cervical pathological image as an example, the target cells may specifically include but are not limited to the following categories: High-grade Squamous Intraepithelial Lesion (HSIL), mild squamous cell epithelium Low-grade Squamous Intraepithelial Lesion (LSIL), Atypical Squamous Cells of Undetermined Significance (ASC-US), Atypical Squamous Cells Squamous Cells-cannot exclude HSIL, ASC-H). When the pathological image to be identified is other pathological images, the same can be deduced, and no examples are given here. In an implementation scenario, the target cell may include any one of a single diseased cell or a diseased cell cluster, so that a single diseased cell or a diseased cell cluster can be identified.
在本發明的一些實施例中,請繼續結合參閱圖2,分類子模型分別對檢測子模型檢測得到的兩個檢測區域進行分類處理,得到兩個檢測區域中所包含的目標細胞的類別:其中一個檢測區域中的目標細胞為高度鱗狀細胞上皮內瘤變(HSIL),另一個檢測區域中的目標細胞為不能排除高度上皮內瘤變的非典型鱗狀細胞(ASC-H)。In some embodiments of the present invention, please continue to refer to FIG. 2 , the classification sub-model performs classification processing on the two detection areas detected by the detection sub-model respectively, and obtains the categories of the target cells contained in the two detection areas: wherein The target cells in one test area were high-grade squamous intraepithelial neoplasia (HSIL), and the target cells in the other were atypical squamous cells for which high-grade intraepithelial neoplasia cannot be excluded (ASC-H).
在本發明的一些實施例中,分類子模型還可以對檢測區域進行第一分類處理,得到目標細胞的類別及其置信度,其中,置信度表示目標細胞的真實類別為模型預測得到的類別的可信度,置信度越高,可信度越高。請繼續結合參閱圖2,分類子模型分別對檢測區域進行分類處理,得到目標細胞的類別及其置信度,其中一個檢測區域中的目標細胞為高度鱗狀細胞上皮內瘤變(HSIL),且其置信度為0.97(即97%的可信度),另一個檢測區域中的目標細胞為不能排除高度上皮內瘤變的非典型鱗狀細胞(ASC-H),且其置信度為0.98(即98%的可信度)。In some embodiments of the present invention, the classification sub-model may further perform a first classification process on the detection area to obtain the category of the target cell and its confidence level, where the confidence level indicates that the real category of the target cell is the same as the category predicted by the model. Credibility, the higher the confidence, the higher the credibility. Please continue to refer to Figure 2. The classification sub-models respectively classify the detection areas to obtain the category and confidence of the target cells. The target cells in one of the detection areas are high-grade squamous cell intraepithelial neoplasia (HSIL), and It has a confidence level of 0.97 (ie, 97% confidence), and the target cells in the other detection area are atypical squamous cells (ASC-H) that cannot be excluded from high-grade intraepithelial neoplasia, and its confidence level is 0.98 ( i.e. 98% confidence).
上述方案,通過採用識別模型中的檢測子模型對獲取到的待識別病理圖像進行目標檢測,從而得到待識別病理圖像中包含目標細胞的檢測區域,再利用識別模型中的分析子模型對檢測區域檢修第一分類處理,得到目標細胞的類別,進而能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠準確、高效地識別病理圖像中的目標細胞。In the above scheme, by using the detection sub-model in the recognition model to perform target detection on the acquired pathological image to be recognized, the detection area containing the target cells in the to-be-recognized pathological image is obtained, and then the analysis sub-model in the recognition model is used to detect the target cells. The detection area is inspected by the first classification process to obtain the type of the target cells, and then the detection of the target cells can be carried out first, and then the classification of the target cells can be carried out, and the detection and classification can be separated, so that the target cells in the pathological image can be accurately and efficiently identified. .
請參閱圖3,圖3是本發明實施例提供的一種圖像識別方法的流程示意圖。具體而言,可以包括如下步驟。Please refer to FIG. 3 , which is a schematic flowchart of an image recognition method provided by an embodiment of the present invention. Specifically, the following steps may be included.
步驟S31:獲取待識別病理圖像。Step S31: Acquire the pathological image to be identified.
具體請參閱前述實施例中的相關步驟。For details, please refer to the relevant steps in the foregoing embodiments.
步驟S32:利用檢測子模型的第一部分對待識別病理圖像進行分類處理,得到待識別病理圖像的圖像分類結果。Step S32: Use the first part of the detection sub-model to classify the pathological image to be recognized, and obtain an image classification result of the pathological image to be recognized.
其中,圖像分類結果用於表示待識別病理圖像中是否包含目標細胞,具體地,可以採用“0”表示待識別病理圖像中不包含目標細胞,採用“1”表示待識別病理圖像中包含目標細胞,在此不做限定。The image classification result is used to indicate whether the target cell is included in the pathological image to be identified. Specifically, "0" may be used to indicate that the target cell is not included in the pathological image to be identified, and "1" may be used to indicate the pathological image to be identified. The target cells are included, and are not limited here.
在本發明的一些實施例中,檢測子模型的第一部分為全域分類網路,全域分類網路為一包括神經元的神經網路模型,不同於前述實施例中的分類子模型,全域分類網路用於對待識別病理圖像進行二分類處理,得到待識別病理圖像是否包含目標細胞的圖像分類結果。在一個具體的實施場景中,為了與分類子模型的分類處理加以區別,檢測子模型的第一部分的分類處理可以稱為第二分類處理,在此不做限定。In some embodiments of the present invention, the first part of the detection sub-model is a global classification network, and the global classification network is a neural network model including neurons. Different from the classification sub-model in the foregoing embodiments, the global classification network is The path is used to perform binary classification processing on the pathological image to be recognized, and obtain an image classification result of whether the pathological image to be recognized contains target cells. In a specific implementation scenario, in order to distinguish it from the classification process of the classification sub-model, the classification process of detecting the first part of the sub-model may be called the second classification process, which is not limited herein.
步驟S33:判斷圖像分類結果是否表示待識別病理圖像中包含目標細胞,若是,則執行步驟S34,否則執行S36。Step S33: Determine whether the image classification result indicates that the target cell is included in the pathological image to be identified, if so, go to step S34, otherwise go to S36.
通過圖像分類結果,判斷待識別病理圖像中是否包含目標細胞,若包含目標細胞,則可以對待識別病理圖像進行下一步處理,反之,則不需要對其進行下一步處理,從而將是否包含目標細胞的分類處理與具體檢測目標細胞的檢測區域進行分離,從而能夠進一步提高模型的運行效率,進而提高圖像中目標細胞識別的效率。According to the image classification result, it is judged whether the pathological image to be recognized contains target cells. If it contains target cells, the pathological image to be recognized can be processed in the next step. The classification process containing the target cells is separated from the detection area that specifically detects the target cells, so that the operating efficiency of the model can be further improved, thereby improving the efficiency of target cell recognition in the image.
步驟S34:利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域。Step S34: Use the second part of the detection sub-model to perform region detection on the pathological image to be recognized, to obtain a detection region containing the target cells.
在本發明的一些實施例中,檢測子模型的第二部分為圖像檢測網路,圖像檢測網路為一包括神經元的神經網路模型,以檢測子模型採用Faster RCNN為例,第二部分可以為RPN(Region Proposal Networks)網路,當檢測子模型為其他網路模型時,可以以此類推,在此不再一一舉例。In some embodiments of the present invention, the second part of the detection sub-model is an image detection network, and the image detection network is a neural network model including neurons. Taking the detection sub-model using Faster RCNN as an example, the first The second part can be an RPN (Region Proposal Networks) network. When the detection sub-model is another network model, it can be deduced by analogy, and no examples will be given here.
在本發明的一些實施例中,請結合參閱圖2,圖2是本發明實施例提供的一種圖像識別方法的狀態示意圖。如圖2所示,待識別病理圖像為宮頸病理圖像,待識別病理圖像通過識別模型中的檢測子模型進行目標檢測,得到包含目標細胞的兩個檢測區域。In some embodiments of the present invention, please refer to FIG. 2 , which is a schematic state diagram of an image recognition method provided by an embodiment of the present invention. As shown in FIG. 2 , the pathological image to be recognized is a cervical pathological image, and the pathological image to be recognized is subjected to target detection by the detection sub-model in the recognition model, and two detection areas containing target cells are obtained.
在本發明的一些實施例中,為了提高目標細胞識別的準確性。還可以利用檢測子模型的第三部分對待識別病理圖像進行特徵提取,得到待識別病理圖像的圖像特徵,具體地,第三部分可以為特徵提取網路,在本發明的一些實施例中,特徵提取網路可以是ResNet101網路,或者,特徵提取網路還可以是ResNet50網路等,在此不做限定。在本發明的一些實施例中,為了提高對多形態的目標細胞進行識別的準確性,特徵提取網路可以包括可變形卷積層(deformable convolution),可變形卷積基於對空間採用的位置資訊,作進一步位移調整,以實現對不同形態細胞的特徵提取。在本發明的一些實施例中,為了獲取長距離的、具有依賴關係的特徵,從而提高目標細胞識別的準確性,特徵提取網路還可以包括全域資訊增強模組。請結合參閱圖4,圖4是本發明實施例提供的一種圖像識別方法的狀態示意圖,在對待識別病理圖像進行特徵提取之後,可以採用檢測子模型的第一部分對圖像特徵進行分類處理,得到待識別病理圖像的圖像分類結果,並在圖像分類結果表示待識別病理圖像中包含目標細胞時(即圖像分類結果為陽性時),採用檢測子模型的第二部分對圖像特徵進行區域檢測,得到包含目標細胞的檢測區域,以進行後續的分類處理,具體可以參考本實施例中的相關步驟,在此不再贅述。In some embodiments of the present invention, in order to improve the accuracy of target cell identification. The third part of the detection sub-model can also be used to perform feature extraction on the pathological image to be recognized to obtain the image features of the pathological image to be recognized. Specifically, the third part can be a feature extraction network. In some embodiments of the present invention , the feature extraction network may be a ResNet101 network, or the feature extraction network may also be a ResNet50 network, etc., which is not limited here. In some embodiments of the present invention, in order to improve the accuracy of identifying polymorphic target cells, the feature extraction network may include a deformable convolution layer, the deformable convolution is based on the location information used in the space, Further displacement adjustments are made to achieve feature extraction for cells of different shapes. In some embodiments of the present invention, in order to obtain long-distance features with dependencies, thereby improving the accuracy of target cell identification, the feature extraction network may further include a global information enhancement module. Please refer to FIG. 4. FIG. 4 is a schematic state diagram of an image recognition method provided by an embodiment of the present invention. After the feature extraction of the pathological image to be recognized, the first part of the detection sub-model can be used to classify the image features. , obtain the image classification result of the pathological image to be recognized, and when the image classification result indicates that the pathological image to be recognized contains target cells (that is, when the image classification result is positive), the second part of the detection sub-model is used to The image features are subjected to region detection to obtain a detection region containing target cells for subsequent classification processing. For details, reference may be made to the relevant steps in this embodiment, which will not be repeated here.
步驟S35:利用識別模型中的分類子模型對檢測區域進行分類處理,得到目標細胞的類別。Step S35: Use the classification sub-model in the recognition model to classify the detection area to obtain the category of the target cell.
具體請參閱前述實施例中的相關步驟。For details, please refer to the relevant steps in the foregoing embodiments.
在本發明的一些實施例中,請結合參閱圖2,圖2是本發明實施例提供的一種圖像識別方法的狀態示意圖。如圖2所示,待識別病理圖像為宮頸病理圖像,待識別病理圖像通過識別模型中的檢測子模型進行目標檢測,得到包含目標細胞的兩個檢測區域。In some embodiments of the present invention, please refer to FIG. 2 , which is a schematic state diagram of an image recognition method provided by an embodiment of the present invention. As shown in FIG. 2 , the pathological image to be recognized is a cervical pathological image, and the pathological image to be recognized is subjected to target detection by the detection sub-model in the recognition model, and two detection areas containing target cells are obtained.
步驟S36:第一部分輸出待識別病理圖像中不包含目標細胞的檢測結果提示。Step S36: The first part outputs a detection result prompt that the pathological image to be identified does not contain target cells.
當圖像檢測結果表示待識別病理圖像中不包含目標細胞時(即圖像分類結果為陰性時),則可以無需進行下一步處理,從而可以直接輸出待識別病理圖像中不包含目標細胞的檢測結果提示(即結果為陰性的提示),以提高模型的運行效率,從而提高圖像中目標細胞識別的效率。When the image detection result indicates that the pathological image to be recognized does not contain target cells (that is, when the image classification result is negative), no further processing is required, so that the pathological image to be recognized that does not contain target cells can be directly output The detection result hints (that is, the hints that the result is negative) can improve the running efficiency of the model, thereby improving the efficiency of target cell recognition in the image.
區別於前述實施例,通過檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,且圖像分類結果用於表示待識別病理圖像中是否包含目標細胞,當圖像分類結果表示待識別病理圖像中包含目標細胞時,再利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域,故能夠實現目標細胞的動態檢測,提高目標細胞識別的效率。Different from the foregoing embodiments, the second classification process is performed on the pathological image to be recognized by the first part of the detection sub-model, and the image classification result of the pathological image to be recognized is obtained, and the image classification result is used to represent the pathological image to be recognized. Whether the target cell is included or not, when the image classification result indicates that the target cell is included in the pathological image to be recognized, the second part of the detection sub-model is used to detect the region of the pathological image to be recognized to obtain the detection area containing the target cell, so it can be Realize the dynamic detection of target cells and improve the efficiency of target cell identification.
請參閱圖5,圖5是本發明實施例提供的一種識別模型的訓練方法的流程示意圖,本發明實施例中,識別模型具體可以包括檢測子模型和分類子模型,具體而言可以包括如下步驟。Please refer to FIG. 5. FIG. 5 is a schematic flowchart of a training method for a recognition model provided by an embodiment of the present invention. In the embodiment of the present invention, the recognition model may specifically include a detection sub-model and a classification sub-model, and may specifically include the following steps .
步驟S51:獲取第一樣本圖像和第二樣本圖像。Step S51: Acquire a first sample image and a second sample image.
本發明實施例中,第一樣本圖像中標注有與目標細胞對應的實際區域,實際區域可以採用一包含目標細胞的矩形的中心座標以及矩形的長寬表示,例如,可以採用(50,60,10,20)表示一位於第一樣本圖像中以圖元點(50,60)為中心,長為10且寬為20的矩形。第二樣本圖像中標注有目標細胞的實際類別,在本發明的一些實施例中,目標細胞的實際類別用於表示目標細胞的病變程度。以第二樣本圖像為宮頸病理圖像為例,目標細胞具體可以包括但不限於如下類別:高度鱗狀細胞上皮內瘤變(HSIL)、輕度鱗狀細胞上皮內瘤變(LSIL)、意義未明的非典型鱗狀細胞(ASC-US)、不能排除高度上皮內瘤變的非典型鱗狀細胞(ASC-H)。當待識別病理圖像為其他病理圖像時,可以以此類推,在此不再一一舉例。在本發明的一些實施例中,目標細胞可以包括單個病變細胞、病變細胞團簇中的任一者,從而能夠實現對單個病變細胞或病變細胞團簇進行識別。In this embodiment of the present invention, an actual area corresponding to the target cell is marked in the first sample image, and the actual area can be represented by the center coordinates of a rectangle containing the target cell and the length and width of the rectangle. For example, (50, 60, 10, 20) represents a rectangle with a length of 10 and a width of 20 in the first sample image with the primitive point (50, 60) as the center. The second sample image is marked with the actual category of the target cell. In some embodiments of the present invention, the actual category of the target cell is used to represent the degree of pathological change of the target cell. Taking the second sample image as a cervical pathological image as an example, the target cells may specifically include but are not limited to the following categories: high-grade squamous cell intraepithelial neoplasia (HSIL), mild squamous cell intraepithelial neoplasia (LSIL), Atypical squamous cells of undetermined significance (ASC-US), atypical squamous cells with high-grade intraepithelial neoplasia cannot be excluded (ASC-H). When the pathological image to be identified is other pathological images, the same can be deduced, and no examples are given here. In some embodiments of the present invention, the target cell may include any one of a single diseased cell or a diseased cell cluster, so that the single diseased cell or the diseased cell cluster can be identified.
在本發明的一些實施例中,第一樣本圖像和第二樣本圖像為病理圖像,例如可以包括但不限於:宮頸病理圖像、肝臟病理圖像、腎臟病理圖像。以第一樣本圖像和第二樣本圖像為宮頸病理圖像為例,目標細胞可以為鱗狀上皮細胞。當第一樣本圖像和第二樣本圖像為其他病理圖像時,可以以此類推,在此不再一一舉例。In some embodiments of the present invention, the first sample image and the second sample image are pathological images, for example, including but not limited to: cervical pathological images, liver pathological images, and kidney pathological images. Taking the first sample image and the second sample image as cervical pathological images as an example, the target cells may be squamous epithelial cells. When the first sample image and the second sample image are other pathological images, it can be deduced in the same way, and will not be exemplified one by one here.
在本發明的一些實施例中,還可以對獲取到的地樣本圖像和第二樣本圖像進行資料增強,從而提高樣本多樣性,有利於避免過擬合,提高模型的泛化性能。在一個具體的實施場景中,可以採用包括但不限於如下操作進行資料增強:隨機切割、隨機旋轉、隨機翻轉、顏色擾動、伽馬校正、高斯雜訊。In some embodiments of the present invention, data enhancement can also be performed on the acquired ground sample image and the second sample image, thereby improving sample diversity, helping to avoid overfitting and improving the generalization performance of the model. In a specific implementation scenario, data enhancement may be performed by operations including but not limited to: random cutting, random rotation, random flip, color perturbation, gamma correction, and Gaussian noise.
在本發明的一些實施例中,還可以將第一樣本圖像和第二樣本圖像中的圖元值進行歸一化處理,從而提高模型的收斂速度。在本發明的一些實施例中,可以先統計所有第一樣本圖像圖元值的第一均值和第一方差,再利用每個第一樣本圖像中的圖元值減去第一均值,再除以第一方差,從而對每一第一樣本圖像進行歸一化處理;並可以統計所有第二樣本圖像的圖元值的第二均值和第二方差,再利用每個第二樣本圖像的圖元值減去第二均值,再除以第二方差,從而對每一第二仰恩圖像進行歸一化處理。In some embodiments of the present invention, the primitive values in the first sample image and the second sample image may also be normalized, so as to improve the convergence speed of the model. In some embodiments of the present invention, the first mean and the first variance of the primitive values of all the first sample images may be counted first, and then the primitive values in each first sample image are used to subtract the first mean and the first variance. A mean value is divided by the first variance, so that each first sample image is normalized; and the second mean and second variance of the primitive values of all the second sample images can be counted, and then Each second image is normalized by subtracting the second mean from the primitive values of each second sample image, and then dividing by the second variance.
步驟S52:利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域,並利用分類子模型對第二樣本圖像進行第一分類處理,得到目標細胞的預測類別。Step S52: use the detection sub-model to perform target detection on the first sample image, obtain a predicted area containing the target cells in the first sample image, and use the classification sub-model to perform a first classification process on the second sample image, Get the predicted class of the target cell.
檢測子模型可以採用Faster RCNN,具體可以參考前述實施例中的相關步驟,在此不再贅述。預測區域可以採用一矩形的中心座標以及矩形的長寬表示,例如,可以採用(70,80,10,20)表示一位於第一樣本圖像中以圖元點(70,80)為中心,長為10且寬為20的預測區域,預測區域還可以採用一矩形的中心座標以及矩形的長寬分別與預設矩形的長寬的比值表示,例如,可以設置一預設矩形,預設矩形的長度為10且寬度為20,則可以採用(70,80,1,1)表示一位於第一樣本圖像中以(70,80)為圖像中心,長為10且寬為20的預測區域。分類子模型可以採用EfficientNet網路模型,具體可以參考前述實施例中的相關步驟,在此不再贅述。The detection sub-model may use Faster RCNN, and for details, reference may be made to the relevant steps in the foregoing embodiments, which will not be repeated here. The prediction area can be represented by the center coordinates of a rectangle and the length and width of the rectangle. For example, (70, 80, 10, 20) can be used to represent a location in the first sample image with the primitive point (70, 80) as the center , a prediction area with a length of 10 and a width of 20. The prediction area can also be represented by the center coordinates of a rectangle and the ratio of the length and width of the rectangle to the length and width of the preset rectangle. For example, you can set a preset rectangle, preset The length of the rectangle is 10 and the width is 20, then (70, 80, 1, 1) can be used to indicate that a rectangle is located in the first sample image with (70, 80) as the center of the image, the length is 10 and the width is 20 forecast area. The classification sub-model may use the EfficientNet network model, and for details, reference may be made to the relevant steps in the foregoing embodiments, which will not be repeated here.
在本發明的一些實施例中,為了提高模型識別正負樣本的能力,並實現動態預測,以提高模型運行效率,在利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域過程中,還可以對第一樣本圖像進行第二分類處理,得到第一樣本圖像的圖像分類結果,其中,圖像分類結果用於表示第一樣本圖像中是否包含目標細胞,若圖像分類結果表示第一樣本圖像中包含目標細胞,則對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域,具體可以參考前述實施例中的相關步驟,在此不再贅述。此外,檢測子模型還可以包括第一部分和第二部分,第一部分配置為對第一樣本圖像進行分類處理,得到第一樣本圖像是否包含目標細胞的圖像分類結果,第二部分配置為當第一樣本圖像中包含目標細胞時,對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域,具體可以參考前述實施例中的相關步驟,在此不再贅述。此外,檢測子模型還可以包括第三部分,配置為對第一樣本圖像進行特徵提取,得到第一樣本圖像的圖像特徵,從而第一部分對圖像特徵進行特徵提取,得到第一樣本圖像的圖像分類結果,第二部分對圖像特徵進行區域檢測,得到包含目標細胞的預測區域。具體地,第一部分可以為全域分類網路,第二部分為圖像檢測網路,第三部分為特徵提取網路,其中,特徵提取網路包括可變形卷積層、全域資訊增強模組中的至少一者,具體可以參考前述實施例中的相關步驟,在此不再贅述。In some embodiments of the present invention, in order to improve the ability of the model to identify positive and negative samples and realize dynamic prediction, so as to improve the operating efficiency of the model, the detection sub-model is used to perform target detection on the first sample image, and the first sample is obtained. In the process of including the predicted area of the target cell in the image, a second classification process may also be performed on the first sample image to obtain an image classification result of the first sample image, wherein the image classification result is used to represent the first sample image. Whether a sample image contains target cells, if the image classification result indicates that the first sample image contains target cells, the region detection is performed on the first sample image to obtain the predicted area containing the target cells. Referring to the relevant steps in the foregoing embodiments, details are not repeated here. In addition, the detection sub-model may also include a first part and a second part. The first part is configured to perform classification processing on the first sample image to obtain an image classification result of whether the first sample image contains target cells. The second part It is configured to perform region detection on the first sample image when the target cell is included in the first sample image to obtain a predicted region including the target cell. For details, please refer to the relevant steps in the foregoing embodiments, which will not be repeated here. . In addition, the detection sub-model may further include a third part configured to perform feature extraction on the first sample image to obtain the image features of the first sample image, so that the first part performs feature extraction on the image features to obtain the first sample image. The image classification result of a sample image, the second part performs region detection on the image features, and obtains the predicted region containing the target cells. Specifically, the first part can be a global classification network, the second part is an image detection network, and the third part is a feature extraction network, wherein the feature extraction network includes a deformable convolution layer, a global information enhancement module For at least one, specific reference may be made to the relevant steps in the foregoing embodiments, which will not be repeated here.
步驟S53:基於實際區域與預測區域,確定檢測子模型的第一損失值,並基於實際類別與預測類別,確定分類子模型的第二損失值。Step S53: Determine the first loss value of the detection sub-model based on the actual area and the predicted area, and determine the second loss value of the classification sub-model based on the actual category and the predicted category.
在本發明的一些實施例中,可以採用均方誤差損失函數、交叉熵損失函數等確定檢測子模型的第一損失值。在本發明的一些實施例中,可以採用交叉熵損失函數確定分類子模型的第二損失值,在此不再贅述。In some embodiments of the present invention, a mean square error loss function, a cross entropy loss function, or the like may be used to determine the first loss value of the detection sub-model. In some embodiments of the present invention, a cross-entropy loss function may be used to determine the second loss value of the classification sub-model, which will not be repeated here.
步驟S54:利用第一損失值和第二損失值,對應調整檢測子模型和分類子模型的參數。Step S54: Using the first loss value and the second loss value, correspondingly adjust the parameters of the detection sub-model and the classification sub-model.
具體地,可以採用隨機梯度下降、指數平均加權、Adam等梯度下降優化方法,對檢測子模型和分類子模型的參數進行調整,在此不再贅述。Specifically, gradient descent optimization methods such as stochastic gradient descent, exponential average weighting, Adam, etc. can be used to adjust the parameters of the detection sub-model and the classification sub-model, which will not be repeated here.
此外,還可以將第一樣本圖像和第二樣本圖像分為多個小批次(batch),並採用小批次(mini-batch)的訓練方式對檢測子模型和分類子模型進行訓練。在本發明的一些實施例中,還可以設置一訓練結束條件,當滿足訓練結束條件時,可以結束訓練。具體地,訓練結束條件可以包括但不限於:訓練的反覆運算次數大於或等於預設閾值(例如,100次、500次等);第一損失值和第二損失值小於一預設損失閾值,且不再減小;分別利用一驗證資料集對檢測子模型和分類子模型進行驗證所得到的模型性能不再提高,在此不做限定。In addition, the first sample image and the second sample image can also be divided into multiple batches, and the detection sub-model and the classification sub-model can be trained in a mini-batch training method. train. In some embodiments of the present invention, a training end condition can also be set, and when the training end condition is satisfied, the training can be ended. Specifically, the training end conditions may include but are not limited to: the number of repeated operations of the training is greater than or equal to a preset threshold (for example, 100 times, 500 times, etc.); the first loss value and the second loss value are less than a preset loss threshold value, And no longer decrease; the performance of the model obtained by using a verification data set to verify the detection sub-model and the classification sub-model is no longer improved, which is not limited here.
上述方案,在訓練過程中,能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠解決樣本資料類別不平衡的問題,進而能夠有利於提高訓練得到的模型的準確性,從而能夠有利於提高目標細胞識別的準確性和效率。In the above solution, during the training process, the target cells can be detected first, and then the target cells can be classified, and the detection and classification can be separated, so as to solve the problem of unbalanced sample data categories, which can help to improve the accuracy of the model obtained by training. Therefore, it can help to improve the accuracy and efficiency of target cell identification.
請參閱圖6,圖6是本發明實施例提供的一種圖像識別裝置60的結構框架示意圖。圖像識別裝置60包括圖像獲取模組61、圖像檢測模組62和圖像分類別模組63,圖像獲取模組61配置為獲取待識別病理圖像;圖像檢測模組62配置為採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域;圖像分類別模組63配置為利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別。Please refer to FIG. 6 , which is a schematic structural framework diagram of an
上述方案,通過採用識別模型中的檢測子模型對獲取到的待識別病理圖像進行目標檢測,從而得到待識別病理圖像中包含目標細胞的檢測區域,再利用識別模型中的分析子模型對檢測區域檢修第一分類處理,得到目標細胞的類別,進而能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠準確、高效地識別病理圖像中的目標細胞。In the above scheme, by using the detection sub-model in the recognition model to perform target detection on the acquired pathological image to be recognized, the detection area containing the target cells in the to-be-recognized pathological image is obtained, and then the analysis sub-model in the recognition model is used to detect the target cells. The detection area is inspected by the first classification process to obtain the type of the target cells, and then the detection of the target cells can be carried out first, and then the classification of the target cells can be carried out, and the detection and classification can be separated, so that the target cells in the pathological image can be accurately and efficiently identified. .
在本發明的一些實施例中,圖像檢測模組62包括第一部分子模組,配置為利用檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,其中,圖像分類結果用於表示待識別病理圖像中是否包含目標細胞,圖像檢測模組62還包括第二部分子模組,配置為在圖像分類結果表示待識別病理圖像中包含目標細胞時,利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域。In some embodiments of the present invention, the
區別於前述實施例,通過檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果,且圖像分類結果配置為表示待識別病理圖像中是否包含目標細胞,當圖像分類結果表示待識別病理圖像中包含目標細胞時,再利用檢測子模型的第二部分對待識別病理圖像進行區域檢測,得到包含目標細胞的檢測區域,故能夠實現目標細胞的動態檢測,提高目標細胞識別的效率。Different from the foregoing embodiments, the second classification process is performed on the pathological image to be recognized by the first part of the detection sub-model, and the image classification result of the pathological image to be recognized is obtained, and the image classification result is configured to represent the pathological image to be recognized. Whether the target cell is included or not, when the image classification result indicates that the target cell is included in the pathological image to be recognized, the second part of the detection sub-model is used to detect the region of the pathological image to be recognized to obtain the detection area containing the target cell, so it can be Realize the dynamic detection of target cells and improve the efficiency of target cell identification.
在本發明的一些實施例中,圖像檢測模組62還包括結果提示子模組,配置為在圖像分類結果表示待識別病理圖像中不包含目標細胞時,第一部分輸出待識別病理圖像中不包含目標細胞的檢測結果提示。In some embodiments of the present invention, the
區別於前述實施例,在利用檢測子模型的第一部分對待識別病理圖像進行第二分類處理,得到待識別病理圖像的圖像分類結果之後,還包括:若圖像分類結果表示待識別病理圖像中不包含目標細胞,則第一部分輸出待識別病理圖像中不包含目標細胞的檢測結果提示。Different from the foregoing embodiments, after using the first part of the detection sub-model to perform the second classification process on the pathological image to be recognized, and obtaining the image classification result of the pathological image to be recognized, the method further includes: if the image classification result indicates the pathological image to be recognized. If the image does not contain target cells, the first part outputs a detection result prompt that the pathological image to be identified does not contain target cells.
在本發明的一些實施例中,圖像檢測模組62還包括第三部分子模組,配置為利用檢測子模型的第三部分對待識別病理圖像進行特徵提取,得到待識別病理圖像的圖像特徵。In some embodiments of the present invention, the
區別於前述實施例,通過檢測子模型的第三部分對待識別病理圖像進行特徵提取,得到待識別病理圖像的圖像特徵,從而能夠先對待識別病理圖像進行,進而後續在此基礎上再利用檢測子模型進行其他處理,故能夠有利於提高模型的運行效率。Different from the foregoing embodiments, the feature extraction of the pathological image to be recognized is performed through the third part of the detection sub-model to obtain the image features of the pathological image to be recognized, so that the pathological image to be recognized can be processed first, and then the subsequent steps are based on this. The detection sub-model is used for other processing, so it can be beneficial to improve the running efficiency of the model.
在本發明的一些實施例中,第一部分子模組具體配置為利用檢測子模型的第一部分對圖像特徵進行第二分類處理,得到待識別病理圖像的圖像分類結果。In some embodiments of the present invention, the first part sub-module is specifically configured to use the first part of the detection sub-model to perform a second classification process on the image features to obtain an image classification result of the pathological image to be recognized.
區別於前述實施例,利用檢測子模型的第一部分對第三部分提取得到的圖像特徵進行第二分類處理,得到待識別病理圖像的圖像分類結果,能夠提高分類處理的準確性。Different from the foregoing embodiments, the first part of the detection sub-model is used to perform the second classification process on the image features extracted by the third part to obtain the image classification result of the pathological image to be recognized, which can improve the accuracy of the classification process.
在本發明的一些實施例中,第二部分子模組具體配置為利用檢測子模型的第二部分對圖像特徵進行區域檢測,得到包含目標細胞的檢測區域。In some embodiments of the present invention, the second part of the sub-module is specifically configured to use the second part of the detection sub-model to perform region detection on the image features to obtain a detection region containing the target cells.
區別於前述實施例,利用檢測子模型的第二部分對圖像特徵進行區域檢測,得到包含目標細胞的檢測區域,能夠有利於提高目標細胞識別的準確性。Different from the foregoing embodiments, the second part of the detection sub-model is used to perform region detection on image features to obtain a detection region containing target cells, which can help improve the accuracy of target cell identification.
在本發明的一些實施例中,第一部分為全域分類網路,第二部分為圖像檢測網路,第三部分為特徵提取網路;其中,特徵提取網路包括可變形卷積層、全域資訊增強模組中的至少一者。In some embodiments of the present invention, the first part is a global classification network, the second part is an image detection network, and the third part is a feature extraction network; wherein the feature extraction network includes a deformable convolution layer, global information at least one of the enhancement mods.
區別於前述實施例,通過將特徵提取網路設置為包括可變形卷積層,能夠提高對多形態的目標細胞進行識別的準確性,通過將特徵提取網路設置為包括全域資訊增強模組中的至少一者,能夠有利於獲取長距離的、具有依賴關係的特徵,有利於提高目標細胞識別的準確性。Different from the foregoing embodiments, by setting the feature extraction network to include a deformable convolution layer, the accuracy of identifying polymorphic target cells can be improved. At least one of them can be beneficial to obtain long-distance features with dependencies, and is beneficial to improve the accuracy of target cell identification.
在本發明的一些實施例中,圖像分類別模組63包括特徵提取子模組,配置為利用分類子模型對待識別病理圖像的檢測區域進行特徵提取,得到檢測區域的圖像特徵,圖像分類別模組63包括分類處理子模組,配置為對檢測區域的圖像特徵進行第一分類處理,得到目標細胞的類別。In some embodiments of the present invention, the
區別於前述實施例,通過對待識別病理圖像的檢測區域進行特徵提取,得到檢測區域的圖像特徵,並對檢測區域的圖像特徵進行第一分類處理,得到目標細胞的類別,能夠有利於提高分類處理的效率。Different from the foregoing embodiments, by performing feature extraction on the detection region of the pathological image to be recognized, the image features of the detection region are obtained, and the image features of the detection region are subjected to the first classification processing to obtain the category of the target cell, which can be beneficial to Improve the efficiency of classification processing.
在本發明的一些實施例中,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度。In some embodiments of the present invention, the target cell includes any one of a single diseased cell and a diseased cell cluster, and the category of the target cell is used to indicate the diseased degree of the target cell.
區別於前述實施例,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,能夠有利於識別單個病變細胞和病變細胞團簇,且目標細胞的類別用於表示目標細胞的病變程度,有利於實現目標細胞的病變分級。Different from the foregoing embodiments, the target cell includes any one of a single diseased cell and a diseased cell cluster, which can help identify a single diseased cell and a diseased cell cluster, and the category of the target cell is used to indicate the degree of disease of the target cell, It is beneficial to achieve lesion grading of target cells.
請參閱圖7,圖7是本發明實施例提供的一種識別模型的訓練裝置70的結構框架示意圖。識別模型包括檢測子模型和分類子模型,識別模型的訓練裝置70包括圖像獲取模組71、模型執行模組72、損失確定模組73和參數調整模組74,圖像獲取模組71配置為獲取第一樣本圖像和第二樣本圖像,其中,第一樣本圖像中標注有與目標細胞對應的實際區域,第二樣本圖像中標注有目標細胞的實際類別;模型執行模組72配置為利用檢測子模型對第一樣本圖像進行目標檢測,得到第一樣本圖像中包含目標細胞的預測區域,並利用分類子模型對第二樣本圖像進行第一分類處理,得到目標細胞的預測類別;損失確定模組73配置為基於實際區域與預測區域,確定檢測子模型的第一損失值,並基於實際類別與預測類別,確定分類子模型的第二損失值;參數調整模組74配置為利用第一損失值和第二損失值,對應調整檢測子模型和分類子模型的參數。Please refer to FIG. 7. FIG. 7 is a schematic structural framework diagram of an
上述方案,在訓練過程中,能夠先進行目標細胞的檢測,再進行目標細胞的分類,將檢測與分類分離,從而能夠解決樣本資料類別不平衡的問題,進而能夠有利於提高訓練得到的模型的準確性,從而能夠有利於提高目標細胞識別的準確性和效率。In the above solution, during the training process, the target cells can be detected first, and then the target cells can be classified, and the detection and classification can be separated, so as to solve the problem of unbalanced sample data categories, which can help to improve the accuracy of the model obtained by training. Therefore, it can help to improve the accuracy and efficiency of target cell identification.
在本發明的一些實施例中,模型執行模組72包括初始分類子模組,配置為對第一樣本圖像進行第二分類處理,得到第一樣本圖像的圖像分類結果,其中,圖像分類結果用於表示第一樣本圖像中是否包含目標細胞,模型執行模組72包括區域檢測子模組,配置為在圖像分類結果表示第一樣本圖像中包含目標細胞時,對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域。In some embodiments of the present invention, the
區別於前述實施例,在訓練過程中,當圖像分類結果表示第一樣本圖像中包含目標細胞時,再對第一樣本圖像進行區域檢測,得到包含目標細胞的預測區域,能夠增強模型識別正負樣本的能力,降低誤檢概率,有利於提高訓練得到的模型的準確性,從而能夠有利於提高目標細胞識別的準確性。Different from the previous embodiments, in the training process, when the image classification result indicates that the first sample image contains target cells, the region detection is performed on the first sample image to obtain the predicted area containing the target cells, which can Enhancing the ability of the model to identify positive and negative samples and reducing the probability of false detection is conducive to improving the accuracy of the model obtained by training, thereby improving the accuracy of target cell identification.
在本發明的一些實施例中,識別模型的訓練裝置70還包括資料增強模組,配置為對第一樣本圖像和第二樣本圖像進行資料增強。In some embodiments of the present invention, the
區別於前述實施例,通過對第一樣本圖像和第二樣本圖像進行資料增強能夠提高樣本多樣性,有利於避免過擬合,提高模型的泛化性能。 Different from the foregoing embodiments, by performing data enhancement on the first sample image and the second sample image, the sample diversity can be improved, which is beneficial to avoid overfitting and improve the generalization performance of the model .
在本發明的一些實施例中,識別模型的訓練裝置70還包括歸一化處理模組,配置為將第一樣本圖像和第二樣本圖像中的圖元值進行歸一化處理。In some embodiments of the present invention, the
區別於前述實施例,通過將第一樣本圖像和第二樣本圖像中的圖元值進行歸一化處理,能夠有利於提高模型的收斂速度。Different from the foregoing embodiments, by normalizing the primitive values in the first sample image and the second sample image, the convergence speed of the model can be improved.
在本發明的一些實施例中,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度。In some embodiments of the present invention, the target cell includes any one of a single diseased cell and a diseased cell cluster, and the category of the target cell is used to indicate the diseased degree of the target cell.
區別於前述實施例,目標細胞包括單個病變細胞、病變細胞團簇中的任一者,目標細胞的類別用於表示目標細胞的病變程度,能夠有利於識別單個病變細胞和病變細胞團簇,且目標細胞的類別用於表示目標細胞的病變程度,有利於實現目標細胞的病變分級。Different from the foregoing embodiments, the target cell includes any one of a single diseased cell and a diseased cell cluster, and the category of the target cell is used to represent the diseased degree of the target cell, which can help to identify a single diseased cell and a diseased cell cluster, and The category of target cells is used to indicate the degree of disease of the target cells, which is beneficial to achieve the classification of the target cells.
請參閱圖8,圖8是本發明實施例提供的一種電子設備80的結構框架示意圖。電子設備80包括相互耦接的記憶體81和處理器82,處理器82配置為執行記憶體81中儲存的程式指令,以實現上述任一圖像識別方法實施例的步驟,或實現上述任一識別模型的訓練方法實施例中的步驟。在一個具體的實施場景中,電子設備80可以包括但不限於:微型電腦、伺服器,此外,電子設備80還可以包括筆記型電腦、平板電腦等移動設備,在此不做限定。Please refer to FIG. 8 . FIG. 8 is a schematic structural framework diagram of an
具體而言,處理器82配置為控制其自身以及記憶體81以實現上述任一圖像識別方法實施例的步驟,或實現上述任一識別模型的訓練方法實施例中的步驟。處理器82還可以稱為中央處理單元(Central Processing Unit,CPU)。處理器82可能是一種積體電路晶片,具有信號的處理能力。處理器82還可以是通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式設計閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件。通用處理器可以是微處理器或者該處理器也可以是任何常規的處理器等。另外,處理器82可以由積體電路晶片共同實現。Specifically, the
上述方案,能夠準確、高效地識別病理圖像中的目標細胞。The above solution can accurately and efficiently identify target cells in pathological images.
請參閱圖9,圖9為本發明實施例提供的一種電腦可讀儲存介質90的結構框架示意圖。電腦可讀儲存介質90儲存有能夠被處理器運行的程式指令901,程式指令901用於實現上述任一圖像識別方法實施例的步驟,或實現上述任一識別模型的訓練方法實施例中的步驟。Please refer to FIG. 9 . FIG. 9 is a schematic structural framework diagram of a computer-
上述方案,能夠準確、高效地識別病理圖像中的目標細胞。The above solution can accurately and efficiently identify target cells in pathological images.
本發明實施例提供一種電腦程式,包括電腦可讀代碼,當所述電腦可讀代碼在電子設備中運行時,所述電子設備中的處理器執行用於實現本發明實施例提供的任一圖像識別方法,或本發明實施例提供的任一識別模型的訓練方法。An embodiment of the present invention provides a computer program, including computer-readable code. When the computer-readable code is executed in an electronic device, a processor in the electronic device executes any of the diagrams provided in the embodiment of the present invention to implement Like the recognition method, or any training method of the recognition model provided by the embodiments of the present invention.
在本發明所提供的幾個實施例中,應該理解到,所揭露的方法和裝置,可以通過其它的方式實現。例如,以上所描述的裝置實施方式僅僅是示意性的,例如,模組或單元的劃分,僅僅為一種邏輯功能劃分,實際實現時可以有另外的劃分方式,例如單元或元件可以結合或者可以集成到另一個系統,或一些特徵可以忽略,或不執行。另一點,所顯示或討論的相互之間的耦合或直接耦合或通信連接可以是通過一些介面,裝置或單元的間接耦合或通信連接,可以是電性、機械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed method and apparatus may be implemented in other manners. For example, the device implementations described above are only illustrative. For example, the division of modules or units is only a logical function division. In actual implementation, there may be other divisions. For example, units or elements may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
作為分離部件說明的單元可以是或者也可以不是物理上分開的,作為單元顯示的部件可以是或者也可以不是物理單元,即可以位於一個地方,或者也可以分佈到網路單元上。可以根據實際的需要選擇其中的部分或者全部單元來實現本實施方式方案的目的。Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed over network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
另外,在本發明各個實施例中的各功能單元可以集成在一個處理單元中,也可以是各個單元單獨物理存在,也可以兩個或兩個以上單元集成在一個單元中。上述集成的單元既可以採用硬體的形式實現,也可以採用軟體功能單元的形式實現。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, or can be implemented in the form of software functional units.
集成的單元如果以軟體功能單元的形式實現並作為獨立的產品銷售或使用時,可以儲存在一個電腦可讀取儲存介質中。基於這樣的理解,本發明實施例的技術方案本質上或者說對現有技術做出貢獻的部分或者該技術方案的全部或部分可以以軟體產品的形式體現出來,該電腦軟體產品儲存在一個儲存介質中,包括若干指令用以使得一台電腦設備(可以是個人電腦,伺服器,或者網路設備等)或處理器(processor)執行本發明各個實施方式方法的全部或部分步驟。而前述的儲存介質包括:U盤、移動硬碟、唯讀記憶體(ROM,Read-Only Memory)、隨機存取記憶體(RAM,Random Access Memory)、磁碟或者光碟等各種可以儲存程式碼的介質。The integrated unit, if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium. Based on this understanding, the technical solutions of the embodiments of the present invention are essentially or contribute to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium. , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods of the various embodiments of the present invention. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or CD, etc. medium.
工業實用性 本發明實施例提供一種圖像識別方法、識別模型的訓練方法及相關裝置、設備,其中,圖像識別方法包括:獲取待識別病理圖像;採用識別模型中的檢測子模型對待識別病理圖像進行目標檢測,得到待識別病理圖像中包含目標細胞的檢測區域;利用識別模型中的分類子模型對檢測區域進行第一分類處理,得到目標細胞的類別。根據本發明實施例的圖像識別方法,能夠準確、高效地識別病理圖像中的目標細胞。Industrial Applicability Embodiments of the present invention provide an image recognition method, a training method for a recognition model, and related devices and equipment, wherein the image recognition method includes: acquiring a pathological image to be recognized; using a detection sub-model in the recognition model to identify the pathological image Perform target detection to obtain a detection area containing target cells in the pathological image to be identified; use the classification sub-model in the recognition model to perform a first classification process on the detection area to obtain the target cell category. According to the image recognition method of the embodiment of the present invention, the target cells in the pathological image can be accurately and efficiently recognized.
60:圖像識別裝置 61:圖像獲取模組 62:圖像檢測模組 63:圖像分類別模組 70:識別模型的訓練裝置 71:圖像獲取模組 72:模型執行模組 73:損失確定模組 74:參數調整模組 80:電子設備 81:記憶體 82:處理器 90:電腦可讀儲存介質 901:程式指令 S11~S13:步驟 S31~S36:步驟 S51~S54:步驟60: Image recognition device 61: Image acquisition module 62: Image detection module 63: Image Classification Module 70: Training device for recognition model 71: Image acquisition module 72: Model execution module 73: Loss Determination Module 74: Parameter adjustment module 80: Electronic equipment 81: Memory 82: Processor 90: Computer-readable storage media 901: Program command S11~S13: Steps S31~S36: Steps S51~S54: Steps
圖1是本發明實施例提供的一種圖像識別方法的流程示意圖; 圖2是本發明實施例提供的一種圖像識別方法的狀態示意圖; 圖3是本發明實施例提供的一種圖像識別方法的流程示意圖; 圖4是本發明實施例提供的一種圖像識別方法的狀態示意圖; 圖5是本發明實施例提供的一種識別模型的訓練方法的流程示意圖; 圖6是本發明實施例提供的一種圖像識別裝置的結構示意圖; 圖7是本發明實施例提供的一種識別模型的訓練裝置的結構框架示意圖; 圖8是本發明實施例提供的一種電子設備的結構框架示意圖; 圖9是本發明實施例提供的一種電腦可讀儲存介質的結構框架示意圖。1 is a schematic flowchart of an image recognition method provided by an embodiment of the present invention; 2 is a schematic state diagram of an image recognition method provided by an embodiment of the present invention; 3 is a schematic flowchart of an image recognition method provided by an embodiment of the present invention; 4 is a schematic state diagram of an image recognition method provided by an embodiment of the present invention; 5 is a schematic flowchart of a training method for an identification model provided by an embodiment of the present invention; 6 is a schematic structural diagram of an image recognition apparatus provided by an embodiment of the present invention; 7 is a schematic structural framework diagram of a training device for a recognition model provided by an embodiment of the present invention; 8 is a schematic structural framework diagram of an electronic device provided by an embodiment of the present invention; FIG. 9 is a schematic structural framework diagram of a computer-readable storage medium provided by an embodiment of the present invention.
S11~S13:步驟S11~S13: Steps
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010121559.5A CN111461165A (en) | 2020-02-26 | 2020-02-26 | Image recognition method, recognition model training method, related device and equipment |
CN202010121559.5 | 2020-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202133043A TW202133043A (en) | 2021-09-01 |
TWI767506B true TWI767506B (en) | 2022-06-11 |
Family
ID=71684160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110101018A TWI767506B (en) | 2020-02-26 | 2021-01-11 | Image recognition method, training method and equipment of recognition model |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2022537781A (en) |
KR (1) | KR20210110823A (en) |
CN (1) | CN111461165A (en) |
TW (1) | TWI767506B (en) |
WO (1) | WO2021169161A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI872722B (en) * | 2023-09-26 | 2025-02-11 | 緯創醫學科技股份有限公司 | Method and system for image recognition and computer readable storage media |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112017162B (en) * | 2020-08-10 | 2022-12-06 | 上海杏脉信息科技有限公司 | Pathological image processing method, pathological image processing device, storage medium and processor |
CN111968106A (en) * | 2020-08-28 | 2020-11-20 | 上海商汤智能科技有限公司 | Image processing method and device, electronic equipment and storage medium |
CN111914814A (en) * | 2020-09-01 | 2020-11-10 | 平安国际智慧城市科技股份有限公司 | Wheat rust detection method and device and computer equipment |
CN111815633A (en) * | 2020-09-08 | 2020-10-23 | 上海思路迪医学检验所有限公司 | Medical image diagnosis apparatus, image processing apparatus and method, determination unit, and storage medium |
CN112132206B (en) * | 2020-09-18 | 2024-12-13 | 青岛商汤科技有限公司 | Image recognition method and related model training method and related devices and equipment |
CN112581438B (en) * | 2020-12-10 | 2022-11-08 | 腾讯医疗健康(深圳)有限公司 | Slice image recognition method and device, storage medium and electronic equipment |
CN114627488A (en) * | 2020-12-11 | 2022-06-14 | 阿里巴巴集团控股有限公司 | Image processing method and system, and model training method and system |
CN112884707B (en) * | 2021-01-15 | 2023-05-05 | 复旦大学附属妇产科医院 | Cervical cancer pre-lesion detection system, device and medium based on colposcope |
CN113763315B (en) * | 2021-05-18 | 2023-04-07 | 腾讯医疗健康(深圳)有限公司 | Slide image information acquisition method, device, equipment and medium |
CN113313697B (en) * | 2021-06-08 | 2023-04-07 | 青岛商汤科技有限公司 | Image segmentation and classification method, model training method thereof, related device and medium |
CN113570592B (en) * | 2021-08-05 | 2022-09-20 | 印迹信息科技(北京)有限公司 | Gastrointestinal disease detection and model training method, device, equipment and medium |
CN113436191B (en) * | 2021-08-26 | 2021-11-30 | 深圳科亚医疗科技有限公司 | Pathological image classification method, pathological image classification system and readable medium |
CN113855079B (en) * | 2021-09-17 | 2025-01-24 | 仰和华健数字医疗科技(上海)有限公司 | Real-time detection and auxiliary analysis method of breast diseases based on breast ultrasound images |
CN114445343A (en) * | 2021-12-29 | 2022-05-06 | 杭州迪英加科技有限公司 | Cell robustness detection method for TCT (TCT) image of microscopic cervical carcinoma |
CN114092162B (en) * | 2022-01-21 | 2022-07-01 | 北京达佳互联信息技术有限公司 | Recommendation quality determination method, and training method and device of recommendation quality determination model |
CN114693624B (en) * | 2022-03-23 | 2024-07-26 | 腾讯科技(深圳)有限公司 | Image detection method, device, equipment and readable storage medium |
CN114881951B (en) * | 2022-04-26 | 2025-06-17 | 江南大学 | A method, device and storage medium for detecting invasive brewer's yeast |
CN115170571B (en) * | 2022-09-07 | 2023-02-07 | 赛维森(广州)医疗科技服务有限公司 | Method for identifying pathological image of hydrothorax and ascites cells, image identification device and medium |
CN115601749B (en) * | 2022-12-07 | 2023-03-14 | 赛维森(广州)医疗科技服务有限公司 | Pathological image classification method and image classification device based on characteristic peak value atlas |
CN115861719B (en) * | 2023-02-23 | 2023-05-30 | 北京肿瘤医院(北京大学肿瘤医院) | Movable cell identification tool |
CN117726882B (en) * | 2024-02-07 | 2025-03-07 | 杭州宇泛智能科技股份有限公司 | Tower crane object identification method, system and electronic equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101669828A (en) * | 2009-09-24 | 2010-03-17 | 复旦大学 | System for detecting pulmonary malignant tumour and benign protuberance based on PET/CT image texture characteristics |
CN108510482A (en) * | 2018-03-22 | 2018-09-07 | 姚书忠 | Cervical carcinoma detection method, device, equipment and medium based on gynecatoptron image |
US20190130566A1 (en) * | 2015-04-06 | 2019-05-02 | IDx, LLC | Systems and methods for feature detection in retinal images |
TW201935403A (en) * | 2018-02-14 | 2019-09-01 | 中國醫藥大學附設醫院 | Prediction model for grouping hepatocellular carcinoma, prediction system thereof, and method for determining hepatocellular carcinoma group |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2944829C (en) * | 2014-05-23 | 2022-10-25 | Ting Chen | Systems and methods for detection of biological structures and/or patterns in images |
US10460150B2 (en) * | 2018-03-16 | 2019-10-29 | Proscia Inc. | Deep learning automated dermatopathology |
CN108615236A (en) * | 2018-05-08 | 2018-10-02 | 上海商汤智能科技有限公司 | A kind of image processing method and electronic equipment |
CN108764329A (en) * | 2018-05-24 | 2018-11-06 | 复旦大学附属华山医院北院 | A kind of construction method of lung cancer pathology image data set |
CN109190441B (en) * | 2018-06-21 | 2022-11-08 | 丁彦青 | Intelligent classification method, diagnostic instrument and storage medium for female genital tract cell pathology |
CN109191476B (en) * | 2018-09-10 | 2022-03-11 | 重庆邮电大学 | Novel biomedical image automatic segmentation method based on U-net network structure |
CN109190567A (en) * | 2018-09-10 | 2019-01-11 | 哈尔滨理工大学 | Abnormal cervical cells automatic testing method based on depth convolutional neural networks |
CN110334565A (en) * | 2019-03-21 | 2019-10-15 | 江苏迪赛特医疗科技有限公司 | A kind of uterine neck neoplastic lesions categorizing system of microscope pathological photograph |
CN110009050A (en) * | 2019-04-10 | 2019-07-12 | 杭州智团信息技术有限公司 | A kind of classification method and device of cell |
CN110110799B (en) * | 2019-05-13 | 2021-11-16 | 广州锟元方青医疗科技有限公司 | Cell sorting method, cell sorting device, computer equipment and storage medium |
CN110736747B (en) * | 2019-09-03 | 2022-08-19 | 深思考人工智能机器人科技(北京)有限公司 | Method and system for positioning under cell liquid-based smear mirror |
CN110766659A (en) * | 2019-09-24 | 2020-02-07 | 西人马帝言(北京)科技有限公司 | Medical image recognition method, apparatus, device and medium |
CN111311578B (en) * | 2020-02-17 | 2024-05-03 | 腾讯科技(深圳)有限公司 | Object classification method and device based on artificial intelligence, and medical imaging equipment |
-
2020
- 2020-02-26 CN CN202010121559.5A patent/CN111461165A/en not_active Withdrawn
- 2020-07-22 KR KR1020217021261A patent/KR20210110823A/en active Pending
- 2020-07-22 WO PCT/CN2020/103628 patent/WO2021169161A1/en active Application Filing
- 2020-07-22 JP JP2021576344A patent/JP2022537781A/en active Pending
-
2021
- 2021-01-11 TW TW110101018A patent/TWI767506B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101669828A (en) * | 2009-09-24 | 2010-03-17 | 复旦大学 | System for detecting pulmonary malignant tumour and benign protuberance based on PET/CT image texture characteristics |
US20190130566A1 (en) * | 2015-04-06 | 2019-05-02 | IDx, LLC | Systems and methods for feature detection in retinal images |
TW201935403A (en) * | 2018-02-14 | 2019-09-01 | 中國醫藥大學附設醫院 | Prediction model for grouping hepatocellular carcinoma, prediction system thereof, and method for determining hepatocellular carcinoma group |
CN108510482A (en) * | 2018-03-22 | 2018-09-07 | 姚书忠 | Cervical carcinoma detection method, device, equipment and medium based on gynecatoptron image |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI872722B (en) * | 2023-09-26 | 2025-02-11 | 緯創醫學科技股份有限公司 | Method and system for image recognition and computer readable storage media |
Also Published As
Publication number | Publication date |
---|---|
WO2021169161A1 (en) | 2021-09-02 |
KR20210110823A (en) | 2021-09-09 |
CN111461165A (en) | 2020-07-28 |
JP2022537781A (en) | 2022-08-29 |
TW202133043A (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI767506B (en) | Image recognition method, training method and equipment of recognition model | |
CN113435546B (en) | Transferable Image Recognition Method and System Based on Discrimination Confidence Level | |
CN112953924B (en) | Network abnormal flow detection method, system, storage medium, terminal and application | |
US11100220B2 (en) | Data type recognition, model training and risk recognition methods, apparatuses and devices | |
CN110717554B (en) | Image recognition method, electronic device, and storage medium | |
CN103810503B (en) | Depth study based method for detecting salient regions in natural image | |
CN114492768B (en) | Twin capsule network intrusion detection method based on small sample learning | |
CN111524144B (en) | Intelligent lung nodule diagnosis method based on GAN and Unet network | |
CN112132206B (en) | Image recognition method and related model training method and related devices and equipment | |
CN103927483B (en) | Judgment model for detecting malicious program and detection method of malicious program | |
CN110838126A (en) | Cell image segmentation method, device, computer equipment and storage medium | |
CN110672323B (en) | A method and device for evaluating bearing health status based on neural network | |
CN109919002A (en) | The recognition methods of yellow stop forbidden line, device, computer equipment and storage medium | |
CN113542241A (en) | An intrusion detection method and device based on CNN-BiGRU hybrid model | |
CN112766218A (en) | Cross-domain pedestrian re-identification method and device based on asymmetric joint teaching network | |
WO2024051183A1 (en) | Backdoor detection method based on decision shortcut search | |
CN112150487B (en) | Rice grain segmentation method, terminal and storage medium | |
CN117152134A (en) | Material mixing uniformity online detection method and device | |
CN114219051B (en) | Image classification method, classification model training method and device and electronic equipment | |
CN115577357A (en) | Android malicious software detection method based on stacking integration technology | |
CN114722228A (en) | Image classification method and related device and equipment | |
CN107862336A (en) | BP grader improved methods based on distance sample yojan | |
CN104123538B (en) | A kind of bad image detecting method of network of view-based access control model bag of words | |
CN115955336A (en) | Internet of things intrusion detection method, device, equipment and storage medium | |
CN112215868B (en) | Method for removing gesture image background based on generation of countermeasure network |