TWI765431B - Nucleic acid amplification system and method thereof - Google Patents
Nucleic acid amplification system and method thereof Download PDFInfo
- Publication number
- TWI765431B TWI765431B TW109141251A TW109141251A TWI765431B TW I765431 B TWI765431 B TW I765431B TW 109141251 A TW109141251 A TW 109141251A TW 109141251 A TW109141251 A TW 109141251A TW I765431 B TWI765431 B TW I765431B
- Authority
- TW
- Taiwan
- Prior art keywords
- nucleic acid
- particles
- amplification system
- substance
- acid amplification
- Prior art date
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本發明係關於一種核酸放大系統,透過整合光熱加熱的方式,使用磁性或非磁性具備外在能源轉換成區域熱能之奈米粒子,並在奈米粒子表面進行聚合酶鏈反應或等溫擴增反應,針對特定核酸片段快速放大。另外,再使用磁力捕獲、離心、側向流層析等的單分子濃縮程序,增殖核酸片段經由核酸標誌或抗體辨識並藉由耦合酵素反應,以比色法方式達到快速檢測。The present invention relates to a nucleic acid amplification system, which uses magnetic or non-magnetic nanoparticles capable of converting external energy into regional thermal energy by integrating photothermal heating, and performs polymerase chain reaction or isothermal amplification on the surface of the nanoparticles Reactions for rapid amplification of specific nucleic acid fragments. In addition, using single-molecule concentration procedures such as magnetic capture, centrifugation, lateral flow chromatography, etc., the proliferating nucleic acid fragments are identified by nucleic acid markers or antibodies and coupled with enzyme reactions to achieve rapid detection by colorimetry.
對於分子生物檢測微量的生物樣本,快速的核酸放大與檢測一直面臨著難題。過去十年,快速聚合酶鏈鎖反應被驗證可以經由快速的熱循環與二代DNA聚合酶的發展,使快速核酸放大反應,整體可以在數分鐘內完成,但也伴隨著許多問題,如低擴增子的產量、平臺的可擴充性與平台的熱量管理。快速核酸放大的技術是即時診斷 (point of care, POC) 的核心技術,與傳統的PCR儀相較,微流體式聚合酶連鎖反應被證明更具技術優越性,也被廣泛應用於檢測微量生物樣本,相較於傳統聚合酶或是其他恆溫式核酸擴增方法,因為微機電技術實現微型化的PCR,來達到快速地升溫與降溫操作與降低反應所需的試劑與樣品量,雖實現可攜式的分析裝置,但這類系統需要精確的溫控與流體操作,也因此相對地提高設計、製程及操作上的困難度,並不適當用於簡單即時診斷 的開發與應用。後端的核酸分子檢測的技術多半仰賴物理或化學的表現方式,包含吸光度、螢光、濃度、電阻抗甚至是流體黏度等方式來測定。For molecular biological detection of trace biological samples, rapid nucleic acid amplification and detection has always faced difficulties. In the past ten years, rapid PCR has been validated through rapid thermal cycling and the development of second-generation DNA polymerases, enabling rapid nucleic acid amplification reactions, which can be completed in minutes as a whole, but it is also accompanied by many problems, such as low Amplicon yield, platform scalability, and platform thermal management. Rapid nucleic acid amplification technology is the core technology of point of care (POC). Compared with traditional polymerase or other isothermal nucleic acid amplification methods, microelectromechanical technology realizes miniaturized PCR to achieve rapid heating and cooling operations and reduce the amount of reagents and samples required for the reaction. It is a portable analysis device, but such systems require precise temperature control and fluid operation, which relatively increases the difficulty of design, process and operation, and is not suitable for the development and application of simple point-of-care diagnosis. The back-end nucleic acid molecule detection technologies mostly rely on physical or chemical expressions, including absorbance, fluorescence, concentration, electrical impedance, and even fluid viscosity.
而在涉及細胞、細菌或病毒的種類鑑定,甚至是癌細胞篩檢如存在於血液循環系統中極微量循環腫瘤細胞,藉由細胞表面特殊的抗原在細胞標誌之辨識也扮演了非常重要的角色。然而,以循環腫瘤細胞為例,細胞標誌如EpCAM或是CKs並不會顯現在所有的循環腫瘤細胞上,另外在一些RNA病毒的鑑定,由於結構蛋白的高突變性,以傳統抗體的檢測,光是篩選出目標的標誌的單株抗體就先得耗費非常多的時間。所以核酸檢測的在設計上會比起抗體的檢測來的容易,另外縱使篩選出來要進行後續的檢測反應,核酸檢測可藉由特定核酸片段增殖放大改善樣本的濃度是否充足,以進行生物檢測。In the identification of cells, bacteria or viruses, and even in the screening of cancer cells, such as the presence of very small circulating tumor cells in the blood circulation system, the identification of cell markers by specific antigens on the cell surface also plays a very important role. . However, taking circulating tumor cells as an example, cell markers such as EpCAM or CKs do not appear on all circulating tumor cells. In addition, in the identification of some RNA viruses, due to the high mutation of structural proteins, traditional antibody detection, It takes a lot of time just to screen out the monoclonal antibody of the target marker. Therefore, the design of nucleic acid detection is easier than that of antibody detection. In addition, even if a subsequent detection reaction is required after screening, nucleic acid detection can improve whether the concentration of the sample is sufficient for biological detection by multiplying and amplifying specific nucleic acid fragments.
舉例來說,如果要針對特定的癌細胞、細菌或是病毒進行篩選,現有的技術多半需要透過複雜的方式將各種可能含有抗原的標的或是核酸釋出;且縱使釋出核酸或抗原後,更有可能因為樣本濃度過低,必須花費冗長的時間反應放大,才能讓如生物晶片等器材得以發揮其作用。For example, if you want to screen specific cancer cells, bacteria or viruses, most of the existing technologies need to release various targets or nucleic acids that may contain antigens through complex methods; and even after the nucleic acids or antigens are released, It is more likely that because the sample concentration is too low, it takes a long time to react and scale up, so that devices such as biochips can perform their functions.
因此,相關的生物檢測往往因各個步驟需要篩選、培養、控制樣本濃度數量,選擇適當的檢測儀器,最後進行數據分析等多道繁複的步驟,導致困難重重的局面。目前需要一套可以快速解決上述問題,又不失檢測精確性的系統和方法。Therefore, related biological testing often requires multiple steps such as screening, culturing, controlling the number of sample concentrations, selecting appropriate testing instruments, and finally performing data analysis, resulting in a difficult situation. There is currently a need for a system and method that can quickly solve the above problems without losing detection accuracy.
為了解決先前技術中所提到的問題,本發明提供了一種核酸放大系統及其方法。其中,熱循環核酸增殖反應並非以金屬加熱載具或散熱風扇,以熱導方式進行熱循環反應,該核酸放大系統主要包含一反應空間、一樣本、複數個粒子、一酵素、至少一能源提供模組、至少一溫度平衡物質以及一操控模組。In order to solve the problems mentioned in the prior art, the present invention provides a nucleic acid amplification system and method thereof. Among them, the thermal cycling nucleic acid proliferation reaction does not use a metal heating vehicle or a cooling fan to conduct the thermal cycling reaction by thermal conduction. The nucleic acid amplification system mainly includes a reaction space, a sample, a plurality of particles, an enzyme, and at least one energy supply. a module, at least one temperature balancing substance and a control module.
其中,該樣本包含至少一待測物,且該樣本置於該反應空間中。該複數個粒子與該樣本混合,每個該粒子包含一本體、至少一第一配體以及至少一第二配體。該至少一第一配體設於該本體上,且該至少一第一配體與該至少一待測物匹配。該至少一第二配體設於該本體上,每個該第二配體上包含一特定標誌。Wherein, the sample contains at least one analyte, and the sample is placed in the reaction space. The plurality of particles are mixed with the sample, and each of the particles includes a body, at least one first ligand and at least one second ligand. The at least one first ligand is disposed on the body, and the at least one first ligand matches the at least one analyte. The at least one second ligand is disposed on the body, and each of the second ligands includes a specific mark.
至於該聚合酶同樣與該樣本混合,該至少一能源提供模組提供一外在能源予以該複數個粒子。該操控模組,用以操控該反應空間中之該複數個粒子。該反應空間中更包含至少一溫度平衡物質,用於平衡該複數個粒子的溫度。As for the polymerase also mixed with the sample, the at least one energy supply module provides an external energy to the plurality of particles. The manipulation module is used to manipulate the plurality of particles in the reaction space. The reaction space further includes at least one temperature balancing substance for balancing the temperature of the plurality of particles.
進一步來說,本發明所述之該核酸放大系統的方法主要由七個步驟構成,包含步驟(a),將該樣本與複數個奈米粒子混合,令該複數個奈米粒子捕捉該至少一待測物。接著步驟(b),於一反應空間中使用一操控模組濃縮一樣本,該樣本包含該至少一待測物,若該至少一待測物為一游離性核酸物質則進入步驟(e),若否則續行步驟(c)。Further, the method of the nucleic acid amplification system of the present invention is mainly composed of seven steps, including step (a), mixing the sample with a plurality of nanoparticles, so that the plurality of nanoparticles capture the at least one Analyte. Following step (b), a control module is used to concentrate a sample in a reaction space, and the sample contains the at least one analyte. If the at least one analyte is a free nucleic acid substance, then proceed to step (e), If not, go to step (c).
步驟(c),至少一能源提供模組提供一外在能源予以該複數個粒子,使該複數個奈米粒子周遭微環境上升至一爆破溫度。接著進行步驟(d),該至少一待測物爆裂,釋出至少一生物物質;緊接著是步驟(e),該至少一能源提供模組提供一外在能源予以該複數個粒子直至一結合溫度,使該複數個奈米粒子與該至少一生物物質或該游離性核酸物質結合,並透過該操控模組集中該複數個粒子。步驟(f),該至少一能源提供模組提供一外在能源予複數個粒子,直至一放大溫度,透過一酵素於該複數個粒子上原位放大該至少一生物物質或該游離性核酸物質,使放大的該至少一生物物質或該游離性核酸物質與該複數個粒子接觸。於此反應中,至少一溫度平衡物質使該複數個粒子急速降溫,藉以達到快速溫度循環。最後,步驟(g)為透過一偵測模組辨識放大的生物物質或游離性核酸物質上特定標誌產生的色彩變化、發光或其組合,以偵測經過濃縮後該複數個粒子上放大的生物物質或游離性核酸物質。以螢光或分光光度偵測裝置,包含以螢光度計或螢光掃描儀分析螢光強度差異,或是以結合專一性DNA片段或抗體耦合酵素反應來辨識聚合酶放大的生物物質上特定的標誌。In step (c), at least one energy supply module provides an external energy to the plurality of particles, so that the micro-environment around the plurality of nanoparticles rises to a burst temperature. Then step (d) is performed, the at least one object to be tested bursts to release at least one biological substance; followed by step (e), the at least one energy supply module provides an external energy to the plurality of particles until a combination The temperature causes the plurality of nanoparticles to combine with the at least one biological substance or the free nucleic acid substance, and concentrate the plurality of particles through the manipulation module. In step (f), the at least one energy supply module provides an external energy source to a plurality of particles until an amplification temperature is reached, and an enzyme is used to in situ amplify the at least one biological substance or the free nucleic acid substance on the plurality of particles , contacting the amplified at least one biological substance or the free nucleic acid substance with the plurality of particles. In this reaction, at least one temperature balancing substance rapidly cools the plurality of particles, thereby achieving rapid temperature cycling. Finally, in step (g), a detection module is used to identify the color change, luminescence or combination of specific markers on the amplified biological material or free nucleic acid material, so as to detect the amplified biological material on the plurality of particles after concentration. substance or free nucleic acid substance. Fluorescence or spectrophotometric detection devices, including fluorometers or fluorescence scanners to analyze differences in fluorescence intensity, or to identify specific polymerase-amplified biological substances by binding specific DNA fragments or antibody-coupled enzyme reactions logo.
以上對本發明的簡述,目的在於對本發明之數種面向和技術特徵作一基本說明。發明簡述並非對本發明的詳細表述,因此其目的不在特別列舉本發明的關鍵性或重要元件,也不是用來界定本發明的範圍,僅為以簡明的方式呈現本發明的數種概念而已。The purpose of the above brief description of the present invention is to provide a basic description of several aspects and technical features of the present invention. The Brief Description of the Invention is not a detailed description of the invention, and therefore its purpose is not to specifically list key or important elements of the invention, nor to delineate the scope of the invention, but merely to present several concepts of the invention in a concise manner.
為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後:In order to understand the technical features and practical effects of the present invention, and to implement according to the contents of the description, hereby further take the preferred embodiment as shown in the drawings, and the detailed description is as follows:
首先請先參照圖1,圖1係本發明核酸放大系統10的構成示意圖其中一實施例。如圖1所示,本實施例提供了一種核酸放大系統10。其中,該核酸放大系統10主要包含反應空間100、樣本200、複數個粒子、酵素、能源提供模組500以及操控模組。其中,本實施例之該操控模組為磁力元件600,該複數個粒子選用複數個磁性奈米粒子300,而該酵素在核酸放大系統的方法的實施例中為聚合酶400。First, please refer to FIG. 1 . FIG. 1 is a schematic diagram of the structure of a nucleic
其中,本實施例之樣本200、複數個粒子、聚合酶400皆置於反應空間100中,反應空間100中的樣本200更包含一溫度平衡物質203。該溫度平衡物質203可以是大體積 (大於100ul)的核酸增殖反應溶液或是在反應空間100外接降溫冰袋,此內容物可以是冰或是高分子聚合吸水樹酯,例如羧甲基纖維素(Carboxymethyl Cellulose)。藉由上述物質的大比熱性質,可以迅速冷卻經由磁性奈米粒子300光熱轉換達到迅速加熱周遭微環境(microenvironment)的溫度,以達到快速的核酸擴增反應的溫度循環(thermal cycling)。進一步來說,藉由能源提供模組500以光熱效應快速加熱複數個奈米粒子與其所在微環境,得以讓複數個奈米粒子上核酸擴增反應的快速升溫;並藉由該樣本200中的溫度平衡物質203,以進行該奈米粒子上核酸擴增反應的快速降溫,形成有效率的原位核酸擴增反應的溫度循環。The
其中,本實施例之樣本200包含至少一具有待測物201,且該樣本200置於該反應空間100中。具體來說本實施例所指稱的樣本200可以是任何需要進行生物檢測的生物體液或其上清液,例如血清、血漿、尿液、淋巴液、咽喉擦拭、鼻咽拭子、支氣管肺泡 灌洗液、痰液、糞便、腦脊髓液、皮膚水泡液、痂皮等生物檢體至是其組合,及食品或是加工農產品的初萃樣本甚至是其組合。進一步來說,所使用樣本200在本發明中可以選擇經過純化的樣本200,亦可選擇未經初步的純化與前處理的樣本200。無論是何種條件的樣本200,皆可以本實施例所示的核酸放大系統 10 進行後續的區域熱能爆破待測物201。而待測物201則可以是任何微生物個體、組織或是細胞,包含至少一細胞、至少一細菌、至少一藻類、至少一原生動物或原生菌類、至少一真菌、至少一病毒或噬菌體、至少一原生生物、至少一游離性核酸物質或其組合。其中,該至少一游離性核酸物質更包含至少一體液游離核酸物質、至少一腫瘤游離核酸物質或其組合,本發明並不加以限制。The
在本實施例中,複數個磁性奈米粒子300與樣本200混合。請進一步參照圖2,圖2係本發明實施例磁性奈米粒子300的結構示意圖。在本實施例中,所述複數個磁性奈米粒子300可選用金磁殼(magnetic gold nanoshells)。In this embodiment, a plurality of
如圖2所示,本實施例每個磁性奈米粒子300都包含本體301、至少一第一配體302或是一專一性的適體305,以及至少一第二配體303。在本發明的概念下,磁性奈米粒子300其他有可能據以實施的本體301的型態可以是由金屬或是複合材料所形成球形、短桿、各向異性突次狀的(如奈米星型) 、奈米殼、奈米籠、雙三角錐的形式,不限於此形式。而本體301的材質係可包含至少一種貴金屬,如金、銀、鈀 (alladium)、鉑或其組合。而本體301對於至少一種貴金屬的構築形式可以是表面塗佈或配置至少一層的前述貴金屬種類,如金、銀、鈀、鉑等。甚者,本實施例之本體301更可併入具近紅外光(Near Infrared Spectroscopy, NIR)吸收光譜的青色素(cyanine) 類、聚吡咯(polypyrrole)或石墨烯 (graphene)等材料。亦可包含過渡金屬如鐵、鈷等物質。當然,前述過渡金屬亦須包括其氧化物,如氧化亞鐵(FeO)、氧化鐵(Fe
2O
3)、四氧化三鐵(Fe
3O
4)、氧(氫氧)化鐵(FeO(OH))、氫氧化亞鐵(Fe(OH)
2)、氫氧化鐵(Fe(OH)
3)、一氧化鈷(CoO)、氧(氫氧)化鈷(CoO(OH))、四氧化三鈷(Co
3O
4)及其衍生物、混合物所組成之群組,本發明並不加以限制,只要能使本體301包含光熱或磁熱轉換性質或是依據需求更近一步的磁力性質者及其相關的技術手段,即符合本發明實施例的條件。
As shown in FIG. 2 , each
請參照圖2,有關設於本體301上的至少一第一配體302,該第一配體更可以是抗體、適體305、寡核甘酸或其組合,並不在此限。本實施例選用的至少一第一配體302係可與前述提及之至少一待測物201匹配。該第一配體302經過專一性結合該待測物201,將樣本200的表面吸附在本體301上。在本實施例中,至少一第二配體303設於本體301上,該第二配體303可以是抗體、適體、寡核甘酸或其組合,並不在此限。且每個第二配體303上包含特定標誌,該特定標誌可以是螢光基團3061或核酸標誌3062。更進一步來說,第二配體303可以是單股的核酸序列,經高溫所釋放出的待測物201的生物物質(如核酸檢體)可以被奈米粒子本體301表面功能化的第二配體303抓取,用以捕捉特定的遺傳物質進行放大反應。因此,本實施例之每個磁性奈米粒子300的表面皆經過至少兩道手續的表面加工,使之具有極高的專一性。本實施例功能化且具專一性的第一配體302與第二配體303,據以特化為能針對微量的樣本200進行分析。Referring to FIG. 2 , regarding at least one
本實施例之每個第一配體302及第二配體303係透過穩定結構304與本體301連接。其中,該穩定結構304可選地包含一熱穩定鍵結、一接觸式抑制包覆層或其組合。進一步來說,熱穩定鍵結更包含生物素(biotin)與鏈親合素(streptavidin)或是以交聯劑 (cross linker) 的連接,或是其他具有熱穩定性質的共價鍵結。由於鏈親合素(streptavidin)與生物素(biotin)的結合在其飽合狀態下具有極高的熱穩定性(>105度),且制備方式簡單,因此利用鏈親合素(streptavidin)與生物素(biotin)間的高強度與高親和性結合(Biotin-streptavidin interaction),在聚合酶鏈反應(polymerase chain reaction, PCR)的高溫環境中塑造穩定的反應環境。相較於先前技術多以硫醇(thiol) 所形成的雙硫鍵共價鍵結,導致在PCR反應液中出現二硫蘇糖醇(dithiothreitol, DTT)或是其他還原劑。在前述物質的存在下,容易使原先形成的雙硫鍵共價鍵結還原成硫醇(-S-H鍵),造成聚合酶鏈反應中的引子(primer)由奈米粒子的表面脫離,另外此鏈親合素蛋白可以形成蛋白質披覆層在奈米粒子表面減少奈米粒子非專一性的的吸附。Each of the
至於聚合酶400同樣與樣本200混合。本實施例所採用的聚合酶400可以為去氧核糖核酸聚合酶(DNA Polymerase)、核糖核酸聚合酶(RNA Polymerase)或其組合,僅依照欲檢測的核酸種類或第二配體303的種類替換,本發明並不加以限制。另外,本實施例中,該酵素更包含反轉錄酶(reverse transcriptase, RT)、核糖核酸酶(ribonuclease, RNase)、解旋酶(helicases)、DNA連接酶或其組合,依照樣本200種類或核酸擴增反應種類視情況而變更其酵素種類。The
除此之外,為了減少奈米粒子本體301表面與去氧核糖核酸聚合酶(DNA Polymerase)或核糖核酸聚合酶(RNA Polymerase)的接觸式抑制,本實施例可選地在本體301表面披覆該接觸式抑制包覆層。接觸式抑制包覆層可包含矽化物層(silica coating)、聚乙二醇(Polyethylene glycol, PEG)或其組合,用以作為奈米粒子本體301表面的填充分子(filling molecule),減少奈米粒子間的沉澱(aggregate)作用,提高奈米粒子表面的穩定性。In addition, in order to reduce the contact inhibition between the surface of the
而本實施例之至少一能源提供模組500可以選用雷射發射器、LED二極體光源或磁場產生器,據此提供一外在能源B予以複數個磁性奈米粒子300,該外在能源B可以是光能或是交變磁場。當然,在本實施例中所稱的外在能源B(可先參照圖7)即為雷射光能。而操控模組用以操控反應空間100中之該複數個奈米粒子。其中,本實施例之操控模組雖僅選用磁力元件600實現之,但實際上,操控模組可因應複數個奈米粒子種類或後續的檢測步驟、需求的不同,進一步選擇磁力元件600、離心設備或其組合。當該操控模組為磁力元件600時,該奈米粒子應設計為具有磁力的磁性奈米粒子300,使磁力元件600得以操作反應空間100中之複數個磁性奈米粒子300。進一步來說,磁力元件600可以選用永久磁鐵、電磁鐵或其組合,本發明並不加以限制。The at least one
本發明核酸放大系統10之實施例,更包含一偵測模組,用來偵測經過該操控模組濃縮聚集的該第二配體303上的螢光基團3031所釋放出的螢光F,以定量奈米粒子表面上經過放大的該待測物201之生物物質202。在本實施例中,生物物質202可以是去氧核糖核酸(DNA)或是核糖核酸(RNA)且不在此限。若此生物物質202為核酸,經過原位聚合酶鏈反應(
in-situPCR)、反轉錄反應或恆溫擴增技術(isothermal amplification),其中恆溫擴增反應是指選用操作溫度大於37度的技術,包含恆溫環狀擴增 (LAMP)、鍊取代擴增 (SDA)、解旋酶鍊取代擴增 (HDA)、核酸去列為主的擴增反應 (NASBA)與轉錄媒介的擴增反應 (TMA)、切口酶恆溫擴增反應(Nicking Enzyme Amplification Reaction, NEAR)、恆溫重組聚合酶核酸擴增反應(Recombinase polymerase amplification, RPA)。
The embodiment of the nucleic
放大的核酸序列片段,即該待測物201經過熱爆破釋放之生物物質202經過核酸擴增反應放大後,稱為擴增子(amplicon)。The amplified nucleic acid sequence fragment, that is, the
請參照圖3,圖3係本發明實施例核酸放大系統10之方法流程圖。如圖3所示,本實施例所述之核酸放大系統10的方法主要由七個步驟構成,包含步驟(a),將一樣本200與複數個磁性奈米粒子300混合,令該複數個磁性奈米粒子300捕捉該至少一待測物201。接著步驟(b),於一反應空間100中使用一操控模組濃縮一樣本200,該樣本200包含該至少一待測物201。若該至少一待測物201為一游離性核酸物質則直接進入步驟(e),若否則續行步驟(c)。Please refer to FIG. 3 , which is a flowchart of a method of the nucleic
步驟(c),至少一能源提供模組500提供一外在能源B予以該複數個磁性奈米粒子300,使該複數個磁性奈米粒子300上升至一爆破溫度。接著進行步驟(d),該至少一待測物201爆裂,釋出至少一生物物質202;緊接著是步驟(e),該至少一能源提供模組500提供一外在能源B予以該複數個粒子直至一結合溫度,使該複數個磁性奈米粒子300與該至少一生物物質202或該游離性核酸物質結合,並透過該操控模組集中該複數個磁性奈米粒子300。最後,步驟(f),該至少一能源提供模組500提供一外在能源B予以該複數個磁性奈米粒子300,直至一放大溫度,該複數個磁性奈米粒子300透過一聚合酶400放大該至少一生物物質202或該游離性核酸物質。最後,步驟(g)以偵測模組辨識位於放大的該至少一生物物質或該游離性核酸物質上該特定標誌產生的色彩變化、發光或其組合,以偵測經過濃縮後該複數個粒子上放大的該至少一生物物質或該游離性核酸物質。In step (c), at least one
為能夠更清楚的理解本實施例所述的核酸放大系統10之方法,請同時參照圖3-5,圖4係本發明實施例樣本200之濃縮前示意圖;圖5係本發明實施例樣本200之濃縮後示意圖。For a clearer understanding of the method of the nucleic
在圖3的步驟(a)中,圖3的步驟(a)係將樣本200與複數個磁性奈米粒子300混合,令複數個磁性奈米粒子300捕捉至少一待測物201。本實施例之待測物201包含至少一細胞、至少一細菌、至少一藻類、至少一原生動物或原生菌類、至少一真菌、至少一病毒或噬菌體、至少一原生生物或其組合。基礎上待測物201必須具有能夠讓特定抗體或是特別設計過的抗體辨識的抗原,並帶有如核酸等遺傳相關物質,方得以本實施例進行進一步檢測。如圖2所示,能夠辨識該待測物201之抗原的專一性抗體302或適體305被設置在具有表面功能化的奈米粒子,以供後續待測物201經由奈米粒子辨識進行熱爆破與核酸物質放大。In step (a) of FIG. 3 , the
請同時參照圖3-5,圖4係本發明實施例樣本200之濃縮前示意圖,為加快本實施例之檢測進行,本實施例於步驟(b)中會於反應空間100中使用操控模組濃縮樣本200並清洗去除一不純物,使之呈現圖5的狀態。在圖5濃縮後的樣本200中包含至少一待測物201。其中該操控模組包含離心設備、磁力元件600或其組合。本實施例之濃縮方式可包含離心後萃取上清液、使用磁力元件600集中複數個磁性奈米粒子300或其組合等方式進行,本發明並不加以限制。本實施例中,該不純物為非待測物之物質,待測物201透過與第一配體302結合而被複數個磁性奈米粒子300捕捉,接著透過操控模組濃縮該複數個磁性奈米粒子300後,該待測物201與該不純物分離而被去除。Please refer to FIGS. 3-5 at the same time. FIG. 4 is a schematic diagram of a
接著請同時參照圖3與圖6-7,圖6係本發明實施例添加聚合酶400之示意圖;圖7係本發明實施例爆破待測物201之示意圖。如圖3的步驟(c)對應到圖6-7所示,如圖6所示,本實施例的步驟(c)更可加入聚合酶400。當然,在其他可能實施的樣態中,若步驟(c)之爆破溫度可能影響到聚合酶400並使之具有變性風險的話,亦可改於步驟(f)中再行加入聚合酶400,本發明並不加以限制。Next, please refer to FIG. 3 and FIGS. 6-7 at the same time. FIG. 6 is a schematic diagram of adding
接著如圖7所示,透過磁性奈米粒子300上的至少一第一配體302或一適體305(可參考圖2),可讓磁性奈米粒子300能夠順利以抗原辨識區域快速的在樣本200中匹配並捕捉到待測物201。以本實施例來說,待測物201可以是微生物或特定細胞。藉此,步驟(c)進行時,能源提供模組500提供外在能源B(如圖7中能源提供模組500發出的灰色波紋)予以複數個磁性奈米粒子300,使複數個磁性奈米粒子300溫度上升至爆破溫度。Next, as shown in FIG. 7 , through at least one
如前所述,本實施例之能源提供模組500為雷射發射器,而外在能源B則理所當然為雷射光能。然實際上能源提供模組500的種類選用必須依照磁性奈米粒子300之本體301材質來選擇,主要以可自由加熱本體301的能源提供模組500為主,雷射波長以可見光譜至近紅外線光譜(380nm-1.4μm)為主要範圍,優先在近紅外線光譜區(750nm-1.4μm)。可以將外在能源轉換成熱能之奈米粒子,外在能源可以是光能、交變磁場等能源即可,本發明並不加以限制。本實施例中,能源提供模組500主要針對奈米粒子本身與附近區域的微環境(距離以微米(μm)為單位)進行加熱,因此較適合原位聚合酶鏈反應(
in-situPCR)。
As mentioned above, the
請同時參照圖3與圖8-9,圖8係本發明實施例待測物201釋出生物物質202之示意圖;圖9係本發明實施例生物物質202之捕捉放大示意圖。圖8係對應到圖3的步驟(d),在本實施例中,由於步驟(c)時複數個磁性奈米粒子300已經透過至少一第一配體302緊抓住待測物201,因而使複數個磁性奈米粒子300與待測物201的距離極為接近。該複數個磁性奈米粒子300使用本體301的光熱效應性質,吸收能源提供模組500提供的外在能源B並將之轉換為熱,而在複數個磁性奈米粒子300已經上升到爆破溫度的前提下,該待測物201會因為高熱的物理作用導致其外殼結構(如細胞膜、細胞壁等,但不在此限)變質破裂,達到爆破待測物201的目的。據此,進而完成步驟(d)之該至少一待測物201爆裂,釋出至少一生物物質202。Please refer to FIG. 3 and FIGS. 8-9 at the same time. FIG. 8 is a schematic diagram of the
在本實施例中,前述所稱的生物物質202係為去氧核糖核酸(DNA)或核糖核酸(RNA)。同時參照圖2,由於待測物201在複數個磁性奈米粒子300極近距離的狀態下爆裂,待測物201所釋出的生物物質202也會以高濃度的方式在磁性奈米粒子300的周遭釋放。藉此,如圖3步驟(e)所述,複數個磁性奈米粒子300與至少一生物物質202結合(可參照圖9)。若待測物為游離性核酸物質,則由步驟(b)執行後直接進入步驟(e),此時該至少一能源提供模組提供一外在能源予以該複數個粒子直至一結合溫度,使複數個磁性奈米粒子300則與該游離性核酸物質結合。更進一步來說,複數個磁性奈米粒子300可與至少一生物物質202或該游離性核酸物質結合的原因在於磁性奈米粒子300上具有第二配體303(可參照圖2)。In this embodiment, the aforementioned
在本實施例中,由於生物物質202為去氧核糖核酸(DNA)或核糖核酸(RNA)的緣故,第二配體303也相應選用與生物物質202互補的去氧核糖核酸(DNA)或核糖核酸(RNA)短鏈為之。據此,達到可與至少一生物物質202結合的目的。In this embodiment, since the
接著,請同時參照圖3與圖10,圖10係本發明實施例檢測螢光F反應之示意圖。如圖10所示,對應圖3之步驟(e)-(f),當步驟(e)如圖9所示使複數個磁性奈米粒子300與至少一生物物質202結合後,如圖10所示的一般,透過磁力元件600操作集中複數個磁性奈米粒子300。Next, please refer to FIG. 3 and FIG. 10 at the same time. FIG. 10 is a schematic diagram of detecting the fluorescent F reaction according to an embodiment of the present invention. As shown in FIG. 10 , corresponding to steps (e)-(f) of FIG. 3 , after step (e) as shown in FIG. 9 , a plurality of
藉此,聚合酶400便會協助複數個磁性奈米粒子300上所捕捉的生物物質202進行步驟(f),由能源提供模組500提供外在能源B予以反應空間100中的複數個磁性奈米粒子300,直至恆溫放大溫度,而複數個磁性奈米粒子300透過聚合酶400放大至少一生物物質202,並同時產生螢光F或核酸標誌3062耦合酵素的顏色變化。本實施例之溫度平衡物質203可以是大體積(大於或等於100微升)的PCR增殖反應液,提供熱容以大比熱的性質快速冷卻複數個磁性奈米粒子300,藉以達到快速的溫度循環來進行核酸擴增反應。In this way, the
如前所述,如於步驟(b)即已加入聚合酶400者,本實施例之聚合酶400應對應該至少一生物物質202的種類選為去氧核糖核酸聚合酶(DNA Polymerase)、核糖核酸聚合酶(RNA Polymerase)或反轉錄酶 (reverse transcriptase),才能在後續的步驟(f)中進行放大反應。當然,在步驟(e)-(f)之間再加入聚合酶400亦可,本發明並不加以限制聚合酶400的添加時間。As mentioned above, if the
本案與先前技術相比,由於核酸放大生成物並不在反應空間100中而僅在奈米粒子表面的第二配體303上,於奈米粒子表面上進行原位聚合酶鏈反應(
in-situPCR),整體原位增殖放大承載量遠小於當聚合酶鏈反應在整個反應空間100的情況,所以在只要讓奈米粒子上的核酸承載量達到飽和的情形下,此也代表在相對短的時間下或是相對少的核酸放大循環次數,即可達成飽和。
Compared with the prior art, since the nucleic acid amplification product is not in the
最後,進行步驟(g),係透過偵測裝置,在本實施例中可以是螢光度計、螢光掃描儀來分析螢光強度差異,或是以分光光度偵測裝置,來辨識透過結合在放大的生物物質202或游離性核酸上的核酸標誌3062或抗體耦合酵素反應產生的顏色變化。其中,該核酸標誌3062可以是能經由抗體辨識的DNA標誌物,抗體辨識該DNA片段後耦合酵素反應產生的顏色變化可藉由比色法分析,藉此偵測聚合酶放大的生物物質202。Finally, step (g) is performed, through a detection device, in this embodiment, a fluorometer or a fluorescence scanner can be used to analyze the difference in fluorescence intensity, or a spectrophotometric detection device can be used to identify the Amplified
至於螢光F或核酸標誌3062導致的顏色變化的產生原因係可參照圖2,本實施例游離的核酸引子306上更具有螢光基團3061或核酸標誌3062。換言之,當樣本200中的至少一待測物201可以釋出正確的至少一生物物質202或是樣本200中含有游離性核酸物質存在時,第二配體303上可以與生物物質202或游離性核酸物質的序列互補並且以此為模板與游離核酸引子306進行經聚合酶400放大作用而反應,進而使螢光基團3061或核酸標誌3062嵌入放大的產物;反之,如樣本200中的至少一待測物201無法釋出正確的至少一生物物質202或樣本200中未存在游離性核酸物質時,則第二配體306上的螢光基團3061或核酸標誌3062,因為聚合酶400無行放大作用的進行,不會產生螢光F或後續的色度法改變。As for the cause of the color change caused by fluorescent F or
如前所述,在奈米粒子上擴增子(amplicon)產生的螢光F的訊號偵測有幾種實施例,且不在此述所限。在其中一較佳實施例,可使用螢光法,採用以螢光基團3061標定的引子,在本實施例中,螢光基團3061可選用異硫氰酸螢光素(Fluorescein isothiocyanate , FITC)。因此,在螢光基團3061選用異硫氰酸螢光素(Fluorescein isothiocyanate , FITC)的前提下,本實施例針對
E.coli malB基因 設計能專一辨識之引子的引子對(F3 & B3),其中F3藉由streptavidin 與biotin 的方式 或是藉由羧基與胺的交聯的共價鍵結與奈米粒子結合,另外B3引子則選用異硫氰酸螢光素與其5端進行標定形成FITC-B3 primer。惟實際上螢光基團3061和引子的選用可以依照不同的檢測需求任意替換,本發明並不加以限制。綜上,本實施例在進行上述的原位核酸放大時,會形成具有螢光基團3061標定的擴增子(amplicon)於磁性奈米粒子300表面,至於游離(free form)的異硫氰酸螢光素-B3-引子(FITC-B3 primer),可藉由磁力抓取磁性奈米粒子300並清洗的流程去除。後續可以藉由磁力(或與離心手段的組合)操作,濃縮並集中磁性奈米粒子300表面的螢光F訊號,此螢光F訊號將因為擴增子(amplicon)本身的長度,在磁性奈米粒子300表面形成適當的延伸段(spacer),讓磁性奈米粒子300與螢光基團3031經由金屬增強螢光效應 ( Metal enhanced fluorescence, MEF ) 增強螢光F強度,以螢光強度影像分析(fluorescence scanner)或是以螢光光譜(fluorescence spectrometry)進行分析。
As mentioned above, there are several embodiments for signal detection of fluorescence F generated by amplicons on nanoparticles, and are not limited here. In one of the preferred embodiments, a fluorescent method can be used, and a primer labeled with a
另一種偵測奈米粒子上擴增子(amplicon)產生的色度法訊號的實施例,為使用側向流動試紙片(Lateral flow dipstick)。此法與傳統側向流免疫金法略微不同,傳統的免疫金會與待測標定的抗體結合;但本實施例中的檢測過程不會添加與抗體結合的膠體金粒子,只會將據以辨識螢光基團3031的抗體固定在側向流的檢測線上,待含有目標擴增子(amplicon)的液體流過,便會將目標擴增子(amplicon)固定在檢測線上,以得到檢測訊號;而控制線上則僅會固定辨識磁性奈米粒子300本身的第一配體302。Another example of detecting colorimetric signals from amplicons on nanoparticles is to use a Lateral flow dipstick. This method is slightly different from the traditional lateral flow immunogold method. The traditional immunogold will bind to the antibody to be tested and calibrated; however, the detection process in this example will not add colloidal gold particles bound to the antibody, and will only The antibody that recognizes the fluorescent group 3031 is immobilized on the detection line of the lateral flow. When the liquid containing the target amplicon (amplicon) flows through, the target amplicon (amplicon) will be immobilized on the detection line to obtain the detection signal. ; On the control line, only the
除上述偵測螢光F訊號的實施例,更還有基於磁珠的酵素結合免疫吸附分析法(Bead-based ELISA)、石蕊試驗(Litmus test)等方法,不在上述所限。基於磁珠的酵素結合免疫吸附分析法(Bead-based ELISA)的目的在於增加螢光法的靈敏度,或是將螢光F訊號轉換成色度法(colorimetric method )。在此方法中,與辣根過氧化物酶(horseradish peroxidase, HRP)耦合能專一性辨識螢光基團3031(FITC)的抗體,由辣根過氧化物酶(horseradish peroxidase, HRP)將四甲基聯苯胺基質(TMB substrate )轉換成藍色生成物後,酸化終止辣根過氧化物酶(horseradish peroxidase, HRP)的反應,並於450奈米(nm)波長下偵測磁性奈米粒子300表面上原位放大的核酸產物。In addition to the above-mentioned embodiments for detecting the fluorescent F signal, there are also methods such as bead-based ELISA, Litmus test, etc., which are not limited to the above. The purpose of Bead-based ELISA is to increase the sensitivity of the fluorometric method, or to convert the fluorescent F signal into a colorimetric method. In this method, an antibody that can specifically recognize the fluorescent group 3031 (FITC) is coupled to horseradish peroxidase (HRP), and tetramethyl tetramethylmethane is converted by horseradish peroxidase (HRP). After the conversion of the TMB substrate to a blue product, acidification terminates the reaction of horseradish peroxidase (HRP), and the
而石蕊試驗(Litmus test)與上述基於磁珠的酵素結合免疫吸附分析法(Bead-based ELISA)有類似相同的目的,但差異在於不以專一性的抗體辨識,而是在進行原位聚合酶鏈反應(
in situPCR)上的反向引子(reverse primer)上多設計與預留一段能與標記有尿素分解酵素的DNA片段進行結合的標籤(conjugated urease-DNA(UrD)binding tag),其中標記有尿素分解酵素的DNA(conjugated urease-DNA, UrD)為一段單股核苷酸耦合尿素分解酵素(urease),而尿素分解酵素(urease)則會分解尿素(urea)產生氨(NH
3),並增加反應液中的pH值,此可藉由酚紅(phenol red)或甲酚紅(cresol red)此酸鹼指示劑,將磁性奈米粒子300上的擴增子(amplicons)量轉換成色度法上的差異。
The Litmus test has the same purpose as the Bead-based ELISA described above, but the difference is that it is not identified by specific antibodies, but in situ polymerization The reverse primer on the enzyme chain reaction ( in situ PCR) is designed and reserved with a tag (conjugated urease-DNA (UrD) binding tag) that can bind to the DNA fragment labeled with urease. Among them, the DNA (conjugated urease-DNA, UrD) marked with urease is a single-stranded nucleotide coupled to urease, which decomposes urea to produce ammonia (NH 3 ). ), and increase the pH value in the reaction solution, which can be used to measure the amount of amplicons on the
綜上所述,本發明實施例可以在單個反應空間100中同時克服濃度和樣本200處理篩選等多重限制,又可以透過精密的磁性奈米粒子300的專一性設計、光熱性質與磁力性質,同時達到加熱源(heater)與單一載體(carrier)的功能,使能極為快速的以肉眼辨識待測物201是否存在於樣本200中,其中樣本200中的溫度平衡物質203更能加快聚合酶鏈反應的溫度循環,大幅縮短了以往曠日廢時的檢測流程。To sum up, the embodiment of the present invention can simultaneously overcome multiple limitations such as concentration and processing and screening of
為了能更清楚明瞭本發明實際運作的情形,請參照圖11至圖23實驗數據。For a clearer understanding of the actual operation of the present invention, please refer to the experimental data in FIGS. 11 to 23 .
在應用本發明圖1-10實施例的其中一種實施例實驗當中,磁性奈米粒子300選用金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)時進行光熱溫度變化實驗。在此實施例中,磁性奈米粒子300於水中的濃度為2.9 x10
10粒子數/毫升,且能源提供模組500使用波長為808奈米的雷射光作為外在能源B,進行不同瓦數能量(200mw-700mw)加熱磁性奈米粒子300產生光熱反應變化。
In one of the experiments of applying the embodiments of FIGS. 1-10 of the present invention, the photothermal temperature change experiment is carried out when the
請參照圖11,圖11為能源提供模組500使用不同強度(200mw-700mw)的雷射光能施加於磁性奈米粒子300所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。圖12為使用金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)作為磁性奈米粒子300時施加於其上的雷射強度與粒子周遭環境溫度的關係圖,在本實施例中,首先使用波長808奈米的雷射光進行加熱5分鐘後,該金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)溫度升至穩定態,並使用K型熱電偶(k-type thermocouple)偵測整個升溫過程。請參照圖12,可得知該磁性奈米粒子300選用金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)的穩定態溫度與該外在能源的雷射強度呈線性關係,且圖12中該淺灰帶與深灰帶分別指出該磁性奈米粒子300進行光熱裂解與恆溫環狀擴增反應(LAMP)的最適溫度範圍。圖13為使用雷射加熱磁性奈米粒子300並於水中進行光熱反應並進行恆溫環狀擴增反應時的溫度變化圖。圖13中,首先使用波長808奈米的雷射光以300mw-700mw的施作功率於該磁性奈米粒子300進行5分鐘的光熱反應裂解,接著以10mw-50mw的施作功率達到磁性奈米粒子300的緩慢降溫以進行粒子上DNA的捕捉,最後以200mw-250mw施作功率的雷射進行磁性奈米粒子300上的恆溫環狀擴增反應,維持時間為30分鐘。Please refer to FIG. 11 . FIG. 11 is a temperature change diagram of the ambient temperature to a steady state caused by photothermal changes generated by the
在本發明的另一實施例中,磁性奈米粒子300使用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)進行光熱溫度變化實驗。在此實施例中,作為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-capped Fe
3O
4particles)於水中的濃度為1000 ppm,且同樣使用波長為808奈米的雷射光進行不同瓦數能量(200mw-1000mw)加熱,使作為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)產生光熱反應變化。
In another embodiment of the present invention, the
請參照圖14,圖14為使用不同強度(200mw-1000mw)的雷射光能施加於磁性奈米粒子300選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)時所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。圖15為使用不同強度(200mw-1000mw)的雷射光能施加於無聚吡咯外層的 氧化鐵粒子(Fe
3O
4particles)所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。圖16為使用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)作為磁性奈米粒子300時施加於其上的雷射強度與粒子周遭環境溫度的關係圖。在本實施例中,首先使用波長為808奈米的雷射光進行加熱5分鐘後,該做為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)溫度升至穩定態,並使用K型熱電偶(k-type thermocouple)偵測整個升溫過程。請參照圖16,可得知該磁性奈米粒子300選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)時的穩定態溫度與該外在能源的雷射強度呈線性關係,且圖16中該淺灰帶與深灰帶分別指出該磁性奈米粒子300選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)時進行光熱裂解與恆溫環狀擴增反應(LAMP)的最適溫度範圍。圖17為使用雷射加熱作為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)並且於水中進行光熱反應以進行恆溫環狀擴增反應時的溫度變化圖。圖17中,首先使用波長808奈米的雷射光以500mw-1000mw的施作功率於作為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles),進行5分鐘光熱反應裂解。接著以20mw-80mw的施作功率達到作為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)的緩慢降溫以進行磁性奈米粒子300上DNA的捕捉,最後以300mw-450mw施作功率的雷射在做為磁性奈米粒子300的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)上進行30分鐘的恆溫環狀擴增反應。
Please refer to FIG. 14 . FIG. 14 shows the photothermal changes caused by the use of laser light energy of different intensities (200mw-1000mw) applied to the
於前述的實施例進一步來說,請參照圖18。圖18為使用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)作為該磁性奈米粒子300進行光熱反應裂解大腸桿菌時,該細菌存活率與周遭環境溫度的關係圖。由圖18可得知,光熱裂解待測物的最佳使用功率為700mw-800mw,其運作條件係提供1000ppm濃度的聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)作為磁性奈米粒子300,且該最佳爆破溫度範圍的最佳的效果並非恰好為最高溫度。
For further details of the aforementioned embodiment, please refer to FIG. 18 . FIG. 18 is a graph showing the relationship between the survival rate of the bacteria and the ambient temperature when using polypyrrole-encapsulated iron oxide particles (PPy-enveloped Fe 3 O 4 particles) as the
於前述實施例,更進一步請參照圖19。圖19為使用光熱裂解細菌並分別以定量即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction,Q-PCR)量化該基因體DNA與質體DNA釋放的效果。由該實驗數據證實使用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe
3O
4particles)作為磁性奈米粒子300時,以近紅外光雷射光熱反應裂解的效果比傳統的熱裂解方式效果更好。
In the aforementioned embodiment, please refer to FIG. 19 for further details. Figure 19 shows the effects of photothermal lysis of bacteria and quantitative real-time polymerase chain reaction (Q-PCR) quantification of the release effects of the genomic DNA and plastid DNA, respectively. The experimental data confirmed that when using PPy-enveloped Fe 3 O 4 particles as the
於前述實施例,請進一步參酌圖20。圖20為藉由拷貝數(copy number)與螢光強度(fluorescence intensity, FI)評估光熱原位恆溫環狀擴增反應(photonic in situLAMP)的感受性(sensitivity)表現。由圖20可得知,於反應30分鐘螢光強度達到閾值(無模板控制組加上三個標準差的螢光強度)以上時, E.coli最低濃度的基因體DNA拷貝數(copy number)介於10 2到10 3之間。更進一步地,使用傳統恆溫環狀擴增反應進行相同實驗,請參酌圖21。圖21為藉由拷貝數(copy number)與螢光強度(fluorescence intensity, FI)評估傳統恆溫環狀擴增反應(LAMP)在不同時間點的感受性(sensitivity)表現。由圖20與圖21比較,顯示光熱原位恆溫環狀擴增反應(photonic in situLAMP)的感受性(sensitivity)表現較傳統恆溫環狀擴增反應(LAMP)好。 In the aforementioned embodiment, please refer to FIG. 20 further. Figure 20 shows the sensitivity performance of photothermal in situ isothermal loop amplification reaction (photonic in situ LAMP) by copy number and fluorescence intensity (FI). It can be seen from Figure 20 that when the fluorescence intensity reaches the threshold value (the fluorescence intensity of the control group without template plus three standard deviations) at 30 minutes of reaction, the gene body DNA copy number (copy number) of the lowest concentration of E.coli Between 10 2 and 10 3 . Further, the same experiment was performed using a conventional isothermal loop amplification reaction, see Figure 21. Figure 21 shows the sensitivity performance of conventional isothermal loop amplification reaction (LAMP) at different time points by copy number (copy number) and fluorescence intensity (FI). The comparison between Figure 20 and Figure 21 shows that the sensitivity performance of the photonic in situ isothermal loop amplification reaction (photonic in situ LAMP) is better than that of the traditional isothermal loop amplification reaction (LAMP).
於本實施例,請參酌圖22。圖22為使用結合粒子的酵素連結免疫分析法(bead-based ELISA)評估光熱原位恆溫環狀擴增反應(photonic in situLAMP)的表現。同樣地,於施加700-800mw(毫瓦)的雷射光能時有較佳的待測物蛋白質訊號表現。 In this embodiment, please refer to FIG. 22 . Figure 22 shows the performance of photonic in situ LAMP using a particle-bound bead-based ELISA. Similarly, when the laser energy of 700-800mw (milliwatts) is applied, there is a better performance of the analyte protein signal.
在另一實施例,請參酌圖23。本實施例選用前述的金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)作為磁性奈米粒子300,以進行光熱反應實驗,並採用兩步驟的光熱原位聚合酶連鎖反應(photonic
in situPCR)以進一步評估擴增循環數(cycle)和偵測到的螢光強度(normalized fluorescence intensity)兩者間的關係。本實施例採用兩階段的聚合酶連鎖反應,於不同階段投入不同強度的雷射光能,並在第一實施例採用457mw進行10秒後240mw進行60秒;以及第二實施例採用400mw進行10秒後145mw進行60秒。由圖23可得知,在第一實施例中,擴增循環數在達到20個循環至30個循環間時,鍵結強度達到飽和,故達到30個循環時偵測到的螢光強度隨之下降。進一步在第二實施例的改良,該於達到30個循環數時的螢光強度增加,換言之,第二實施例使用較低的能量施加能有效提高擴增核酸的鍵結強度。由此可知,擴增循環數與偵測到的螢光強度間的正向關聯會受到核酸鍵結強度以及擴增核酸飽和程度的限制。
In another embodiment, please refer to FIG. 23 . In this example, the aforementioned Magnetic Gold Nanoshells (MGNs) were selected as the
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單變化與修飾,皆仍屬本發明涵蓋之範圍內。However, the above are only preferred embodiments of the present invention, and should not limit the scope of implementation of the present invention, that is, the simple changes and modifications made according to the scope of the patent application of the present invention and the description content still belong to the present invention. within the scope of coverage.
10:核酸放大系統 100:反應空間 200:樣本 201:待測物 202:生物物質 203:溫度平衡物質 300:磁性奈米粒子 301:本體 302:第一配體 303:第二配體 304:穩定的結構 305:適體 306:游離的核酸引子 3061:螢光基團 3062:核酸標誌 400:聚合酶 500:能源提供模組 600:磁力元件 B:外在能源 F:螢光 (a)~(g):步驟10: Nucleic acid amplification system 100: React Space 200: Sample 201: Object to be tested 202: Biomass 203: Temperature Equilibrium Substances 300: Magnetic Nanoparticles 301: Ontology 302: first ligand 303: second ligand 304: Stable Structure 305: aptamer 306: free nucleic acid primer 3061: Fluorescent group 3062: Nucleic Acid Markers 400: polymerase 500: Energy Supply Module 600: Magnetic element B: External energy F: Fluorescent (a)~(g): Steps
圖1係本發明實施例核酸放大系統的構成示意圖。 圖2係本發明實施例奈米粒子的結構示意圖。 圖3係本發明實施例核酸放大系統之方法流程圖。 圖4係本發明實施例樣本之濃縮前示意圖。 圖5係本發明實施例樣本之濃縮後示意圖。 圖6係本發明實施例添加聚合酶之示意圖。 圖7係本發明實施例爆破待測物之示意圖。 圖8係本發明實施例待測物釋出生物物質之示意圖。 圖9係本發明實施例生物物質之捕捉放大示意圖。 圖10係本發明實施例檢測反應之示意圖。 圖11係本發明其中一實施例之能源提供模組使用不同強度(200mw-700mw)的雷射光能施加於金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。 圖12係本發明其中一實施例之磁性奈米粒子選用金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)時施加於其上的雷射強度與粒子周遭環境溫度的關係圖。 圖13係本發明其中一實施例之能源提供模組使用雷射加熱金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)於水中進行光熱反應並進行恆溫環狀擴增反應時的溫度變化圖。 圖14係本發明其中一實施例之能源提供模組使用不同強度(200mw-1000mw)的雷射光能施加於磁性奈米粒子選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe 3O 4particles)時所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。 圖15係本發明另一實施例之能源提供模組使用不同強度(200mw-1000mw)的雷射光能施加於磁性奈米粒子選用無聚吡咯外層的氧化鐵粒子(Fe 3O 4particles)時所產生光熱變化造成周遭環境溫度至穩定態的溫度變化圖。 圖16係本發明其中一實施例之磁性奈米粒子選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe 3O 4particles)時施加於其上的雷射強度與粒子周遭環境溫度的關係圖。 圖17係本發明其中一實施例之能源提供模組使用雷射加熱聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe 3O 4particles)於水中進行光熱反應並進行恆溫環狀擴增反應時的溫度變化圖。 圖18係本發明其中一實施例之磁性奈米粒子選用聚吡咯包裹氧化鐵粒子(PPy-enveloped Fe 3O 4particles)光熱反應裂解大腸桿菌時,該細菌存活率與周遭環境溫度的關係圖。 圖19係使用光熱反應裂解細菌進行DNA萃取並分別以定量即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction,Q-PCR)量化該基因體DNA與質體DNA釋放的效果。 圖20係藉由拷貝數(copy number)與螢光強度(fluorescence intensity, FI)評估光熱原位恆溫環狀擴增反應(photonic in situLAMP)的感受性(sensitivity)表現。 圖21係藉由拷貝數(copy number)與螢光強度(fluorescence intensity, FI)評估傳統恆溫環狀擴增反應(LAMP)在不同時間點的感受性(sensitivity)表現。 圖22係使用結合粒子的酵素連結免疫分析法(bead-based ELISA)評估光熱原位恆溫環狀擴增反應(photonic in situLAMP)的表現。 圖23係本發明其中一實施例之磁性奈米粒子選用前述的金磁奈米粒子(Magnetic Gold Nanoshells, MGNs)進行兩步驟的光熱原位聚合酶連鎖反應(photonic in situPCR)以進一步評估擴增循環數(cycle)和偵測到的螢光強度(normalized fluorescence intensity)兩者間的關係。 FIG. 1 is a schematic diagram of the structure of a nucleic acid amplification system according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of a nanoparticle according to an embodiment of the present invention. FIG. 3 is a flow chart of the method of the nucleic acid amplification system according to the embodiment of the present invention. FIG. 4 is a schematic diagram of a sample of an embodiment of the present invention before concentration. FIG. 5 is a schematic diagram of a sample of an embodiment of the present invention after concentration. FIG. 6 is a schematic diagram of adding a polymerase in an embodiment of the present invention. FIG. 7 is a schematic diagram of blasting a test object according to an embodiment of the present invention. FIG. 8 is a schematic diagram of the biological substance released from the analyte according to the embodiment of the present invention. FIG. 9 is an enlarged schematic diagram of the capture of biological substances according to an embodiment of the present invention. FIG. 10 is a schematic diagram of the detection reaction according to the embodiment of the present invention. FIG. 11 is an energy supply module of one embodiment of the present invention that uses laser light energy of different intensities (200mw-700mw) to apply the photothermal changes to Magnetic Gold Nanoshells (MGNs), resulting in a stable ambient temperature. The temperature change diagram of the state. 12 is a graph showing the relationship between the intensity of the laser applied to the magnetic nanoparticles (Magnetic Gold Nanoshells, MGNs) and the ambient temperature around the particles when magnetic nanoparticles according to one embodiment of the present invention are selected. 13 is a temperature change diagram of an energy supply module according to one embodiment of the present invention using a laser to heat magnetic gold nanoparticles (Magnetic Gold Nanoshells, MGNs) in water for photothermal reaction and constant temperature circular amplification reaction. Fig. 14 is an energy supply module of one embodiment of the present invention when laser light energy of different intensities (200mw-1000mw) is applied to the magnetic nanoparticles when polypyrrole-enveloped iron oxide particles (PPy-enveloped Fe 3 O 4 particles) are selected The resulting photothermal change causes the temperature change diagram of the ambient temperature to a steady state. FIG. 15 shows the energy supply module of another embodiment of the present invention using different intensities (200mw-1000mw) of laser light energy to be applied to the magnetic nanoparticles when iron oxide particles (Fe 3 O 4 particles) without polypyrrole outer layer are selected A graph of the temperature change from the ambient temperature to a steady state caused by photothermal changes. 16 is a graph showing the relationship between the intensity of the laser applied to the magnetic nanoparticles of one embodiment of the present invention and the ambient temperature around the particles when polypyrrole-encapsulated iron oxide particles (PPy-enveloped Fe 3 O 4 particles) are selected. 17 shows the temperature of the energy supply module according to one embodiment of the present invention using laser to heat polypyrrole-encapsulated iron oxide particles (PPy-enveloped Fe 3 O 4 particles) in water for photothermal reaction and constant temperature circular amplification reaction Change graph. Figure 18 is a graph showing the relationship between the survival rate of the bacteria and the ambient temperature when the magnetic nanoparticles according to one embodiment of the present invention use polypyrrole-encapsulated iron oxide particles (PPy-enveloped Fe 3 O 4 particles) to decompose Escherichia coli by photothermal reaction. Figure 19 shows the use of photothermal reaction to lyse bacteria for DNA extraction and quantitative real time polymerase chain reaction (Q-PCR) to quantify the effect of the release of genomic DNA and plastid DNA, respectively. Figure 20 evaluates the sensitivity performance of photonic in situ LAMP by copy number (copy number) and fluorescence intensity (FI). Figure 21 evaluates the sensitivity performance of conventional isothermal loop amplification reaction (LAMP) at different time points by copy number (copy number) and fluorescence intensity (FI). Figure 22 evaluates the performance of photonic in situ LAMP using a particle-bound bead-based ELISA. Figure 23 shows the magnetic nanoparticles of one embodiment of the present invention. The aforementioned Magnetic Gold Nanoshells (MGNs) are used to perform a two-step photonic in situ PCR (photonic in situ PCR) for further evaluation of amplification. The relationship between the number of cycles and the normalized fluorescence intensity detected.
(a)~(g):步驟 (a)~(g): Steps
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141251A TWI765431B (en) | 2020-11-25 | 2020-11-25 | Nucleic acid amplification system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141251A TWI765431B (en) | 2020-11-25 | 2020-11-25 | Nucleic acid amplification system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI765431B true TWI765431B (en) | 2022-05-21 |
TW202221140A TW202221140A (en) | 2022-06-01 |
Family
ID=82594489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109141251A TWI765431B (en) | 2020-11-25 | 2020-11-25 | Nucleic acid amplification system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI765431B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060141579A1 (en) * | 2002-01-18 | 2006-06-29 | Zymogenetics, Inc. | Cytokine zcytor17 ligand polynucleotides |
US20120128642A1 (en) * | 2009-07-23 | 2012-05-24 | Jeffrey Keeler Teumer | Potency markers |
CN102978295A (en) * | 2012-08-30 | 2013-03-20 | 重庆西南医院 | Pathogenic microorganism nucleic acid amplification-free detection and typing method |
TW201418473A (en) * | 2012-11-06 | 2014-05-16 | Ind Tech Res Inst | Method for detection of nucleic acid |
CN104178568A (en) * | 2014-07-25 | 2014-12-03 | 清华大学 | Method for detecting target substance in to-be-detected sample based on fluorescent sensing analysis of aptamer probe |
-
2020
- 2020-11-25 TW TW109141251A patent/TWI765431B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060141579A1 (en) * | 2002-01-18 | 2006-06-29 | Zymogenetics, Inc. | Cytokine zcytor17 ligand polynucleotides |
US20120128642A1 (en) * | 2009-07-23 | 2012-05-24 | Jeffrey Keeler Teumer | Potency markers |
CN102978295A (en) * | 2012-08-30 | 2013-03-20 | 重庆西南医院 | Pathogenic microorganism nucleic acid amplification-free detection and typing method |
TW201418473A (en) * | 2012-11-06 | 2014-05-16 | Ind Tech Res Inst | Method for detection of nucleic acid |
CN104178568A (en) * | 2014-07-25 | 2014-12-03 | 清华大学 | Method for detecting target substance in to-be-detected sample based on fluorescent sensing analysis of aptamer probe |
Also Published As
Publication number | Publication date |
---|---|
TW202221140A (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Rapid developments in lateral flow immunoassay for nucleic acid detection | |
Xing et al. | Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria | |
Pebdeni et al. | Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water | |
Zhang et al. | Visual detection for nucleic acid-based techniques as potential on-site detection methods. A review | |
Bai et al. | A comprehensive review of detection methods for Escherichia coli O157: H7 | |
Giri et al. | Signal amplification strategies for microfluidic immunoassays | |
Wang et al. | Bio-barcode detection technology and its research applications: A review | |
CN101935703B (en) | Enterohemorrhagic E. coli (EHEC) O157:H7 multicolour quantum dot rapid detecting kit and detecting method thereof | |
de Almeida et al. | Gold nanoparticles as (bio) chemical sensors | |
Moro et al. | Better together: Strategies based on magnetic particles and quantum dots for improved biosensing | |
Xu et al. | Novel rolling circle amplification biosensors for food-borne microorganism detection | |
CN106980022B (en) | Homogeneous immunoassay method based on target protein induced DNase circulation generation | |
WO2013119793A1 (en) | Chemiluminescent nanoparticles and uses thereof | |
Klebes et al. | Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers | |
Mirski et al. | Review of methods used for identification of biothreat agents in environmental protection and human health aspects | |
Li et al. | Applications of hybridization chain reaction optical detection incorporating nanomaterials: A review | |
Saleh et al. | Dual-mode colorimetric and fluorescence biosensors for the detection of foodborne bacteria | |
CN111999502B (en) | Aflatoxin B1 detection kit and method based on PBNPs in situ growth regulation multimodal signal output | |
Safavieh et al. | Microfluidic biosensors for high throughput screening of pathogens in food | |
Qiu et al. | Ultrasensitive plasmonic photothermal immunomagnetic bioassay using real-time and end-point dual-readout | |
Wang et al. | Next-generation pathogen detection: Exploring the power of nucleic acid amplification-free biosensors | |
WO2022109863A1 (en) | Nucleic acid amplification system and method thereof | |
Pan et al. | Recent advances in visual detection for cancer biomarkers and infectious pathogens | |
TWI765431B (en) | Nucleic acid amplification system and method thereof | |
Schulze et al. | Multiplexed optical pathogen detection with lab‐on‐a‐chip devices |