TWI765389B - Local subcutaneous microcirculation detection device - Google Patents
Local subcutaneous microcirculation detection device Download PDFInfo
- Publication number
- TWI765389B TWI765389B TW109137545A TW109137545A TWI765389B TW I765389 B TWI765389 B TW I765389B TW 109137545 A TW109137545 A TW 109137545A TW 109137545 A TW109137545 A TW 109137545A TW I765389 B TWI765389 B TW I765389B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- sub
- illumination beam
- reflection
- illumination
- Prior art date
Links
- 238000007920 subcutaneous administration Methods 0.000 title claims abstract description 43
- 238000001514 detection method Methods 0.000 title claims abstract description 42
- 230000004089 microcirculation Effects 0.000 title abstract 2
- 238000005286 illumination Methods 0.000 claims abstract description 147
- 230000010354 integration Effects 0.000 claims description 62
- 239000008280 blood Substances 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 13
- 238000002835 absorbance Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 238000005192 partition Methods 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 108010054147 Hemoglobins Proteins 0.000 description 16
- 102000001554 Hemoglobins Human genes 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 14
- 230000002087 whitening effect Effects 0.000 description 6
- 235000013405 beer Nutrition 0.000 description 5
- 108010064719 Oxyhemoglobins Proteins 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/445—Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本發明是有關於一種光學檢測裝置,且特別是有關於一種局部皮下微血管循環檢測裝置。The present invention relates to an optical detection device, and more particularly, to a local subcutaneous microvascular circulation detection device.
壓傷為行動不便長期臥床之病患常見的皮膚疾病,其主因為長時間的應力壓迫在皮膚上,造成血管皮膚病變,最終造成開放性的傷口。Crushing is a common skin disease in bedridden patients with inconvenience of movement. It is mainly caused by prolonged stress on the skin, resulting in vascular skin lesions and eventually open wounds.
在疾病初期,壓迫的血管產生病變,使得供應皮膚組織養分與帶走在代謝後產生廢物的能力降低,時間一久便會造成皮膚組織壞死。組織壞死後的開放性傷口會加深照護的難度,同時提高病患的死亡率,造成家庭支出以及照護的成本大幅增加。In the early stage of the disease, the compressed blood vessels produce lesions, which reduces the ability to supply nutrients to the skin tissue and take away the waste generated after metabolism. Over time, the skin tissue will be necrotic. Open wounds after tissue necrosis increase the difficulty of care, increase the mortality rate of patients, and cause a substantial increase in household expenditure and care costs.
目前臨床上「皮膚轉白試驗」是識別早期壓傷最可靠的測試方法,主要由專業醫護人員按壓皮膚觀察回血量而判定。然而,臨床上的皮膚轉白試驗無法應用於居家照護的場域,且對於深色皮膚的病患而言,難以用肉眼觀察皮膚的轉白。除此之外,即便由專業醫護人員來執行皮膚轉白試驗,亦是採用肉眼觀察並藉由經驗來判斷,無法作到定量的量測。At present, the clinical "skin whitening test" is the most reliable test method to identify early pressure injuries. It is mainly determined by professional medical staff pressing the skin to observe the amount of blood returned. However, the clinical skin whitening test cannot be applied to the field of home care, and it is difficult to observe the whitening of the skin with the naked eye for patients with dark skin. In addition, even if the skin whitening test is performed by professional medical staff, it is also judged by naked eye observation and experience, which cannot be quantitatively measured.
本發明提供一種局部皮下微血管循環檢測裝置,可以對受測者的局部皮下微血管循環作到定量的量測。The invention provides a local subcutaneous microvascular circulation detection device, which can quantitatively measure the local subcutaneous microvascular circulation of a subject.
本發明的一實施例提出一種局部皮下微血管循環檢測裝置,包括一第一光源模組、一第二光源模組、一透鏡板、一第一光感測器及一第二光感測器。第一光源模組用以發出一第一照明光束,第二光源模組用以發出一第二照明光束。透鏡板具有一平板部及一第一凸透鏡部。平板部用以承靠於受檢者的皮膚的一第一部分上,第一凸透鏡部的一凸面用以壓入一受檢者的皮膚的一第二部分。第一照明光束穿透平板部後被皮膚的第一部分反射成一第一反射光束,第二照明光束穿透第一凸透鏡部後被皮膚的第二部分反射成一第二反射光束。第一反射光束穿透平板部後傳遞至第一光感測器,第二反射光束穿透第一凸透鏡部後傳遞至第二光感測器。An embodiment of the present invention provides a local subcutaneous microvascular circulation detection device, which includes a first light source module, a second light source module, a lens plate, a first light sensor and a second light sensor. The first light source module is used for emitting a first illumination beam, and the second light source module is used for emitting a second illumination beam. The lens plate has a flat plate portion and a first convex lens portion. The flat plate part is used for bearing on a first part of the skin of a subject, and a convex surface of the first convex lens part is used for pressing into a second part of the skin of a subject. The first illumination beam is reflected by the first part of the skin into a first reflected beam after penetrating the flat plate part, and the second illumination beam is reflected by the second part of the skin into a second reflected beam after penetrating the first convex lens part. The first reflected light beam is transmitted to the first photo sensor after passing through the flat plate portion, and the second reflected light beam is transmitted to the second photo sensor after passing through the first convex lens portion.
本發明的一實施例提出一種局部皮下微血管循環檢測裝置,包括一光反射殼體、一第一光源模組、一第二光源模組、一透鏡板、一第一光感測器及一第二光感測器。光反射殼體具有彼此分隔的一第一光積分空間與一第二光積分空間。第一光源模組配置於第一光積分空間中,且用以發出在第一光積分空間中傳遞的一第一照明光束。第二光源模組配置於第二光積分空間中,且用以發出在第二光積分空間中傳遞的一第二照明光束。透鏡板具有一平板部及一第一凸透鏡部,分別配置於第一光積分空間的一端與第二光積分空間的一端。平板部用以承靠於受檢者的皮膚的一第一部分上,第一凸透鏡部的一凸面用以壓入一受檢者的皮膚的一第二部分。第一照明光束穿透平板部後被皮膚的第一部分反射成一第一反射光束,第二照明光束穿透第一凸透鏡部後被皮膚的第二部分反射成一第二反射光束。第一反射光束穿透平板部後經由第一光積分空間傳遞至第一光感測器,第二反射光束穿透第一凸透鏡部後經由第二光積分空間傳遞至第二光感測器。An embodiment of the present invention provides a local subcutaneous microvascular circulation detection device, which includes a light reflection housing, a first light source module, a second light source module, a lens plate, a first light sensor, and a first light source Two light sensors. The light reflecting shell has a first light integration space and a second light integration space separated from each other. The first light source module is disposed in the first light integration space, and is used for emitting a first illumination beam transmitted in the first light integration space. The second light source module is disposed in the second light integration space, and is used for emitting a second illumination beam transmitted in the second light integration space. The lens plate has a flat plate portion and a first convex lens portion, which are respectively arranged at one end of the first light integration space and one end of the second light integration space. The flat plate part is used for bearing on a first part of the skin of a subject, and a convex surface of the first convex lens part is used for pressing into a second part of the skin of a subject. The first illumination beam is reflected by the first part of the skin into a first reflected beam after penetrating the flat plate part, and the second illumination beam is reflected by the second part of the skin into a second reflected beam after penetrating the first convex lens part. The first reflected light beam passes through the flat plate portion and is transmitted to the first light sensor through the first light integration space, and the second reflected light beam passes through the first convex lens portion and is transmitted to the second light sensor through the second light integration space.
在本發明的實施例的局部皮下微血管循環檢測裝置中,採用了具有平板部與第一凸透鏡部的透鏡板來對皮膚作出不壓入與壓入的動作,且利用第一光源模組、第一光感測器、第二光源模組及第二光感測器來分別對不被壓入及被壓入的皮膚作光學檢測。如此一來,本發明的實施例的局部皮下微血管循環檢測裝置便可以對受測者的局部皮下微血管循環作到定量的量測。In the local subcutaneous microvascular circulation detection device according to the embodiment of the present invention, a lens plate having a flat plate portion and a first convex lens portion is used to perform non-pressing and pressing actions on the skin, and the first light source module, the first light source module and the first convex lens are used. A light sensor, a second light source module and a second light sensor are used for optical detection of the skin that is not pressed and pressed, respectively. In this way, the local subcutaneous microvascular circulation detection device of the embodiment of the present invention can quantitatively measure the local subcutaneous microvascular circulation of the subject.
圖1為本發明的一實施例的局部皮下微血管循環檢測裝置的剖面示意圖,圖2為圖1中的透鏡板的剖面示意圖,而圖3為圖1中的光源模組的正視示意圖。請參照圖1、圖2及圖3,本實施例的局部皮下微血管循環檢測裝置100包括一光反射殼體110、一第一光源模組120、一第二光源模組130、一透鏡板140、一第一光感測器150及一第二光感測器160。光反射殼體110具有彼此分隔的一第一光積分空間S1與一第二光積分空間S2。第一光源模組120配置於第一光積分空間S1中,且用以發出在第一光積分空間S1中傳遞的一第一照明光束I1。第二光源模組130配置於第二光積分空間S2中,且用以發出在第二光積分空間S2中傳遞的一第二照明光束I2。在本實施例中,光反射殼體110包括外殼112與反射隔板114,其中反射隔板114分隔第一光積分空間S1與第二光積分空間S2。外殼112的一部分與反射隔板114圍繞出第一光積分空間S1,且外殼112的另一部分與反射隔板114圍繞出第二光積分空間S2。1 is a schematic cross-sectional view of a local subcutaneous microvascular circulation detection device according to an embodiment of the present invention, FIG. 2 is a cross-sectional schematic view of the lens plate in FIG. 1 , and FIG. 3 is a schematic front view of the light source module in FIG. 1 . Referring to FIGS. 1 , 2 and 3 , the local subcutaneous microvascular
在本實施例中,光反射殼體110使第一照明光束I1在第一光積分空間S1中漫反射,且使第二照明光束I2在第二光積分空間S2中漫反射。也就是說,外殼112與反射隔板114皆具有漫反射面,可以漫反射第一照明光束I1與第二照明光束I2,且第一照明光束I1不會進入第二光積分空間S2中,且第二照明光束I2也不會進入第一光積分空間S1中。In this embodiment, the
透鏡板140具有一平板部142及一第一凸透鏡部144,分別配置於第一光積分空間S1的一端與第二光積分空間S2的一端。平板部142用以承靠於受檢者的皮膚50的一第一部分P1上,第一凸透鏡部144的一凸面145用以壓入一受檢者的皮膚50的一第二部分P2。在一實施例中,第一凸透鏡部144的焦距例如為2毫米。第一照明光束I1穿透平板部142後被皮膚50的第一部分P1反射成一第一反射光束R1,第二照明光束I2穿透第一凸透鏡部144後被皮膚50的第二部分P2反射成一第二反射光束R2。第一反射光束R1穿透平板部142後經由第一光積分空間S1傳遞至第一光感測器150,第二反射光束R2穿透第一凸透鏡部144後經由第二光積分空間S2傳遞至第二光感測器160。The
在本實施例中,光反射殼體110亦使第一反射光束R1在第一光積分空間S1中漫反射,且使第二反射光束R2在第二光積分空間S2中漫反射。也就是說,外殼112與反射隔板114皆具有漫反射面,可以漫反射第一反射光束R1與第二反射光束R2,且第一反射光束R1不會進入第二光積分空間S2中,而第二反射光束R2也不會進入第一光積分空間S1中。藉由光反射殼體110的光積分效果,第一光感測器150與第二光感測器160所分別感測到的第一反射光束R1與第二反射光束R2的光強度可以被有效地提升。In this embodiment, the
在本實施例中,第一光源模組120包括一第一發光元件122、一第二發光元件124及一第三發光元件126(如圖3所繪示),且第二光源模組130包括一第四發光元件132、一第五發光元件134及一第六發光元件136。第一發光元件122用以發出一第一子照明光束B1,第二發光元件124用以發出一第二子照明光束B2,且第三發光元件126用以發出一第三子照明光束B3。第四發光元件132用以發出一第四子照明光束B4,第五發光元件134用以發出一第五子照明光束B5,且第六發光元件136用以發出一第六子照明光束B6。第一子照明光束B1與第四子照明光束B4具有一第一波長,第二子照明光束B2與第五子照明光束B5具有一第二波長,第三子照明光束B3與第六子照明光束B6具有一第三波長。第一子照明光束B1、第二子照明光束B2及第三子照明光束B3形成第一照明光束I1,且第四子照明光束B4、第五子照明光束B5及第六子照明光束B6形成第二照明光束I2。In this embodiment, the first
在本實施例中,第一發光元件122、第二發光元件124及第三發光元件126用以輪流發出第一子照明光束B1、第二子照明光束B2及第三子照明光束B3,皮膚50的第一部分P1輪流且分別將第一子照明光束B1、第二子照明光束B2及第三子照明光束B3反射成一第一子反射光束RS1、一第二子反射光束RS2及一第三子反射光束RS3,且第一光感測器150在不同的時間輪流感測第一子反射光束RS1、第二子反射光束RS2及第三子反射光束RS3。In this embodiment, the first light-
第四發光元件132、第五發光元件134及第六發光元件136用以輪流發出第四子照明光束B4、第五子照明光束B5及第六子照明光束B6,皮膚50的第二部分P2輪流且分別將第四子照明光束B4、第五子照明光束B5及第六子照明光束B6反射成一第四子反射光束RS4、一第五子反射光束RS5及一第六子反射光束RS6,且第二光感測器160在不同時間輪流感測第四子反射光束RS4、第五子反射光束RS5及第六子反射光束RS6。The fourth light-
在本實施例中,第一發光元件122、第二發光元件124、第三發光元件126、第四發光元件132、第五發光元件134及第六發光元件136例如為發光二極體,然而,在其他實施例中,其亦可以是雷射二極體或其他的發光元件。此外,在本實施例中,第一光感測器150與第二光感測器160例如是光電二極體(photodiode),然而,在其他實施例中,其亦可以是其他的光感測器。In this embodiment, the first light-
在本實施例中,受檢者的皮膚50的血液中的帶氧血紅蛋白與血紅蛋白對第二波長的光的吸收係數相同,且帶氧血紅蛋白與血紅蛋白對第一波長及第三波長的光的吸收係數隨著氧濃度的多寡呈現相反的趨勢。舉例而言,第一波長為740奈米,第二波長為808奈米,且第三波長為850奈米,此三波長皆屬於紅外光波段。具體而言,光可以在生物組織中傳播與行走取決於組織的散射係數,因此我們選擇具有相似波長的發光元件,使得這三個波長在組織中行徑的路徑相對相同。選擇這些波長是因為808奈米發光二極體中心波長在帶氧血紅蛋白與血紅蛋白的吸收光係數相同,在此波長下的反射光強度不會隨著血紅蛋白與帶氧血紅蛋白的氧飽和濃度而變化,僅組織中變化的血液量會引起808奈米反射光的變化。740奈米與850奈米在帶氧血紅蛋白與血紅蛋白間的吸收係數與氧濃度的多寡呈現相反的趨勢,因此可以對於氧濃度變化有更高的解析度。利用這三種波長量測下可以容易的定量組織中的血量與氧濃度,並且此波段的近紅外光被稱為組織窗口,因為除了血液之外其他皮膚組織內的物質吸收度很小,可以感測的到更多血管的資訊,也可以更適合使用於深色膚色的患者。這是因為大部分深色皮膚的皮下組織通常會導致醫生不易判斷手指按壓後血液變化造成的顏色變化。In this embodiment, oxygenated hemoglobin and hemoglobin in the blood of the subject's
在本實施例中,局部皮下微血管循環檢測裝置100更包括一控制器190,電性連接至第一光源模組120、第二光源模組130、第一光感測器150及第二光感測器160,且用以根據第一光感測器150及第二光感測器160所感測到的第一反射光束R1與第二反射光束R2的光強度差異,計算出因凸面145擠壓皮膚50的第二部分P2的血液所造成的吸光度差異。此外,控制器190亦可根據第一反射光束R1與第二反射光束R2的光強度差異計算出皮膚50的血液的氧濃度。In this embodiment, the local subcutaneous microvascular
具體而言,控制器190可藉由第一光感測器150所感測到的光強度
(相當於不按壓皮膚50所測得的光強度)與第二光感測器160所感測到的光強度
(相當於透過第一凸透鏡部144的凸面145按壓皮膚50所測得的光強度),來計算出因第一凸透鏡部144擠出的血液所造成的吸光度的差異
,而其計算方式如下式:
Specifically, the
…式(1) …Formula 1)
由於第一反射光束R1與第二反射光束R2各自具有三種不同波長的子光束,所以第一光感測器150所測得的第一子反射光束RS1的光強度
與第二光感測器160所測得的第四子反射光束RS4的光強度
可分別代入式(1)中的
與
而得到對應於第一波長的吸光度差異
。同理,第一光感測器150所測得的第二子反射光束RS2的光強度
與第二光感測器160所測得的第五子反射光束RS5的光強度
可分別代入式(1)中的
與
而得到對應於第二波長的吸光度差異
。此外,第一光感測器150所測得的第三子反射光束RS3的光強度
與第二光感測器160所測得的第六子反射光束RS6的光強度
可分別代入式(1) 中的
與
而得到對應於第三波長的吸光度差異
。
Since the first reflected light beam R1 and the second reflected light beam R2 each have sub-beams with three different wavelengths, the light intensity of the first sub-reflected light beam RS1 measured by the
接著,控制器190可將上述利用三種不同波長的光強度所計算而得的三個吸光度差異
代入修正後的比爾定律(Beer’s law)公式而得到三個方程式,並求解此三個聯立方程式而得到帶氧血紅蛋白濃度l
HbO2與血紅蛋白濃度l
Hb。上述修正後的比爾定律公式如下:
Next, the
…式(2) ...formula (2)
公式(2)之修正後的比爾定律公式用於量化帶氧血紅蛋白和血紅蛋白的貢獻。最初的比爾定律是區分半透明樣品溶液中不同生色團吸光度的基本工具。由於生物組織通常是不透明的,具有很強的光散射特性,因此通常在組織吸收光譜中發現基線偏移。因此,可以添加一個散射項 來修改比爾定律方程,以匹配不透明樣品中的吸光度變化。在式(2)中, 、 及 是常數,將上述對應於三種不同波長的 值代入式(2)後,可得到三個方程式,聯立求解後恰可解出帶氧血紅蛋白濃度l HbO2、血紅蛋白濃度l Hb以及散射的影響程度l s這三個未知數。 The modified Beer's Law formulation of Equation (2) is used to quantify the contribution of oxyhemoglobin and hemoglobin. The original Beer's Law is a fundamental tool for distinguishing the absorbance of different chromophores in translucent sample solutions. Since biological tissue is often opaque and has strong light scattering properties, baseline shifts are often found in tissue absorption spectra. Therefore, a scattering term can be added to modify the Beer's Law equation to match absorbance changes in opaque samples. In formula (2), , and is a constant, the above corresponding to three different wavelengths After substituting the value into formula (2), three equations can be obtained, and the three unknowns of the oxygenated hemoglobin concentration l HbO2 , the hemoglobin concentration l Hb and the influence degree of scattering l s can be solved after simultaneous solution.
控制器190求得帶氧血紅蛋白濃度l
HbO2與血紅蛋白濃度l
Hb後,可進一步根據以下式(3)求得因第一凸透鏡部144按壓皮膚50所產生的因按壓而變化的血量ΔBlood,其中式(3)如下:
After the
…式(3) ...formula (3)
此外,控制器190也可以根據所求得的帶氧血紅蛋白濃度l
HbO2與血紅蛋白濃度l
Hb及以下式(4)來計算出受按壓的皮膚50組識區域的血液氧飽和濃度SBO
2%,其中式(4)如下:
In addition, the
…式(4) ...Formula (4)
藉由控制器190從式(1)至式(4)的計算,第一凸透鏡部144按壓皮膚50所產生的局部皮下微血管循環的狀態可以被量化,其可作為初期壓傷的檢測依據,其檢測結果的可靠度高於用肉眼觀察的皮膚轉白試驗,且不會有因為受檢者膚色較深而難以觀察皮膚轉白的情形。By calculating from equations (1) to (4) by the
此外,因為皮膚組織具有高散射性,光線進入組織後,反射的光線會經由皮膚表面往四面八方散出。為了可以準確地收集按壓與非按壓處所有的皮膚50的光反射訊號,並且兩邊不互相干擾影響,本實施例採用了光反射殼體110形成一腔兩室的小型積分空間,放置於特製的透鏡板140上方,分別收取各自的皮膚50反射光。此二室(即第一光積分空間S1與第二光積分空間S2)內擁有各一相同特製的三種不同波長近紅外發光元件以及光電二極體光感測器,這些元件放置於同一平面上,確保光源發出的光線不會直接進入光電二極體光感測器,而是必須先經過皮膚50組織吸收後反射,才被感測到。In addition, because the skin tissue has high scattering properties, after the light enters the tissue, the reflected light will be scattered in all directions through the skin surface. In order to accurately collect the light reflection signals of all the
在一實施例中,控制器190例如為中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器190的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制器190來執行這些程式碼。或者,在一實施例中,控制器190的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器190的各功能。In one embodiment, the
圖4為本發明的另一實施例的局部皮下微血管循環檢測裝置的剖面示意圖。請參照圖4,本實施例的局部皮下微血管循環檢測裝置100a類似於圖1的局部皮下微血管循環檢測裝置100,而兩者的差異如下所述。本實施例的局部皮下微血管循環檢測裝置100a更包括一第三光源模組170及一第三光感測器180,且透鏡板140a更具有一第二凸透鏡部146。第三光源模組170、第三光感測器180及第二凸透鏡部146的相對位置關係相同於第二光源模組130、第二光感測器160及第一凸透鏡部144的相對位置關係,但第二凸透鏡部146的厚度T2不同於第一凸透鏡部144的厚度T1。第三光源模組170與第三光感測器180及其運作方式可以與第二光源模組130及第二光感測器160的運作方式相同或類似,其亦可發出及偵測三種不同波長的光,且第三光源模組170與第三光感測器180亦電性連接至控制器190,以受到控制器190的控制,且控制器190可以對第三光感測器180所測得的數值加以計算。4 is a schematic cross-sectional view of a local subcutaneous microvascular circulation detection device according to another embodiment of the present invention. Referring to FIG. 4 , the local subcutaneous microvascular
第三光源模組170與第三光感測器180可以有對應的第三光積分空間S3,其藉由光反射殼體110a的反射隔板114a與第一光積分空間S1分隔,且藉由光反射殼體110a的反射隔板114b與第二光積分空間S2分隔。The third
藉由第二凸透鏡部146與第一凸透鏡部144的厚度的不同,可以對皮膚50產生不同的壓入程度,進而對局部皮下微血管循環的狀態作出更多面向且更為精確的量測。在其他實施例中,透鏡板可以有更多不同厚度的凸透鏡部,且局部皮下微血管循環檢測裝置可以有更多組的光源模組與光感測器,可以對皮膚產生大於或等於3種的壓入程度並加以量測,以對局部皮下微血管循環的狀態作出更多面向且更為精確的量測。Due to the difference in thickness between the second
綜上所述,在本發明的實施例的局部皮下微血管循環檢測裝置中,採用了具有平板部與第一凸透鏡部的透鏡板來對皮膚作出不壓入與壓入的動作,且利用第一光源模組、第一光感測器、第二光源模組及第二光感測器來分別對不被壓入及被壓入的皮膚作光學檢測。如此一來,本發明的實施例的局部皮下微血管循環檢測裝置便可以對受測者的局部皮下微血管循環作到定量的量測。To sum up, in the local subcutaneous microvascular circulation detection device according to the embodiment of the present invention, a lens plate having a flat plate portion and a first convex lens portion is used to perform non-pressing and pressing actions on the skin, and the first The light source module, the first light sensor, the second light source module and the second light sensor are used for optical detection of the skin that is not pressed and pressed, respectively. In this way, the local subcutaneous microvascular circulation detection device of the embodiment of the present invention can quantitatively measure the local subcutaneous microvascular circulation of the subject.
50:皮膚 100:局部皮下微血管循環檢測裝置 110、110a:光反射殼體 112:外殼 114、114a、114b:反射隔板 120:第一光源模組 122:第一發光元件 124:第二發光元件 126:第三發光元件 130:第二光源模組 132:第四發光元件 134:第五發光元件 136:第六發光元件 140、140a:透鏡板 142:平板部 144:第一凸透鏡部 145:凸面 146:第二凸透鏡部 150:第一光感測器 160:第二光感測器 170:第三光源模組 180:第三光感測器 190:控制器 B1:第一子照明光束 B2:第二子照明光束 B3:第三子照明光束 B4:第四子照明光束 B5:第五子照明光束 B6:第六子照明光束 I1:第一照明光束 I2:第二照明光束 P1:第一部分 P2:第二部分 R1:第一反射光束 R2:第二反射光束 RS1:第一子反射光束 RS2:第二子反射光束 RS3:第三子反射光束 RS4:第四子反射光束 RS5:第五子反射光束 RS6:第六子反射光束 S1:第一光積分空間 S2:第二光積分空間 S3:第三光積分空間 T1、T2:厚度 50: Skin 100: Local subcutaneous microvascular circulation detection device 110, 110a: light reflection shell 112: Shell 114, 114a, 114b: reflective baffles 120: The first light source module 122: The first light-emitting element 124: The second light-emitting element 126: The third light-emitting element 130: Second light source module 132: Fourth light-emitting element 134: Fifth light-emitting element 136: sixth light-emitting element 140, 140a: lens plate 142: Flat panel 144: First convex lens part 145: Convex 146: Second convex lens part 150: first light sensor 160: Second light sensor 170: The third light source module 180: Third light sensor 190: Controller B1: The first sub-illumination beam B2: Second sub-illumination beam B3: The third sub-illumination beam B4: Fourth sub-illumination beam B5: Fifth sub-illumination beam B6: Sixth sub-illumination beam I1: The first illumination beam I2: Second illumination beam P1: Part 1 P2: Part II R1: First reflected beam R2: Second reflected beam RS1: The first sub-reflected beam RS2: Second sub-reflected beam RS3: The third sub-reflected beam RS4: Fourth sub-reflected beam RS5: Fifth sub-reflected beam RS6: Sixth sub-reflected beam S1: The first light integration space S2: Second light integration space S3: The third light integration space T1, T2: Thickness
圖1為本發明的一實施例的局部皮下微血管循環檢測裝置的剖面示意圖。 圖2為圖1中的透鏡板的剖面示意圖。 圖3為圖1中的光源模組的正視示意圖。 圖4為本發明的另一實施例的局部皮下微血管循環檢測裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a local subcutaneous microvascular circulation detection device according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the lens plate in FIG. 1 . FIG. 3 is a schematic front view of the light source module in FIG. 1 . 4 is a schematic cross-sectional view of a local subcutaneous microvascular circulation detection device according to another embodiment of the present invention.
50:皮膚 100:局部皮下微血管循環檢測裝置 110:光反射殼體 112:外殼 114:反射隔板 120:第一光源模組 130:第二光源模組 140:透鏡板 142:平板部 144:第一凸透鏡部 145:凸面 150:第一光感測器 160:第二光感測器 190:控制器 B1:第一子照明光束 B2:第二子照明光束 B3:第三子照明光束 B4:第四子照明光束 B5:第五子照明光束 B6:第六子照明光束 I1:第一照明光束 I2:第二照明光束 P1:第一部分 P2:第二部分 R1:第一反射光束 R2:第二反射光束 RS1:第一子反射光束 RS2:第二子反射光束 RS3:第三子反射光束 RS4:第四子反射光束 RS5:第五子反射光束 RS6:第六子反射光束 S1:第一光積分空間 S2:第二光積分空間 50: Skin 100: Local subcutaneous microvascular circulation detection device 110: Light reflection shell 112: Shell 114: Reflective baffle 120: The first light source module 130: Second light source module 140: Lens plate 142: Flat panel 144: First convex lens part 145: Convex 150: first light sensor 160: Second light sensor 190: Controller B1: The first sub-illumination beam B2: Second sub-illumination beam B3: The third sub-illumination beam B4: Fourth sub-illumination beam B5: Fifth sub-illumination beam B6: Sixth sub-illumination beam I1: The first illumination beam I2: Second illumination beam P1: Part 1 P2: Part II R1: First reflected beam R2: Second reflected beam RS1: The first sub-reflected beam RS2: Second sub-reflected beam RS3: The third sub-reflected beam RS4: Fourth sub-reflected beam RS5: Fifth sub-reflected beam RS6: Sixth sub-reflected beam S1: The first light integration space S2: Second light integration space
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137545A TWI765389B (en) | 2020-10-29 | 2020-10-29 | Local subcutaneous microcirculation detection device |
US17/502,045 US12082927B2 (en) | 2020-10-29 | 2021-10-15 | Topical subcutaneous microcirculation detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137545A TWI765389B (en) | 2020-10-29 | 2020-10-29 | Local subcutaneous microcirculation detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202216056A TW202216056A (en) | 2022-05-01 |
TWI765389B true TWI765389B (en) | 2022-05-21 |
Family
ID=81379695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109137545A TWI765389B (en) | 2020-10-29 | 2020-10-29 | Local subcutaneous microcirculation detection device |
Country Status (2)
Country | Link |
---|---|
US (1) | US12082927B2 (en) |
TW (1) | TWI765389B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085537A1 (en) * | 2008-10-06 | 2010-04-08 | The Catholic University Of America | Lenslet array for retinal oximetry |
TWM451943U (en) * | 2012-11-28 | 2013-05-01 | 中原大學 | Audio and optical pressure multi-parameter arterial measurement device |
TW201542161A (en) * | 2014-03-24 | 2015-11-16 | Samsung Electronics Co Ltd | Adjustable sensor support structure for optimizing skin contact |
WO2016031221A1 (en) * | 2014-08-27 | 2016-03-03 | セイコーエプソン株式会社 | Biological information detection device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2315192C (en) * | 1998-01-27 | 2008-04-29 | Lightouch Medical, Inc. | Method and device for tissue modulation |
JP4061409B2 (en) * | 2004-11-09 | 2008-03-19 | 国立大学法人九州大学 | Sensor unit and biosensor |
US8116838B2 (en) | 2007-11-27 | 2012-02-14 | Carnegie Mellon University | Medical device for diagnosing pressure ulcers |
TWI551269B (en) | 2014-03-21 | 2016-10-01 | 財團法人工業技術研究院 | Portable analytical device and system |
-
2020
- 2020-10-29 TW TW109137545A patent/TWI765389B/en active
-
2021
- 2021-10-15 US US17/502,045 patent/US12082927B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085537A1 (en) * | 2008-10-06 | 2010-04-08 | The Catholic University Of America | Lenslet array for retinal oximetry |
TWM451943U (en) * | 2012-11-28 | 2013-05-01 | 中原大學 | Audio and optical pressure multi-parameter arterial measurement device |
TW201542161A (en) * | 2014-03-24 | 2015-11-16 | Samsung Electronics Co Ltd | Adjustable sensor support structure for optimizing skin contact |
WO2016031221A1 (en) * | 2014-08-27 | 2016-03-03 | セイコーエプソン株式会社 | Biological information detection device |
Also Published As
Publication number | Publication date |
---|---|
US12082927B2 (en) | 2024-09-10 |
TW202216056A (en) | 2022-05-01 |
US20220133188A1 (en) | 2022-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107106051B (en) | Non-invasive dehydration monitoring | |
JP3365227B2 (en) | Method and apparatus for measuring optical properties of skin surface condition | |
US4714080A (en) | Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation | |
Dantu et al. | Non-invasive blood glucose monitor based on spectroscopy using a smartphone | |
US7613487B2 (en) | Instrument for noninvasively measuring blood sugar level | |
US4880304A (en) | Optical sensor for pulse oximeter | |
JP2004230000A (en) | Instrument for measuring concentration of light absorptive substance in blood | |
JPH06103257B2 (en) | Method and apparatus for measuring absorption coefficient of substance using light scattering | |
JP2007528276A (en) | Motion artifact removal of pulse oximeter using near infrared absorption by water | |
JP2010540964A (en) | Optical device components | |
JP2004290544A (en) | Blood analyzer | |
CN109154564A (en) | non-invasive blood analysis | |
KR101281169B1 (en) | Noninvasive probe for measuring at least a constituent of body fluids and system including the same | |
WO2009053920A1 (en) | Monitoring the degree of hydration of the human body | |
US20180317825A1 (en) | Device and method for measuring the concentration of a chemical compound in blood | |
TWI765389B (en) | Local subcutaneous microcirculation detection device | |
JP6741485B2 (en) | Pulse photometer and reliability evaluation method for calculated values of blood light-absorbing substance concentration | |
Patil et al. | Methods and devices to determine hemoglobin non invasively: A review | |
JPH0415046A (en) | Measuring method for blood circulating movement | |
CN113974617A (en) | Blood oxygen detection method and system based on tissue blood oxygen widefield imaging | |
Bachir | Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements | |
Von Chong et al. | Towards a novel single-LED pulse oximeter based on a multispectral sensor for IoT applications | |
WO2020053011A1 (en) | Large dynamic range detector for gingivitis detection | |
CN112672679B (en) | Wavelength and bandwidth selection for gingivitis detection based on diffuse reflectance spectroscopy | |
Gratton et al. | Reflectance and transmittance spectroscopy |