[go: up one dir, main page]

TWI751893B - 影像感測裝置 - Google Patents

影像感測裝置 Download PDF

Info

Publication number
TWI751893B
TWI751893B TW110102272A TW110102272A TWI751893B TW I751893 B TWI751893 B TW I751893B TW 110102272 A TW110102272 A TW 110102272A TW 110102272 A TW110102272 A TW 110102272A TW I751893 B TWI751893 B TW I751893B
Authority
TW
Taiwan
Prior art keywords
electrode
image sensing
dielectric layer
nanowell
sensing device
Prior art date
Application number
TW110102272A
Other languages
English (en)
Other versions
TW202230758A (zh
Inventor
李柏叡
Original Assignee
晶相光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶相光電股份有限公司 filed Critical 晶相光電股份有限公司
Priority to TW110102272A priority Critical patent/TWI751893B/zh
Priority to CN202110571308.1A priority patent/CN114823750A/zh
Application granted granted Critical
Publication of TWI751893B publication Critical patent/TWI751893B/zh
Priority to US17/581,139 priority patent/US20220231069A1/en
Publication of TW202230758A publication Critical patent/TW202230758A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/802Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/18Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/802Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
    • H10F39/8023Disposition of the elements in pixels, e.g. smaller elements in the centre of the imager compared to larger elements at the periphery
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/805Coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/811Interconnections

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本發明提供一種影像感測裝置。上述影像感測裝置包括一基板、一第一介電層、一影像感測陣列、複數奈米井以及複數電極。上述第一介電層形成在上述基板上,並具有一第一側與相對於上述第一側之一第二側。上述影像感測陣列形成在上述基板與上述第一介電層的上述第二側之間,並包括複數影像感測單元。上述奈米井形成在上述第一介電層中。每一上述奈米井在上述第一介電層的上述第一側具有一開口。每一上述電極是從上述第一介電層的上述第二側延伸到上述第一側並位於兩相鄰之上述奈米井之間。

Description

影像感測裝置
本發明係有關於一種影像感測器,且特別係有關於具有奈米井(nanowell)的影像感測器。
影像感測器(image sensor)是一種將光影像轉換為電信號的半導體元件。影像感測器一般可分為電荷耦合元件(charge-coupled device,CCD)與互補式金屬氧化物半導體(CMOS)影像感測器。於影像感測器中,互補式金屬氧化物半導體影像感測器包括用以偵測入射光並將其轉換為電信號的光電二極體(photodiode),以及用以傳輸與處理電信號的邏輯電路。
除了一般單純用於感測影像之用途外,已有愈來愈多的影像感測器應用於各類的檢測工作,例如,生物醫學方面的檢測。具體而言,可藉由待測物經外部光源照射後所激發的光線來檢測或判斷待測物的各種特性。
然而,當影像感測器的感測單元或畫素的尺寸縮小之後,會存在例如串擾(cross-talk)現象、光學響應不均勻或訊號雜訊比(signal-to-noise ratio,SNR)偏低等問題。因此,需要一種能改善效能的影像感測裝置。
本發明提供一種影像感測裝置。上述影像感測裝置包括一基板、一第一介電層、一影像感測陣列、複數奈米井以及複數電極。上述第一介電層形成在上述基板上,並具有一第一側與相對於上述第一側之一第二側。上述影像感測陣列形成在上述基板與上述第一介電層的上述第二側之間,並包括複數影像感測單元。上述奈米井形成在上述第一介電層中。每一上述奈米井在上述第一介電層的上述第一側具有一開口。每一上述電極是從上述第一介電層的上述第二側延伸到上述第一側並位於兩相鄰之上述奈米井之間。
再者,本發明提供一種影像感測裝置。上述影像感測裝置包括一基板、一影像感測陣列、一第一介電層、一第一鈍化層、一第二介電層、複數奈米井以及複數電極。上述影像感測陣列形成在上述基板上,並包括複數影像感測單元。上述第一介電層形成在上述影像感測陣列上。上述第一鈍化層形成在上述第一介電層上。上述第二介電層形成在上述第一鈍化層上。上述奈米井形成在上述第二介電層中。每一上述奈米井在上述第二介電層的上表面具有一開口。每一上述電極是從上述第一介電層經由上述第一鈍化層延伸到上述第二介電層並位於兩相鄰之上述奈米井之間。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
應理解的是,圖式之元件或裝置可以發明所屬技術領域具有通常知識者所熟知的各種形式存在。此外實施例中可能使用相對性用語,例如「較低」或「底部」或「較高」或「頂部」,以描述圖式的一個元件對於另一元件的相對關係。可理解的是,如果將圖式的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。本發明實施例可配合圖式一併理解,本發明之圖式亦被視為發明說明之一部分。應理解的是,本發明之圖式並未按照比例繪製,事實上,可能任意的放大或縮小元件的尺寸以便清楚表現出本發明的特徵。
此外,圖式之元件或裝置可以發明所屬技術領域具有通常知識者所熟知的各種形式存在。此外,應理解的是,雖然在此可使用用語「第一」、「第二」、「第三」等來敘述各種元件、組件、或部分,這些元件、組件或部分不應被這些用語限定。這些用語僅是用來區別不同的元件、組件、區域、層或部分。因此,以下討論的一第一元件、組件、區域、層或部分可在不偏離本發明之教示的情況下被稱為一第二元件、組件、區域、層或部分。
在本發明一些實施例中,關於耦接、連接之用語例如「連接」、「互連」等,除非特別定義,否則可指兩個結構係直接接觸,或者亦可指兩個結構並非直接接觸,其中有其他結構設於此兩個結構之間。且此關於接合、連接之用語亦可包括兩個結構都可移動,或者兩個結構都固定之情況。
應理解的是,當元件或層被稱為在另一元件或層“上”或與另一元件或層“連接”時,其可以直接在另一元件或層上或直接與另一元件或層連接,或者還可以存在插入的元件或層。相反地,當元件被稱為“直接”在另一元件或上或者“直接”與另一元件或層連接時,不存在插入的元件。
除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與本發明所屬技術領域的技術人員通常理解的相同涵義。能理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本發明的背景或上下文一致的意思, 而不應以一理想化或過度正式的方式解讀,除非在本發明實施例有特別定義。
第1圖係顯示根據本發明一些實施例所述之影像感測裝置100的剖面結構示意圖。應理解的是,根據一些實施例,可添加額外特徵於以下所述之影像感測裝置100。根據一些實施例中,以下所述的部分特徵可以被取代或是刪除。
如第1圖所顯示,影像感測裝置100包括基板102。在一些實施例中,基板102為半導體基底。例如,基板102的材料可包括單晶型、多晶型或非晶型的矽(Si)或鍺(Ge)或其組合。在一些實施例中,基板102是由化合物半導體所形成。例如,在一些實施例中,基板102的材料可包括碳化矽(SiC)、砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦(InP)、砷化銦(InAs)或其組合。此外,根據一些實施例,基板102的材料可由合金半導體所形成。例如,在一些實施例中,基板102的材料可包括矽化鍺(SiGe)、砷化鎵鋁(AlGaAs)、砷化鎵銦(GaInAs)、磷化鎵銦(GaInP)、磷化鎵砷(GaAsP)或其組合。
在第1圖中,影像感測裝置100更包括形成在基板102上的影像感測陣列110。在一些實施例中,影像感測陣列110的部分組件(或元件)可設置於基板102中。影像感測陣列110是由排列成多列(row)以及多行(column)的複數影像感測單元104所形成,且每一影像感測單元104包括光電二極體。光電二極體可接收光線,並將其轉換為電信號。在一些實施例中,影像感測單元104可以是滾動式快門(Rolling Shutter)影像感測單元或是全域式快門(Global Shutter)影像感測單元。
參考第2A圖與第2B圖,第2A圖係顯示根據本發明一些實施例所述之滾動式快門影像感測單元104A,而第2B圖係顯示根據本發明一些實施例所述之全域式快門影像感測單元104B。在影像感測單元104A與104B中,光電二極體PD可包括金屬氧化物半導體(MOS)電晶體的源極與汲極,且源極與汲極可將電流傳輸至其他組件,如其他金屬氧化物半導體電晶體。在一些實施例中,影像感測單元104A與104B可包括傳輸閘極TX、重置閘極RST、浮動擴散點FD、源極隨耦器SF或其組合。再者,影像感測單元104A與104B可進一步與外部裝置或電路耦接,以便將輸出信號PixOut傳輸至其他電路,例如信號處理器(未顯示)。值得注意的是,第2A圖與第2B圖僅簡單顯示影像感測單元104A與104B的部分組件,並非用以限定本發明。任何適用於滾動式快門或是全域式快門的影像感測單元都可作為本發明的影像感測單元。
參考回第1圖,影像感測陣列110更包括介電層115,而介電層115是形成在影像感測陣列110上。換言之,介電層115可覆蓋影像感測陣列110的影像感測單元104。在一些實施例中,介電層115的材料可包括氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、其他合適的介電材料或其組合。在一些實施例中,高介電常數介電材料可包括金屬氧化物、金屬氮化物、金屬矽化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽或其組合。
在一些實施例中,可藉由物理氣相沉積製程(physical vapor deposition,PVD)、化學氣相沉積製程(chemical vapor deposition,CVD)、塗佈製程、其他合適的方法或其組合而形成介電層104。物理氣相沉積製程例如可包括濺鍍製程、蒸鍍製程、或脈衝雷射沉積等。化學氣相沉積製程例如可包括低壓化學氣相沉積製程(LPCVD)、低溫化學氣相沉積製程(LTCVD)、快速升溫化學氣相沉積製程(RTCVD)、電漿輔助化學氣相沉積製程(PECVD)、或原子層沉積製程(ALD)等。
在第1圖中,影像感測裝置100更包括內連接結構120,而內連接結構220是設置於介電層115中。在一些實施例中,內連接結構120於基板102上的投影(未顯示)是重疊於兩相鄰之影像感測單元104之間,即影像感測單元104的邊緣。在一些實施例中,內連接結構120包括多個導電層122、124與126。每一導電層122、124與126包括多個導電電極,以便在影像感測裝置100的影像感測單元104與相關電路中傳輸信號。在第1圖中,導電層122是相鄰於影像感測陣列110的最低導電層、而導電層126是遠離於影像感測陣列110的最高導電層。此外,導電層124是設置在導電層122與導電層126之間的中間導電層。應理解的是,雖然圖式中顯示出三層導電層122、124與126,但本發明並不以此為限,在不同的實施例中,可根據不同需求,形成具有合適數量及結構之導電層的內連接結構120。
在一些實施例中,內連接結構220可包括金屬導電材料、透明導電材料或其組合。金屬導電材料可包括銅(Cu)、鋁(Al)、金(Au)、銀(Ag)、鈦(Ti)、鎢(W)、鉬(Mo)、鎳(Ni)、銅合金、鋁合金、金合金、銀合金、鈦合金、鎢合金、鉬合金、鎳合金或其組合。透明導電材料可包括透明導電氧化物(transparent conductive oxide,TCO)。舉例而言,透明導電氧化物可包括銦錫氧化物(indium tin oxide,ITO)、氧化錫(tin oxide,SnO)、氧化鋅(zinc oxide,ZnO)、氧化銦鋅(indium zinc oxide,IZO)、氧化銦鎵鋅(indium gallium zinc oxide,IGZO)、氧化銦錫鋅(indium tin oxide,ITZO)、氧化銻錫(antimony tin oxide,ATO)、氧化銻鋅(antimony zinc oxide,AZO)或其組合。
在一些實施例中,可藉由物理氣相沉積製程(PVD)、化學氣相沉積製程(CVD)、塗佈製程、其他合適的方法或前述之組合形成內連接結構120。在一些實施例中,可使用圖案化製程形成內連接結構120。在一些實施例中,圖案化製程可包括微影製程及蝕刻製程。微影製程可包括光阻塗佈(例如旋轉塗佈)、軟烘烤、硬烘烤、遮罩對齊、曝光、曝光後烘烤、光阻顯影、清洗及乾燥等,但不限於此。蝕刻製程可包括乾蝕刻製程或濕蝕刻製程,但不限於此。
在第1圖中,影像感測裝置100更包括鈍化層125,而鈍化層125是形成於介電層115上。在一些實施例中,鈍化層125可包括氮化矽(Si 3N 4)、氧化矽(SiO 2)、氮氧化矽(SiON)、氧化鋁(Al 2O 3)、氮化鋁(AlN)、聚亞醯胺(polyimide,PI)、苯環丁烯(benzocyclobutene,BCB)、聚苯唑(polybenzoxazole,PBO)、其他介電材料或其組合。在一些實施例中,可使用有機金屬氣相沉積法、化學氣相沉積法(如低壓化學氣相沉積或電漿輔助化學氣相)、旋轉塗佈法、其他適當之方法、或其組合在介電層115之上形成鈍化層125。鈍化層125可保護下方的結構,作為與後續形成的結構之間的緩衝,並提供物理隔離及結構支撐。
在第1圖中,影像感測裝置100更包括介電層135,而介電層135是形成於鈍化層125上。介電層135具有第一側135A與第二側135B,而第一側135A是相對於第二側135B。在一些實施例中,介電層135的第一側135A是上表面,而介電層135的第二側135B是下表面。介電層135的第二側135B是接觸鈍化層125。在一些實施例中,介電層135的材料可包括氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、其他合適的介電材料或其組合。在一些實施例中,高介電常數介電材料可包括金屬氧化物、金屬氮化物、金屬矽化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽或其組合。
在第1圖中,影像感測裝置100更包括多個奈米井150。每一奈米井150具有開口155在介電層135的第一側135A。此外,奈米井150的底面157與開口155之間具有深度(或厚度)D1,而介電層135具有大於深度D1的深度D2,即D2>D1。在一些實施例中,開口155的寬度(或直徑)W1是等於底面157的寬度W2,即W1=W2。在一些實施例中,開口155的寬度W1是大於底面157的寬度W2,即W1>W2。此外,奈米井150是由介電層135的第一部分135C所隔開。
當待測物200填入奈米井150時,其可被來自上方的光源(未顯示)的激發光所激發。當待測物200被激發之後,待測物200會發出特定波長範圍的光線,而所發射出光線可以被影像感測單元104所偵測,以判斷待測物200的性質。在一些實施例中,待測物200可包括在填充於奈米井150中的樣本溶液(或化學液體)210中。
在不同的實施例中,可根據待測物200的標記物(tag)的特性,而提供具有合適波長或頻率範圍的激發光,例如,可激發標記物以產生螢光或冷光,但本發明不以此為限。在一些實施例中,光源(未顯示)可包括經極化(polarized)的光、未經極化的光、或其組合。
在一些實施例中,待測物200可包括生物分子、化學分子或其組合。例如,待測物200可包括去氧核糖核酸(deoxyribonucleic acid,DNA)、核糖核酸(ribonucleic acid,RNA)、蛋白質、細胞、其他有機及無機小分子或其組合,但本發明不以此為限。此外,在一些實施例中,待測物200可包括螢光標記物。
在第1圖中,影像感測裝置100更包括多個電極140。在一些實施例中,電極140可以是導通孔(via)或是接點。此外,每一電極140是接觸並形成在內連接結構120的導電層126上,並依序通過介電層115、鈍化層125以及介電層135而往介電層135的第一側135A延伸,直至到達介電層135的第一部分135C。換言之,每一電極140是設置在兩個相鄰的奈米井150之間。此外,電極140的深度D3是大於介電層135的深度D2,即D3>D2。
在影像感測裝置100中,影像感測單元104可偵測待測物200所發射出光線。藉由控制電極140的電壓(或偏壓、極性),奈米井150內會產生電場來控制待測物200的電偶極(dipoles)的方向,以降低串擾(cross-talk)的影響。此外,藉由週期性地調整電極140的電壓,可得到待測物200的電偶極矩(dipoles moment)及/或慣性矩(moment of inertia)。因此,除了待測物200所發射出光線之外,影像感測裝置100更可根據待測物200的電偶極矩及/或慣性矩來判斷待測物200的性質,以識別待測物200。
第3圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置100的電極140操作在無偏壓模式時,在奈米井陣列300A中待測物(例如第1圖的待測物200)的電偶極205的上視圖。在第3圖中,因為無偏壓施加在電極140上,所以未顯示出電極140。此外,值得注意的是,第3圖的奈米井陣列300A是顯示4x4陣列之奈米井150。在其他實施例中,奈米井陣列300A可以包括更多或更少數量的奈米井150。電偶極205是兩個距離很短的正帶電粒子與負帶電粒子所形成的結構。如第3圖所顯示,當電極140操作在無偏壓模式時,每一奈米井150中的電偶極205是隨機排列的。於是,奈米井陣列300A中電偶極205的總和是隨機極化的,因而容易產生串擾現象,並造成較高的光響應非均勻性(photon response non-uniformity,PRNU)。此外,當電極140操作在無偏壓模式時,奈米井150中電偶極205的方向亦無法預測。
在影像感測裝置100中,奈米井150的形狀是正八邊形。在一些實施例中,奈米井150的形狀是等邊多邊形。在一些實施例中,奈米井150的形狀是邊長超過三的等邊多邊形。在一些實施例中,奈米井150的形狀是圓形。
第4圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置100的電極140操作在第一偏壓模式時,在奈米井陣列300B中待測物(例如第1圖的待測物200)的電偶極205的上視圖。值得注意的是,第4圖的奈米井陣列300B是顯示4x4陣列之奈米井150。在其他實施例中,奈米井陣列300B可以包括更多或更少數量的奈米井150。如第4圖所顯示,電極140A是表示具有高電壓的電極140,而電極140B是表示具有低電壓的電極140。在一些實施例中,電極140A具有正電壓(例如+3V),而電極140B具有負電壓(例如-3V)。在一些實施例中,電極140A具有大於接地電壓的電壓(例如5V),而電極140B具有接地電壓(例如0V)。在一些實施例中,電極140A與電極140B的電壓可以隨著時間而改變或互換。例如,在第一時間點,電極140A具有正電壓而電極140B具有負電壓。接著,在第二時間點,電極140A具有負電壓而電極140B具有正電壓。
在奈米井陣列300B中,每一奈米井150是由一個電極140A以及一個電極140B所包圍,而電極140A的電壓是大於電極140B的電壓。因此,在每一奈米井150中,當施加的電場(如箭頭所表示)夠大時,待測物(例如第1圖的待測物200)的電偶極205的方向是從具有高電壓的電極140A指向具有低電壓的電極140B。例如,對奈米井150a1而言,奈米井150a1是由電極140A_1與電極140B_1所包圍,以及電極140A_1是安排在奈米井150a1的右下方而電極140B_1是安排在奈米井150a1的左上方。因此,奈米井150a1中電偶極205的方向是從電極140A_1指向電極140B_1(即右下往左上)。相似地,奈米井150a2是由電極140A_1與電極140B_2所包圍,以及電極140A_1是安排在奈米井150a2的左下方而電極140B_2是安排在奈米井150a2的右上方。因此,奈米井150a2中電偶極205的方向是從電極140A_1指向電極140B_2(即左下往右上)。此外,奈米井150b1是由電極140A_1與電極140B_3所包圍,以及電極140A_1是安排在奈米井150b1的右上方而電極140B_3是安排在奈米井150b1的左下方。因此,奈米井150b1中電偶極205的方向是從電極140A_1指向電極140B_3(即右上往左下)。再者,奈米井150b2是由電極140A_1與電極140B_4所包圍,以及電極140A_1是安排在奈米井150b2的左上方而電極140B_4是安排在奈米井150b2的右下方。因此,奈米井150b2中電偶極205的方向是從電極140A_1指向電極140B_4(即左上往右下)。
在奈米井陣列300B中,設置在陣列內部的每一電極140是由四個奈米井所包圍。例如,電極140A_1是由四個奈米井150a1、150a2、150b1與150b2所包圍,即電極140A_1是安排在奈米井150a1、150a2、150b1與150b2之間。相似地,電極140B_4是由四個奈米井150b2、150b3、150c2與150c3所包圍,即電極140A_1是安排在奈米井150b2、150b3、150c2與150c3之間。
在第一偏壓模式下,電極140B是安排(或指派)在電極陣列的奇數列(row),而電極140A是安排(或指派)在電極陣列的偶數列。例如,電極140B_1與140B_2是安排在電極陣列的第一列,而電極140A_1是安排在電極陣列的第二列。此外,電極140B是安排(或指派)在電極陣列的奇數行(column),而電極140A是安排(或指派)在電極陣列的偶數行。例如,電極140B_1與140B_2是分別安排在電極陣列的第一行與第三行,而電極140A_1是安排在電極陣列的第二行。換言之,電極140A以及電極140B會被指派在交錯的線(例如列和行)上。藉由指派電極140A以及電極140B並控制電極140A以及電極140B的電壓,奈米井陣列300B中電偶極205的總和是可控制的,所以光學響應信號分布是可控的,也可以降低串擾現象。
第5圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置100的電極140操作在第二偏壓模式時,在奈米井陣列300C中待測物(例如第1圖的待測物200)的電偶極205的上視圖。值得注意的是,第5圖的奈米井陣列300C是顯示4x4陣列之奈米井150。在其他實施例中,奈米井陣列300C可以包括更多或更少數量的奈米井150。第5圖的奈米井陣列300C與第4圖的奈米井陣列300B具有相似的電極140A和140B的配置。第5圖的奈米井陣列300C與第4圖的奈米井陣列300B的差異在於,奈米井陣列300C更包括電極140C。在第5圖中,電極140A是表示具有高電壓的電極140、電極140B是表示具有低電壓的電極140而電極140C是表示具有平均電壓(或中間電壓)的電極140。在一些實施例中,電極140A具有正電壓(例如+3V)、電極140B具有負電壓(例如-3V)以及電極140C具有接地電壓(例如0V)。在一些實施例中,電極140A具有較高的電壓(例如5V)、電極140B具有接地電壓(例如0V)以及電極140C具有中間電壓(例如2.5V、3V等)。
在奈米井陣列300C中,每一奈米井150是由一個電極140A、一個電極140B以及兩個電極140C所包圍。此外,電極140A的電壓是大於電極140C的電壓,而電極140C的電壓是大於電極140B的電壓。因此,在每一奈米井150中,待測物(未顯示)的電偶極205的方向是從具有高電壓的電極140A指向具有低電壓的電極140B。
在第5圖中,奈米井150a1是由電極140A_1、電極140B_1與電極140C_1和140C_2所包圍。電極140A_1是安排在奈米井150a1的右下方、電極140C_1是安排在奈米井150a1的右上方、電極140B_1是安排在奈米井150a1的左上方以及電極140C_2是安排在奈米井150a1的左下方。當施加的電場(如箭頭所表示)夠大時,待測物(例如第1圖的待測物200)的電偶極205的方向是從具有高電壓的電極指向具有低電壓的電極。因此,奈米井150a1中電偶極205的方向是從電極140A_1指向電極140B_1(即右下往左上)。相似地,奈米井150a2是由電極140A_1、電極140B_2以及電極140C_1與140C_3所包圍。電極140A_1是安排在奈米井150a2的左下方、電極140C_1是安排在奈米井150a2的左上方、電極140B_2是安排在奈米井150a2的右上方以及電極140C_3是安排在奈米井150a2的右下方。因此,奈米井150a2中電偶極205的方向是從電極140A_1指向電極140B_2(即左下往右上)。
在第二偏壓模式下,電極140B是安排(或指派)在電極陣列的奇數列,而電極140A是安排(或指派)在電極陣列的偶數列。此外,電極140B是安排(或指派)在電極陣列的奇數行,而電極140A是安排(或指派)在電極陣列的偶數行。再者,電極140C是安排(或指派)在電極陣列的每一行與每一列中。在奇數行和奇數列中,電極140B與電極140C是交錯排列。在偶數行和偶數列中,電極140A與電極140C是交錯排列。藉由使用電極140C,可使奈米井陣列300C中每一奈米井150中電偶極205的方向更為固定。此外,藉由指派電極140A、電極140B與電極140C並控制電極140A、電極140B與電極140C的電壓,奈米井陣列300C中電偶極205的總和是可控制的,所以光學響應信號分布是可控制的,也可以降低串擾現象。
在一些實施例中,影像感測裝置100的電壓控制器(未顯示)可固定地將設置在每一奈米井150周圍的各電極140指派為電極140A、140B或140C,使得奈米井150中的電偶極205的方向不會改變。在一些實施例中,影像感測裝置100的電壓控制器(未顯示)可動態地將設置在每一奈米井150周圍的各電極140指派為電極140A、140B或140C,以便改變奈米井150中電偶極205的方向。
第6A圖至第6D圖係顯示根據本發明一些實施例所述之在第三偏壓模式下動態地指派奈米井150周圍電極140的示意上視圖。藉由改變至少四個電極140的電壓,可以控制奈米井150中待測物(例如第1圖的待測物200)的電偶極205的方向。
第6A圖係顯示在第一時間t1指派電極140的示意圖。在第6A圖中,奈米井150右下方的電極140被指派為具有高電壓的電極140A,而奈米井150左下方的電極140被指派為具有中間電壓的電極140CC。再者,奈米井150左上方的電極140被指派為具有低電壓的電極140B,而奈米井150右上方的電極140被指派為具有中間電壓的電極140C。因此,奈米井150中電偶極205的方向是從位於右下方的電極140A_1指向位於左上方的電極140B_1。
第6B圖係顯示在第二時間t2指派電極140的示意圖。在第6B圖中,奈米井150左下方的電極140被指派為具有高電壓的電極140A,而奈米井150左上方的電極140被指派為具有中間電壓的電極140CC。再者,奈米井150右上方的電極140被指派為具有低電壓的電極140B,而奈米井150右下方的電極140被指派為具有中間電壓的電極140C。因此,奈米井150中電偶極205的方向是從位於左下方的電極140A_1指向位於右上方的電極140B_1。換言之,相較於第6A圖,電偶極205的方向順時鐘旋轉了90度。
第6C圖係顯示在第三時間t3指派電極140的示意圖。在第6C圖中,奈米井150左上方的電極140被指派為具有高電壓的電極140A,而奈米井150右上方的電極140被指派為具有中間電壓的電極140CC。再者,奈米井150右下方的電極140被指派為具有低電壓的電極140B,而奈米井150左下方的電極140被指派為具有中間電壓的電極140C。因此,奈米井150中電偶極205的方向是從位於左上方的電極140A_1指向位於右下方的電極140B_1。換言之,相較於第6B圖,電偶極205的方向順時鐘旋轉了90度。
第6D圖係顯示在第四時間t4指派電極140的示意圖。在第6D圖中,奈米井150右上方的電極140被指派為具有高電壓的電極140A,而奈米井150左上方的電極140被指派為具有中間電壓的電極140C。再者,奈米井150左下方的電極140被指派為具有低電壓的電極140B,而奈米井150右下方的電極140被指派為具有中間電壓的電極140CC。因此,奈米井150中電偶極205的方向是從位於右上方的電極140A_1指向位於左下方的電極140B_1。換言之,相較於第6C圖,電偶極205的方向順時鐘旋轉了90度。
同時參考第6A圖至第6D圖,藉由週期性地依序在第一時間t1、第二時間t2、第三時間t3與第四時間t4指派四個電極140至相對應的電壓,可以使奈米井150中電偶極205進行旋轉,例如依順時鐘方向旋轉。值得注意的是,第一時間t1至第二時間t2的第一時間差Δt1是相同於第二時間t2至第三時間t3的第二時間差Δt2,以及第二時間差Δt2是相同於第三時間t3至第四時間t4的第三時間差Δt3。再者,當電偶極205旋轉時,影像感測單元104可偵測到待測物的改變,進而得到待測物的電偶極矩和慣性矩。於是,根據這些待測物的特性,影像感測裝置100可更快速地識別待測物。
第7A圖至第7D圖係顯示根據本發明一些實施例所述之在第四偏壓模式下動態地指派奈米井150周圍電極140的示意上視圖。藉由改變至少四個電極140的電壓,可以控制奈米井150中待測物(例如第1圖的待測物200)的電偶極205的方向。
第7A圖係顯示在第五時間t5指派電極140的示意圖。在第7A圖中,奈米井150右下方和左下方的電極140被分別指派為具有高電壓的電極140A和140AA。再者,奈米井150左上方與右上方的電極140被分別指派為具有低電壓的電極140B和140BB。因此,奈米井150中電偶極205的方向是從下方指向上方。
第7B圖係顯示在第六時間t6指派電極140的示意圖。在第7B圖中,奈米井150左下方和左上方的電極140被分別指派為具有高電壓的電極140A和140AA。再者,奈米井150右上方與右下方的電極140被分別指派為具有低電壓的電極140B和140BB。因此,奈米井150中電偶極205的方向是從左方指向右方。換言之,相較於第7A圖,電偶極205的方向順時鐘旋轉了90度。
第7C圖係顯示在第七時間t7指派電極140的示意圖。在第7C圖中,奈米井150左上方與右上方的電極140被分別指派為具有高電壓的電極140A和140AA。再者,奈米井150右下方與左下方的電極140被分別指派為具有低電壓的電極140B和140BB。因此,奈米井150中電偶極205的方向是從上方指向下方。換言之,相較於第7B圖,電偶極205的方向順時鐘旋轉了90度。
第7D圖係顯示在第八時間t8指派電極140的示意圖。在第7D圖中,奈米井150右上方與右下方的電極140被分別指派為具有高電壓的電極140A與140AA。再者,奈米井150左下方與左上方的電極140被分別指派為具有低電壓的電極140B和140BB。因此,奈米井150中電偶極205的方向是從右上指向左方。換言之,相較於第7C圖,電偶極205的方向順時鐘旋轉了90度。
同時參考第7A圖至第7D圖,藉由週期性地依序在第五時間t5、第六時間t6、第七時間t7與第八時間t8指派四個電極140至相對應的電壓,可以使奈米井150中電偶極205進行旋轉。例如,依順時鐘方向旋轉。值得注意的是,第五時間t5至第六時間t6的第四時間差Δt4是相同於第六時間t6至第七時間t7的第五時間差Δt5,以及第五時間差Δt5是相同於第七時間t7至第八時間t8的第六時間差Δt6。再者,當電偶極205旋轉時,影像感測單元104可偵測到待測物的改變,進而得到待測物的電偶極矩和慣性矩。於是,根據這些待測物的特性,影像感測裝置100可更快速地識別待測物。
在一些實施例中,影像感測裝置100的電壓控制器(未顯示)可根據第6A圖至第6D圖的第三偏壓模式以及第7A圖至第7D圖的第四偏壓模式所顯示的電極140的配置而彈性地指派電極140的偏壓,以便控制電偶極205旋轉的方向(順時鐘或逆時鐘)以及角度(45度、90度、135度等)。此外,在一些實施例中,影像感測裝置100的電壓控制器(未顯示)可將奈米井陣列劃分成多區,且每一區的電極140是對應於各自的偏壓模式。
第8圖係顯示根據本發明一些實施例所述之奈米井150與周圍電極140的示意剖面圖。在第8圖中,奈米井150a左邊的電極140被指派為具有低電壓的電極140B,而奈米井150a右邊的電極140被指派為具有高電壓的電極140A。因此,奈米井150a中電偶極205的方向是從右邊的電極140A指向左邊的電極140B。此外,奈米井150b左邊的電極140被指派為具有高電壓的電極140A,而奈米井150b右邊的電極140被指派為具有低電壓的電極140B。因此,奈米井150b中電偶極205的方向是從左邊的電極140A指向右邊的電極140B。
第9A圖至第9F圖係顯示根據本發明一些實施例所述之形成影像感測裝置100之半導體結構的剖面圖。
如第9A圖的剖面圖所顯示,影像感測陣列110形成在基板102上,而影像感測陣列110是由多個影像感測單元104所形成。在一些實施例中,影像感測單元104的部分組件是形成在基板102中。此外,介電層115是形成在影像感測陣列110上,而內連接結構220是設置於介電層115中。如先前所描述,內連接結構120包括多個導電層122、124與126。再者,鈍化層125是形成於介電層115上。
如第9B圖的剖面圖所顯示,介電層135形成在鈍化層125上。在一些實施例中,介電層115與介電層135是由相同的介電材料所形成。在一些實施例中,介電層115與介電層135是由不同的介電材料所形成。此外,介電層115與介電層135是由沉積製程所形成。
如第9C圖的剖面圖所顯示,使用光罩(未顯示)對介電層135、鈍化層125以及介電層115執行蝕刻製程,以便形成溝槽137。此外,溝槽137的底部會暴露出內連接結構120的導電層126的上表面。
如第9D圖的剖面圖所顯示,將導電材料(例如鎢)填入溝槽137以形成電極140。如先前所描述,電極140會接觸且電性連接於內連接結構120的導電層126。在一些實施例中,電極140可以是導通孔。
如第9E圖的剖面圖所顯示,形成頂部介電層135T在介電層135以及電極140上。在一些實施例中,介電層135與頂部介電層135T是由相同的介電材料所形成。此外,頂部介電層135T是由沉積製程所形成。藉由在電極140上方形成頂部介電層135T,可以避免電極140電性連接到上層的其他結構(未顯示)。
如第9F圖的剖面圖所顯示,使用光罩(未顯示)對介電層135與頂部介電層135T執行蝕刻製程,以便形成奈米井150。如先前所描述,奈米井150的底面157與開口155之間具有深度(或厚度)D1,而介電層135具有大於深度D1的深度D2,即D2>D1。因此,在第9F圖的影像感測裝置100中,奈米井150之間形成可偏壓的電極140。在一些實施例中,每一奈米井150是對應於各自的影像感測單元104。在一些實施例中,每一奈米井150是對應於多個影像感測單元104。
第10圖係顯示根據本發明一些實施例所述之形成影像感測裝置100之半導體結構的剖面圖。在一些實施例中,在完成第9F圖的結構之後,更形成鈍化層160在頂部介電層135T以及奈米井150上。藉由形成鈍化層160在奈米井150中,可以避免樣本溶液(或化學液體)210會侵蝕介電層135。
根據本發明實施例,藉由控制電極140的偏壓,可在個別的奈米井150中形成不同電場強度,進而控制待測物200的電偶極矩。此外,奈米井150的結構以及介電層135的材料也會影響到電場強度。相較於無法對奈米井施加電場或是僅能對整個奈米井陣列施加電場的傳統影像感測裝置,本發明實施例是藉由改變電極140的偏壓來對每個奈米井提供個別的電場,以便透過影像感測單元104來偵測待測物200所發射出光線的光信號強度和空間分佈是否穩定,以得到鬆弛時間(relaxation time)。接著,影像感測裝置100可根據對應於不同電場強度的鬆弛時間而得待測物200的電偶極矩以及慣性矩。接著,根據電偶極矩以及慣性矩的比例,影像感測裝置100可增加額外資訊來加速識別出待測物200。
雖然本發明已以較佳實施例發明如上,然其並非用以限定本發明,任何所屬技術領域中包括通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:影像感測裝置 102:基板 104:影像感測單元 104A:滾動式快門影像感測單元 104B:全域式快門影像感測單元 110:影像感測陣列 115, 135:介電層 120:內連接結構 122, 124, 126:導電層 125, 160:鈍化層 135A:第一側 135B:第二側 135C:第一部分 135T:頂部介電層 137:溝槽 140:電極 140A, 140A_1-140A_2, 140AA:電極 140B, 140B_1-140B_4, 140BB:電極 140C, 140C_1-140C_4, 104CC:電極 150, 150a, 150a1-150a2, 150b, 150b1-150b3, 150c2-150c3:奈米井 155:開口 157:底面 200:待測物 205:電偶極 210:樣本溶液 300A-300C:奈米井陣列 D1-D3:深度 FD:浮動擴散點 SF:源極隨耦器 PD:光電二極體 PixOut:輸出信號 RST:重置閘極 TX:傳輸閘極 GTX:全局傳輸閘極 GRST:全局重置閘極 W1-W2:寬度
第1圖係顯示根據本發明一些實施例所述之影像感測裝置的剖面結構示意圖。 第2A圖係顯示根據本發明一些實施例所述之滾動式快門影像感測單元。 第2B圖係顯示根據本發明一些實施例所述之全域式快門影像感測單元。 第3圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置的電極操作在無偏壓模式時,在奈米井陣列中待測物的電偶極的上視圖。 第4圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置的電極操作在第一偏壓模式時,在奈米井陣列中待測物的電偶極的上視圖。 第5圖係顯示根據本發明一些實施例所述之當第1圖之影像感測裝置的電極操作在第二偏壓模式時,在奈米井陣列中待測物的電偶極的上視圖。 第6A圖至第6D圖係顯示根據本發明一些實施例所述之在第三偏壓模式下動態地指派奈米井周圍電極的示意上視圖。 第7A圖至第7D圖係顯示根據本發明一些實施例所述之在第四偏壓模式下動態地指派奈米井周圍電極的示意上視圖。 第8圖係顯示根據本發明一些實施例所述之奈米井與周圍電極的示意剖面圖。 第9A圖至第9F圖係顯示根據本發明一些實施例所述之形成影像感測裝置之半導體結構的剖面圖。 第10圖係顯示根據本發明一些實施例所述之形成影像感測裝置之半導體結構的剖面圖。
100:影像感測裝置
102:基板
104:影像感測單元
110:影像感測陣列
115,135:介電層
120:內連接結構
122,124,126:導電層
125:鈍化層
135A:第一側
135B:第二側
135C:第一部分
140:電極
150:奈米井
155:開口
157:底面
200:待測物
210:樣本溶液
D1-D3:深度
W1-W2:寬度

Claims (20)

  1. 一種影像感測裝置,包括:一基板;一第一介電層,形成在上述基板上,並具有一第一側與相對於上述第一側之一第二側;一影像感測陣列,形成在上述基板與上述第一介電層的上述第二側之間,並包括複數影像感測單元;複數奈米井,形成在上述第一介電層中,其中每一上述奈米井在上述第一介電層的上述第一側具有一開口;以及複數電極,其中每一上述電極是從上述第一介電層的上述第二側延伸到上述第一側並位於兩相鄰之上述奈米井之間。
  2. 如請求項1所述之影像感測裝置,更包括:一第二介電層,形成在上述第一介電層以及上述影像感測陣列之間;一內連接結構,形成在上述第二介電層中;以及一第一鈍化層,形成在上述第一介電層以及上述第二介電層之間。
  3. 如請求項2所述之影像感測裝置,其中上述內連接結構包括複數導電層,以及每一上述電極是設置在相鄰於上述第一介電層的上述第二側的上述導電層上,並通過上述第一鈍化層往上述第一介電層的上述第一側延伸。
  4. 如請求項1所述之影像感測裝置,其中當至少一待測物填入上述奈米井時,上述影像感測裝置控制上述電極的電壓而得到上述待測物的電偶極矩或慣性矩,以識別上述待測物。
  5. 如請求項4所述之影像感測裝置,其中上述待測物包括一生物分子、一化學分子或其組合。
  6. 如請求項1所述之影像感測裝置,其中每一上述奈米井是由具有不同電壓的兩個上述電極所包圍。
  7. 如請求項1所述之影像感測裝置,其中每一上述奈米井是依序由上述電極的一第一電極、一第二電極、一第三電極與一第四電極所包圍,其中上述第一電極和上述第三電極具有平均電壓,上述第二電極具有一最大電壓,以及上述第四電極具有一最小電壓,其中上述奈米井中一待測物的電偶極的方向是從上述第二電極指向上述第四電極。
  8. 如請求項1所述之影像感測裝置,其中每一上述電極是設置在至少四個奈米井之間。
  9. 如請求項1所述之影像感測裝置,更包括:一第二鈍化層,形成在上述奈米井以及上述第一介電層的上述第一側之上。
  10. 如請求項1所述之影像感測裝置,其中上述奈米井的形狀為等邊多邊形或圓形。
  11. 一種影像感測裝置,包括:一基板;一影像感測陣列,形成在上述基板上,包括複數影像感測單元; 一第一介電層,形成在上述影像感測陣列上;一第一鈍化層,形成在上述第一介電層上;一第二介電層,形成在上述第一鈍化層上;複數奈米井,形成在上述第二介電層中,其中每一上述奈米井在上述第二介電層的上表面具有一開口;以及複數電極,其中每一上述電極是從上述第一介電層經由上述第一鈍化層延伸到上述第二介電層並位於兩相鄰之上述奈米井之間。
  12. 如請求項11所述之影像感測裝置,更包括:一內連接結構,形成在上述第一介電層中,其中上述內連接結構包括複數導電層,以及每一上述電極是設置在相鄰於上述第二介電層的上述導電層上,並通過上述第一鈍化層往上述第一介電層的上表面延伸。
  13. 如請求項11所述之影像感測裝置,其中每一上述奈米井是對應於各自的上述影像感測單元。
  14. 如請求項11所述之影像感測裝置,其中當至少一待測物填入上述奈米井時,上述影像感測裝置控制上述電極的電壓而得到上述待測物的電偶極矩或慣性矩,以識別上述待測物。
  15. 如請求項14所述之影像感測裝置,其中上述待測物包括一生物分子、一化學分子或其組合。
  16. 如請求項11所述之影像感測裝置,其中每一上述奈米井是由具有不同電壓的兩個上述電極所包圍。
  17. 如請求項11所述之影像感測裝置,其中每一上述奈米井是依序由上述電極的一第一電極、一第二電極、一第三電極與一 第四電極所包圍,其中上述第一電極和上述第三電極具有平均電壓,上述第二電極具有一最大電壓,以及上述第四電極具有一最小電壓,其中上述奈米井中一待測物的電偶極的方向是從上述第二電極指向上述第四電極。
  18. 如請求項11所述之影像感測裝置,其中每一上述電極是設置在至少四個奈米井之間。
  19. 如請求項11所述之影像感測裝置,更包括:一第二鈍化層,形成在上述奈米井以及上述第二介電層的上表面之上。
  20. 如請求項11所述之影像感測裝置,其中上述奈米井的形狀為等邊多邊形或圓形。
TW110102272A 2021-01-21 2021-01-21 影像感測裝置 TWI751893B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110102272A TWI751893B (zh) 2021-01-21 2021-01-21 影像感測裝置
CN202110571308.1A CN114823750A (zh) 2021-01-21 2021-05-25 影像感测装置
US17/581,139 US20220231069A1 (en) 2021-01-21 2022-01-21 Image-sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110102272A TWI751893B (zh) 2021-01-21 2021-01-21 影像感測裝置

Publications (2)

Publication Number Publication Date
TWI751893B true TWI751893B (zh) 2022-01-01
TW202230758A TW202230758A (zh) 2022-08-01

Family

ID=80809202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102272A TWI751893B (zh) 2021-01-21 2021-01-21 影像感測裝置

Country Status (3)

Country Link
US (1) US20220231069A1 (zh)
CN (1) CN114823750A (zh)
TW (1) TWI751893B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201940411A (zh) * 2018-01-24 2019-10-16 美商伊路米納有限公司 具有經圖案化的奈米井陣列的降低尺寸的結構化照明顯微鏡
TWI711815B (zh) * 2017-12-26 2020-12-01 美商伊路米納有限公司 感測器系統以及其製造方法
US10879296B2 (en) * 2017-12-26 2020-12-29 Illumina, Inc. Image sensor structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042722B1 (en) * 2015-01-07 2019-11-27 Personal Genomics Inc. Oriented loading systems and method for orienting a particle loaded in a well
TWI571626B (zh) * 2015-07-15 2017-02-21 力晶科技股份有限公司 具有奈米腔的集成生物感測器及其製作方法
CN108573990A (zh) * 2018-05-15 2018-09-25 德淮半导体有限公司 半导体装置及其制造方法
US12089941B2 (en) * 2019-03-15 2024-09-17 The Charles Stark Draper Laboratory, Inc. Miniature electric field detector
WO2022125742A1 (en) * 2020-12-10 2022-06-16 Illumina, Inc. Image sensor structures and related methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711815B (zh) * 2017-12-26 2020-12-01 美商伊路米納有限公司 感測器系統以及其製造方法
US10879296B2 (en) * 2017-12-26 2020-12-29 Illumina, Inc. Image sensor structure
TW201940411A (zh) * 2018-01-24 2019-10-16 美商伊路米納有限公司 具有經圖案化的奈米井陣列的降低尺寸的結構化照明顯微鏡

Also Published As

Publication number Publication date
CN114823750A (zh) 2022-07-29
US20220231069A1 (en) 2022-07-21
TW202230758A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
US11843015B2 (en) Image sensors
US11031428B2 (en) Image sensor
CN107017270B (zh) 图像传感器
US9240512B2 (en) Image sensors having transfer gate electrodes in trench
KR102466904B1 (ko) 씨모스 이미지 센서
TWI690069B (zh) 包括垂直傳輸閘的圖像感測器
US8026559B2 (en) Biosensor devices and method for fabricating the same
US11219900B2 (en) Digital microfluidic device, microfluidic apparatus, lab-on-a-chip device, digital microfluidic method, and method of fabricating digital microfluidic device
CN106549027B (zh) 包括垂直传输门的图像传感器及其制造方法
KR102622057B1 (ko) 이미지 센서
CN108369949B (zh) 固态成像元件、成像设备和用于制造固态成像元件的方法
CN101971340A (zh) 影像感测反射器
TWI734051B (zh) 陣列基板、包含該陣列基板的數位x光檢測器、以及製造該陣列基板的方法
US20170207260A1 (en) Imaging device including photoelectric conversion film
CN107154414A (zh) 背照式cmos图像传感器及其制作方法
CN110957337B (zh) 图像传感器以及用于形成图像传感器的方法
TWI751893B (zh) 影像感測裝置
TW201944096A (zh) X射線感測裝置及其製造方法
US7884400B2 (en) Image device and method of fabricating the same
TWI688088B (zh) 影像感測裝置及影像感測系統
KR20250077140A (ko) 이미지 센싱 장치 및 그의 제조 방법
CN114709230A (zh) 背面二极管设计
KR20240109672A (ko) 이미지 센싱 장치 및 그의 제조 방법