TWI749555B - Reference voltage generating circuit - Google Patents
Reference voltage generating circuit Download PDFInfo
- Publication number
- TWI749555B TWI749555B TW109116362A TW109116362A TWI749555B TW I749555 B TWI749555 B TW I749555B TW 109116362 A TW109116362 A TW 109116362A TW 109116362 A TW109116362 A TW 109116362A TW I749555 B TWI749555 B TW I749555B
- Authority
- TW
- Taiwan
- Prior art keywords
- reference voltage
- supply circuit
- period
- circuit
- charge
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 46
- 238000001514 detection method Methods 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 11
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 description 8
- 101150102866 adc1 gene Proteins 0.000 description 8
- 238000004146 energy storage Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/468—Regulating voltage or current wherein the variable actually regulated by the final control device is DC characterised by reference voltage circuitry, e.g. soft start, remote shutdown
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/59—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/08—Continuously compensating for, or preventing, undesired influence of physical parameters of noise
- H03M1/0845—Continuously compensating for, or preventing, undesired influence of physical parameters of noise of power supply variations, e.g. ripple
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/08—Continuously compensating for, or preventing, undesired influence of physical parameters of noise
- H03M1/0863—Continuously compensating for, or preventing, undesired influence of physical parameters of noise of switching transients, e.g. glitches
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Analogue/Digital Conversion (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
本發明係指一種參考電壓產生電路,尤指一種可提供穩定參考電壓且可降低功率損耗的參考電壓產生電路。 The present invention refers to a reference voltage generating circuit, in particular to a reference voltage generating circuit that can provide a stable reference voltage and can reduce power loss.
在電子技術領域中,參考電壓產生電路具有一定的重要性,其用於產生穩定的一參考電壓,而提供至所需要的電路,例如類比數位轉換電路。然而,接收參考電壓之電路在運作過程,電路會抽取電能,例如抽取電流,如此即會影響參考電壓之準位,而影響電路之運作的精確度。 In the field of electronic technology, a reference voltage generating circuit has a certain importance, which is used to generate a stable reference voltage and provide it to a required circuit, such as an analog-to-digital conversion circuit. However, during the operation of the circuit receiving the reference voltage, the circuit draws electrical energy, such as drawing current, which affects the level of the reference voltage and affects the accuracy of the circuit's operation.
在此情況下,現發展出許多參考電壓產生電路,以提供穩定的參考電壓,如美國專利號US 10,236,903。然而,此習知架構較為耗電,且無法即時動態維持參考電壓之準位。如其第5圖所示,由電源電壓VDD、電流源560、電阻器R1構成之電源電路持續耦接於類比數位轉換器與電荷補償電路510,以供應電源維持參考電壓之準位,如此相當耗電。此外,此習知架構基於類比數位轉換器轉換類比輸入訊號後所得到之輸出位元補償電荷,以維持參考電壓之準位,也就是在類比數位轉換器運作抽取電流而造成參考電壓之準位波動後才進行補償,如此無法即時降低參考電壓之準位的波動,而影響參考電壓之穩定度,以及類比數位轉換器之轉換精度。 In this case, many reference voltage generating circuits have been developed to provide a stable reference voltage, such as US Patent No. US 10,236,903. However, this conventional architecture consumes more power and cannot dynamically maintain the reference voltage level in real time. As shown in Figure 5, a power supply circuit composed of a power supply voltage VDD, a current source 560, and a resistor R1 is continuously coupled to the analog-to-digital converter and the charge compensation circuit 510 to supply power to maintain the reference voltage level, which is quite costly Electricity. In addition, this conventional architecture is based on the output bit compensation charge obtained after the analog-to-digital converter converts the analog input signal to maintain the level of the reference voltage, that is, the level of the reference voltage is drawn by the operation of the analog-to-digital converter. Compensation is performed after fluctuations, so that the fluctuations in the level of the reference voltage cannot be reduced immediately, which affects the stability of the reference voltage and the conversion accuracy of the analog-to-digital converter.
有鑑於此,習知技術實有改進之必要。 In view of this, it is necessary to improve the conventional technology.
本發明之主要目的即在於提供一種參考電壓產生電路,其可依據功能電路運作之電能損耗對參考電壓之影響程度,而利用具不同電能供應特性之電路提供參考電壓,以可提供穩定的參考電壓,並可節省參考電壓產生電路之功耗,以可省電,且可即時穩定參考電壓之準位。 The main purpose of the present invention is to provide a reference voltage generating circuit, which can provide a reference voltage by using circuits with different power supply characteristics to provide a stable reference voltage according to the degree of influence of the power loss of the functional circuit operation on the reference voltage. , And can save the power consumption of the reference voltage generating circuit, so that it can save power, and can stabilize the level of the reference voltage in real time.
本發明揭露一種參考電壓產生電路,該參考電壓產生電路包含有一電荷供應電路,於一第一期間提供一第一參考電壓;以及一電壓供應電路,於一第二期間提供一第二參考電壓;其中,該電壓供應電路於該第一期間未提供該第二參考電壓。 The present invention discloses a reference voltage generating circuit. The reference voltage generating circuit includes a charge supply circuit that provides a first reference voltage during a first period; and a voltage supply circuit that provides a second reference voltage during a second period; Wherein, the voltage supply circuit does not provide the second reference voltage during the first period.
10:觸控偵測模組 10: Touch detection module
12:面板 12: Panel
102:傳輸器 102: Transmitter
104:電源供應電路 104: Power supply circuit
122:選擇電路 122: select circuit
20:參考電壓產生電路 20: Reference voltage generating circuit
201:時序控制器 201: Timing Controller
202:電荷供應電路 202: charge supply circuit
204:電壓供應電路 204: Voltage supply circuit
206:控制器 206: Controller
207:電阻 207: Resistance
208:誤差放大器 208: error amplifier
209:電阻 209: Resistance
210:電晶體 210: Transistor
302:偵測電路 302: Detection Circuit
Tx:觸控驅動訊號 Tx: Touch drive signal
R1~RN:接收電路 R 1 ~R N : receiving circuit
Rx1~RxN:接收訊號 Rx 1 ~Rx N : Receive signal
Vin1~VinN,Vin:輸入訊號 Vin 1 ~Vin N ,Vin: input signal
Bout:輸出訊號 Bout: output signal
ADC1~ADCN,ADC:類比數位轉換器 ADC 1 ~ ADC N , ADC: analog-to-digital converter
CDC,CADC1~CADCN,212,CADC:電容器 C DC ,C ADC1 ~C ADCN ,212,C ADC : capacitor
VDD_AD:供應電壓 V DD_AD : Supply voltage
SW1~SWN,SWc,SWd:開關 SW 1 ~SW N ,SW c ,SW d : switch
I:電流 I: current
Con,CON1,CON2:控制訊號 Con, CON 1 , CON 2 : control signal
T1,T2:期間 T 1 , T 2 : period
Vref1,Vref2:參考電壓 Vref 1 ,Vref 2 : Reference voltage
CLK:時脈訊號 CLK: clock signal
Vth:門檻電壓 V th : Threshold voltage
VDD1,VDD2:供應電壓 V DD1 , V DD2 : supply voltage
IL:可變電流源 I L : Variable current source
Q:儲能元件 Q: Energy storage element
QL:電荷 Q L : charge
第1圖為本發明之參考電壓產生電路之一實施例之示意圖。 Figure 1 is a schematic diagram of an embodiment of the reference voltage generating circuit of the present invention.
第2A圖為本發明之參考電壓產生電路之另一實施例之示意圖。 FIG. 2A is a schematic diagram of another embodiment of the reference voltage generating circuit of the present invention.
第2B圖為第2A圖所示之參考電壓產生電路操作之時序圖。 Figure 2B is a timing diagram of the operation of the reference voltage generating circuit shown in Figure 2A.
第3圖為本發明之電荷供應電路與類比數位轉換器之一實施例之示意圖。 Figure 3 is a schematic diagram of an embodiment of the charge supply circuit and analog-to-digital converter of the present invention.
第4圖為本發明之參考電壓產生電路應用於一觸控偵測模組之一實施例之示意圖。 FIG. 4 is a schematic diagram of an embodiment of the reference voltage generating circuit of the present invention applied to a touch detection module.
在說明書及請求項當中使用了某些詞彙指稱特定的元件,然,所屬本發明技術領域中具有通常知識者應可理解,製造商可能會用不同的名詞稱呼同一個元件,而且,本說明書及請求項並不以名稱的差異作為區分元件的方式,而是以元件在整體技術上的差異作為區分的準則。在通篇說明書及請求項當中所提及的「包含」為一開放式用語,故應解釋成「包含但不限定於」。再者,「耦接」一詞在此包含任何直接及間接的連接手段。因此,若文中描述一第一裝置耦接一第二裝置,則代表第一裝置可直接連接第二裝置,或可透過其他裝置或其他連接手段間接地連接至第二裝置。 Certain words are used to refer to specific components in the specification and claim items. However, those with ordinary knowledge in the technical field of the present invention should understand that the manufacturer may use different terms to refer to the same component. Moreover, this specification and The requested item does not use the difference in names as a way of distinguishing components, but uses the overall technical difference of the components as the criterion for distinguishing. The "including" mentioned in the entire manual and request items is an open term, so it should be interpreted as "including but not limited to". Furthermore, the term "coupling" here includes any direct and indirect connection means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device can be directly connected to the second device, or can be indirectly connected to the second device through other devices or other connection means.
請參考第1圖,第1圖為本發明之參考電壓產生電路之一實施例之示意圖。如第1圖所示,參考電壓產生電路20包含一電荷供應電路202與一電壓供應電路204。電荷供應電路202與電壓供應電路204耦接一功能電路,於此實施例中,功能電路可為類比數位轉換器ADC,且類比數位轉換器可為逐次逼近暫存器式(Successive Approximation Register)類比數位轉換器。此實施例是以參考電壓產生電路20運用於類比數位轉換器為例進行說明,並非限制參考電壓產生電路20僅能運用於類比數位轉換器。本發明之參考電壓產生電路20用於產生穩定之參考電壓,而可運用於需要參考電壓之功能電路。
Please refer to Figure 1. Figure 1 is a schematic diagram of an embodiment of the reference voltage generating circuit of the present invention. As shown in FIG. 1, the reference
復參考第1圖,電荷供應電路202產生一第一參考電壓Vref1,而電壓供應電路204產生一第二參考電壓Vref2。電荷供應電路202於一第一期間提供第一參考電壓Vref1至類比數位轉換器ADC,而電壓供應電路204於一第二期間提供第二參考電壓Vref2至類比數位轉換器ADC。此外,電壓供應電路204於第一期間未提供第二參考電壓Vref2至類比數位轉換器ADC。換言之,電荷供應電路202提供第一參考電壓Vref1至類比數位轉換器ADC時,電壓供應電路204未提供第二
參考電壓Vref2至類比數位轉換器ADC,如此可以降低參考電壓產生電路20之功率損耗,而可以節省電能。於本發明之另一實施例中,電荷供應電路202於第二期間可以未提供第一參考電壓Vref1至類比數位轉換器ADC。類比數位轉換器ADC接收類比式之一輸入訊號Vin,並依據第一參考電壓Vref1與第二參考電壓Vref2進行運作,而轉換輸入訊號Vin,以產生數位式之一輸出訊號Bout。
Referring again to FIG. 1, the
依據上述說明可知,電荷供應電路202與電壓供應電路204分別於不同期間提供第一參考電壓Vref1與第二參考電壓Vref2至類比數位轉換器ADC。第一期間與第二期間為功能電路之運作期間。於此實施例中,第一期間與第二期間為類比數位轉換器ADC之運作期間。第一期間與第二期間並非限制第一期間早於第二期間,第一期間可早於第二期間,或者第二期間早於第一期間。
According to the above description, the
此外,電荷供應電路202之單位時間可供應電荷之數量不同於電壓供應電路204之單位時間可供應電荷之數量。於本發明之一實施例中,電荷供應電路202之單位時間可供應電荷之數量大於電壓供應電路204之單位時間可供應電荷之數量,其表示電荷供應電路202於短時間提供電荷之能力優於電壓供應電路204於短時間提供電荷之能力。當類比數位轉換器ADC運作且抽取較大電流時,也就是位於類比數位轉換器ADC損耗較多電荷/功率之期間,可利用電荷供應電路202提供第一參考電壓Vref1至類比數位轉換器ADC,如此可以避免類比數位轉換器ADC接收之參考電壓受到類比數位轉換器ADC之運作而大幅波動,即電荷供應電路202可提供波動小而穩定的參考電壓Vref1,而可以維持類比數位轉換器ADC之轉換精度。另外,當類比數位轉換器ADC運作且抽取較小電流時,也就是位於類比數位轉換器ADC損耗較小電荷/功率之期間,可利用電壓供應電路204提供第二參考電壓Vref2至類比數位轉換器ADC。於本發明之實施例中,第二參
考電壓Vref2之電壓準位可相同或者不相同於第一參考電壓Vref1之電壓準位,其依據功能電路之使用需求而決定。
In addition, the quantity of electric charge that can be supplied per unit time of the
請參考第2A圖及第2B圖,第2A圖為本發明之參考電壓產生電路20之另一實施例之示意圖,第2B圖為第2A圖所示之參考電壓產生電路20操作之時序圖。如第2A圖及第2B圖所示,參考電壓產生電路20包含有電荷供應電路202以及電壓供應電路204。電荷供應電路202耦接一供應電壓VDD,以產生第一參考電壓Vref1。電荷供應電路202於一期間(第一期間)T1提供第一參考電壓Vref1類比數位轉換器ADC,電壓供應電路204於一期間(第二期間)T2產生第二參考電壓Vref2,並提供第二參考電壓Vref2至類比數位轉換器ADC。電壓供應電路204於期間T1未提供第二參考電壓Vref2,如此可以降低參考電壓產生電路20之功率損耗,以節省電能。
Please refer to FIGS. 2A and 2B. FIG. 2A is a schematic diagram of another embodiment of the reference
復參閱第2A圖,一時序控制器201耦接電荷供應電路202、電壓供應電路204與類比數位轉換器ADC,並產生一時脈訊號CLK,電荷供應電路202、電壓供應電路204與類比數位轉換器ADC依據時脈訊號CLK運作。在此結構下,於時脈訊號CLK之準位為低準位時,類比數位轉換器ADC取樣輸入訊號Vin,以進行後續類比數位轉換。時脈訊號CLK之準位轉換為高準位時,類比數位轉換器ADC進行類比數位轉換,而參考電壓產生電路20可提供第一參考電壓Vref1與第二參考電壓Vref2至類比數位轉換器ADC,以做為類比數位轉換器ADC進行類比數位轉換之參考電壓,期間T1為類比數位轉換器ADC轉換輸入訊號Vin之至少一高有效位元(如前5個位元)之期間,期間T2為類比數位轉換器ADC轉換輸入訊號Vin之至少一低有效位元(如第6個位元之後)之期間。
Referring again to Figure 2A, a
在此情況下,類比數位轉換器ADC可根據所轉換輸入訊號Vin之有效位元為高有效位元或者低有效位元,而產生控制訊號CON1、CON2,在類比數位轉換器ADC轉換高有效位元之期間T1,控制訊號CON1之準位可變換至高準位,以致能電荷供應電路202提供第一參考電壓Vref1。由於類比數位轉換器ADC轉換高有效位元時,類比數位轉換器ADC會抽取較大電流,即抽取較多數量之電荷,如此可能讓提供至類比數位轉換器ADC之參考電壓產生較大波動。由於電荷供應電路202可以短時間補償類比數位轉換器ADC之電荷/功率損耗,所以藉由電荷供應電路202提供第一參考電壓Vref1至類比數位轉換器ADC,如此可以避免類比數位轉換器ADC之運作大幅影響第一參考電壓Vref1之準位,即維持第一參考電壓Vref1之準位,以提供穩定之第一參考電壓Vref1。此外,於期間T1,控制訊號CON2之準位可變換至低準位,以禁能電壓供應電路204,而未提供第二參考電壓Vref2至類比數位轉換器ADC,以節省電能。在類比數位轉換器ADC轉換低有效位元之期間T2,由於類比數位轉換器ADC轉換低有效位元時,類比數位轉換器ADC會抽取較小電流,即抽取較少電荷,如此提供至類比數位轉換器ADC之參考電壓可能發生之波動較小,所以控制訊號CON2之準位可變換至高準位,以致能電壓供應電路204提供第二參考電壓Vref2至類比數位轉換器ADC。電壓供應電路204可精確維持第二參考電壓Vref2之準位,如此類比數位轉換器ADC在轉換輸入訊號Vin之低有效位元時,可確保轉換精度,由於低有效位元之轉換精度決定類比數位轉換器ADC之整體轉換精度,因此精確維持第二參考電壓Vref2之準位可確保類比數位轉換器ADC之類比數位轉換之細緻度(解析度)。如此一來,參考電壓產生電路20可補償類比數位轉換器ADC之電荷損耗,且可提供穩定之參考電壓。
In this case, the analog-to-digital converter ADC can generate control signals CON 1 and CON 2 according to whether the effective bit of the converted input signal Vin is a high-significant bit or a low-significant bit. During the valid bit period T 1 , the level of the control signal CON 1 can be changed to a high level, so that the
詳細來說,請參考第3圖,第3圖為本發明之電荷供應電路202與類比
數位轉換器ADC之一實施例之示意圖。一電源供應電路(未繪示)或電壓供應電路204可耦接電荷供應電路202,並提供供應電壓VDD2,以供應電壓VDD2充電電荷供應電路202,而產生第一參考電壓Vref1。於本發明之一實施例中,電源供應電路可為系統電源。於本發明之一實施例中,電荷供應電路202可為一電荷儲能電路,而包含複數儲能元件Q,例如包含複數電容器,而構成電容器組,但並非限制電荷供應電路202僅能為電荷儲能電路。此外,電荷供應電路202包含複數開關SWc、SWd,開關SWc耦接於供應電壓VDD2與該些儲能元件Q之間,而開關Wd耦接於該些儲能元件Q與類比數位轉換器ADC之間。具體來說,電源供應電路或電壓供應電路204於期間T1前提供供應電壓VDD2而充電電荷供應電路202(開關SWc導通),並於期間T1未耦接(未充電)電荷供應電路202(開關SWc切斷),以可省電,此時電荷供應電路202可產生第一參考電壓Vref1(開關SWd導通),以提供第一參考電壓Vref1至類比數位轉換器ADC。此外,電荷供應電路202可根據類比數位轉換器ADC於期間T1進行類比數位轉換之電能損耗,例如功率損耗或者電荷損耗而提供對應之電荷量,即電荷供應電路202根據類比數位轉換器ADC於期間T1之電能損耗提供第一參考電壓Vref1,以補償類比數位轉換器ADC於期間T1之電能損耗,如此可以避免類比數位轉換器ADC之運作大幅影響第一參考電壓Vref1之準位,而可以維持第一參考電壓Vref1之準位,以提供穩定之第一參考電壓Vref1。
In detail, please refer to FIG. 3, which is a schematic diagram of an embodiment of the
此外,參考電壓產生電路20可另包含一偵測電路302,其耦接類比數位轉換器ADC與電荷供應電路202,偵測電路302偵測類比數位轉換器ADC於期間T1進行類比數位轉換之電能損耗,以控制電荷供應電路202提供對應之電荷量,以提供穩定之第一參考電壓Vref1。詳細來說,偵測電路302可於類比數位轉換器ADC對高有效位元進行類比數位轉換前預測出於期間T1會影響第一參考電
壓Vref1之電能消耗,以可即時動態控制電荷供應電路202提供對應之電荷量。第3圖實施例之類比數位轉換器ADC中包含一可變電流源IL,其表示類比數位轉換器ADC於期間T1進行類比數位轉換而抽取不同大小之電流,而電荷供應電路202所提供之電荷QL相當於類比數位轉換器ADC於期間T1內進行類比數位轉換所抽取之電流之積分。由於類比數位轉換器202並非本發明技術特徵,且不同類比數位轉換器ADC具有不同電路架構,因此並未繪製詳細電路於第3圖。
In addition, the reference
第3圖之實施例所示之偵測電路302設置於類比數位轉換器ADC中,在其它實施例中亦可獨立於類比數位轉換器ADC,而不限於此。於本發明之一實施例中,偵測電路302可偵測輸入訊號Vin而預測類比數位轉換器ADC於期間T1之會影響第一參考電壓Vref1之電能損耗。於本發明之一實施例中,偵測電路302可利用迴歸逼近或其它方法。如此一來,參考電壓產生電路20在類比數位轉換器ADC對輸入訊號Vin進行類比數位轉換前就預測消耗的電能,而可在第一參考電壓Vref1受類比數位轉換器ADC之運作的電能損耗影響而波動時,動態即時進行補償,以降低第一參考電壓Vref1的波動,參考電壓產生電路20相當於在第一參考電壓Vref1的波動發生同時即時補償。由於偵設電路302配合電荷供應電路202是以開迴路(close loop)進行補償,因此反應速度快與省電。
The
復參閱第3圖,參考電壓產生電路20更可包含一電容器CADC,電容器CADC耦接類比數位轉換器ADC與電荷供應電路202,電荷供應電路202於期間T1提供第一參考電壓Vref1至電容器CADC,以提供第一參考電壓Vref1至類比數位轉換器ADC,電容器CADC亦可耦接電壓供應電路204,以於期間T2提供第二參考電壓Vref2至電容器CADC,以提供第二參考電壓Vref2至類比數位轉換器ADC。電容器CADC可穩壓第一參考電壓Vref1與第二參考電壓Vref2。而電源供應電路或電壓
供應電路204於期間T1前充電電荷供應電路202時,亦會充電電容器CADC,且電源供應電路或電壓供應電路204於期間T1未耦接電容器CADC與電荷供應電路202。
Refer back to FIG. 3, the reference
換言之,透過控制開關SWC、SWd之運作使得電源供應電路或者電壓供應電路204提供之供應電壓VDD2於類比數位轉換器ADC之類比數位轉換前充電電容器CADC與電荷供應電路202,再於類比數位轉換器ADC進行類比數位轉換時切斷供應電壓VDD2與電容器CADC之路徑,由電容器CADC、電荷供應電路202、電壓供應電路204提供參考電壓至類比數位轉換器ADC進行類比數位轉換。如此一來,電源供應電路(如系統電源)或電壓供應電路204可預先於類比數位轉換器ADC進行類比數位轉換前先充電電荷供應電路202,因為時間較為充足,所以電源供應電路或電壓供應電路204供應電源能力不需太強,如此較為節省能量與電路面積,因為若電源電路供應電源能力越強,其電子元件必須承受較大電能,所以電子元件之尺寸大而佔用面積。此外,當類比數位轉換器ADC進行類比數位轉換後電源供應電路或電壓供應電路204即不對電荷供應電路202充電,如此更為省電。
In other words, by controlling the operation of the switches SW C and SW d , the supply voltage V DD2 provided by the power supply circuit or the
再者,請繼續參考第2A圖。如第2A圖所示,電壓供應電路204可以係以一穩壓器實現,但並非限制電壓供應電路204僅可為穩壓器。電壓供應電路204可包含有一控制器206、一誤差放大器208、複數電阻207、209、一電晶體210、一電容器212。於期間T2,控制訊號CON2之準位變換至高準位時,控制訊號CON2控制控制器206致能誤差放大器208,驅使誤差放大器208運作,誤差放大器208接收一門檻電壓Vth與一回授電壓,電阻207、209相串聯並耦接於電容器212與接地端之間,以分壓產生於電容器212之第二參考電壓Vref2,而產生回授電壓。誤
差放大器208依據回授電壓與門檻電壓Vth控制電晶體210。當類比數位轉換器ADC抽取電流使第二參考電壓Vref2下降,即回授電壓小於門檻電壓Vth時,誤差放大器208控制電晶體210導通,以讓供應電壓VDD1對電容器212充電,即透過封閉迴路(close loop)以精確維持第二參考電壓Vref2之準位。上述之供應電壓VDD1可相同或者不同於電荷供應電路202接收之供應電壓VDD2。此外,電阻207、209可為可變電阻,可依據使用需求而調整,而可於尚未提供第二參考電壓Vref2至類比數位轉換器ADC時,產生供應電壓VDD2,而提供至電荷供應電路202,如此可不需另外設置電源供應電路提供供應電壓VDD2。
Furthermore, please continue to refer to Figure 2A. As shown in FIG. 2A, the
值得注意的是,以上所述僅為本發明之實施例,本發明之參考電壓產生電路20之主要精神在於可依據功能電路之運作的電能消耗對於參考電壓之影響,而利用電荷供應電路202或者電壓供應電路204提供參考電壓至功能電路。當功能電路消耗較多之電能而對參考電壓影響大時,即利用電荷供應能力強之電荷供應電路202提供參考電壓。反之,可利用電荷供應能力較弱但可精確維持電壓準位之電壓供應電路204提供參考電壓,且電荷供應電路202提供參考電壓時,電壓供應電路204不提供參考電壓,以可節省電能。此外,參考電壓產生電路20更可在功能電路運作而消耗電能並影響參考電壓之前,先行預測影響參考電壓之消耗電能,以即時動態補償電能損耗,避免影響參考電壓之準位。例如,在類比數位轉換器ADC轉換高有效位元前,先行預測類比數位轉換器ADC可能消耗之電能,以在類比數位轉換過程動態即時補償電能消耗,並在轉換低有效位元時,透過封閉迴路方式產生參考電壓以精確維持參考電壓之準位。本領域具通常知識者當可據以進行修飾或變化,而不限於此。由於電荷供應電路202之單位時間供應電荷量大於電壓供應電路204之單位時間供應電荷量,亦即電壓供應電路204可具有較小之尺寸、頻寬或驅動能力,以節省電路面積與成本。
It is worth noting that the above description is only an embodiment of the present invention. The main spirit of the reference
另一方面,如第2B圖所示,時脈訊號CLK之準位轉換為高準位時,類比數位轉換器ADC依據時脈訊號CLK進行類比數位轉換,在期間T1前會先進行重置,例如重置參考電壓,此時類比數位轉換器ADC抽取較小電流,因此控制訊號CON2之準位變換至高準位,以致能電壓供應電路204提供第二參考電壓Vref2,但在其它實施例中亦可改由控制訊號CON1之準位變換至高準位,以致能電荷供應電路202進行重置,此外在期間T2後可配置類比數位轉換器ADC閒置一段時間,即控制訊號CON1、CON2之準位為低準位,但在其它實施例中亦可不配置閒置期間。此外,第3圖所示之電荷供應電路202可以一電荷補償器(Charge Compensator)或一泵擠壓(Pump Squeezing)電路實施,而不限於此。
On the other hand, as shown in Figure 2B, when the level of the clock signal CLK is converted to a high level, the analog-to-digital converter ADC performs analog-to-digital conversion according to the clock signal CLK, and resets before the period T 1 For example, the reference voltage is reset. At this time, the analog-to-digital converter ADC draws a small current, so the level of the control signal CON 2 is converted to a high level, so that the
請參考第4圖,第4圖為本發明之參考電壓產生電路應用於一觸控偵測模組之一實施例之示意圖。其表示一觸控偵測模組10對一面板12進行觸控偵測之示意圖。如第1圖所示,觸控模組10包含一觸控驅動電路102、複數接收電路R1~RN、複數類比數位轉換器ADC1~ADCN、一電源供應電路104、複數參考電壓產生電路20。觸控偵測電路102產生一觸控驅動訊號Tx,並提供至面板12之一選擇電路122,選擇電路122分別傳送觸控驅動訊號Tx至面板12之複數行觸控驅動線。接收電路R1~RN分別耦接面板12之複數列觸控感測線,而接收觸控感測訊號Rx1~RxN,以處理該些觸控感測訊號Rx1~RxN而產生對應於面板12之複數個位置之類比式的輸入訊號Vin1~VinN至類比數位轉換器ADC1~ADCN,而進行類比數位轉換。每一接收電路R1~RN包含一放大器與一濾波電路,該些放大器放大該些觸控感測訊號Rx1~RxN,並傳送至濾波電路,以濾波該些放大之觸控感測訊號Rx1~RxN,而產生該些輸入訊號Vin1~VinN。
Please refer to FIG. 4, which is a schematic diagram of an embodiment of the reference voltage generating circuit of the present invention applied to a touch detection module. It shows a schematic diagram of a
該些參考電壓產生電路20分別耦接於該些類比數位轉換器ADC1~ADCN,以提供參考電壓至該些類比數位轉換器ADC1~ADCN。複數電容器CADC1~CADCN分別耦接於該些類比數位轉換器ADC1~ADCN與該些參考電壓產生電路20,以穩定參考電壓。於本發明之一實施例中,可不需要該些電容器CADC1~CADCN。電源供應電路104提供一供應電壓VDD_AD至參考電壓產生電路20,並充電該些參考電壓產生電路20之電荷供應電路202與該些電容器CADC1~CADCN。於本發明之一實施例中,供應電壓VDD_AD相同於第2A圖所示之供應電壓VDD1、VDD2。
The reference
複數開關SW1~SWN耦接於電源供應電路104與該些參考電壓產生電路20之間。於該些類比數位轉換電路ADC1~ADCN進行類比數位轉換前,導通該些開關SW1~SWN,以充電該些電荷供應電路202與該些電容器CADC1~CADCN,並於該些類比數位轉換電路ADC1~ADCN進行類比數位轉換時,斷開該些開關SW1~SWN,電源供應電路104即不耦接該些電容器CADC1~CADCN與該些參考電壓產生電路20,如此驅使該些類比數位轉換電路ADC1~ADCN互相獨立,以在該些類比數位轉換電路ADC1~ADCN運作而同時抽取電流時,可以避免雜訊耦合至該些類比數位轉換電路ADC1~ADCN,而避免影響該些類比數位轉換電路ADC1~ADCN之運作,且也可以降低電源供應電路104的電能損耗。
The plurality of switches SW 1 ˜SW N are coupled between the
此外,一電容器CDC耦接於電源供應電路104以穩壓供應電壓VDD_AD。由於設置具電容量小之該些電容器CADC1~CADCN,所以電容器CDC之電容量小。於本發明之一實施例中,除了面板12與電源供應電路104外,其餘電路皆可集成於一晶片中,因為電容器CDC與該些電容器CADC1~CADCN之電容量小,所以也可以集成於晶片中,而不需要額外設置電容器於晶片外,如此可以降低元件成本,以及設置電容器於晶片外之程序的時間與成本,且可以降低損壞率
而提高良率。另外,於本發明之一實施例中,電壓供應電路204可以提供供應電壓至電荷供應電路202,如此可不需要電源供應電路104、該些開關SW1~SWN、電容器CDC。
In addition, a capacitor C DC is coupled to the
綜上所述,本發明之參考電壓產生電路可依據功能電路之運作的電能消耗對於參考電壓之影響程度,而利用電荷供應能力強之電荷供應電路或者電荷供應能力較弱之電壓供應電路提供參考電壓,如此可提供穩定之參考電壓,且電荷供應電路提供參考電壓時,電壓供應電壓並未提供參考電壓,如此可節省電能。此外,參考電壓產生電路可預測功能電路會影響參考電壓之消耗電能,並在功能電路消耗電能時,以開迴路動態即時進行補償,以快速反應而降低參考電壓的波動。 In summary, the reference voltage generating circuit of the present invention can provide a reference based on the power consumption of the function circuit’s operation on the reference voltage, using a charge supply circuit with a strong charge supply capability or a voltage supply circuit with a weak charge supply capability. In this way, a stable reference voltage can be provided, and when the charge supply circuit provides the reference voltage, the voltage supply voltage does not provide the reference voltage, which can save power. In addition, the reference voltage generating circuit can predict that the functional circuit will affect the power consumption of the reference voltage, and when the functional circuit consumes power, it will dynamically compensate in an open loop to quickly react and reduce the fluctuation of the reference voltage.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.
20:參考電壓產生電路 20: Reference voltage generating circuit
202:電荷供應電路 202: charge supply circuit
204:電壓供應電路 204: Voltage supply circuit
ADC:類比數位轉換器 ADC: analog to digital converter
Vref1,Vref2:參考電壓 Vref 1 ,Vref 2 : Reference voltage
Vin:輸入訊號 Vin: input signal
Bout:輸出訊號 Bout: output signal
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962848595P | 2019-05-16 | 2019-05-16 | |
US62/848,595 | 2019-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202044774A TW202044774A (en) | 2020-12-01 |
TWI749555B true TWI749555B (en) | 2021-12-11 |
Family
ID=73337559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109116362A TWI749555B (en) | 2019-05-16 | 2020-05-18 | Reference voltage generating circuit |
Country Status (3)
Country | Link |
---|---|
US (1) | US11226645B2 (en) |
CN (1) | CN111953351B (en) |
TW (1) | TWI749555B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI788951B (en) * | 2021-08-13 | 2023-01-01 | 瑞昱半導體股份有限公司 | Comparison control circuit, and analog-to-digital converter and low dropout regulator having the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW490845B (en) * | 2000-05-24 | 2002-06-11 | Nippon Electric Co | Substrate electric potential sense circuit and substrate electric potential generator circuit |
US20020099988A1 (en) * | 2000-10-27 | 2002-07-25 | Stmicroelectronics S.R.L. | Circuit for reading non-volatile memories |
US6720896B2 (en) * | 1999-08-02 | 2004-04-13 | Infineon Technologies Ag | Analog/digital or digital/analog converter having internal reference voltage selection |
US7746302B2 (en) * | 2006-06-30 | 2010-06-29 | Lg Display Co., Ltd. | Reference voltage generating circuit and liquid display device using the same |
TWI387359B (en) * | 2009-01-21 | 2013-02-21 | Ite Tech Inc | Voltage generating apparatus for headphone |
TW201349859A (en) * | 2012-05-31 | 2013-12-01 | Sony Corp | Signal processing device and method, imaging element, and imaging device |
US8649201B2 (en) * | 2005-01-28 | 2014-02-11 | Semiconductor Energy Laboratory Co., Ltd. | Memory device, semiconductor device, and driving method therof |
US10038454B2 (en) * | 2014-04-29 | 2018-07-31 | Synopsys, Inc. | Reference voltage generator for an analog-digital converter and method for analog-digital conversion |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994808A (en) * | 1989-12-14 | 1991-02-19 | Wichelman Karl F | Pipelined analog to digital converter with summing and comparator functions occurring in parallel for each bit |
US5146395A (en) * | 1991-08-09 | 1992-09-08 | Mckie Richard L | Power supply including two tank circuits |
JP3892692B2 (en) * | 2001-09-21 | 2007-03-14 | 株式会社東芝 | Semiconductor integrated circuit |
CN100580608C (en) * | 2006-08-30 | 2010-01-13 | 晶豪科技股份有限公司 | Low power reference voltage circuit |
US8552897B1 (en) * | 2012-03-22 | 2013-10-08 | Analog Devices, Inc. | Reference circuit suitable for use with an analog to digital converter and an analog to digital converter including such a reference circuit |
US9141119B2 (en) * | 2013-01-16 | 2015-09-22 | Freescale Semiconductor, Inc. | Reducing output voltage ripple of power supplies |
US9223332B1 (en) * | 2013-09-10 | 2015-12-29 | Maxim Integrated Products, Inc. | Stabilizing reference voltage of switched capacitor circuits |
US9385740B2 (en) * | 2014-11-07 | 2016-07-05 | Mediatek Inc. | SAR ADC and method thereof |
US9979410B2 (en) * | 2015-09-01 | 2018-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Smart voltage regulation techniques |
US9935643B1 (en) * | 2016-03-08 | 2018-04-03 | Marvell International Ltd. | Adaptive charging systems and methods for a successive-approximation analog-to-digital converter |
US10236903B2 (en) | 2016-05-27 | 2019-03-19 | Mediatek Inc. | Charge compensation circuit and analog-to-digital converter with the same |
US10073478B1 (en) * | 2017-10-09 | 2018-09-11 | Texas Instruments Incorporated | Voltage regulator for a low dropout operational mode |
CN108227816B (en) * | 2018-01-26 | 2019-03-08 | 武汉新芯集成电路制造有限公司 | Low-voltage landing voltage-stablizer |
US10218268B1 (en) * | 2018-03-26 | 2019-02-26 | Analog Devices Global Unlimited Company | Voltage reference circuit and method of providing a voltage reference |
US10831220B2 (en) * | 2018-03-28 | 2020-11-10 | Qualcomm Incorporated | Methods and apparatuses for voltage regulation using precharge rails |
EP3648426B1 (en) * | 2018-11-02 | 2022-01-26 | Melexis Technologies SA | Integrated circuit and method for communicating data |
US10948933B2 (en) * | 2019-04-17 | 2021-03-16 | Texas Instruments Incorporated | Digital-to-analog converter power-up control |
KR20200136594A (en) * | 2019-05-28 | 2020-12-08 | 삼성전자주식회사 | Electronic device comprising voltage division circuitry adaptively changing voltage division ratio |
US10763881B1 (en) * | 2019-08-27 | 2020-09-01 | Analog Devices International Unlimited Company | Methods of filtering reference voltage noise |
EP3840226B1 (en) * | 2019-12-17 | 2024-08-14 | Imec VZW | Device and method for enhancing voltage regulation performance |
-
2020
- 2020-05-18 US US16/876,137 patent/US11226645B2/en active Active
- 2020-05-18 TW TW109116362A patent/TWI749555B/en active
- 2020-05-18 CN CN202010419636.5A patent/CN111953351B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720896B2 (en) * | 1999-08-02 | 2004-04-13 | Infineon Technologies Ag | Analog/digital or digital/analog converter having internal reference voltage selection |
TW490845B (en) * | 2000-05-24 | 2002-06-11 | Nippon Electric Co | Substrate electric potential sense circuit and substrate electric potential generator circuit |
US20020099988A1 (en) * | 2000-10-27 | 2002-07-25 | Stmicroelectronics S.R.L. | Circuit for reading non-volatile memories |
US8649201B2 (en) * | 2005-01-28 | 2014-02-11 | Semiconductor Energy Laboratory Co., Ltd. | Memory device, semiconductor device, and driving method therof |
US7746302B2 (en) * | 2006-06-30 | 2010-06-29 | Lg Display Co., Ltd. | Reference voltage generating circuit and liquid display device using the same |
TWI387359B (en) * | 2009-01-21 | 2013-02-21 | Ite Tech Inc | Voltage generating apparatus for headphone |
TW201349859A (en) * | 2012-05-31 | 2013-12-01 | Sony Corp | Signal processing device and method, imaging element, and imaging device |
US10038454B2 (en) * | 2014-04-29 | 2018-07-31 | Synopsys, Inc. | Reference voltage generator for an analog-digital converter and method for analog-digital conversion |
Also Published As
Publication number | Publication date |
---|---|
CN111953351A (en) | 2020-11-17 |
US11226645B2 (en) | 2022-01-18 |
CN111953351B (en) | 2024-11-15 |
TW202044774A (en) | 2020-12-01 |
US20210034083A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8498089B2 (en) | Apparatus and method for sensing a current within a coil | |
US6573693B2 (en) | Current limiting device and electrical device incorporating the same | |
US8344930B2 (en) | Successive approximation register analog-to-digital converter | |
US8284581B2 (en) | Active rectifier and method for energy harvesting power management circuit | |
US10594303B2 (en) | Temperature sensor circuit and semiconductor device including the same | |
TWI526801B (en) | Improved compensation circuit and the application of its switching power supply | |
US7969204B1 (en) | Sample hold circuit and method thereof for eliminating offset voltage of analog signal | |
US9086712B2 (en) | Device and method for compensating for voltage drops | |
US6353337B2 (en) | Load capacitance measuring circuit and output buffer adaptive to wide range of load capacitance | |
CN105676933A (en) | Quick-starting type digital low-voltage-difference voltage stabilizer | |
JP2021189167A (en) | High-resolution sensing of piezo-electric transducers | |
TWI749555B (en) | Reference voltage generating circuit | |
CN119366112A (en) | Integrated circuit package with internal circuitry for detecting external component parameters and parasitics | |
US20110121886A1 (en) | Clock detector and bias current control circuit | |
CN111147056B (en) | A dynamic comparator, analog-to-digital converter and control method | |
JP3937457B2 (en) | Semiconductor integrated circuit, operation state detector, and electronic device | |
JP2003005848A (en) | Regulator circuit | |
US11005473B2 (en) | Voltage difference measurement circuit and associated voltage difference measuring method | |
CN111817553B (en) | On-chip charge pump circuit | |
Xu et al. | A Dual-Mode Buck Converter with Light-Load Efficiency Improvement and Seamless Mode Transition Technique | |
US9219491B2 (en) | Analog-to-digital conversion device | |
JP2007151322A (en) | Power circuit and dc-dc converter | |
TWI788856B (en) | Power converter device and power conversion method | |
US20230283252A1 (en) | Method for compensating for an internal voltage offset between two inputs of an amplifier | |
US20220077775A1 (en) | Voltage modulation circuit and method thereof |