TWI749029B - Composite inspection system - Google Patents
Composite inspection system Download PDFInfo
- Publication number
- TWI749029B TWI749029B TW106123661A TW106123661A TWI749029B TW I749029 B TWI749029 B TW I749029B TW 106123661 A TW106123661 A TW 106123661A TW 106123661 A TW106123661 A TW 106123661A TW I749029 B TWI749029 B TW I749029B
- Authority
- TW
- Taiwan
- Prior art keywords
- inspection device
- semiconductor wafer
- ray
- inspection
- measurement data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/201—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/20025—Sample holders or supports therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20008—Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
- G01N23/20016—Goniometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/203—Measuring back scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/045—Investigating materials by wave or particle radiation combination of at least 2 measurements (transmission and scatter)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/054—Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/10—Different kinds of radiation or particles
- G01N2223/101—Different kinds of radiation or particles electromagnetic radiation
- G01N2223/1016—X-ray
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/304—Accessories, mechanical or electrical features electric circuits, signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/321—Accessories, mechanical or electrical features manipulator for positioning a part
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6116—Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
本發明係關於適用於半導體製造領域等,製造在基板上層積多層薄膜之多層膜構造之元件之技術領域的複合檢查系統。 The present invention relates to a composite inspection system suitable for use in the semiconductor manufacturing field, etc., in the technical field of manufacturing elements with a multilayer film structure in which a multilayer film is laminated on a substrate.
半導體等,在基板上層積多層薄膜並藉由微影(Lithography)技術所製造之電子元件,形狀會因成膜之薄膜膜厚、密度、結晶性等之狀態、及微影加工條件而變化。因此,需要可正確地測量經加工之元件之形狀之檢查裝置。此種經加工之元件之形狀,在半導體製程中作為應加以管理之重要數值而被稱為CD(Critical Dimension;最小線寬)。 For semiconductors, electronic components made by laminating multiple layers of thin films on a substrate and manufactured by Lithography technology, the shape will vary depending on the state of the film thickness, density, crystallinity, etc., and the lithography processing conditions. Therefore, there is a need for an inspection device that can accurately measure the shape of the processed component. The shape of such processed components is called CD (Critical Dimension; minimum line width) as an important value to be managed in the semiconductor manufacturing process.
而作為製作剖面試料來觀察前述之元件之形狀之檢查裝置,已知有穿透式電子顯微鏡(TEM;Transmission Electron Microscope)、掃描電子顯微鏡(SEM;Scanning Electron Microscope)。然而,該等檢查裝置由於會破壞試料,因此存在有無法在半導體製造步驟中於線上測量試料、無法進行全數檢查、無法將測量結果反饋(feedback)至之前的步驟、及無法將測量結果對之後的步驟進行前饋(feedforward)等缺點。 As inspection devices for making cross-sectional samples to observe the shape of the aforementioned components, there are known transmission electron microscopes (TEM; Transmission Electron Microscope) and scanning electron microscopes (SEM; Scanning Electron Microscope). However, because these inspection devices destroy samples, there are some cases where the samples cannot be measured online during the semiconductor manufacturing process, all inspections cannot be performed, the measurement results cannot be fed back to the previous steps, and the measurement results cannot be compared. The steps for feedforward (feedforward) and other shortcomings.
另一方面,作為在半導體製造步驟中於線上非破壞性地測量前述之元件之形狀之檢查裝置,提出有使用掃描電子顯微鏡之檢查裝置(CD-SEM:Critical Dimension-Scanning Electron
Microscope;最小線寬掃描電子顯微鏡)、使用光學方法之檢查裝置(OCD:Optical Critical Dimension;光學最小線寬)、及使用原子力顯微鏡之檢查裝置(CD-AFM:Critical Dimension Atomic Force Microscope;最小線寬原子力顯微鏡)等。此外,作為使用X射線正確地決定重複圖案形狀之檢查裝置,提出有利用X射線小角度散射之X射線奈米)形狀測量裝置(CD-SAXS:Critical Dimension Small Angle X-ray Scattering;最小線寬小角度X射線散射)。例如,專利文獻1、2揭示有CD-SAXS之習知例。
On the other hand, as an inspection device that non-destructively measures the shape of the aforementioned element in the semiconductor manufacturing step, an inspection device using a scanning electron microscope (CD-SEM: Critical Dimension-Scanning Electron) has been proposed.
Microscope; minimum line width scanning electron microscope), inspection device using optical method (OCD: Optical Critical Dimension; minimum optical line width), and inspection device using atomic force microscope (CD-AFM: Critical Dimension Atomic Force Microscope; minimum line width Atomic force microscope) and so on. In addition, as an inspection device that uses X-rays to accurately determine the shape of the repeated pattern, a shape measuring device (CD-SAXS: Critical Dimension Small Angle X-ray Scattering; minimum line width) has been proposed. Small angle X-ray scattering). For example,
[專利文獻1]日本專利第5700685號 [Patent Document 1] Japanese Patent No. 5700685
[專利文獻1]日本專利第5237186號 [Patent Document 1] Japanese Patent No. 5237186
[非專利文獻1]Introduction to Metrology Applications in IC Manufacturing, P131, Tutorial Texts in Optical Engineering Volume TT101, SPIE PRESS, ISBN:9781628418118 [Non-Patent Document 1] Introduction to Metrology Applications in IC Manufacturing, P131, Tutorial Texts in Optical Engineering Volume TT101, SPIE PRESS, ISBN: 9781628418118
前述之OCD由於探針使用光,因此具有測量區域小、產出率(throughput)較快等之優點,而且由於使用模型化(modeling)與模擬(simulation),而具有可解析半導體裝置複雜之立體構造之特徵,因此作為用以在半導體製造步驟中於線上進行測量 之檢查裝置很有效。又,CD-SEM作為使用掃描電子顯微鏡之原理而直接觀察裝置表面形狀之檢查裝置很有效。然而,該等檢查裝置在間距10nm以下之尺度,存在有解析度上之極限,隨著半導體元件之微細化,解析會變困難。 Because the probe uses light, the aforementioned OCD has the advantages of small measurement area and faster throughput, and because of the use of modeling and simulation, it has the advantages of analysing the complex three-dimensional semiconductor device The characteristics of the structure are therefore used to measure on-line during the semiconductor manufacturing steps The inspection device is very effective. In addition, the CD-SEM is effective as an inspection device that directly observes the surface shape of the device using the principle of a scanning electron microscope. However, these inspection devices have a resolution limit with a pitch of less than 10 nm. As semiconductor devices become more microminiaturized, analysis becomes difficult.
CD-SAXS作為解析電子裝置表面之奈米尺度之形狀之檢查裝置很有效。然而,為了測量半導體晶圓表面之100微米(micrometer)以下之測試圖案需要強力之X射線源,但無法得到適用於半導體線上檢查裝置之小型高亮度X射線源。 CD-SAXS is very effective as an inspection device to analyze the nano-scale shape of the surface of an electronic device. However, in order to measure the test pattern below 100 microns (micrometer) on the surface of a semiconductor wafer, a powerful X-ray source is required, but a small high-brightness X-ray source suitable for semiconductor on-line inspection devices cannot be obtained.
本發明係鑑於該等習知技術之實情所完成者,其目的在於提供一種適用於半導體元件等,在基板上層積有多層薄膜之多層膜構造之元件之形狀解析之複合檢查系統。 The present invention has been completed in view of the facts of the conventional technologies, and its purpose is to provide a composite inspection system suitable for shape analysis of semiconductor devices, etc., with a multilayer film structure in which a multilayer film is laminated on a substrate.
此種複合檢查系統之基本概念,係揭示於非專利文獻1,本發明係以該基本概念為基礎而將其具體化者。
The basic concept of such a compound inspection system is disclosed in Non-Patent
亦即,本發明係一種複合檢查系統,其包含有:第一檢查裝置,其根據對試料照射X射線所得到之X射線測量資料來檢查試料;及第二檢查裝置,其藉由不使用X射線之測量方法來檢查試料;其特徵在於,朝向第二檢查裝置輸出藉由第一檢查裝置所得到之X射線測量資料及該X射線測量資料之解析結果中之一者,第二檢查裝置利用藉由第一檢查裝置所得到之X射線測量資料及該X射線測量資料之解析結果中之一者來檢查試料。 That is, the present invention is a composite inspection system that includes: a first inspection device that inspects the sample based on X-ray measurement data obtained by irradiating the sample with X-rays; and a second inspection device that does not use X Ray measurement method to inspect the sample; characterized in that one of the X-ray measurement data obtained by the first inspection device and the analysis result of the X-ray measurement data is output toward the second inspection device, and the second inspection device uses The sample is inspected by one of the X-ray measurement data obtained by the first inspection device and an analysis result of the X-ray measurement data.
此處,可構成為第一檢查裝置包含有:測量部,其對試料之表面照射X射線,來測量散射強度; 擬合(fitting)部,其假設試料之表面上之微細構造構成週期構造之試料模型,該週期構成係沿著垂直於該表面之方向形成複數個折射率不同之層,並且於該層內沿著與該表面平行之方向週期性地排列單位構造體;且考量因被形成於試料模型之複數個層所產生之折射及反射之效果,來計算出因微細構造所散射之X射線之散射強度,並將根據試料模型所計算出之X射線之散射強度擬合於測量之散射強度;決定部,其根據擬合部之擬合結果,來決定特定單位構造體之形狀之參數之最佳值;以及輸出部,其根據所預先決定之協定,將包含特定單位構造體之形狀之參數之最佳值之解析值之至少一部分作為輸出值,而輸出至第二檢查裝置;且第二檢查裝置利用來自第一檢查裝置之輸出值來檢查試料。 Here, it can be configured that the first inspection device includes: a measuring section that irradiates the surface of the sample with X-rays to measure the scattering intensity; The fitting part assumes that the fine structure on the surface of the sample constitutes a sample model of periodic structure. The unit structures are periodically arranged in a direction parallel to the surface; and the effects of refraction and reflection due to the multiple layers formed on the sample model are considered to calculate the scattering intensity of X-rays scattered by the fine structure , And fit the X-ray scattering intensity calculated according to the sample model to the measured scattering intensity; the determining part determines the best value of the parameter of the shape of the specific unit structure according to the fitting result of the fitting part And an output unit, which, according to a predetermined agreement, uses at least a part of the analytical value of the optimal value of the parameter containing the shape of the specific unit structure as the output value, and outputs it to the second inspection device; and the second inspection device The output value from the first inspection device is used to inspect the sample.
又,亦可構成為第一檢查裝置包含有:測量部,其對試料之表面照射X射線,來測量散射強度;擬合部,其假設試料之表面上之微細構造構成週期構造之試料模型,該週期構造係沿著垂直於該表面之方向形成1個或複數個層,並且於該層內沿著與該表面平行之方向週期性地排列單位構造體,而且該單位構造體具有自嚴密之週期性位置起之位置變動,該位置變動不依存於相互之位置差而為隨機,且單位構造體係藉由層內之同樣之實體區域及空間區域所形成,計算出因實體區域所產生X射線之散射強度,並將藉由試料模型所計算出之X射線之散射強度擬合於測量之散射強度;決定部,其根據擬合部之擬合結果來決定特定單位構造體之形 狀之參數之最佳值;以及輸出部,其根據所預先決定之協定,將包含特定單位構造體之形狀之參數之最佳值之解析值之至少一部分作為輸出值,而輸出至第二檢查裝置;且第二檢查裝置利用來自第一檢查裝置之輸出值來檢查試料。 In addition, the first inspection device may also be configured to include: a measuring unit that irradiates the surface of the sample with X-rays to measure the scattering intensity; a fitting unit that assumes that the fine structure on the surface of the sample constitutes a sample model of a periodic structure, The periodic structure forms one or more layers along the direction perpendicular to the surface, and the unit structures are periodically arranged in the layer along the direction parallel to the surface, and the unit structures have a self-compact The position change from the periodic position, the position change does not depend on the mutual position difference but is random, and the unit structure system is formed by the same physical area and space area in the layer, and the X-ray generated by the physical area is calculated The scattering intensity of the X-ray calculated by the sample model is fitted to the measured scattering intensity; the determining part determines the shape of the specific unit structure according to the fitting result of the fitting part The optimal value of the parameter of the state; and the output unit, which outputs at least a part of the analytical value of the optimal value of the parameter including the shape of the specific unit structure as the output value according to a predetermined agreement to output to the second inspection Device; and the second inspection device uses the output value from the first inspection device to inspect the sample.
此處,所謂「位置變動」係指自單位構造體原本應處之位置(嚴密之週期性位置)起之偏移(差異)。又,所謂「實體區域」係指於單位構造體中物質(基本上為固體)存在之區域。另一方面,所謂「空間區域」係指於單位構造體中不存在物質(基本上為固體)之區域。再者,於空間區域仍存在有氣體。 Here, the so-called "location change" refers to the offset (difference) from the location where the unit structure should be originally (strictly periodic location). In addition, the so-called "physical area" refers to the area where matter (basically solid) exists in the unit structure. On the other hand, the so-called "spatial area" refers to an area where there is no substance (basically solid) in the unit structure. Furthermore, there is still gas in the space area.
又,本發明亦可構成為一種複合檢查系統,其包含有:第一檢查裝置,其根據對試料照射X射線所得到之X射線測量資料來檢查試料;及第二檢查裝置,其藉由不使用X射線之測量方法來檢查上述試料;其中,朝向第一檢查裝置輸出藉由第二檢查裝置所得到之測量資料及該測量資料之解析結果中之一者,第一檢查裝置利用藉由第二檢查裝置所得到之測量資料及該測量資料之解析結果中之一者,來檢查試料。
In addition, the present invention may also be constituted as a composite inspection system, which includes: a first inspection device that inspects the sample based on X-ray measurement data obtained by irradiating the sample with X-rays; and a second inspection device that does not Use the X-ray measurement method to inspect the above-mentioned sample; wherein, one of the measurement data obtained by the second inspection device and the analysis result of the measurement data is output toward the first inspection device, and the first inspection device uses the
又,本發明亦可構成為一種複合檢查系統,其包含有:第一檢查裝置,其根據對試料照射X射線所得到之X射線測量資料來檢查試料;及第二檢查裝置,其藉由不使用X射線之測量方法來檢查試料;其中,第一檢查裝置包含有:測量部,其對試料之表面照射X射線,來測量散射強度; 擬合部,其假設試料之表面上之微細構造構成週期構造之試料模型,該週期構造係沿著垂直於該表面之方向形成複數個折射率不同之層,並且於該層內沿著與該表面平行之方向週期性地排列單位構造體,且考量因被形成於試料模型之複數個層所產生之折射及反射之效果,來計算出因微細構造而散射之X射線之散射強度,並將根據試料模型所計算出之X射線之散射強度擬合於測量之散射強度;決定部,其根據擬合部之擬合結果,來決定特定單位構造體之形狀之參數之最佳值;以及輸出部,其根據所預先決定之協定,將包含特定單位構造體之形狀之參數之最佳值之解析值之至少一部分作為輸出值,而加以輸出;利用藉由第一檢查裝置所得到之X射線測量資料及該X射線測量資料之解析結果中之一者、以及藉由第二檢查裝置所得到之資料及該資料之解析結果中之一者,來解析試料之構造。 In addition, the present invention may also be constituted as a composite inspection system, which includes: a first inspection device that inspects the sample based on X-ray measurement data obtained by irradiating the sample with X-rays; and a second inspection device that does not Use the X-ray measurement method to inspect the sample; wherein, the first inspection device includes: a measuring part that irradiates the surface of the sample with X-rays to measure the scattering intensity; The fitting part assumes that the fine structure on the surface of the sample constitutes a sample model of a periodic structure. The unit structures are periodically arranged in a direction parallel to the surface, and the effects of refraction and reflection due to the multiple layers formed on the sample model are considered to calculate the scattering intensity of X-rays scattered by the fine structure, and then The X-ray scattering intensity calculated according to the sample model is fitted to the measured scattering intensity; the determination unit, which determines the optimal value of the parameter of the shape of the specific unit structure according to the fitting result of the fitting unit; and output Section, which outputs at least a part of the analytical value including the optimal value of the parameter of the shape of the specific unit structure as an output value according to a predetermined agreement; using the X-ray obtained by the first inspection device One of the measurement data and the analysis result of the X-ray measurement data, and one of the data obtained by the second inspection device and the analysis result of the data, analyze the structure of the sample.
此外,本發明亦可構成為一種複合檢查系統,其所能包含有:第一檢查裝置,其根據對試料照射X射線所得到之X射線測量資料來檢查試料;及第二檢查裝置,其藉由不使用X射線之測量方法來檢查試料;其中,第一檢查裝置包含有:測量部,其對試料之表面照射X射線,來測量散射強度;擬合部,其假設試料之表面上之微細構造構成週期構造之試料模型,該週期構造係沿著垂直於該表面之方向形成1個或複數個層,並且於該層內沿著與該表面平行之方向週期性地排列單位構造 體,而且該單位構造體具有自嚴密之週期性位置起之位置變動,該位置變動不依存於相互之位置差而為隨機,且單位構造體係藉由層內之同樣之實體區域及空間區域所形成,計算出因實體區域所產生X射線之散射強度,並將藉由試料模型所計算出之X射線之散射強度擬合於測量之散射強度;決定部,其根據擬合部之擬合結果,來決定特定單位構造體之形狀之參數之最佳值;以及輸出部,其根據所預先決定之協定,將包含特定單位構造體之形狀之參數之最佳值之解析值之至少一部分輸出;且利用藉由第一檢查裝置所得到之X射線測量資料及該X射線測量資料之解析結果中之一者、以及藉由第二檢查裝置所得到之資料及該資料之解析結果中之一者,來解析試料之構造。 In addition, the present invention can also be constituted as a composite inspection system, which can include: a first inspection device that inspects the sample based on X-ray measurement data obtained by irradiating the sample with X-rays; and a second inspection device, which borrows The sample is inspected by a measuring method that does not use X-rays; among them, the first inspection device includes: a measuring part that irradiates the surface of the sample with X-rays to measure the scattering intensity; a fitting part that assumes the fineness on the surface of the sample The structure constitutes a sample model of a periodic structure in which one or more layers are formed along the direction perpendicular to the surface, and unit structures are periodically arranged in the layer along the direction parallel to the surface The unit structure has a position change from a strict periodic position. The position change does not depend on the mutual position difference but is random, and the unit structure system is determined by the same physical area and space area in the layer. Form, calculate the scattering intensity of X-rays generated by the solid area, and fit the scattering intensity of X-rays calculated by the sample model to the measured scattering intensity; the determining part is based on the fitting result of the fitting part , To determine the optimal value of the parameter of the shape of the specific unit structure; and the output unit, which outputs at least part of the analytical value including the optimal value of the parameter of the shape of the specific unit structure according to a predetermined agreement; And using one of the X-ray measurement data obtained by the first inspection device and the analysis result of the X-ray measurement data, and one of the data obtained by the second inspection device and the analysis result of the data , To analyze the structure of the sample.
於前述之構成之本發明中,可構成為第一檢查裝置具備有:試料台,其配置檢查對象之試料;圖像觀察部,其觀察被配置於試料台之試料之圖像;定位機構,其根據圖像觀察部之試料之圖像觀察結果而被控制,使試料台在水平面上沿著正交之2方向、高度方向、及面內旋轉方向移動;測角器(goniometer),其包含,以在與被配置於試料台之試料之表面相同平面內所包含之旋轉軸為中心,而沿著與該試料之表面垂直之假想平面分別獨立地旋轉之第一及第二旋轉構件;X射線照射單元,其係搭載於第一旋轉構件,將特性X射線聚光而朝向設定於與被配置在試料台之試料之表面相同平面內之檢 查位置照射;X射線檢測器,其係搭載於第二旋轉構件;以及解析單元,其將藉由X射線檢測器所檢測出之X射線圖案數值化,並加以解析。 In the present invention of the aforementioned configuration, the first inspection device may be configured to include: a sample table for arranging the sample of the inspection object; an image observation section for observing the image of the sample arranged on the sample table; a positioning mechanism, It is controlled according to the image observation result of the sample in the image observation section, so that the sample table moves along the orthogonal two directions, the height direction, and the in-plane rotation direction on the horizontal plane; a goniometer, which includes , Centered on the axis of rotation contained in the same plane as the surface of the sample placed on the sample table, and independently rotates the first and second rotating members along an imaginary plane perpendicular to the surface of the sample; X The radiation irradiation unit, which is mounted on the first rotating member, condenses the characteristic X-rays and sets the direction in the same plane as the surface of the sample placed on the sample table. Checking the position; X-ray detector, which is mounted on the second rotating member; and analysis unit, which digitizes and analyzes the X-ray pattern detected by the X-ray detector.
此處,第一檢查裝置既可設為藉由X射線檢測器,對穿透試料之X射線進行測量之構成,而且,亦可設為藉由X射線檢測器,對自試料之表面之散射X射線進行測量之構成。 Here, the first inspection device can be configured to measure X-rays penetrating the sample with an X-ray detector, and it can also be configured to scatter from the surface of the sample with an X-ray detector. The composition of X-ray measurement.
具體而言,作為第一檢查裝置,可使用對穿透之X射線進行測量之穿透式小角度X射線散射裝置(T-SAXS:Transmission-Small Angle X-ray Scattering),或可使用以幾乎平行於試料表面之角度入射X射線,而對來自表面之散射X射線進行測量之反射式小角度X射線散射裝置(GI-SAXS:Glazing Incidence-Small Angle X-ray Scattering)。 Specifically, as the first inspection device, a transmission-Small Angle X-ray Scattering (T-SAXS: Transmission-Small Angle X-ray Scattering) that measures penetrating X-rays can be used, or it can be used almost A reflection type small-angle X-ray scattering device (GI-SAXS: Glazing Incidence-Small Angle X-ray Scattering) is used to incident X-rays at an angle parallel to the surface of the sample and measure the scattered X-rays from the surface.
GI-SAXS適用於例如深度200nm以下之線/空間(line and space)構造與孔、突起之測量,而T-SAXS適用於深度200nm以上之構造,例如孔構造之孔徑之測量。再者,第一檢查裝置亦可設為可測量T-SAXS與GI-SAXS雙方之裝置構成。 GI-SAXS is suitable for measuring line and space structures and holes and protrusions with a depth of less than 200nm, while T-SAXS is suitable for measuring structures with a depth of more than 200nm, such as the measurement of the pore size of a hole structure. Furthermore, the first inspection device can also be configured as a device capable of measuring both T-SAXS and GI-SAXS.
此外,第一檢查裝置可設為裝設有2維X射線檢測器來作為X射線檢測器之構成。藉此,可進行迅速之測量。 In addition, the first inspection device may be equipped with a two-dimensional X-ray detector as an X-ray detector. In this way, rapid measurement can be performed.
另一方面,第二檢查裝置例如可由光學式檢查裝置(OCD)所構成。又,第二檢查裝置亦可使用利用掃描電子顯微鏡之檢查裝置(CD-SEM)、或利用原子力顯微鏡之檢查裝置(CD-AFM)等其他方法之裝置。 On the other hand, the second inspection device may be constituted by, for example, an optical inspection device (OCD). In addition, the second inspection device can also use other methods such as an inspection device using a scanning electron microscope (CD-SEM) or an inspection device using an atomic force microscope (CD-AFM).
可設為作為自第一檢查裝置所輸出之解析值,包含有 試料模型之週期構造之間距的構成。 Can be set as the analytical value output from the first inspection device, including The composition of the interval between the periodic structures of the sample model.
更具體而言,作為自第一檢查裝置朝向第二檢查裝置傳遞之資訊(解析值),雖可隨著表面形狀而為各種參數,但於線/空間構造中,可列舉間距、最小線寬(CD;Critical Dimension)、高度、側壁角(Side-Wall Angle)、圓度(Roundness)等,亦可進一步包含各參數之差異資訊。 More specifically, as the information (analytical value) transmitted from the first inspection device to the second inspection device, although various parameters can be set according to the surface shape, in the line/space structure, the pitch and the minimum line width can be listed (CD; Critical Dimension), height, side-wall angle (Side-Wall Angle), roundness (Roundness), etc., can also further include the difference information of each parameter.
又,亦可設為於試料模型之週期構造包含有孔之重複構造之情形時,作為自第一檢查裝置輸出之解析值,包含有該孔徑之構成。 In addition, when the periodic structure of the sample model includes a repetitive structure with holes, the analysis value output from the first inspection device may include the structure of the hole diameter.
如以上所說明,根據本發明之複合檢查系統,可高精度地且多面向地對半導體元件等,在基板上層積有多層薄膜之多層膜構造之元件形狀進行解析。 As described above, according to the composite inspection system of the present invention, it is possible to analyze the device shape of a multi-layer film structure in which a multi-layer thin film is laminated on a substrate, such as a semiconductor element, in a multi-faceted manner, with high accuracy.
1:第一檢查裝置 1: The first inspection device
2:第二檢查裝置 2: The second inspection device
3:解析伺服器 3: resolve server
4:主機電腦 4: Host computer
10:試料台 10: sample table
11:試料 11: sample
20:定位機構 20: positioning mechanism
30:測角器 30: Goniometer
31:測角器本體 31: Goniometer body
32:第一旋轉臂 32: The first rotating arm
33:第二旋轉臂 33: The second rotating arm
40:X射線照射單元 40: X-ray irradiation unit
41:X射線管 41: X-ray tube
42:第一X射線光學元件 42: The first X-ray optics
43:第二X射線光學元件 43: Second X-ray optics
44:聚光狹縫 44: Condenser slit
45:單元本體 45: unit body
47:入射X射線 47: Incident X-ray
48:散射X射線 48: Scattered X-rays
49:穿透X射線 49: Penetrating X-rays
50:X射線檢測器 50: X-ray detector
60:光學顯微鏡 60: Optical microscope
100:中央處理裝置 100: Central processing unit
101:XG控制器 101: XG controller
102:圖像辨識電路 102: Image recognition circuit
103:聚焦控制器 103: Focus Controller
104:定位控制器 104: positioning controller
106:測角器控制器 106: Goniometer controller
107:計數控制電路 107: Counting control circuit
110:儲存部 110: Storage Department
201:操作部 201: Operation Department
202:顯示部 202: Display
203:通信部 203: Ministry of Communications
300:線 300: line
301:空間 301: Space
302:深孔 302: deep hole
Lx、Ly:尺寸 Lx, Ly: size
Rx、Ry:部分尺寸 Rx, Ry: part of the size
θS、θD:旋轉角度 θ S , θ D : rotation angle
圖1係示意地顯示本發明實施形態之複合檢查系統之第1基本構成例與資訊傳遞系統之方塊圖。 Fig. 1 is a block diagram schematically showing a first basic configuration example of a composite inspection system and an information transmission system according to an embodiment of the present invention.
圖2係示意地顯示本發明實施形態之複合檢查系統之第2基本構成例與資訊傳遞系統之方塊圖。 Fig. 2 is a block diagram schematically showing a second basic configuration example of the composite inspection system and the information transmission system according to the embodiment of the present invention.
圖3係示意地顯示本發明實施形態之複合檢查系統之第3基本構成例與資訊傳遞系統之方塊圖。 Fig. 3 is a block diagram schematically showing a third basic configuration example of the composite inspection system and the information transmission system of the embodiment of the present invention.
圖4係示意地顯示本發明實施形態之複合檢查系統之第4基本構成例與資訊傳遞系統之方塊圖。 Fig. 4 is a block diagram schematically showing a fourth basic configuration example of the composite inspection system and the information transmission system according to the embodiment of the present invention.
圖5係示意地顯示本發明實施形態之複合檢查系統之第5基本構成例與資訊傳遞系統之方塊圖。 Fig. 5 is a block diagram schematically showing a fifth basic configuration example of the composite inspection system and the information transmission system of the embodiment of the present invention.
圖6係顯示本發明實施形態之第一檢查裝置之整體構造之立體 圖。 Figure 6 is a three-dimensional view showing the overall structure of the first inspection device according to the embodiment of the present invention picture.
圖7係圖6所示之第一檢查裝置之前視圖。 Fig. 7 is a front view of the first inspection device shown in Fig. 6;
圖8A係示意地顯示被組入圖6所示之第一檢查裝置之X射線照射單元之構成之側視圖。 Fig. 8A is a side view schematically showing the structure of the X-ray irradiation unit incorporated in the first inspection device shown in Fig. 6.
圖8B係與圖8A相同構成之俯視圖。 Fig. 8B is a plan view of the same structure as Fig. 8A.
圖9係示意地顯示本發明實施形態之第一檢查裝置之另一構成例之前視圖。 Fig. 9 is a front view schematically showing another configuration example of the first inspection device according to the embodiment of the present invention.
圖10係示意地顯示圖9所示之第一檢查裝置之構成之右側視圖。 Fig. 10 is a right side view schematically showing the structure of the first inspection device shown in Fig. 9.
圖11係用以說明圖9所示之第一檢查裝置之測量動作之示意圖。 FIG. 11 is a schematic diagram for explaining the measurement operation of the first inspection device shown in FIG. 9.
圖12A係示意地顯示被組入圖9所示之第一檢查裝置之X射線照射單元之構成之側視圖。 FIG. 12A is a side view schematically showing the structure of the X-ray irradiation unit incorporated in the first inspection device shown in FIG. 9.
圖12B係與圖12A相同構成之俯視圖。 Fig. 12B is a plan view of the same structure as Fig. 12A.
圖13係顯示本發明實施形態之第一檢查裝置之控制系統之方塊圖。 Fig. 13 is a block diagram showing the control system of the first inspection device according to the embodiment of the present invention.
圖14係本發明實施形態之第一檢查裝置之控制流程圖。 Fig. 14 is a control flow chart of the first inspection device according to the embodiment of the present invention.
圖15A係顯示用以解析作為檢查對象之線/空間圖案之形狀之參數之圖。 FIG. 15A is a diagram showing the parameters used to analyze the shape of the line/space pattern as the inspection object.
圖15B係顯示用以解析藉由雙重曝光製程所製作之線/空間圖案之形狀之參數之圖。 FIG. 15B is a diagram showing the parameters used to analyze the shape of the line/space pattern produced by the double exposure process.
圖16A係作為檢查對象之深孔重複構造之剖面示意圖。 Fig. 16A is a schematic cross-sectional view of the repeated structure of deep holes as the inspection object.
圖16B係圖16A所示之剖面示意圖中一個深孔之放大圖。 Fig. 16B is an enlarged view of a deep hole in the schematic cross-sectional view shown in Fig. 16A.
圖17係顯示CD-SEM(第二檢查裝置)之測量資料之例子之圖。 Fig. 17 is a diagram showing an example of measurement data of a CD-SEM (second inspection device).
圖18係顯示以CD-SAXS(第一檢查裝置)之形狀模型對CD-SEM(第二檢查裝置)之觀察像進行擬合之利用例之圖。 FIG. 18 is a diagram showing a usage example of fitting the observation image of CD-SEM (second inspection device) with the shape model of CD-SAXS (first inspection device).
以下,參照圖式,對本發明實施形態詳細地進行說明。 Hereinafter, the embodiments of the present invention will be described in detail with reference to the drawings.
圖1~圖5係示意地顯示本發明實施形態之複合檢查系統之基本構成例與資訊傳遞系統之方塊圖。本實施形態之複合檢查系統具備有:第一檢查裝置1,其根據對試料照射X射線所得到之X射線測量資料來檢查試料;及第二檢查裝置2,其藉由不使用X射線之測量方法來檢查試料。作為第一檢查裝置1,例如可使用X射線奈米形狀測量裝置(CD-SAXS)。另一方面,作為第二檢查裝置2,例如可使用光學式檢查裝置(OCD)或利用掃描電子顯微鏡之檢查裝置(CD-SEM)。
Figures 1 to 5 schematically show a basic configuration example of a composite inspection system and a block diagram of an information transmission system according to an embodiment of the present invention. The composite inspection system of this embodiment includes: a
在圖1~圖3所示之第1~第3基本構成例中,來自第一檢查裝置1之資訊係朝向第二檢查裝置2被輸出。作為自第一檢查裝置1所輸出之資訊,例如,除了對試料進行X射線測量所得到之測量資料或該X射線測量資料之解析結果外,還包含有關於測量對象之試料之資訊(Carrier(載體)、Wafer(晶圓)資訊)等。藉由將利用第一檢查裝置1所解析之結果與試料資訊(Carrier、Wafer資訊)朝向第二檢查裝置2傳遞,而可在第二檢查裝置2進行高精度之解析。
In the first to third basic configuration examples shown in FIGS. 1 to 3, the information system from the
亦即,構成第二檢查裝置2之OCD,由於探針使用光,因此具有測量區域小、產出率快等優點,而且由於使用模型化與模擬,而具有可解析半導體裝置複雜之立體構造之特徵,因此作
為用以在半導體製造步驟中於線上進行測量之檢查裝置很有效。然而,OCD在間距10nm以下之尺度存在有解析度上之極限,隨著半導體元件之微細化,解析會變困難。
That is, the OCD that constitutes the
另一方面,構成第一檢查裝置1之CD-SAXS,作為解析電子裝置表面之奈米尺度之形狀之檢查裝置很有效,而且根據後述之具備有X射線照射單元之構成,可得到對於測量半導體晶圓表面之100微米以下之測試圖案具有足夠強力之功率之小型高亮度X射線源。因此,藉由利用自該第一檢查裝置1所輸出之資訊,可在第二檢查裝置2進行高精度之解析。
On the other hand, the CD-SAXS constituting the
此處,在圖1所示之第1基本構成例中,直接連接第一檢查裝置1與第二檢查裝置2來傳遞資訊。此處作為連接手段,雖使用乙太網路(Ethernet<註冊商標>),但亦可使用RS-232C等之序列傳送、光傳送、無線傳送等任意之傳送方法。
Here, in the first basic configuration example shown in FIG. 1, the
在圖2所示之第2基本構成例中,第一檢查裝置1與第二檢查裝置2係經由解析伺服器3所連接。在該基本構成例中,將第一檢查裝置1之結果傳遞至解析伺服器3。第二檢查裝置2自解析伺服器3得到資訊。此處,作為連接手段,雖亦使用乙太網路(註冊商標),但亦可使用RS-232C等之序列傳送、光傳送、無線傳送等任意之傳送方法。
In the second basic configuration example shown in FIG. 2, the
在圖3所示之第3基本構成例中,第一檢查裝置1與第二檢查裝置2係經由在半導體工廠中掌管製程控制之主機電腦4(Host)所連接。在該基本構成例中,第一檢查裝置1之結果係傳遞至主機電腦4,第二檢查裝置2自主機電腦4得到資訊。在平常使用300mm晶圓之半導體製造工廠中,依據被稱為GEM300之標準
化協定來傳遞資訊。若進行主機電腦4之程式設計(programing),便可進行第一、第二檢查裝置1、2之資訊傳遞。
In the third basic configuration example shown in FIG. 3, the
另一方面,在圖4所示之第4基本構成例中,第一檢查裝置1與第二檢查裝置2係連接於解析伺服器3,解析伺服器3進一步被連接於主機電腦4。在該基本構成例中,將第一檢查裝置1之解析結果與第二檢查裝置2之測量資料分別輸出至解析伺服器3,並藉由解析伺服器3執行來自第二檢查裝置2之測量資料之解析。解析結果係自該解析伺服器3被傳遞至主機電腦4。
On the other hand, in the fourth basic configuration example shown in FIG. 4, the
例如,於使用OCD來作為第二檢查裝置2之情形時,無法對10nm以下之微細間距或多重曝光之間距不同等之微細資訊進行解析。需藉由使用利用第一檢查裝置1所得之該等解析結果,方可正確地進行解析。
For example, when the OCD is used as the
又,在圖5所示之第5基本構成例中,來自第二檢查裝置2之資訊係朝向第一檢查裝置1被輸出。藉由傳遞利用第二檢查裝置2所解析之結果與試料資訊(Carrier、Wafer資訊),可在第一檢查裝置1進行高精度之解析。
In addition, in the fifth basic configuration example shown in FIG. 5, the information from the
在第5基本構成例中,第一檢查裝置1與第二檢查裝置2雖經由在半導體工廠中掌管製程控制之主機電腦4(Host)所連接,但與第3基本構成例不同地,將第二檢查裝置2之結果傳遞至主機電腦4。在平常使用300mm晶圓之半導體製造工廠中,依據被稱為GEM300之標準化協定來傳遞資訊。若進行主機電腦4之程式設計,便可進行第一、第二檢查裝置1、2之資訊傳遞。
In the fifth basic configuration example, the
光學式檢查裝置(OCD)係使用於半導體裝置中線/空間(line and space)等之微細之重複圖案之3維形狀測量。 The optical inspection device (OCD) is used for the 3-dimensional shape measurement of fine repeating patterns such as line and space in semiconductor devices.
藉由OCD所進行之測量、解析程序如以下所述。首先,於測量之前,製作多個已輸入有測量對象樣本之詳細構造、材料特性等之參數之OCD固有之模型,並作為程式庫(library)而加以儲存。 The measurement and analysis procedures performed by OCD are as follows. First, before measurement, create a number of OCD-specific models that have input parameters such as the detailed structure and material properties of the sample to be measured, and store them as a library.
其次,對測量對象樣本進行測量。作為測量方法,可藉由將如下之幾個測量方法組合來進行複雜之構造的測量:經由偏光器將白色光源入射於測量對象樣本,經由分析器並藉由分光器來檢測因微細圖案所散射之光而測量分光波形之方法(橢圓光譜偏光儀(Spectroscopic Ellipsometer));自測量對象樣本正上方入射光而對該測量對象樣本之反射率進行測量之方法(反射計(Reflectometer))等。 Secondly, measure the sample to be measured. As a measurement method, a complex structure can be measured by combining several measurement methods as follows: a white light source is incident on the sample to be measured through a polarizer, and a spectrometer is used to detect the scattering due to fine patterns. The method of measuring the spectroscopic waveform (Spectroscopic Ellipsometer); the method of measuring the reflectance of the measuring object sample from the incident light directly above the measuring object sample (Reflectometer), etc.
然後,將藉由測量所得到之光譜(Spectral)波形與藉由OCD模型所計算之波形進行比較,並將該等波形最一致者判定為測量對象樣本之形狀。根據該判定結果,進行形狀之視覺化(visual)並輸出各部分之尺寸。將所得到之結果反饋於模型製作,使解析精度持續提升。 Then, the spectral (Spectral) waveform obtained by the measurement is compared with the waveform calculated by the OCD model, and the most consistent waveform is determined as the shape of the sample to be measured. Based on the judgment result, visualize the shape and output the size of each part. Feed the obtained results back to the model making, so that the accuracy of the analysis is continuously improved.
作為OCD之優點,由於採用如前述之解析方法,因此可於與程式庫內之模型一致之圖案之測量範圍內,進行效率良好之尺寸測量,而可適用來作為半導體製造製程之線上檢查。 As an advantage of OCD, due to the use of the aforementioned analysis method, it can perform efficient size measurement within the measurement range of the pattern consistent with the model in the library, and can be used as an on-line inspection of the semiconductor manufacturing process.
然而,OCD亦存在以下所示之缺點。首先,為了製作程式庫,會花費許多的時間。又,為了製作程式庫,必須準備多片參考用之實體樣本,會花費較多工時與費用。 However, OCD also has the following disadvantages. First of all, it takes a lot of time to create a library. In addition, in order to create a library, it is necessary to prepare multiple physical samples for reference, which will cost a lot of man-hours and expenses.
又,亦存在有若測量部位周邊之材料或形狀不同,便會受到其影響而導致光譜波形大幅地變動之性質。因此,若有製程變動或製品之規格變更,便必須再次從製作程式庫開始,會花費許多的勞力。所以,根據所使用之材料與形狀,亦存在會無法使用OCD之可能性。 In addition, there is also the property that if the material or shape around the measurement site is different, it will be affected by it and cause the spectral waveform to vary greatly. Therefore, if there is a change in the manufacturing process or the specification of the product, it is necessary to start again from creating the library, which will cost a lot of labor. Therefore, depending on the material and shape used, there is a possibility that OCD cannot be used.
此外,半導體之微細化日益發展,若要測量10nm以下之微細圖案,因來自入射光之波長範圍之解析度有其極限,所以難以進行正確之尺寸測量。 In addition, the miniaturization of semiconductors is developing day by day. If you want to measure fine patterns below 10nm, the resolution of the wavelength range from incident light has its limit, so it is difficult to perform accurate size measurement.
使用掃描電子顯微鏡(SEM)之檢查裝置(CD-SEM),係作為對半導體裝置之微細圖案之2維尺寸進行測量之標準機器,而被廣泛地使用於半導體製造線上。 The inspection device (CD-SEM) using a scanning electron microscope (SEM) is a standard machine for measuring the two-dimensional size of the fine pattern of a semiconductor device, and is widely used in semiconductor manufacturing lines.
藉由CD-SEM之測量、解析程序係如下所述。亦即,對於測量對象樣本取得SEM圖像,自該圖像計算測量對象樣本之尺寸。圖像取得之原理與一般之SEM相同,係使用電子透鏡將電子束聚光成微小直徑,使其於測量對象樣本上掃描,並藉由檢測出自測量對象樣本所發出之2次電子像及反射電子像而得到像。尺寸計算利用SEM圖像之對比信號。取得圖像上之欲進行尺寸測量之部位之對比分佈(line profile;譜線輪廓),而自該譜線輪廓與圖像倍率及測量區間之像素的數量來計算出測量對象樣本之尺寸。 The measurement and analysis procedures by CD-SEM are as follows. That is, an SEM image is obtained for the sample to be measured, and the size of the sample to be measured is calculated from the image. The principle of image acquisition is the same as that of a general SEM. It uses an electronic lens to condense the electron beam into a small diameter to scan it on the sample to be measured, and to detect the secondary electronic image and reflection from the sample to be measured. Electronic image and get image. The size calculation uses the contrast signal of the SEM image. Obtain the line profile (spectral line profile) of the part to be measured on the image, and calculate the size of the measurement target sample from the line profile, image magnification and the number of pixels in the measurement interval.
CD-SEM由於相較於光學式具有焦點深度較深且可正確地測量圖案底部之尺寸等優點,因此於目前之半導體製造線上作為尺寸測量之標準機器而被廣泛地使用。 Since CD-SEM has the advantages of deeper focal depth and accurate measurement of the size of the bottom of the pattern compared to the optical type, it is widely used as a standard machine for size measurement in current semiconductor manufacturing lines.
然而,CD-SEM亦存在有以下所示之缺點。依照自譜線輪廓取得邊緣部之方法不同,所計算出之尺寸也會不同,因此測量結果之可靠度較低。存在有電子束會破壞測量對象(特別是抗蝕劑等有機物)之可能性,而無法進行深度方向之尺寸測量。CD-SEM由於具有如上述之缺點,因此很可能會無法對應將朝更微細化或3維化發展之今後之半導體裝置之製造。 However, CD-SEM also has the following shortcomings. Depending on the method of obtaining the edge from the spectral profile, the calculated size will be different, so the reliability of the measurement result is low. There is a possibility that the electron beam will destroy the measurement object (especially organic matter such as resist), and the size measurement in the depth direction cannot be performed. Since CD-SEM has the above-mentioned shortcomings, it is very likely that it will not be able to support the manufacturing of semiconductor devices in the future which will be more miniaturized or 3-dimensional.
圖6係顯示第一檢查裝置之整體構造之立體圖,圖7係該裝置之前視圖。第一檢查裝置1具備有試料台10、定位機構20、測角器30、X射線照射單元40、X射線檢測器50、裝設有CCD(電荷耦合元件)攝影機等之光學顯微鏡60。
Fig. 6 is a perspective view showing the overall structure of the first inspection device, and Fig. 7 is a front view of the device. The
於試料台10之上表面,配置有成為檢查對象之半導體晶圓(試料),其藉由定位機構20所驅動。定位機構20包含有朝向水平面內之直角2方向(X、Y方向)移動自如之水平移動機構、朝向與水平面正交之上下方向(Z方向)移動自如之升降機構、及面內旋轉機構,且具有使試料台10沿X、Y、Z方向移動並且進行面內旋轉,而將被配置於其上表面之半導體晶圓之任意之被測量部位朝向既定之朝向定位於照射X射線之集束位置之功能。
On the upper surface of the sample table 10, a semiconductor wafer (sample) to be inspected is arranged, which is driven by the
測角器30於測角器本體31搭載有第一、第二旋轉臂(旋轉構件)32、33。各旋轉臂32、33以垂直於圖7之紙面之軸(θS軸、θD軸)為中心,分別沿著與試料台之上表面正交之假想平面旋轉。此處,將自第一旋轉臂32之水平位置起之旋轉角度設為θS,並將自第二旋轉臂33之水平位置起之旋轉角度設為θD,使各旋轉
臂32、33旋轉驅動。
The
於以θS為中心進行旋轉之第一旋轉臂32,搭載有X射線照射單元40。又,於以θD為中心進行旋轉之第二旋轉臂33,搭載有X射線檢測器50。
The
X射線照射單元40具有將自X射線管所產生之X射線單色化(Single color)為特定波長之特性X射線,以及使其聚光於一處之功能。自X射線照射單元40之特性X射線所照射之位置,係成為檢查位置,且被配置於試料台10之上表面之試料之被測量部位係藉由定位機構20而被定位至該檢查位置。再者,檢查位置係設定於與被配置在試料台10之試料表面相同平面內。
The
X射線檢測器50係用於X射線反射率測量(XRR)、小角度X射線散射(SAXS)之測量。由於根據X射線反射率測量,測量在膜表面之反射X射線與在膜和基板之界面之反射X射線之干涉進行測量而導出膜厚與密度,因此膜厚可得到埃(Angstrom;埃斯特移)層級之測量精度。作為X射線檢測器50,例如亦可使用2維X射線檢測器,來實施TDI(Time Delay Integration;時間延遲積分)模式之X射線反射率測量、或恆定(Still)模式之小角度X射線散射測量。配置在試料台10之試料(例如半導體晶圓)之被測量部位係藉由利用定位機構20使試料台10移動,而被配置於光學顯微鏡60之下方位置。然後,使其自該位置朝向檢查位置而朝水平方向移動,藉此使試料(例如半導體晶圓)之被測量部位被定位於檢查位置。
The
其次,對X射線照射單元40之構成例進行說明。圖8A及圖
8B示意地顯示在藉由反射式小角度X射線散射裝置(GI-SAXS)構成第一檢查裝置1時較佳之X射線照射單元40之構成例。圖8A為側視圖,而圖8B為俯視圖。
Next, a configuration example of the
X射線照射單元40包含有X射線管41、第一X射線光學元件42、第二X射線光學元件43、及聚光狹縫44。第一及第二X射線光學元件42、43使用在相同表面形成有多層膜之聚光鏡。該等構成元件係內置於未圖示之單元本體內。單元本體係設為可搭載於第一旋轉臂32之緊湊的尺寸形狀。
The
其次,說明X射線之路徑。X射線管41使用目標上之電子束焦點尺寸為 100μm以下、且較佳為20μm以下之X射線球管。作為目標材料,雖可選擇銅(Cu)、鉬(Mo)、銀(Ag)、金(Au)等,但尤其若使用銅(Cu),可測量具有高角度解析度之小角度散射。
Next, explain the path of X-rays. The size of the electron beam focus on the
自X射線管41出射之X射線,首先到達第一X射線光學元件42。然後,藉由第一X射線光學元件42將散射X射線48聚光於X射線檢測器50之位置。如此將散射X射線48朝向X射線檢測器50聚光之結果,成為可進行高角度解析度之測量。
The X-ray emitted from the
其次,X射線入射至第二X射線光學元件43,進行垂直方向之聚光,使入射X射線47被聚光至試料11之表面。藉此,於使X射線以幾乎平行地入射於試料11之表面而進行X射線反射率測量或小角度X射線散射測量時,亦可進行高角度解析度之測量。
Next, the X-rays are incident on the second X-ray
圖9係示意地顯示第一檢查裝置之另一構成例之前視圖,圖
10係與圖9相同構成之右側視圖。於該等圖所示之第一檢查裝置1,成為較適於穿透式小角度X射線散射裝置(T-SAXS)之構成。
Figure 9 is a schematic front view showing another example of the structure of the first inspection device, Figure
10 series is a right side view of the same configuration as in Fig. 9. The
該等圖所示之第一檢查裝置1具備有試料台10、定位機構20、測角器30、X射線照射單元40、X射線檢測器50、裝設有CCD攝影機等之光學顯微鏡60。再者,在圖10中,省略了光學顯微鏡60。
The
於試料台10之上表面,配置有成為檢查對象之半導體晶圓(試料),其係藉由定位機構20所驅動。定位機構20包含有朝向水平面內之直角2方向(X、Y方向)移動自如之水平移動機構、朝向與水平面正交之上下方向(Z方向)移動自如之升降機構、及面內旋轉機構,且具有使試料台10沿著X、Y、Z方向移動並且進行面內旋轉,而將被配置於其上表面之半導體晶圓之任意之被測量部位朝既定之朝向定位於照射X射線之集束位置。
On the upper surface of the sample table 10, a semiconductor wafer (sample) to be inspected is arranged, which is driven by the
測角器30於測角器本體31搭載有第一、第二旋轉臂(旋轉構件)32、33。各旋轉臂32、33以垂直於圖10之紙面之軸(θS軸、θD軸)為中心,分別沿著與試料台之上表面正交之假想平面旋轉。此處,將自第一旋轉臂32之水平位置起之旋轉角度設為θS,並將自第二旋轉臂33之水平位置起之旋轉角度設為θD,使各旋轉臂32、33旋轉驅動。
The
於以θS為中心進行旋轉之第一旋轉臂32,搭載有X射線照射單元40。又,於以θD為中心進行旋轉之第二旋轉臂33,搭載有X射線檢測器50。
The
於圖9及圖10所示之第一檢查裝置1之構成例中,自第一旋轉臂32之水平位置起之旋轉角度θS,可驅動至試料台10
之下方(亦即-90°),而可進行如圖11所示之穿透X射線49之測量。因此,該構成之第一檢查裝置1可應用於穿透式小角度X射線散射裝置(T-SAXS)。
In the configuration example of the
試料台10及定位機構20由於必須讓X射線穿透,因此以X射線吸收係數較小之碳、碳化硼(boron carbide)、聚亞醯胺膜(kapton)等來形成、或者設為空洞。
Since the sample table 10 and the
再者,於圖9中,雖省略定位機構20及光學顯微鏡60之支撐機構之圖示,但該等支撐機構係以不與位於測角器之旋轉臂32、33及X射線照射單元40、X射線檢測器50等之周邊之構成元件干涉之方式配置。
Furthermore, in FIG. 9, although the illustration of the
其次,對X射線照射單元40之構成例進行說明。圖12A及圖12B示意地顯示在藉由穿透式小角度X射線散射裝置(T-SAXS)構成第一檢查裝置1時較佳之X射線照射單元40之構成例。圖12A為側視圖,圖12B為俯視圖。
Next, a configuration example of the
該等圖所示之X射線照射單元40包含有X射線管41、第一X射線光學元件42、第二X射線光學元件43、及聚光狹縫44來作為構成元件。第一及第二X射線光學元件42、43使用在表面形成有多層膜之聚光鏡。
The
該等X射線光學元件42、43為了防止多層膜之劣化,而設為被封入於未圖示之外殼之構造。外殼設為不使內置之X射線光學元件42、43位置偏移或變形且不施加不必要之應力之安裝構造。又,為了可進行光學系統之微調整,設置有可分別於X軸
、Y軸、Z軸之方向進行高精度之對位之位置調整機構。
These X-ray
其次,對自X射線管41所出射之X射線到達X射線檢測器50為止之路徑進行說明。首先,作用X射線管41,使用在目標上之電子束焦點尺寸為 100μm以下、較佳為20μm以下之X射線球管。作為目標材料,雖可選擇銅(Cu)、鉬(Mo)、銀(Ag)、金(Au)等,但若為穿透式之情形時,由於必須能穿透作為基板之Si晶圓之能量高之X射線,因此較佳為使用能達成上述條件之鉬(Mo)或銀(Ag)。
Next, the path of the X-ray emitted from the
自X射線管41所出射之X射線,首先到達第一X射線光學元件42。X射線係藉由第一X射線光學元件42,以使焦點成為X射線檢測器50之位置之方式被聚光於水平方向(圖12B中與紙面平行之方向)。其次,藉由第二X射線光學元件43,以使焦點同樣成為X射線檢測器50之位置之方式被聚光於垂直方向(圖12A中為與紙面平行之方向)。被聚光之X射線係入射至測量試料。X射線因被形成於測量試料之微細溝或配線等而散射,並穿透試料而到達X射線檢測器50。
The X-ray emitted from the
將前述之使用第一及第二X射線光學元件42、43來控制X射線之光軸之方式,稱為柯克派屈克、貝茨法(Kirkpatrick-Baez)。該方法之優點在於由於可使兩個鏡子獨立進行調整,因此焦點之形狀控制之自由度高。作為其他方式,雖未圖示,但亦可使用將兩個鏡子一體化而設為角(angle)狀(L字狀)者之方式。如此將兩個鏡子一體化而設為角狀(L字狀)之方式,被稱為並排(side by side)方式,具有可使光學系統緊緻化,或容易進行對位等之優點。
The aforementioned method of using the first and second X-ray
圖13係顯示第一檢查裝置之控制系統之方塊圖。X射線照射單元40之控制係由XG(X-ray Generator)控制器101來執行。又,光學顯微鏡60所捕捉之試料之圖像,係藉由圖像辨識電路102來進行圖像辨識。該等光學顯微鏡60與圖像辨識電路102構成對被配置在試料台10之試料的圖像進行觀察之圖像觀察部。再者,光學顯微鏡60之焦點位置係藉由聚焦控制器103所調整。
Fig. 13 is a block diagram showing the control system of the first inspection device. The control of the
定位控制器104係根據由光學顯微鏡60所捕捉之藉由圖像辨識電路102所辨識之試料的圖像,來對定位機構20進行驅動控制。測角器30係藉由測角器控制器106進行驅動控制。
The
XG控制器101、圖像辨識電路102、聚焦控制器103、定位控制器104、及測角器控制器106之各構成部係根據自中央處理裝置(CPU)100所傳送來之設定資訊分別地作動。此處,設定資訊係作為配方而被預先儲存於儲存部110,由中央處理裝置(CPU)100讀出並輸出至上述各構成部。
The components of the
X射線檢測器50係由計數控制電路107所控制。又,第一檢查裝置1具備有由用以供作業員輸入裝置之動作所需要之各種設定之鍵盤與滑鼠等所構成之操作部201。此外,第一檢查裝置1具備有由液晶顯示器等所構成之顯示部202、及執行經由網路之資料通信之通信部203。
The
圖14係顯示將半導體晶圓作為檢查對象之第一檢查裝置之X 射線薄膜檢查方法之執行程序之流程圖。 Figure 14 shows the X of the first inspection device that uses semiconductor wafers as inspection objects The flow chart of the execution procedure of the ray film inspection method.
於儲存部110預先儲存有用以執行X射線薄膜檢查之軟體,中央處理裝置(CPU)100根據該軟體執行如下述之處理步驟。
A software for performing X-ray film inspection is pre-stored in the
在試料台10上配置作為檢查對象之試料即半導體晶圓後,首先將半導體晶圓之被測量部位定位至檢查位置(步驟S1)。此處,在半導體晶圓之表面,將圖像辨識電路102可藉由來自光學顯微鏡60之圖像資訊來特定之特點(unique point),作為配方而預先設定於儲存部110。然後,以該特點為基準,將被測量部位之位置資訊作為配方而預先設定於儲存部110。作為特點,例如設定被形成於半導體晶圓之表面之具特徵之圖案形狀等,圖像辨識電路102可不會混淆地進行判斷而加以辨識之部位。
After arranging the semiconductor wafer that is the sample to be inspected on the sample table 10, first, the measured portion of the semiconductor wafer is positioned to the inspection position (step S1). Here, on the surface of the semiconductor wafer, the unique point of the
圖像辨識電路102對被設定在於試料台10所配置之半導體晶圓之表面之特點,藉由來自光學顯微鏡60之圖像資訊來進行辨識並加以特定。
The
接著,以藉由圖像辨識電路102所辨識之特點為基準,定位控制器104係根據所預先設定之被測量部位之位置資訊,對定位機構20進行驅動控制。定位機構20沿水平2方向(X-Y方向)及高度方向(Z方向)移動試料台10,將半導體晶圓之被測量部位配置至檢查位置。再者,若有需要,將藉由面內旋轉機構對半導體晶圓進行面內旋轉,而配置為既定之朝向。
Then, based on the characteristics recognized by the
如前所述將半導體晶圓之被測量部進行定位後,執行利用X射線之檢查(步驟S2),由中央處理裝置100解析檢查資料(步驟S3),並輸出解析結果(步驟S4)。以上之各步驟係對設定在半導體晶圓之所有被測量部位來執行(步驟S5),並於所有被測量部位之 檢查結束後結束。 After positioning the measured part of the semiconductor wafer as described above, inspection by X-ray is performed (step S2), the inspection data is analyzed by the central processing unit 100 (step S3), and the analysis result is output (step S4). The above steps are performed on all measured parts set on the semiconductor wafer (step S5), and are performed on all measured parts End after the inspection.
其次,對作為第一檢查裝置1而應用反射式之小角度X射線散射裝置(GI-SAXS)之量測試料表面上之微細構造之表面微細構造量測方法進行說明。首先,以X射線可自與所欲測量之剖面正交之方向入射之方式,將試料設置於試料台。例如,在量測如線圖案般之2維剖面之情形時,以使線方向與入射X射線之方向成為平行之方式設置並進行測量。例如,在量測如孔圖案或柱圖案般之3維剖面之情形時,以可根據其面內對稱性而選擇複數個入射方位之方式配置試料並進行測量。
Next, the method of measuring the fine structure on the surface of the test material using the reflective small-angle X-ray scattering device (GI-SAXS) as the
相對於試料表面之X射線入射角度,設為全反射臨界角度之附近。藉由將X射線以全反射臨界角度之附近進行入射,可高感度地量測表面之微細構造。為了得到試料表面之法線方向之微細構造資訊,必須使試料表面之法線方向之散射向量變化。為此,必須在相對於試料表面之出射角度較大之區域滿足繞射條件。此可藉由使X射線入射方向與所欲測量之剖面正交,並使試料進行面內旋轉來實現。一邊使試料進行面內旋轉而一邊藉由2維檢測器,來記錄X射線繞射圖案。 The X-ray incident angle with respect to the surface of the sample is set near the critical angle of total reflection. By incident X-rays near the critical angle of total reflection, the fine structure of the surface can be measured with high sensitivity. In order to obtain the fine structure information in the normal direction of the sample surface, the scattering vector in the normal direction of the sample surface must be changed. For this reason, the diffraction condition must be satisfied in the area where the exit angle relative to the sample surface is larger. This can be achieved by making the X-ray incident direction orthogonal to the cross-section to be measured, and rotating the sample in-plane. The X-ray diffraction pattern is recorded by a two-dimensional detector while rotating the sample in the plane.
其次,對作為第一檢查裝置1而應用穿透式之小角度X射線散射裝置(T-SAXS)之量測試料表面上之微細構造之表面微細構造量測方法進行說明。首先,以X射線可自與試料表面垂直之方向入射
之方式,將試料設置於試料台。於X射線之入射方向與試料表面垂直之情形時,可對與試料表面平行之方向之構造進行解析。然而,於該情形時,由於試料表面之法線方向之散射向量大致為0,因此無法對試料表面之法線方向之構造進行解析。
Next, as the
因此,為了解析試料表面之法線方向之構造,必須使試料表面之法線方向之散射向量變化。此可藉由將X射線之入射方向與試料表面設為垂直,並使試料進行面內旋轉來實現。一邊使試料進行旋轉而一邊藉由2維檢測器,來記錄X射線繞射圖案。 Therefore, in order to analyze the structure of the normal direction of the sample surface, the scattering vector in the normal direction of the sample surface must be changed. This can be achieved by setting the incident direction of X-rays to be perpendicular to the surface of the sample and rotating the sample in-plane. The X-ray diffraction pattern is recorded by a two-dimensional detector while rotating the sample.
將旋轉角度量設為越大,越可使試料表面之法線方向之散射向量大幅地變化,而可提升試料表面之法線方向之實空間解析度。此時之旋轉角度範圍係考量產出率及解析精度而決定。此處,若使試料朝所注目之剖面方向旋轉,便可以最小之旋轉角度量效率良好地取得資料。 The larger the amount of rotation angle is, the more the scattering vector in the normal direction of the sample surface can be greatly changed, and the real space resolution of the normal direction of the sample surface can be improved. The rotation angle range at this time is determined by considering the output rate and analytical accuracy. Here, if the sample is rotated in the cross-sectional direction of interest, the data can be efficiently obtained with the smallest amount of rotation angle.
然後,藉由特定既定試料之週期性構造之單位構造體之形狀之參數,假設試料模型,而以模擬來計算出X射線散射強度。亦即,藉由表面上之微細構造,於與表面垂直之方向形成有1或複數之層。於該等層內,假設將單位構造體朝與試料表面平行之方向週期性地排列之試料模型,而計算因藉由各個界面所折射及反射之X射線之構造體而導致之散射。根據該計算結果,將藉由試料模型所計算出之X射線散射強度,與所測量之散射強度進行擬合。然後,擬合之結果,決定特定單位構造體之形狀之參數之最佳值。 Then, by specifying the parameters of the shape of the unit structure of the periodic structure of the predetermined sample, and assuming the sample model, the X-ray scattering intensity is calculated by simulation. That is, due to the fine structure on the surface, one or more layers are formed in the direction perpendicular to the surface. In these layers, it is assumed that the unit structure is periodically arranged in a direction parallel to the surface of the sample, and the scattering caused by the structure of the X-rays refracted and reflected by each interface is calculated. According to the calculation result, the X-ray scattering intensity calculated by the sample model is fitted with the measured scattering intensity. Then, the fitting result determines the optimal value of the parameter of the shape of the specific unit structure.
圖15A係顯示用以解析作為檢查對象之線/空間圖案
之形狀之參數之圖。該形狀係由線300與空間301交替地反覆所形成。此處,作為最單純之情形而定義線300之高度(Height)、最小線寬(CD;Critical Dimension)、間距(Pitch)、側壁角(Side-Wall Angle)、上部圓角(Top Round)、底部圓角(Bottom Round)。配合實際之形狀,可組合橢圓、直線、曲線等之幾何學圖形,來呈現任意之形狀。
Figure 15A shows the line/space pattern used to analyze the inspection object
The graph of the parameters of the shape. This shape is formed by alternating
圖15B係顯示用以解析以雙重曝光製程所製作之線/空間圖案之形狀之參數之圖。雙重曝光由於超過光微影之解析度之極限,而為重複進行複數次曝光之方法。此外,提出有一種方法,其結合被稱為自動對準(self-alignment)的方法,來形成10nm以下之微細構造。若使用本發明之第一檢查裝置1,除了單一之間距以外,還可量測複數個光微影製程之偏移。
FIG. 15B is a diagram showing the parameters used to analyze the shape of the line/space pattern produced by the double exposure process. Since the double exposure exceeds the limit of the resolution of photolithography, it is a method of repeatedly performing multiple exposures. In addition, a method is proposed that combines a method called self-alignment to form fine structures below 10 nm. If the
此外,圖16A係顯示作為檢查對象之深孔重複構造之剖面示意圖。圖16B係圖16A所示之剖面示意圖中一個深孔之放大圖。就製程管理之觀點而言,測量深孔302之形狀很重要,但可藉由第一檢查裝置1來量測孔徑。
In addition, FIG. 16A is a schematic cross-sectional view showing the repeated structure of the deep hole as the inspection object. Fig. 16B is an enlarged view of a deep hole in the schematic cross-sectional view shown in Fig. 16A. From the viewpoint of process management, it is important to measure the shape of the
圖17係顯示使用掃描電子顯微鏡之檢查裝置(CD-SEM)之測量資料之例子之圖。作為第二檢查裝置2,藉由使用CD-SEM,可得到例如在該圖所示之半導體基板上所形成之圖案形狀(測量對象)之觀察圖像,來作為測量資料。
Figure 17 is a diagram showing an example of measurement data using a scanning electron microscope inspection device (CD-SEM). As the
根據該測量資料,可辨識圖案形狀之平面上之相對尺寸。例如,如圖18所示,根據圖17所示之CD-SEM之觀察圖像, 可求得X座標之尺寸Lx與Y座標之尺寸Ly之相對比Lx/Ly、X座標之尺寸Lx與部分尺寸Rx之相對比Rx/Lx、及Y座標之尺寸Ly與部分尺寸Ry之相對比Ry/Ly等。 According to the measurement data, the relative size on the plane of the pattern shape can be recognized. For example, as shown in Figure 18, according to the CD-SEM observation image shown in Figure 17, The relative ratio of the X coordinate size Lx and the Y coordinate size Ly can be obtained. Lx/Ly, the X coordinate size Lx and the partial size Rx relative ratio Rx/Lx, and the Y coordinate size Ly and the partial size Ry relative ratio Ry/Ly etc.
首先,將作為第二檢查裝置2而使用OCD之情形之來自第一檢查裝置(CD-SAXS)之輸出之利用例記載如下。如前所述般,OCD具有若測量部位周邊之材料或形狀不同,光譜波形便會受到該影響而大幅地變動之性質。因此,在得到有很大差異之光譜波形時,難以區別其為形狀之變動或是因外部干擾所導致之影響。因此,藉由使用本發明來克服該問題。以OCD進行測量,而於顯示所取得之光譜波形與例如藉由OCD模型所計算出之任一資料皆不一致等之異常值之情形時,與CD-SAXS資料進行比較。如果,CD-SAXS之資料為正常值時,便將OCD之結果當作因外部干擾所導致之異常值來處理。若CD-SAXS之值也異常,便當作形狀異常來處理。CD-SAXS資料既可預先測量好代表點,亦可在OCD資料發現異常時,才測量對象部分之程序。無論為何者,皆將CD-SAXS之資料利用於OCD檢查。藉由該方法,可提升OCD之檢查精度,並可容易地進行異常原因的特定。
First, an example of the use of the output from the first inspection device (CD-SAXS) when the OCD is used as the
其次,對作為第二檢查裝置2而使用CD-SEM之情形時之來自CD-SAXS之輸出值之利用例進行說明。如前所述,CD-SEM存在有藉由根據所取得之譜線輪廓檢測邊緣來計算出CD,但其會因為邊緣部之取得方法不同而使所計算出之尺寸不同,而導致測量結果之可靠度低之課題。根據本發明,藉由利用
CD-SAXS之輸出值來提高CD-SEM之測量精度,可解決本課題。首先,以CD-SAXS測量對象試料之某部分。其次,以CD-SEM測量相同部分而取得譜線輪廓。對照該等2個資料,驗證CD-SEM之譜線輪廓的哪個部分與CD-SAXS資料之邊緣部分相當,並將其設定為CD值。之後便以CD-SEM繼續進行測量。藉由如此之方法,可高精度地且高效率地執行CD之檢查。
Next, an example of the use of the output value from CD-SAXS when the CD-SEM is used as the
如上所述,第二檢查裝置2亦可利用來自第一檢查裝置1之輸出值(包含自第一檢查裝置1所輸入之X射線測量資料或該X射線測量資料之解析結果),來驗證檢查結果。亦即,於在第二檢查裝置2利用來自第一檢查裝置1之輸出值等之構成之本發明中,第二檢查裝置2之「檢查試料」,係包含驗證檢查結果等之操作(步驟)之廣泛的概念。
As mentioned above, the
如圖18所示,以CD-SAXS(第一檢查裝置1)之形狀模型對圖17所示之CD-SEM(第二檢查裝置2)之觀察圖像進行擬合,並利用該形狀模型,來推測在作為測量對象之半導體基板上所形成之圖案形狀之輪廓位置。然後,根據所推測之輪廓位置,執行CD-SAXS之測量與測量結果之資料解析,例如計算出尺寸Ly。藉由該計算結果與各尺寸之相對比Lx/Ly與Ry/Ly,可計算出尺寸Lx與Ry,進一步亦可計算出Rx。又,藉由CD-SAXS,亦可相對於測量對象之圖案形狀,解析其深度尺寸。 As shown in Fig. 18, the CD-SAXS (first inspection device 1) shape model is used to fit the observation image of the CD-SEM (second inspection device 2) shown in Fig. 17, and the shape model is used. To estimate the outline position of the pattern shape formed on the semiconductor substrate as the measurement object. Then, according to the estimated contour position, perform CD-SAXS measurement and data analysis of the measurement results, such as calculating the size Ly. Based on the relative ratios Lx/Ly and Ry/Ly of the calculation results to the dimensions, the dimensions Lx and Ry can be calculated, and further Rx can also be calculated. In addition, with CD-SAXS, it is also possible to analyze the depth dimension of the pattern shape of the measuring object.
由於藉由利用CD-SEM(第二檢查裝置2)之觀察圖像,可推測在作為測量對象之半導體基板上所形成之圖案形狀之輪 廓位置,因此可減少測量範圍與測量次數,而提升產出率。 Since the observation image using the CD-SEM (the second inspection device 2), it is possible to estimate the wheel of the pattern shape formed on the semiconductor substrate as the measurement object Therefore, the measurement range and the number of measurements can be reduced, and the output rate can be improved.
又,即便於第一檢查裝置1中,亦可利用來自第二檢查裝置2之輸出值(包含自第二檢查裝置2所輸入之X射線測量資料或該X射線測量資料之解析結果),來驗證檢查結果。亦即,於在第一檢查裝置1利用來自第二檢查裝置2之輸出值等之構成之本發明中,第一檢查裝置1之「檢查試料」,亦包含驗證檢查結果等之操作(步驟)之廣泛的概念。
Moreover, even in the
再者,本發明並不限定於前述之實施形態,而當然可進行各種變形實施與應用實施。 In addition, the present invention is not limited to the aforementioned embodiments, but of course various modifications and applications can be implemented.
1:第一檢查裝置 1: The first inspection device
2:第二檢查裝置 2: The second inspection device
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-140944 | 2016-07-16 | ||
JP2016140944 | 2016-07-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201809646A TW201809646A (en) | 2018-03-16 |
TWI749029B true TWI749029B (en) | 2021-12-11 |
Family
ID=60992161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106123661A TWI749029B (en) | 2016-07-16 | 2017-07-14 | Composite inspection system |
Country Status (7)
Country | Link |
---|---|
US (1) | US10983073B2 (en) |
JP (1) | JP6942357B2 (en) |
KR (1) | KR102232507B1 (en) |
CN (1) | CN109416330B (en) |
IL (1) | IL262449B (en) |
TW (1) | TWI749029B (en) |
WO (1) | WO2018016430A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020028412A1 (en) * | 2018-07-31 | 2020-02-06 | Lam Research Corporation | Determining tilt angle in patterned arrays of high aspect ratio structures |
US11754515B2 (en) * | 2019-03-28 | 2023-09-12 | Rigaku Corporation | Transmissive small-angle scattering device |
JP7458935B2 (en) * | 2020-08-26 | 2024-04-01 | キオクシア株式会社 | Measuring device and measuring method |
US11429091B2 (en) * | 2020-10-29 | 2022-08-30 | Kla Corporation | Method of manufacturing a semiconductor device and process control system for a semiconductor manufacturing assembly |
KR20220170659A (en) | 2021-06-23 | 2022-12-30 | 삼성전자주식회사 | Inspection apparatus and inspection method using same |
JP7600046B2 (en) | 2021-07-13 | 2024-12-16 | キオクシア株式会社 | SHAPE MEASURING METHOD, SHAPE MEASURING DEVICE, AND PROGRAM |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010119844A1 (en) * | 2009-04-14 | 2010-10-21 | 株式会社リガク | Surface microstructure measuring method, surface microstructure measurement data analyzing method, and x-ray scattering measuring device |
JP2011117894A (en) * | 2009-12-07 | 2011-06-16 | Toshiba Corp | Substrate measuring method |
JP2012154895A (en) * | 2011-01-28 | 2012-08-16 | Hitachi High-Technologies Corp | Defect inspection method and defect inspection device |
CN102804063A (en) * | 2009-06-19 | 2012-11-28 | 克拉-坦科技术股份有限公司 | Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks |
JP2012237566A (en) * | 2011-05-10 | 2012-12-06 | Hitachi High-Technologies Corp | Defect observation method and apparatus for the same |
WO2015066040A1 (en) * | 2013-10-28 | 2015-05-07 | Kla-Tencor Corporation | Methods and apparatus for measuring semiconductor device overlay using x-ray metrology |
WO2016059672A1 (en) * | 2014-10-14 | 2016-04-21 | 株式会社リガク | X-ray thin film inspection device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5237186B2 (en) | 1971-08-18 | 1977-09-20 | ||
GB1432763A (en) | 1972-05-02 | 1976-04-22 | Dolby Laboratories Inc | Compressors expanders and noise reduction systems |
US6891627B1 (en) * | 2000-09-20 | 2005-05-10 | Kla-Tencor Technologies Corp. | Methods and systems for determining a critical dimension and overlay of a specimen |
FR2820822B1 (en) * | 2001-02-14 | 2003-09-05 | Peugeot Citroen Automobiles Sa | DEVICE AND METHOD FOR HANDLING A PRODUCT AND PROCESSING RADIOCOSPIC IMAGES OF THE PRODUCT TO OBTAIN TOMOGRAPHIC CUTTINGS AND USES |
JP5307503B2 (en) * | 2008-07-01 | 2013-10-02 | 株式会社日立ハイテクサイエンス | X-ray analyzer and X-ray analysis method |
JP5237186B2 (en) | 2009-04-30 | 2013-07-17 | 株式会社リガク | X-ray scattering measuring apparatus and X-ray scattering measuring method |
JP5813923B2 (en) * | 2010-03-15 | 2015-11-17 | 株式会社日立ハイテクサイエンス | X-ray transmission inspection apparatus and X-ray transmission inspection method |
US10801975B2 (en) * | 2012-05-08 | 2020-10-13 | Kla-Tencor Corporation | Metrology tool with combined X-ray and optical scatterometers |
US20140067316A1 (en) * | 2012-08-30 | 2014-03-06 | Kabushiki Kaisha Toshiba | Measuring apparatus, detector deviation monitoring method and measuring method |
KR102214643B1 (en) * | 2013-07-08 | 2021-02-10 | 노바 메주어링 인스트루먼츠 엘티디. | Method and system for determining strain distribution in a sample |
GB201402318D0 (en) * | 2014-02-11 | 2014-03-26 | Oxford Instr Nanotechnology Tools Ltd | Method for materials analysis |
EP3124961A4 (en) * | 2014-03-27 | 2017-11-22 | Rigaku Corporation | Beam generation unit and small-angle x-ray scattering device |
JP6294130B2 (en) * | 2014-04-04 | 2018-03-14 | 株式会社荏原製作所 | Inspection device |
US9640449B2 (en) * | 2014-04-21 | 2017-05-02 | Kla-Tencor Corporation | Automated inline inspection of wafer edge strain profiles using rapid photoreflectance spectroscopy |
US9606073B2 (en) * | 2014-06-22 | 2017-03-28 | Bruker Jv Israel Ltd. | X-ray scatterometry apparatus |
US10514345B2 (en) * | 2014-10-14 | 2019-12-24 | Rigaku Corporation | X-ray thin film inspection device |
CN205015299U (en) * | 2015-09-29 | 2016-02-03 | 王利晨 | X X -ray diffraction device |
US9916965B2 (en) * | 2015-12-31 | 2018-03-13 | Kla-Tencor Corp. | Hybrid inspectors |
-
2017
- 2017-07-14 TW TW106123661A patent/TWI749029B/en active
- 2017-07-14 CN CN201780042408.7A patent/CN109416330B/en active Active
- 2017-07-14 KR KR1020197003288A patent/KR102232507B1/en active Active
- 2017-07-14 US US16/205,832 patent/US10983073B2/en active Active
- 2017-07-14 WO PCT/JP2017/025676 patent/WO2018016430A1/en active Application Filing
- 2017-07-14 JP JP2018528519A patent/JP6942357B2/en active Active
-
2018
- 2018-10-17 IL IL262449A patent/IL262449B/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010119844A1 (en) * | 2009-04-14 | 2010-10-21 | 株式会社リガク | Surface microstructure measuring method, surface microstructure measurement data analyzing method, and x-ray scattering measuring device |
TW201105926A (en) * | 2009-04-14 | 2011-02-16 | Rigaku C0Rporation | A surface fine structure measuring method, a surface fine structure measuring program and an X-ray scattering intensity measuring device |
CN102804063A (en) * | 2009-06-19 | 2012-11-28 | 克拉-坦科技术股份有限公司 | Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks |
JP2011117894A (en) * | 2009-12-07 | 2011-06-16 | Toshiba Corp | Substrate measuring method |
JP2012154895A (en) * | 2011-01-28 | 2012-08-16 | Hitachi High-Technologies Corp | Defect inspection method and defect inspection device |
JP2012237566A (en) * | 2011-05-10 | 2012-12-06 | Hitachi High-Technologies Corp | Defect observation method and apparatus for the same |
WO2015066040A1 (en) * | 2013-10-28 | 2015-05-07 | Kla-Tencor Corporation | Methods and apparatus for measuring semiconductor device overlay using x-ray metrology |
WO2016059672A1 (en) * | 2014-10-14 | 2016-04-21 | 株式会社リガク | X-ray thin film inspection device |
Also Published As
Publication number | Publication date |
---|---|
KR102232507B1 (en) | 2021-03-26 |
IL262449A (en) | 2019-03-31 |
IL262449B (en) | 2022-06-01 |
US20190227006A1 (en) | 2019-07-25 |
KR20190029627A (en) | 2019-03-20 |
CN109416330B (en) | 2022-09-27 |
JPWO2018016430A1 (en) | 2019-04-25 |
WO2018016430A1 (en) | 2018-01-25 |
TW201809646A (en) | 2018-03-16 |
US10983073B2 (en) | 2021-04-20 |
CN109416330A (en) | 2019-03-01 |
JP6942357B2 (en) | 2021-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI749029B (en) | Composite inspection system | |
KR102363266B1 (en) | X-ray scatterometry metrology for high aspect ratio structures | |
KR102495770B1 (en) | Whole Beam Metrology for X-ray Scatterometry Systems | |
KR102550482B1 (en) | Process monitoring of deep structures using X-ray scatterometry | |
TWI739935B (en) | Metrology system | |
KR102184603B1 (en) | Beam shaping slits for small spot sizes in transmission, small angle X-ray scatterometry | |
JP7317849B2 (en) | Method and system for real-time measurement control | |
TWI649536B (en) | Metrology method, metrology system and non-transitory computer-readable medium for scatterometry-based imaging and critical dimension metrology | |
KR20190052721A (en) | 3D imaging for semiconductor wafer inspection | |
KR20190049890A (en) | Defect marking for semiconductor wafer inspection | |
TW201643405A (en) | Optical metrology with reduced focus error sensitivity | |
KR20230138482A (en) | Method and system for accurate measurement of deep structures with distorted shapes | |
JP2007285923A (en) | Measurement of critical dimensions using x-ray diffraction in reflection mode | |
TW201350839A (en) | Metrology tool with combined X-ray and optical scatterometers | |
TW202441316A (en) | Method and measurement system for use in x-ray based measurementson patterned structure of a sample |