TWI744996B - Optical imaging lens - Google Patents
Optical imaging lens Download PDFInfo
- Publication number
- TWI744996B TWI744996B TW109124682A TW109124682A TWI744996B TW I744996 B TWI744996 B TW I744996B TW 109124682 A TW109124682 A TW 109124682A TW 109124682 A TW109124682 A TW 109124682A TW I744996 B TWI744996 B TW I744996B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical axis
- optical
- optical imaging
- image side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/04—Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B2003/0093—Simple or compound lenses characterised by the shape
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
本發明大致上關於一種光學成像鏡頭。具體而言,本發明特別是針對一種主要用於拍攝影像及錄影等攝影電子裝置之光學成像鏡頭,例如可應用於手機、相機、平板電腦及個人數位助理(Personal Digital Assistant, PDA)等可攜式電子裝置的光學成像鏡頭。The present invention generally relates to an optical imaging lens. Specifically, the present invention is particularly directed to an optical imaging lens that is mainly used for photographic electronic devices such as shooting images and video recording. Optical imaging lens for integrated electronic devices.
可攜式電子產品的規格日新月異,其關鍵零組件之一:是光學成像鏡頭也更加多樣化發展,光學成像鏡頭的應用不僅限於拍攝影像與錄影,還加上望遠攝像的需求,配合廣角鏡頭可達到光學變焦的功能。若望遠鏡頭的有效焦距愈長,則光學變焦的倍率愈高。The specifications of portable electronic products are changing with each passing day. One of its key components: optical imaging lenses are also developing more diversified. The applications of optical imaging lenses are not limited to shooting images and videos, but also the needs of telephoto cameras, which can be achieved with wide-angle lenses. The function of optical zoom. If the effective focal length of the telephoto lens is longer, the magnification of the optical zoom is higher.
當增加光學成像鏡頭的有效焦距時,使得光圈值上升,同時也會造成進光量降低。因此如何增加光學成像鏡頭的有效焦距的同時維持光圈值,並維持成像品質並降低組裝難度與提高製造良率,是需要深入探討的課題之一。When the effective focal length of the optical imaging lens is increased, the aperture value will increase, and at the same time the amount of light entering will decrease. Therefore, how to increase the effective focal length of the optical imaging lens while maintaining the aperture value, maintaining the imaging quality, reducing the assembly difficulty and improving the manufacturing yield is one of the topics that need to be discussed in depth.
於是,為解決上述問題,本發明的各實施例提出一種六片式光學成像鏡頭。本發明六片式光學成像鏡頭從物側至像側,在光軸上依序安排有第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡與第六透鏡。第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡與第六透鏡,都分別具有朝向物側且使成像光線通過的物側面,以及朝向像側且使成像光線通過的像側面。Therefore, in order to solve the above-mentioned problem, each embodiment of the present invention proposes a six-piece optical imaging lens. The six-piece optical imaging lens of the present invention is sequentially arranged with a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens on the optical axis from the object side to the image side. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens each have an object side surface that faces the object side and allows imaging light to pass, and an image that faces the image side and allows imaging light to pass. side.
在本發明的一實施例中,第六透鏡的像側面的圓周區域為凸面,其中光學成像鏡頭由以上六個透鏡組成,第一透鏡至第六透鏡在光軸上的五個空氣間隙的總和大於第一透鏡至第六透鏡在光軸上的六個厚度的總和,最大的空氣間隙在第二透鏡與第三透鏡之間,第二透鏡至第五透鏡其中一片的物側面與像側面為非球面,且滿足以下條件式:2.000≦EFL/ImgH,其中EFL定義為光學成像鏡頭的有效焦距,ImgH定義為光學成像鏡頭的像高。In an embodiment of the present invention, the circumferential area of the image side surface of the sixth lens is convex, and the optical imaging lens is composed of the above six lenses. The sum of the five air gaps on the optical axis of the first lens to the sixth lens Greater than the sum of the six thicknesses of the first lens to the sixth lens on the optical axis, the largest air gap is between the second lens and the third lens, and the object side and the image side of one of the second to fifth lenses are It is aspherical and satisfies the following conditional formula: 2.000≦EFL/ImgH, where EFL is defined as the effective focal length of the optical imaging lens, and ImgH is defined as the image height of the optical imaging lens.
在本發明的一實施例中,第一透鏡具有正屈光率,第六透鏡的像側面的光軸區域為凸面,其中光學成像鏡頭由以上六個透鏡組成,第一透鏡至第六透鏡在光軸上的五個空氣間隙的總和大於第一透鏡至第六透鏡在光軸上的六個厚度的總和,最大的空氣間隙在第二透鏡與第四透鏡之間,第二透鏡至第五透鏡其中一片的物側面與像側面為非球面,且滿足以下條件式:3.200≦EFL/ImgH,其中EFL定義為光學成像鏡頭的有效焦距,ImgH定義為光學成像鏡頭的像高。In an embodiment of the present invention, the first lens has positive refractive power, and the optical axis area on the image side of the sixth lens is convex. The optical imaging lens is composed of the above six lenses. The sum of the five air gaps on the optical axis is greater than the sum of the six thicknesses of the first lens to the sixth lens on the optical axis, the largest air gap is between the second lens and the fourth lens, and the second lens to the fifth lens The object side and image side of one lens are aspherical and satisfy the following conditional formula: 3.200≦EFL/ImgH, where EFL is defined as the effective focal length of the optical imaging lens, and ImgH is defined as the image height of the optical imaging lens.
在本發明的一實施例中,第二透鏡具有負屈光率,第四透鏡的物側面的圓周區域為凹面,第六透鏡的像側面的圓周區域為凸面,其中光學成像鏡頭由以上六個透鏡組成,第一透鏡至第六透鏡在光軸上的五個空氣間隙的總和大於第一透鏡至第六透鏡在光軸上的六個厚度的總和,最大的空氣間隙在第一透鏡與第四透鏡之間,第二透鏡至第五透鏡其中一片的物側面與像側面為非球面,且滿足以下條件式:2.900≦EFL/ImgH,其中EFL定義為光學成像鏡頭的有效焦距,ImgH定義為光學成像鏡頭的像高。In an embodiment of the present invention, the second lens has negative refractive power, the circumferential area of the object side of the fourth lens is concave, and the circumferential area of the image side of the sixth lens is convex. The optical imaging lens consists of the above six The composition of the lens, the sum of the five air gaps on the optical axis of the first lens to the sixth lens is greater than the sum of the six thicknesses of the first lens to the sixth lens on the optical axis, and the largest air gap is between the first lens and the second lens. Among the four lenses, the object and image sides of the second lens to the fifth lens are aspherical and satisfy the following conditional formula: 2.900≦EFL/ImgH, where EFL is defined as the effective focal length of the optical imaging lens, and ImgH is defined as The image height of the optical imaging lens.
在本發明的光學成像鏡頭中,實施例還可以選擇性地滿足以下條件:In the optical imaging lens of the present invention, the embodiments may also selectively satisfy the following conditions:
(1) 0.800≦EFL/TTL;(1) 0.800≦EFL/TTL;
(2) 1.100≦EFL/TL;(2) 1.100≦EFL/TL;
(3) 2.000≦EFL/ALT;(3) 2.000≦EFL/ALT;
(4) L12t61/AAG≦1.600;(4) L12t61/AAG≦1.600;
(5) L12t41/(T1+T6)≦3.000;(5) L12t41/(T1+T6)≦3.000;
(6) L41t62/T1≦3.600;(6) L41t62/T1≦3.600;
(7) υ1+υ2+υ3+υ4+υ5+υ6≦255.000;(7) υ1+υ2+υ3+υ4+υ5+υ6≦255.000;
(8)υ2+υ3+υ4+υ5+υ6≦200.000;(8)υ2+υ3+υ4+υ5+υ6≦200.000;
(9) υ2+υ3+υ4+υ5≦170.000;(9) υ2+υ3+υ4+υ5≦170.000;
(10) L11t42/(G23+G34)≦2.000;(10) L11t42/(G23+G34)≦2.000;
(11) L21t52/(G23+G45)≦2.500;(11) L21t52/(G23+G45)≦2.500;
(12) L12t61/(G23+G56)≦2.700;(12) L12t61/(G23+G56)≦2.700;
(13) (ALT24+G12+BFL)/Gmax≦2.220;(13) (ALT24+G12+BFL)/Gmax≦2.220;
(14) (ALT35+G12+BFL)/Gmax≦2.620;(14) (ALT35+G12+BFL)/Gmax≦2.620;
(15) (ALT46+G12+BFL)/Gmax≦2.320;(15) (ALT46+G12+BFL)/Gmax≦2.320;
(16) (G12+G34+BFL)/T1≦5.320;以及(16) (G12+G34+BFL)/T1≦5.320; and
(17) 2*ImgH*Fno/EFL≦2.020。(17) 2*ImgH*Fno/EFL≦2.020.
其中,T1定義為第一透鏡在光軸上的厚度;T2定義為第二透鏡在光軸上的厚度;T3定義為第三透鏡在光軸上的厚度;T4定義為第四透鏡在光軸上的厚度;T5定義為第五透鏡在光軸上的厚度;T6定義為第六透鏡在光軸上的厚度;G12定義為第一透鏡與第二透鏡間在光軸上的空氣間隙;G23定義為第二透鏡與第三透鏡間在光軸上的空氣間隙;G34定義為第三透鏡與第四透鏡間在光軸上的空氣間隙;G45定義為第四透鏡與第五透鏡在光軸上的空氣間隙;G56定義為第五透鏡與第六透鏡間在光軸上的空氣間隙;ALT定義為第一透鏡到第六透鏡在光軸上的六個透鏡之厚度總和;TL定義為第一透鏡的物側面到第六透鏡的像側面在光軸上的距離;TTL定義為第一透鏡的物側面到成像面在光軸上的距離;BFL定義為第六透鏡的像側面至成像面在光軸上的距離;AAG定義為第一透鏡到第六透鏡在光軸上的五個空氣間隙總和;EFL定義為光學成像鏡頭的有效焦距;Gmax為第一透鏡至第六透鏡在光軸上最大的空氣間隙;Fno定義為光學成像鏡頭的光圈值。Among them, T1 is defined as the thickness of the first lens on the optical axis; T2 is defined as the thickness of the second lens on the optical axis; T3 is defined as the thickness of the third lens on the optical axis; T4 is defined as the fourth lens on the optical axis T5 is defined as the thickness of the fifth lens on the optical axis; T6 is defined as the thickness of the sixth lens on the optical axis; G12 is defined as the air gap between the first lens and the second lens on the optical axis; G23 Defined as the air gap between the second lens and the third lens on the optical axis; G34 is defined as the air gap between the third lens and the fourth lens on the optical axis; G45 is defined as the fourth lens and the fifth lens on the optical axis G56 is defined as the air gap between the fifth lens and the sixth lens on the optical axis; ALT is defined as the total thickness of the six lenses on the optical axis from the first lens to the sixth lens; TL is defined as the first lens The distance from the object side of a lens to the image side of the sixth lens on the optical axis; TTL is defined as the distance from the object side of the first lens to the imaging surface on the optical axis; BFL is defined as the image side to the imaging surface of the sixth lens The distance on the optical axis; AAG is defined as the sum of the five air gaps from the first lens to the sixth lens on the optical axis; EFL is defined as the effective focal length of the optical imaging lens; Gmax is the first lens to the sixth lens on the optical axis The largest air gap above; Fno is defined as the aperture value of an optical imaging lens.
本發明中另外定義:ALT24為第二透鏡至第四透鏡在光軸上的三個厚度的總和,即T2、T3及T4的總和;ALT35為第三透鏡至第五透鏡在光軸上的三個厚度的總和,即T3、T4及T5的總和;ALT46為第四透鏡至第六透鏡在光軸上的三個厚度的總和,即T4、T5及T6的總和;L12t62為第一透鏡的像側面到第六透鏡的像側面在光軸上的距離;L12t41為第一透鏡的像側面到第四透鏡的物側面在光軸上的距離;L41t62為第四透鏡的物側面到第六透鏡的像側面在光軸上的距離;L11t42為第一透鏡的物側面到第四透鏡的像側面在光軸上的距離;L21t52為第二透鏡的物側面到第五透鏡的像側面在光軸上的距離;L12t61為第一透鏡的像側面到第六透鏡的物側面在光軸上的距離。Another definition in the present invention: ALT24 is the sum of the three thicknesses of the second lens to the fourth lens on the optical axis, that is, the sum of T2, T3, and T4; ALT35 is the three thicknesses of the third lens to the fifth lens on the optical axis. The sum of three thicknesses, that is, the sum of T3, T4, and T5; ALT46 is the sum of the three thicknesses of the fourth lens to the sixth lens on the optical axis, that is, the sum of T4, T5, and T6; L12t62 is the image of the first lens The distance from the side to the image side of the sixth lens on the optical axis; L12t41 is the distance from the image side of the first lens to the object side of the fourth lens on the optical axis; L41t62 is the distance from the object side of the fourth lens to the sixth lens The distance from the image side on the optical axis; L11t42 is the distance from the object side of the first lens to the image side of the fourth lens on the optical axis; L21t52 is the distance from the object side of the second lens to the image side of the fifth lens on the optical axis L12t61 is the distance from the image side of the first lens to the object side of the sixth lens on the optical axis.
本說明書和申請專利範圍中使用的用語「光軸區域」、「圓周區域」、「凹面」和「凸面」應基於本說明書中列出的定義來解釋。The terms "optical axis area", "circumferential area", "concave surface" and "convex surface" used in this specification and the scope of the patent application should be interpreted based on the definitions listed in this specification.
本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一個或多個中繼區域,該些區域的說明將於下方詳細闡述。The optical system in this specification includes at least one lens, which receives the imaging light from the incident optical system parallel to the optical axis to the half angle of view (HFOV) angle relative to the optical axis. The imaging light passes through the optical system to form an image on the imaging surface. The term "a lens has positive refractive power (or negative refractive power)" means that the paraxial refractive power calculated by the lens according to Gaussian optics theory is positive (or negative). The so-called "object side (or image side) of the lens" is defined as the specific range of the imaging light passing through the lens surface. The imaging light includes at least two types of light: chief ray (chief ray) Lc and marginal ray (marginal ray) Lm (as shown in Figure 1). The object side (or image side) of the lens can be divided into different areas according to different positions, including the optical axis area, the circumferential area, or one or more relay areas in some embodiments. The description of these areas will be detailed below Elaboration.
圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。FIG. 1 is a radial cross-sectional view of the
定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的第N轉換點徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。The range from the center point to the first conversion point TP1 is defined as the optical axis area, where the optical axis area includes the center point. The area from the Nth conversion point farthest from the optical axis I radially outward to the optical boundary OB is defined as a circumferential area. In some embodiments, it may further include a relay area between the optical axis area and the circumferential area, and the number of relay areas depends on the number of switching points.
當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。When the light parallel to the optical axis I passes through an area, if the light is deflected toward the optical axis I and the intersection with the optical axis I is on the lens image side A2, the area is convex. After the light rays parallel to the optical axis I pass through an area, if the intersection of the extension line of the light rays and the optical axis I is located at the object side A1 of the lens, the area is concave.
除此之外,參見圖1,透鏡100還可包含一由光學邊界OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。In addition, referring to FIG. 1, the
參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。Referring to FIG. 2, the optical axis zone Z1 is defined between the center point CP and the first conversion point TP1. A circumferential zone Z2 is defined between the first conversion point TP1 and the optical boundary OB of the lens surface. As shown in FIG. 2, the parallel
另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。On the other hand, the unevenness of the optical axis area can be judged according to the judgment method of ordinary knowledge in the field, that is, the sign of the paraxial curvature radius (abbreviated as R value) is used to judge the optical axis area surface of the lens. Shaped bumps. The R value can be commonly used in optical design software, such as Zemax or CodeV. The R value is also commonly found in the lens data sheet of optical design software. For the object side surface, when the R value is positive, it is determined that the optical axis area of the object side surface is convex; when the R value is negative, it is determined that the optical axis area of the object side surface is concave. Conversely, for the image side, when the R value is positive, it is determined that the optical axis area of the image side is concave; when the R value is negative, it is determined that the optical axis area of the image side is convex. The result of this method is consistent with the result of the aforementioned method of judging by the intersection of the ray/ray extension line and the optical axis. The method of judging the intersection of the ray/ray extension line and the optical axis is that the focus of a ray parallel to the optical axis is located on the lens The object side or the image side to determine the surface unevenness. The "a region is convex (or concave)", "a region is convex (or concave)" or "a convex (or concave) region" described in this manual can be used interchangeably.
圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。FIGS. 3 to 5 provide examples of determining the surface shape and the area boundary of the lens area in each case, including the aforementioned optical axis area, circumferential area, and relay area.
圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。FIG. 3 is a radial cross-sectional view of the
一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。Generally speaking, the surface shape of each area bounded by the conversion point will be opposite to the surface shape of the adjacent area. Therefore, the conversion point can be used to define the conversion of the surface shape, that is, from the conversion point from a concave surface to a convex surface or from a convex surface to a concave surface. In FIG. 3, since the optical axis area Z1 is a concave surface and the surface shape changes at the transition point TP1, the circumferential area Z2 is a convex surface.
圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。FIG. 4 is a radial cross-sectional view of the
定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。A circumferential area Z2 is defined between the second conversion point TP2 and the optical boundary OB of the
圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。FIG. 5 is a radial cross-sectional view of the
如圖6所示,本發明光學成像鏡頭1,從放置物體(圖未示)的物側A1至成像的像側A2,沿著光軸(optical axis)I,主要由六片透鏡所構成,依序包含有光圈80、第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50、第六透鏡60以及成像面(image plane)91。一般來說,第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50以及第六透鏡60都可以是由透明的塑膠材質所製成,但本發明不以此為限。各鏡片都有適當的屈光率。在本發明光學成像鏡頭1中,具有屈光率的鏡片總共只有第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50與第六透鏡60這六片透鏡。光軸I為整個光學成像鏡頭1的光軸,所以每個透鏡的光軸和光學成像鏡頭1的光軸都是相同的。As shown in FIG. 6, the
此外,本光學成像鏡頭1還包含光圈(aperture stop)80,設置於適當之位置。在圖6中,光圈80是設置在第一透鏡10與物側A1之間。當由位於物側A1之待拍攝物(圖未示)所發出的光線(圖未示)進入本發明光學成像鏡頭1時,即會依序經由光圈80、第一透鏡10、第二透鏡20、第三透鏡30、第四透鏡40、第五透鏡50、第六透鏡60與濾光片90之後,會在像側A2的成像面91上聚焦而形成清晰的影像。在本發明各實施例中,濾光片90是設於第六透鏡60與成像面91之間,其可以是具有各種合適功能之濾鏡,例如: 例如: 紅外線截止濾光片(infrared cut-off filter),其用以避免成像光線中的紅外線傳遞至成像面91而影響成像品質。In addition, the
本發明光學成像鏡頭1中之各個透鏡,都分別具有朝向物側A1且使成像光線通過的物側面,與朝向像側A2且使成像光線通過的像側面。另外,本發明光學成像鏡頭1中之各個透鏡,亦都分別具有光軸區域與圓周區域。例如,第一透鏡10具有物側面11與像側面12;第二透鏡20具有物側面21與像側面22;第三透鏡30具有物側面31與像側面32;第四透鏡40具有物側面41與像側面42;第五透鏡50具有物側面51與像側面52;第六透鏡60具有物側面61與像側面62。各物側面與像側面又分別有光軸區域以及圓周區域。Each lens in the
本發明光學成像鏡頭1中之各個透鏡,還都分別具有位在光軸I上的厚度T。例如,第一透鏡10具有第一透鏡厚度T1、第二透鏡20具有第二透鏡厚度T2、第三透鏡30具有第三透鏡厚度T3、第四透鏡40具有第四透鏡厚度T4、第五透鏡50具有第五透鏡厚度T5、第六透鏡60具有第六透鏡厚度T6。所以,本發明光學成像鏡頭1中第一透鏡10到第六透鏡60在光軸I上的六個透鏡之厚度總和稱為ALT。也就是,ALT =T1+ T2+ T3+ T4+ T5+T6。Each lens in the
另外,在本發明光學成像鏡頭1中,在各個透鏡之間又具有位在光軸I上的空氣間隙(air gap)。例如,第一透鏡10與第二透鏡20的空氣間隙稱為G12、第二透鏡20與第三透鏡30的空氣間隙稱為G23、第三透鏡30與第四透鏡40的空氣間隙稱為G34、第四透鏡40與第五透鏡50的空氣間隙稱為G45、第五透鏡50與第六透鏡60的空氣間隙稱為G56。所以,從第一透鏡10到第六透鏡60,位於光軸I上的五個空氣間隙之總和即稱為AAG。亦即,AAG = G12+G23+G34+G45+G56。In addition, in the
另外,第一透鏡10的物側面11至成像面91在光軸I上的距離,為光學成像鏡頭1的系統長度TTL。光學成像鏡頭1的有效焦距為EFL、第一透鏡10的物側面11至第六透鏡60的像側面62在光軸I上的距離為TL。HFOV為光學成像鏡頭1的半視角,即最大視角(Field of View)的一半、ImgH為光學成像鏡頭1的像高、Fno為光學成像鏡頭1的光圈值。In addition, the distance from the
當安排濾光片90介於第六透鏡60和成像面91之間時,G6F代表第六透鏡60到濾光片90在光軸I上的空氣間隙、TF代表濾光片90在光軸I上的厚度、GFP代表濾光片90到成像面91在光軸I上的空氣間隙、BFL為光學成像鏡頭 1的後焦距,即第六透鏡60的像側面62到成像面91在光軸I上的距離,即BFL=G6F+TF+GFP。When the
另外,再定義:f1為第一透鏡10的焦距;f2為第二透鏡20的焦距;f3為第三透鏡30的焦距;f4為第四透鏡40的焦距;f5為第五透鏡50的焦距;f6為第六透鏡60的焦距;n1為第一透鏡10的折射率;n2為第二透鏡20的折射率;n3為第三透鏡30的折射率;n4為第四透鏡40的折射率;n5為第五透鏡50的折射率;n6為第六透鏡60的折射率;υ1為第一透鏡10的阿貝係數;υ2為第二透鏡20的阿貝係數;υ3為第三透鏡30的阿貝係數;υ4為第四透鏡40的阿貝係數;υ5為第五透鏡50的阿貝係數;υ6為第六透鏡60的阿貝係數。In addition, redefine: f1 is the focal length of the
本發明中另外定義:Gmax為第一透鏡至第六透鏡在光軸上最大的空氣間隙,即G12、G23、G34、G45、G56的最大值;ALT24為第二透鏡20至第四透鏡40在光軸I上的三個厚度的總和,即T2、T3及T4的總和;ALT35為第三透鏡30至第五透鏡50在光軸I上的三個厚度的總和,即T3、T4及T5的總和;ALT46為第四透鏡40至第六透鏡60在光軸I上的三個厚度的總和,即T4、T5及T6的總和;L12t62為第一透鏡10的像側面12到第六透鏡60的像側面62在光軸I上的距離;L12t41為第一透鏡10的像側面12到第四透鏡40的物側面41在光軸I上的距離;L41t62為第四透鏡40的物側面41到第六透鏡60的像側面62在光軸I上的距離;L11t42為第一透鏡10的物側面11到第四透鏡40的像側面42在光軸I上的距離;L21t52為第二透鏡20的物側面21到第五透鏡50的像側面52在光軸I上的距離;L12t61為第一透鏡10的像側面12到第六透鏡60的物側面61在光軸I上的距離;CT為任一透鏡在光軸I上的厚度,即透鏡中心的厚度;ET為任一透鏡的物側面的光學邊界到像側面的光學邊界在光軸I方向上的距離,即透鏡圓周的厚度。Another definition in the present invention: Gmax is the largest air gap between the first lens to the sixth lens on the optical axis, that is, the maximum value of G12, G23, G34, G45, G56; ALT24 is the second lens 20 to the fourth lens 40 The sum of the three thicknesses on the optical axis I, that is, the sum of T2, T3, and T4; ALT35 is the sum of the three thicknesses of the third lens 30 to the fifth lens 50 on the optical axis I, that is, the sum of T3, T4, and T5 Sum; ALT46 is the sum of the three thicknesses of the fourth lens 40 to the sixth lens 60 on the optical axis I, that is, the sum of T4, T5, and T6; L12t62 is the image side surface 12 of the first lens 10 to the sixth lens 60 The distance of the image side 62 on the optical axis I; L12t41 is the distance from the image side 12 of the first lens 10 to the object side 41 of the fourth lens 40 on the optical axis I; L41t62 is the distance from the object side 41 to the first lens 40 of the fourth lens 40 The distance between the image side 62 of the six lens 60 on the optical axis I; L11t42 is the distance from the object side 11 of the first lens 10 to the image side 42 of the fourth lens 40 on the optical axis I; L21t52 is the object of the second lens 20 The distance from the side 21 to the image side 52 of the fifth lens 50 on the optical axis I; L12t61 is the distance from the image side 12 of the first lens 10 to the object side 61 of the sixth lens 60 on the optical axis I; CT is any The thickness of the lens on the optical axis I, that is, the thickness of the center of the lens; ET is the distance from the optical boundary on the object side of any lens to the optical boundary on the image side in the direction of the optical axis I, that is, the thickness of the lens circumference.
第一實施例The first embodiment
請參閱圖6,例示本發明光學成像鏡頭1的第一實施例。第一實施例在成像面91上的縱向球差(longitudinal spherical aberration)請參考圖7A、弧矢(sagittal)方向的場曲(field curvature)像差請參考圖7B、子午(tangential)方向的場曲像差請參考圖7C、以及畸變像差(distortion aberration)請參考圖7D。所有實施例中各球差圖之Y軸代表視場,其最高點均為1.0,實施例中各像差圖及畸變像差圖之Y軸代表像高,第一實施例的系統像高(Image Height,ImgH)為2.580公厘。Please refer to FIG. 6, which illustrates a first embodiment of the
第一實施例之光學成像鏡頭1主要由六枚具有屈光率之透鏡、光圈80、與成像面91所構成。第一實施例之光圈80是設置在第一透鏡10與物側A1之間。The
第一透鏡10具有正屈光率。第一透鏡10的物側面11的光軸區域13為凸面以及其圓周區域14為凸面,第一透鏡10的像側面12的光軸區域16為凸面以及其圓周區域17為凸面。第一透鏡10之物側面11及像側面12均為非球面,但不以此為限。The
第二透鏡20具有負屈光率。第二透鏡20的物側面21的光軸區域23為凹面以及其圓周區域24為凹面,第二透鏡20的像側面22的光軸區域26為凸面以及其圓周區域27為凸面。第二透鏡20之物側面21及像側面22均為非球面,但不以此為限。The
第三透鏡30具有正屈光率,第三透鏡30的物側面31的光軸區域33為凹面以及其圓周區域34為凹面,第三透鏡30的像側面32的光軸區域36為凸面以及其圓周區域37為凸面。第三透鏡30之物側面31及像側面32均為非球面,但不以此為限。The
第四透鏡40具有正屈光率,第四透鏡40的物側面41的光軸區域43為凹面以及其圓周區域44為凹面,第四透鏡40的像側面42的光軸區域46為凸面以及其圓周區域47為凸面。第四透鏡40之物側面41及像側面42均為非球面,但不以此為限。The
第五透鏡50具有正屈光率,第五透鏡50的物側面51的光軸區域53為凹面以及其圓周區域54為凹面,第五透鏡50的像側面52的光軸區域56為凸面以及其圓周區域57為凸面。第五透鏡50之物側面51及像側面52均為非球面,但不以此為限。The
第六透鏡60具有正屈光率,第六透鏡60的物側面61的光軸區域63為凹面以及其圓周區域64為凸面,第六透鏡60的像側面62的光軸區域66為凸面以及其圓周區域67為凸面。第六透鏡60之物側面61及像側面62均為非球面,但不以此為限。The
在本發明光學成像鏡頭1中,從第一透鏡10到第六透鏡60中,所有的物側面11/21/31/41/51/61與像側面12/22/32/42/52/62共計十二個曲面均為非球面,但不以此為限。若為非球面,則此等非球面係經由下列公式所定義:In the
其中:in:
Y表示非球面曲面上的點與光軸I的垂直距離;Y represents the vertical distance between the point on the aspheric surface and the optical axis I;
Z表示非球面之深度(非球面上距離光軸I為Y的點,其與相切於非球面光軸I上頂點之切面,兩者間的垂直距離);Z represents the depth of the aspheric surface (the point on the aspheric surface that is Y from the optical axis I, and the tangent to the vertex on the optical axis I of the aspheric surface, and the vertical distance between the two);
R表示透鏡表面近光軸I處之曲率半徑;R represents the radius of curvature of the lens surface near the optical axis I;
K為錐面係數(conic constant);K is the conic constant;
a 2i為第2i階非球面係數。 a 2i is the 2i-th order aspheric coefficient.
第一實施例光學成像鏡頭系統的光學數據如圖20所示,非球面數據如圖21所示。在以下實施例之光學成像鏡頭系統中,整體光學成像鏡頭的光圈值(f-number)為Fno、有效焦距為(EFL)、半視角(Half Field of View,簡稱HFOV)為整體光學成像鏡頭中最大視角(Field of View)的一半,其中,光學成像鏡頭的像高、曲率半徑、厚度及焦距的單位均為公厘(mm)。本實施例中,EFL=7.482公厘;HFOV=15.845度;TTL=7.288公厘;Fno=2.840;ImgH=2.580公厘。The optical data of the optical imaging lens system of the first embodiment is shown in FIG. 20, and the aspheric surface data is shown in FIG. 21. In the optical imaging lens system of the following embodiment, the aperture value (f-number) of the overall optical imaging lens is Fno, the effective focal length is (EFL), and the half field of view (Half Field of View, HFOV) is the overall optical imaging lens. Half of the maximum field of view (Field of View), where the image height, radius of curvature, thickness, and focal length of the optical imaging lens are in millimeters (mm). In this embodiment, EFL=7.482 mm; HFOV=15.845 degrees; TTL=7.288 mm; Fno=2.840; ImgH=2.580 mm.
第二實施例Second embodiment
請參閱圖8,例示本發明光學成像鏡頭1的第二實施例。請注意,從第二實施例開始,為簡化並清楚表達圖式,僅在圖上特別標示各透鏡與第一實施例不同面形的光軸區域與圓周區域,而其餘與第一實施例的透鏡相同的面形的光軸區域與圓周區域,例如凹面或是凸面則不另外標示。第二實施例在成像面91上的縱向球差請參考圖9A、弧矢方向的場曲像差請參考圖9B、子午方向的場曲像差請參考圖9C、畸變像差請參考圖9D。第二實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的物側面21的圓周區域24為凸面,第二透鏡20的像側面22的光軸區域26為凹面以及其圓周區域27為凹面,第四透鏡40的物側面41的光軸區域43為凸面,第五透鏡50具有負屈光率,第五透鏡50的像側面52的光軸區域56為凹面,第六透鏡60的物側面61的光軸區域63為凸面以及其圓周區域64為凹面。Please refer to FIG. 8, which illustrates a second embodiment of the
第二實施例詳細的光學數據如圖22所示,非球面數據如圖23所示。本實施例中,EFL=5.812公厘;HFOV=24.754度;TTL=6.190公厘;Fno=2.325;ImgH=2.520公厘。特別是:1.本實施例的光圈值小於第一實施例的光圈值;2. 本實施例的縱向球差小於第一實施例的縱向球差;3. 本實施例弧矢方向的場曲像差小於第一實施例弧矢方向的場曲像差;4. 本實施例子午方向的場曲像差小於第一實施例子午方向的場曲像差;5. 本實施例的畸變像差小於第一實施例的畸變像差。The detailed optical data of the second embodiment is shown in FIG. 22, and the aspheric surface data is shown in FIG. 23. In this embodiment, EFL=5.812 mm; HFOV=24.754 degrees; TTL=6.190 mm; Fno=2.325; ImgH=2.520 mm. In particular: 1. The aperture value of this embodiment is smaller than the aperture value of the first embodiment; 2. The longitudinal spherical aberration of this embodiment is smaller than that of the first embodiment; 3. Field curvature in the sagittal direction of this embodiment The aberration is smaller than the curvature of field aberration in the sagittal direction of the first embodiment; 4. The curvature of field aberration in the meridian direction of this embodiment is smaller than the curvature of field aberration in the meridian direction of the first embodiment; 5. The distortion aberration of this embodiment The distortion aberration is smaller than that of the first embodiment.
第三實施例The third embodiment
請參閱圖10,例示本發明光學成像鏡頭1的第三實施例。第三實施例在成像面91上的縱向球差請參考圖11A、弧矢方向的場曲像差請參考圖11B、子午方向的場曲像差請參考圖11C、畸變像差請參考圖11D。第三實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的物側面21的圓周區域24為凸面,第二透鏡20的像側面22的光軸區域26為凹面以及其圓周區域27為凹面,第三透鏡30具有負屈光率,第四透鏡40具有負屈光率,第四透鏡40的像側面42的光軸區域46為凹面,第五透鏡50具有負屈光率,第五透鏡50的物側面51的光軸區域53為凸面,第五透鏡50的像側面52的光軸區域56為凹面,第六透鏡60的物側面61的光軸區域63為凸面以及其圓周區域64為凹面。Please refer to FIG. 10, which illustrates a third embodiment of the
第三實施例詳細的光學數據如圖24所示,非球面數據如圖25所示,本實施例中,EFL=8.064公厘;HFOV=13.292度;TTL=10.080公厘;Fno=2.800;ImgH=2.520公厘。特別是:1. 本實施例的光圈值小於第一實施例的光圈值;2. 本實施例的縱向球差小於第一實施例的縱向球差;3.本實施例弧矢方向的場曲像差小於第一實施例弧矢方向的場曲像差;4. 本實施例子午方向的場曲像差小於第一實施例子午方向的場曲像差;5. 本實施例的畸變像差小於第一實施例的畸變像差;6. 本實施例的有效焦距大於第一實施例的有效焦距。The detailed optical data of the third embodiment is shown in Fig. 24, and the aspherical data is shown in Fig. 25. In this embodiment, EFL=8.064 mm; HFOV=13.292 degrees; TTL=10.080 mm; Fno=2.800; ImgH = 2.520 mm. In particular: 1. The aperture value of this embodiment is smaller than that of the first embodiment; 2. The longitudinal spherical aberration of this embodiment is smaller than that of the first embodiment; 3. Field curvature in the sagittal direction of this embodiment The aberration is smaller than the curvature of field aberration in the sagittal direction of the first embodiment; 4. The curvature of field aberration in the meridian direction of this embodiment is smaller than the curvature of field aberration in the meridian direction of the first embodiment; 5. The distortion aberration of this embodiment Less than the distortion aberration of the first embodiment; 6. The effective focal length of this embodiment is greater than the effective focal length of the first embodiment.
第四實施例Fourth embodiment
請參閱圖12,例示本發明光學成像鏡頭1的第四實施例。第四實施例在成像面91上的縱向球差請參考圖13A、弧矢方向的場曲像差請參考圖13B、子午方向的場曲像差請參考圖13C、畸變像差請參考圖13D。第四實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的像側面22的光軸區域26為凹面,第三透鏡30具有負屈光率,第五透鏡50具有負屈光率,第五透鏡50的物側面51的光軸區域53為凸面,第五透鏡50的像側面52的光軸區域56為凹面。Please refer to FIG. 12, which illustrates a fourth embodiment of the
第四實施例詳細的光學數據如圖26所示,非球面數據如圖27所示。本實施例中,EFL=11.211公厘;HFOV=12.949度;TTL=9.692公厘;Fno=3.503;ImgH=2.520公厘。特別是:1. 本實施例的縱向球差小於第一實施例的縱向球差;2. 本實施例的畸變像差小於第一實施例的畸變像差;3. 本實施例的有效焦距大於第一實施例的有效焦距。The detailed optical data of the fourth embodiment is shown in FIG. 26, and the aspheric surface data is shown in FIG. 27. In this embodiment, EFL=11.211 mm; HFOV=12.949 degrees; TTL=9.692 mm; Fno=3.503; ImgH=2.520 mm. In particular: 1. The longitudinal spherical aberration of this embodiment is smaller than that of the first embodiment; 2. The distortion aberration of this embodiment is smaller than that of the first embodiment; 3. The effective focal length of this embodiment is greater than Effective focal length of the first embodiment.
第五實施例Fifth embodiment
請參閱圖14,例示本發明光學成像鏡頭1的第五實施例。第五實施例在成像面91上的縱向球差請參考圖15A、弧矢方向的場曲像差請參考圖15B、子午方向的場曲像差請參考圖15C、畸變像差請參考圖15D。第五實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的物側面21的光軸區域23為凸面以及其圓周區域24為凸面,第二透鏡20的像側面22的光軸區域26為凹面以及其圓周區域27為凹面,第三透鏡30具有負屈光率,第四透鏡40具有負屈光率,第四透鏡40的像側面42的光軸區域46為凹面,第五透鏡50具有負屈光率,第五透鏡50的物側面51的光軸區域53為凸面,第五透鏡50的像側面52的光軸區域56為凹面,第六透鏡60具有負屈光率。Please refer to FIG. 14, which illustrates a fifth embodiment of the
第五實施例詳細的光學數據如圖28所示,非球面數據如圖29所示,本實施例中,EFL=17.755公厘;HFOV=12.269度;TTL=10.738公厘;Fno=5.548;ImgH=2.536公厘。特別是:1. 本實施例的有效焦距大於第一實施例的有效焦距。The detailed optical data of the fifth embodiment is shown in Fig. 28, and the aspherical data is shown in Fig. 29. In this embodiment, EFL=17.755 mm; HFOV=12.269 degrees; TTL=10.738 mm; Fno=5.548; ImgH = 2.536 mm. In particular: 1. The effective focal length of this embodiment is greater than the effective focal length of the first embodiment.
第六實施例Sixth embodiment
請參閱圖16,例示本發明光學成像鏡頭1的第六實施例。第六實施例在成像面91上的縱向球差請參考圖17A、弧矢方向的場曲像差請參考圖17B、子午方向的場曲像差請參考圖17C、畸變像差請參考圖17D。第六實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的物側面21的光軸區域23為凸面以及其圓周區域24為凸面,第二透鏡20的像側面22的光軸區域26為凹面以及其圓周區域27為凹面,第三透鏡30具有負屈光率,第三透鏡30的像側面32的光軸區域36為凹面以及其圓周區域37為凹面,第四透鏡40的物側面41的光軸區域43為凸面,第四透鏡40的像側面42的光軸區域46為凹面,第五透鏡50具有負屈光率,第五透鏡50的物側面51的光軸區域53為凸面,第五透鏡50的像側面52的光軸區域56為凹面,第六透鏡60的物側面61的圓周區域64為凹面。Please refer to FIG. 16, which illustrates a sixth embodiment of the
第六實施例詳細的光學數據如圖30所示,非球面數據如圖31所示,本實施例中,EFL=9.008公厘;HFOV=15.881度;TTL=8.263公厘;Fno=2.800;ImgH=2.520公厘。特別是:1.本實施例的光圈值小於第一實施例的光圈值;2. 本實施例的縱向球差小於第一實施例的縱向球差;3.本實施例弧矢方向的場曲像差小於第一實施例弧矢方向的場曲像差;4. 本實施例子午方向的場曲像差小於第一實施例子午方向的場曲像差;5. 本實施例的畸變像差小於第一實施例的畸變像差;6. 本實施例的有效焦距大於第一實施例的有效焦距。The detailed optical data of the sixth embodiment is shown in Fig. 30, and the aspherical data is shown in Fig. 31. In this embodiment, EFL=9.008 mm; HFOV=15.881 degrees; TTL=8.263 mm; Fno=2.800; ImgH = 2.520 mm. In particular: 1. The aperture value of this embodiment is smaller than that of the first embodiment; 2. The longitudinal spherical aberration of this embodiment is smaller than that of the first embodiment; 3. Field curvature in the sagittal direction of this embodiment The aberration is smaller than the curvature of field aberration in the sagittal direction of the first embodiment; 4. The curvature of field aberration in the meridian direction of this embodiment is smaller than the curvature of field aberration in the meridian direction of the first embodiment; 5. The distortion aberration of this embodiment Less than the distortion aberration of the first embodiment; 6. The effective focal length of this embodiment is greater than the effective focal length of the first embodiment.
第七實施例Seventh embodiment
請參閱圖18,例示本發明光學成像鏡頭1的第七實施例。第七實施例在成像面91上的縱向球差請參考圖19A、弧矢方向的場曲像差請參考圖19B、子午方向的場曲像差請參考圖19C、畸變像差請參考圖19D。第七實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20的物側面21的圓周區域24為凸面,第二透鏡20的像側面22的光軸區域26為凹面以及其圓周區域27為凹面,第三透鏡30具有負屈光率,第三透鏡30的物側面31的光軸區域33為凸面以及其圓周區域34為凸面,第三透鏡30的像側面32的光軸區域36為凹面以及其圓周區域37為凹面,第四透鏡40的物側面41的光軸區域43為凸面,第四透鏡40的像側面42的光軸區域46為凹面,第五透鏡50具有負屈光率,第五透鏡50的物側面51的光軸區域53為凸面,第五透鏡50的像側面52的光軸區域56為凹面,第六透鏡60的物側面61的光軸區域63為凸面。Please refer to FIG. 18, which illustrates a seventh embodiment of the
第七實施例詳細的光學數據如圖32所示,非球面數據如圖33所示,本實施例中,EFL=8.464公厘;HFOV=16.160度;TTL=7.729公厘;Fno=2.800;ImgH=2.520公厘。特別是:1. 本實施例的光圈值小於第一實施例的光圈值;2. 本實施例的縱向球差小於第一實施例的縱向球差;3. 本實施例弧矢方向的場曲像差小於第一實施例弧矢方向的場曲像差;4. 本實施例子午方向的場曲像差小於第一實施例子午方向的場曲像差;5. 本實施例的畸變像差小於第一實施例的畸變像差;6. 本實施例的有效焦距大於第一實施例的有效焦距。The detailed optical data of the seventh embodiment is shown in Fig. 32, and the aspheric data is shown in Fig. 33. In this embodiment, EFL=8.464 mm; HFOV=16.160 degrees; TTL=7.729 mm; Fno=2.800; ImgH = 2.520 mm. In particular: 1. The aperture value of this embodiment is smaller than that of the first embodiment; 2. The longitudinal spherical aberration of this embodiment is smaller than that of the first embodiment; 3. Field curvature in the sagittal direction of this embodiment The aberration is smaller than the curvature of field aberration in the sagittal direction of the first embodiment; 4. The curvature of field aberration in the meridian direction of this embodiment is smaller than the curvature of field aberration in the meridian direction of the first embodiment; 5. The distortion aberration of this embodiment Less than the distortion aberration of the first embodiment; 6. The effective focal length of this embodiment is greater than the effective focal length of the first embodiment.
另外,各實施例之重要參數則整理於圖34中。In addition, the important parameters of each embodiment are summarized in FIG. 34.
本發明各實施例,提供一個具有良好成像品質的光學成像鏡頭。例如,滿足以下透鏡面形的凹凸設計可有效降低場曲及畸變率,具有優化光學成像鏡頭系統的成像品質的特徵,以及可以達成的對應功效:The various embodiments of the present invention provide an optical imaging lens with good imaging quality. For example, the concave-convex design that satisfies the following lens surface shape can effectively reduce field curvature and distortion rate, has the characteristics of optimizing the imaging quality of the optical imaging lens system, and the corresponding effects that can be achieved:
1.當滿足以下條件時:第一透鏡至第六透鏡在光軸上的五個空氣間隙的總和大於第一透鏡至第六透鏡在光軸上的六個厚度的總和,並且第二透鏡至第五透鏡其中一片的物側面與像側面為非球面,再搭配以下所述的各條件,有利於降低第二透鏡至該第五透鏡其中一片透鏡中心厚度與圓周厚度的差異,以提高射出成形良率,同時增加光學成像鏡頭的系統焦距並維持光圈值;第二透鏡至該第五透鏡其中一片透鏡中心厚度與圓周厚度的差異可參考0.300≦CT/ET≦2.000條件式,其中,較佳的範圍為0.400≦CT/ET≦1.600:1. When the following conditions are met: the sum of the five air gaps of the first lens to the sixth lens on the optical axis is greater than the sum of the six thicknesses of the first lens to the sixth lens on the optical axis, and the second lens to The object side and the image side of the fifth lens are aspherical, and the following conditions can be used to reduce the difference between the center thickness and the circumferential thickness of the second lens to the fifth lens, so as to improve the injection molding. Yield rate, while increasing the system focal length of the optical imaging lens and maintaining the aperture value; the difference between the center thickness and the circumferential thickness of the second lens to the fifth lens can refer to the conditional expression 0.300≦CT/ET≦2.000, which is better The range is 0.400≦CT/ET≦1.600:
(1)第六透鏡的像側面的圓周區域為凸面,最大的空氣間隙在該第二透鏡與該第三透鏡之間且滿足2.000≦EFL/ImgH條件式,較佳的限制為2.000≦EFL/ImgH≦10.000。(1) The circumferential area of the image side surface of the sixth lens is convex, and the largest air gap is between the second lens and the third lens and satisfies the conditional formula of 2.000≦EFL/ImgH. The preferable limit is 2.000≦EFL/ ImgH≦10.000.
(2)第一透鏡具有正屈光率、第六透鏡的像側面的光軸區域為凸面,最大的空氣間隙在該第二透鏡與該第四透鏡之間且滿足3.200≦EFL/ImgH條件式,較佳的範圍為3.200≦EFL/ImgH≦10.000。(2) The first lens has positive refractive power, the optical axis area of the image side of the sixth lens is convex, and the largest air gap is between the second lens and the fourth lens and satisfies the condition of 3.200≦EFL/ImgH The preferred range is 3.200≦EFL/ImgH≦10.000.
(3)第二透鏡具有負屈光率、第四透鏡的物側面的圓周區域為凹面,第六透鏡的像側面的圓周區域為凸面,最大的空氣間隙在該第一透鏡與該第四透鏡之間且滿足2.900≦EFL/ImgH條件式,較佳的範圍為2.900≦EFL/ImgH≦10.000。(3) The second lens has negative refractive power, the circumferential area of the object side of the fourth lens is concave, the circumferential area of the image side of the sixth lens is convex, and the largest air gap is between the first lens and the fourth lens It satisfies the conditional formula of 2.900≦EFL/ImgH, and the preferable range is 2.900≦EFL/ImgH≦10.000.
2.本發明的光學成像鏡頭進一步滿足υ1+υ2+υ3+υ4+υ5+υ6≦255.000,υ2+υ3+υ4+υ5+υ6≦200.000或υ2+υ3+υ4+υ5≦170.000,有利於增加光學成像鏡頭的有效焦距,同時修正色像差。較佳的範圍為150.000≦υ1+υ2+υ3+υ4+υ5+υ6≦255.000,90.000≦υ2+υ3+υ4+υ5+υ6≦200.000或70.000≦υ2+υ3+υ4+υ5≦170.000。2. The optical imaging lens of the present invention further satisfies υ1+υ2+υ3+υ4+υ5+υ6≦255.000, υ2+υ3+υ4+υ5+υ6≦200.000 or υ2+υ3+υ4+υ5≦170.000, which is beneficial to increase optics The effective focal length of the imaging lens, while correcting chromatic aberrations. The preferred range is 150.000≦υ1+υ2+υ3+υ4+υ5+υ6≦255.000, 90.000≦υ2+υ3+υ4+υ5+υ6≦200.000 or 70.000≦υ2+υ3+υ4+υ5≦170.000.
3. 本發明的光學成像鏡頭進一步滿足以下條件式,有助於使有效焦距與光學各參數維持一適當值,避免任一參數過大而不利於該光學成像系統整體之像差的修正,或是避免任一參數過小而影響組裝或是提高製造上之困難度:3. The optical imaging lens of the present invention further satisfies the following conditional formulas, which helps to maintain the effective focal length and optical parameters at an appropriate value, avoiding any parameter that is too large and is not conducive to the correction of the overall aberration of the optical imaging system, or Avoid any parameter that is too small to affect assembly or increase the difficulty of manufacturing:
(1) 0.800≦EFL/TTL,較佳的範圍為0.800 ≦EFL/TTL≦1.700;(1) 0.800≦EFL/TTL, the preferred range is 0.800≦EFL/TTL≦1.700;
(2) 1.100 ≦EFL/TL≦1.800,較佳的範圍為1.100 ≦EFL/TL≦1.800;以及(2) 1.100 ≦EFL/TL≦1.800, the preferred range is 1.100 ≦EFL/TL≦1.800; and
(3) 2.000 ≦EFL/ALT,較佳的範圍為2.000 ≦EFL/ALT≦3.900。(3) 2.000 ≦EFL/ALT, the preferred range is 2.000 ≦EFL/ALT≦3.900.
4. 本發明的光學成像鏡頭進一步滿足以下條件式,有助於使各透鏡的厚度與間隔維持一適當值,避免任一參數過大而不利於該光學成像鏡頭整體之薄型化,或是避免任一參數過小而影響組裝或是提高製造上之困難度:4. The optical imaging lens of the present invention further satisfies the following conditional expressions, which helps to keep the thickness and spacing of each lens at an appropriate value, avoids any parameter being too large and is not conducive to the overall thinning of the optical imaging lens, or avoids any One parameter is too small to affect assembly or increase the difficulty of manufacturing:
(1) L12t61/AAG≦1.600,較佳的範圍為1.000≦L12t61/AAG≦1.600;(1) L12t61/AAG≦1.600, the preferred range is 1.000≦L12t61/AAG≦1.600;
(2) L12t41/(T1+T6)≦3.000,較佳的範圍為0.600≦L12t41/(T1+T6)≦3.000;(2) L12t41/(T1+T6)≦3.000, the preferred range is 0.600≦L12t41/(T1+T6)≦3.000;
(3) L41t62/T1≦3.600,較佳的範圍為0.800≦L41t62/T1≦3.600;(3) L41t62/T1≦3.600, the preferred range is 0.800≦L41t62/T1≦3.600;
(4) L11t42/(G23+G34)≦2.000,較佳的範圍為1.100≦L11t42/(G23+G34)≦2.000;(4) L11t42/(G23+G34)≦2.000, the preferred range is 1.100≦L11t42/(G23+G34)≦2.000;
(5) L21t52/(G23+G45)≦2.400,較佳的範圍為1.200≦L21t52/(G23+G45)≦2.400;(5) L21t52/(G23+G45)≦2.400, the preferred range is 1.200≦L21t52/(G23+G45)≦2.400;
(6) L12t61/(G23+G56)≦2.700,較佳的範圍為1.800≦L12t61/(G23+G56)≦2.700;(6) L12t61/(G23+G56)≦2.700, the preferred range is 1.800≦L12t61/(G23+G56)≦2.700;
(7) (ALT24+G12+BFL)/Gmax≦2.200,較佳的範圍為0.600≦(ALT24+G12+BFL)/Gmax≦2.200;(7) (ALT24+G12+BFL)/Gmax≦2.200, the preferred range is 0.600≦(ALT24+G12+BFL)/Gmax≦2.200;
(8) (ALT35+G12+BFL)/Gmax≦2.600,較佳的範圍為0.600≦(ALT35+G12+BFL)/Gmax≦2.600;(8) (ALT35+G12+BFL)/Gmax≦2.600, the preferred range is 0.600≦(ALT35+G12+BFL)/Gmax≦2.600;
(9) (ALT46+G12+BFL)/Gmax≦2.300,較佳的範圍為0.700≦(ALT46+G12+BFL)/Gmax≦2.300;以及(9) (ALT46+G12+BFL)/Gmax≦2.300, the preferred range is 0.700≦(ALT46+G12+BFL)/Gmax≦2.300; and
(10) (G12+G34+BFL)/T1≦5.300,較佳的範圍為0.700≦(G12+G34+BFL)/T1≦5.300。(10) (G12+G34+BFL)/T1≦5.300, the preferred range is 0.700≦(G12+G34+BFL)/T1≦5.300.
5.本發明的光學成像鏡頭進一步滿足以下條件式,有助於使光圈值與光學各參數維持一適當值,避免任一參數過大而不利於光圈值降低,或是避免任一參數過小而影響組裝或是提高製造上之困難度:5. The optical imaging lens of the present invention further satisfies the following conditional expressions, which helps to maintain an appropriate value for the aperture value and optical parameters, avoiding any parameter being too large and not conducive to the reduction of the aperture value, or avoiding any parameter being too small to affect Assemble or increase the difficulty of manufacturing:
2*ImgH*Fno/EFL≦2.000,較佳的範圍為1.300≦2*ImgH*Fno/EFL≦2.000。2*ImgH*Fno/EFL≦2.000, the preferred range is 1.300≦2*ImgH*Fno/EFL≦2.000.
本發明各實施例的470奈米、555奈米、650奈米三種代表波長在不同高度的離軸光線皆集中在成像點附近,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差皆獲得控制而具有良好的球差、像差、畸變抑制能力。進一步參閱成像品質數據,470奈米、555奈米、650奈米三種代表波長彼此間的距離亦相當接近,顯示本發明的實施例在各種狀態下對不同波長光線的集中性佳而具有優良的色散抑制能力,故透過上述可知本發明的實施例具備良好光學性能。The three off-axis rays of 470 nm, 555 nm, and 650 nm representing wavelengths at different heights in each embodiment of the present invention are concentrated near the imaging point, and the off-axis rays of different heights can be seen from the deflection amplitude of each curve. The deviation of the imaging point of the light is controlled and has good spherical aberration, aberration, and distortion suppression capabilities. Further referring to the imaging quality data, the distances between the three representative wavelengths of 470nm, 555nm and 650nm are also quite close to each other, which shows that the embodiment of the present invention has good concentration of light of different wavelengths under various conditions and has excellent performance. Dispersion suppression ability, so it can be seen from the above that the embodiment of the present invention has good optical performance.
本發明之各個實施例所揭露之光學參數的組合比例關係,所得的包含最大最小值以內的數值範圍皆可據以實施。The combination ratio relationship of the optical parameters disclosed in each embodiment of the present invention can be implemented according to the obtained numerical range including the maximum and minimum values.
此外,另可選擇實施例參數之任意組合關係增加鏡頭限制,以利於本發明相同架構的鏡頭設計。In addition, any combination of the embodiment parameters can be selected to increase the lens limit, so as to facilitate the lens design of the present invention with the same architecture.
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述條件式能較佳地使本發明系統長度縮短、光圈增大、成像品質提升,或組裝良率提升而改善先前技術的缺點,而本發明實施例透鏡採用塑膠材質更能減輕鏡頭重量及節省成本。In view of the unpredictability of the optical system design, under the framework of the present invention, meeting the above conditional expressions can better shorten the length of the system of the present invention, increase the aperture, improve the image quality, or increase the assembly yield rate to improve the prior art. However, the use of plastic material for the lens of the embodiment of the present invention can further reduce the weight and cost of the lens.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention. The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.
1:光學成像鏡頭
11、21、31、41、51、61、110、410、510:物側面
12、22、32、42、52、62、120、320:像側面
13、16、23、26、33、36、43、46、53、56、63、66、Z1:光軸區域
14、17、24、27、34、37、44、47、54、57、64、67、Z2:圓周區域
10:第一透鏡
20:第二透鏡
30:第三透鏡
40:第四透鏡
50:第五透鏡
60:第六透鏡
80:光圈
90:濾光片
91:成像面
100、200、300、400、500:透鏡
130:組裝部
211、212:平行光線
A1:物側
A2:像側
CP:中心點
CP1:第一中心點
CP2:第二中心點
TP1:第一轉換點
TP2:第二轉換點
OB:光學邊界
I:光軸
Lc:主光線
Lm:邊緣光線
EL:延伸線
Z3:中繼區域
M、R:相交點
T1、T2、T3、T4、T5、T6:各透鏡在光軸上的厚度1:
圖1至圖5繪示本發明光學成像鏡頭判斷曲率形狀方法之示意圖。 圖6繪示本發明光學成像鏡頭的第一實施例之示意圖。 圖7A繪示第一實施例在成像面上的縱向球差。 圖7B繪示第一實施例在弧矢方向的場曲像差。 圖7C繪示第一實施例在子午方向的場曲像差。 圖7D繪示第一實施例的畸變像差。 圖8繪示本發明光學成像鏡頭的第二實施例之示意圖。 圖9A繪示第二實施例在成像面上的縱向球差。 圖9B繪示第二實施例在弧矢方向的場曲像差。 圖9C繪示第二實施例在子午方向的場曲像差。 圖9D繪示第二實施例的畸變像差。 圖10繪示本發明光學成像鏡頭的第三實施例之示意圖。 圖11A繪示第三實施例在成像面上的縱向球差。 圖11B繪示第三實施例在弧矢方向的場曲像差。 圖11C繪示第三實施例在子午方向的場曲像差。 圖11D繪示第三實施例的畸變像差。 圖12繪示本發明光學成像鏡頭的第四實施例之示意圖。 圖13A繪示第四實施例在成像面上的縱向球差。 圖13B繪示第四實施例在弧矢方向的場曲像差。 圖13C繪示第四實施例在子午方向的場曲像差。 圖13D繪示第四實施例的畸變像差。 圖14繪示本發明光學成像鏡頭的第五實施例之示意圖。 圖15A繪示第五實施例在成像面上的縱向球差。 圖15B繪示第五實施例在弧矢方向的場曲像差。 圖15C繪示第五實施例在子午方向的場曲像差。 圖15D繪示第五實施例的畸變像差。 圖16繪示本發明光學成像鏡頭的第六實施例之示意圖。 圖17A繪示第六實施例在成像面上的縱向球差。 圖17B繪示第六實施例在弧矢方向的場曲像差。 圖17C繪示第六實施例在子午方向的場曲像差。 圖17D繪示第六實施例的畸變像差。 圖18繪示本發明光學成像鏡頭的第七實施例之示意圖。 圖19A繪示第七實施例在成像面上的縱向球差。 圖19B繪示第七實施例在弧矢方向的場曲像差。 圖19C繪示第七實施例在子午方向的場曲像差。 圖19D繪示第七實施例的畸變像差。 圖20表示第一實施例詳細的光學數據。 圖21表示第一實施例詳細的非球面數據。 圖22表示第二實施例詳細的光學數據。 圖23表示第二實施例詳細的非球面數據。 圖24表示第三實施例詳細的光學數據。 圖25表示第三實施例詳細的非球面數據。 圖26表示第四實施例詳細的光學數據。 圖27表示第四實施例詳細的非球面數據。 圖28表示第五實施例詳細的光學數據。 圖29表示第五實施例詳細的非球面數據。 圖30表示第六實施例詳細的光學數據。 圖31表示第六實施例詳細的非球面數據。 圖32表示第七實施例詳細的光學數據。 圖33表示第七實施例詳細的非球面數據。 圖34表示各實施例之重要參數。 1 to 5 are schematic diagrams of the method for judging the curvature shape of the optical imaging lens of the present invention. FIG. 6 is a schematic diagram of the first embodiment of the optical imaging lens of the present invention. FIG. 7A illustrates the longitudinal spherical aberration on the imaging surface of the first embodiment. FIG. 7B illustrates the curvature of field aberration in the sagittal direction of the first embodiment. FIG. 7C illustrates the curvature of field aberration in the tangential direction of the first embodiment. FIG. 7D shows the distortion aberration of the first embodiment. FIG. 8 is a schematic diagram of a second embodiment of the optical imaging lens of the present invention. FIG. 9A illustrates the longitudinal spherical aberration on the imaging surface of the second embodiment. FIG. 9B illustrates the curvature of field aberration in the sagittal direction of the second embodiment. FIG. 9C illustrates the curvature of field aberration in the tangential direction of the second embodiment. FIG. 9D illustrates the distortion aberration of the second embodiment. FIG. 10 is a schematic diagram of a third embodiment of the optical imaging lens of the present invention. FIG. 11A illustrates the longitudinal spherical aberration on the imaging surface of the third embodiment. FIG. 11B illustrates the curvature of field aberration in the sagittal direction of the third example. FIG. 11C illustrates the curvature of field aberration in the tangential direction of the third example. FIG. 11D shows the distortion aberration of the third embodiment. FIG. 12 is a schematic diagram of a fourth embodiment of the optical imaging lens of the present invention. FIG. 13A illustrates the longitudinal spherical aberration on the imaging surface of the fourth embodiment. FIG. 13B illustrates the curvature of field aberration in the sagittal direction of the fourth example. FIG. 13C illustrates the curvature of field aberration in the tangential direction of the fourth example. FIG. 13D shows the distortion aberration of the fourth embodiment. FIG. 14 is a schematic diagram of a fifth embodiment of the optical imaging lens of the present invention. FIG. 15A shows the longitudinal spherical aberration on the imaging surface of the fifth embodiment. FIG. 15B illustrates the curvature of field aberration in the sagittal direction of the fifth example. FIG. 15C illustrates the curvature of field aberration in the tangential direction of the fifth example. FIG. 15D shows the distortion aberration of the fifth embodiment. FIG. 16 is a schematic diagram of a sixth embodiment of the optical imaging lens of the present invention. FIG. 17A shows the longitudinal spherical aberration on the imaging surface of the sixth embodiment. FIG. 17B illustrates the curvature of field aberration in the sagittal direction of the sixth example. FIG. 17C illustrates the curvature of field aberration in the tangential direction of the sixth example. FIG. 17D shows the distortion aberration of the sixth example. FIG. 18 is a schematic diagram of a seventh embodiment of the optical imaging lens of the present invention. FIG. 19A shows the longitudinal spherical aberration on the imaging surface of the seventh embodiment. FIG. 19B illustrates the curvature of field aberration in the sagittal direction of the seventh example. FIG. 19C illustrates the curvature of field aberration in the tangential direction of the seventh example. FIG. 19D shows the distortion aberration of the seventh example. Fig. 20 shows detailed optical data of the first embodiment. Fig. 21 shows detailed aspheric surface data of the first embodiment. Fig. 22 shows detailed optical data of the second embodiment. Fig. 23 shows detailed aspheric surface data of the second embodiment. Fig. 24 shows detailed optical data of the third embodiment. Fig. 25 shows detailed aspheric surface data of the third embodiment. Fig. 26 shows detailed optical data of the fourth embodiment. Fig. 27 shows detailed aspheric surface data of the fourth embodiment. Fig. 28 shows detailed optical data of the fifth embodiment. Fig. 29 shows detailed aspheric surface data of the fifth embodiment. Fig. 30 shows detailed optical data of the sixth embodiment. Fig. 31 shows detailed aspheric surface data of the sixth embodiment. Fig. 32 shows detailed optical data of the seventh embodiment. Fig. 33 shows detailed aspheric surface data of the seventh embodiment. Fig. 34 shows important parameters of each embodiment.
1:光學成像鏡頭 1: Optical imaging lens
A1:物側 A1: Object side
A2:像側 A2: Image side
I:光軸 I: Optical axis
11、21、31、41、51、61:物側面 11, 21, 31, 41, 51, 61: Object side
12、22、32、42、52、62:像側面 12, 22, 32, 42, 52, 62: like side
13、16、23、26、33、36、43、46、53、56、63、66:光軸區域 13, 16, 23, 26, 33, 36, 43, 46, 53, 56, 63, 66: optical axis area
14、17、24、27、34、37、44、47、54、57、64、67:圓周區域 14, 17, 24, 27, 34, 37, 44, 47, 54, 57, 64, 67: circumferential area
10:第一透鏡 10: The first lens
20:第二透鏡 20: second lens
30:第三透鏡 30: third lens
40:第四透鏡 40: fourth lens
50:第五透鏡 50: Fifth lens
60:第六透鏡 60: sixth lens
80:光圈 80: aperture
90:濾光片 90: filter
91:成像面 91: imaging surface
T1、T2、T3、T4、T5、T6:各透鏡在光軸上的厚度 T1, T2, T3, T4, T5, T6: the thickness of each lens on the optical axis
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010661440.7 | 2020-07-10 | ||
CN202010661440.7A CN111650727B (en) | 2020-07-10 | 2020-07-10 | Optical imaging lens |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI744996B true TWI744996B (en) | 2021-11-01 |
TW202202890A TW202202890A (en) | 2022-01-16 |
Family
ID=72350294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109124682A TWI744996B (en) | 2020-07-10 | 2020-07-22 | Optical imaging lens |
Country Status (3)
Country | Link |
---|---|
US (1) | US11635583B2 (en) |
CN (1) | CN111650727B (en) |
TW (1) | TWI744996B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110658612A (en) * | 2019-11-13 | 2020-01-07 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201624045A (en) * | 2014-12-30 | 2016-07-01 | 大立光電股份有限公司 | Photographing optical lens assembly, image capturing device and electronic device |
TW201913168A (en) * | 2017-08-31 | 2019-04-01 | 大陸商南昌歐菲光電技術有限公司 | Imaging lens and imaging apparatus |
WO2020082814A1 (en) * | 2018-10-22 | 2020-04-30 | 浙江舜宇光学有限公司 | Imaging lens |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4491107B2 (en) * | 2000-03-28 | 2010-06-30 | フジノン株式会社 | Lens for photography |
JP2015102673A (en) * | 2013-11-25 | 2015-06-04 | 富士フイルム株式会社 | Imaging lens and imaging apparatus equipped with imaging lens |
US9104009B2 (en) * | 2013-12-20 | 2015-08-11 | Genius Electronic Optical Co., Ltd. | Optical imaging system and electronic apparatus including the same |
CN105807409B (en) * | 2014-12-30 | 2018-09-14 | 大立光电股份有限公司 | Image capturing optical lens assembly, image capturing device and electronic device |
TWI641862B (en) * | 2017-06-02 | 2018-11-21 | 玉晶光電股份有限公司 | Optical imaging lens |
CN107450157B (en) * | 2017-06-02 | 2020-01-10 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
CN108287403B (en) * | 2018-05-02 | 2023-06-16 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN210720851U (en) * | 2019-10-16 | 2020-06-09 | 南昌欧菲光电技术有限公司 | Optical system, camera module and terminal equipment |
CN111338063A (en) * | 2020-04-13 | 2020-06-26 | 南昌欧菲精密光学制品有限公司 | Optical systems, lens modules and electronics |
CN111679404B (en) * | 2020-07-02 | 2025-01-17 | 辽宁中蓝光电科技有限公司 | High-pixel telescope lens |
-
2020
- 2020-07-10 CN CN202010661440.7A patent/CN111650727B/en active Active
- 2020-07-22 TW TW109124682A patent/TWI744996B/en active
- 2020-09-03 US US17/010,842 patent/US11635583B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201624045A (en) * | 2014-12-30 | 2016-07-01 | 大立光電股份有限公司 | Photographing optical lens assembly, image capturing device and electronic device |
TW201913168A (en) * | 2017-08-31 | 2019-04-01 | 大陸商南昌歐菲光電技術有限公司 | Imaging lens and imaging apparatus |
WO2020082814A1 (en) * | 2018-10-22 | 2020-04-30 | 浙江舜宇光学有限公司 | Imaging lens |
Also Published As
Publication number | Publication date |
---|---|
CN111650727B (en) | 2022-04-08 |
US11635583B2 (en) | 2023-04-25 |
CN111650727A (en) | 2020-09-11 |
US20220011539A1 (en) | 2022-01-13 |
TW202202890A (en) | 2022-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI702418B (en) | Optical imaging lens | |
TWI804033B (en) | Optical imaging lens | |
TWI731455B (en) | Optical imaging lens | |
TW202119083A (en) | Optical imaging lens | |
TWI705278B (en) | Optical imaging lens | |
TWI805975B (en) | Optical imaging lens | |
TWI699549B (en) | Optical imaging lens | |
TW202026688A (en) | Optical imaging lens | |
TWI709785B (en) | Optical imaging lens | |
TWI734593B (en) | Optical imaging lens | |
TWI784313B (en) | Optical imaging lens | |
TW202034013A (en) | Optical imaging lens | |
TWI722777B (en) | Optical imaging lens | |
TW202119081A (en) | Optical imaging lens | |
TWI709762B (en) | Optical imaging lens | |
TWI779459B (en) | Optical imaging lens | |
TWI733457B (en) | Optical imaging lens | |
TWI715502B (en) | Optical imaging lens | |
TWI748603B (en) | Optical imaging lens | |
TWI727704B (en) | Optical imaging lens | |
TWI744996B (en) | Optical imaging lens | |
TWI733531B (en) | Optical imaging lens | |
TWI727556B (en) | Optical imaging lens | |
TWI727875B (en) | Optical imaging lens | |
TW202323914A (en) | Optical imaging lens |