[go: up one dir, main page]

TWI742828B - Gallium nitride epitaxial wafer capable of reducing stress - Google Patents

Gallium nitride epitaxial wafer capable of reducing stress Download PDF

Info

Publication number
TWI742828B
TWI742828B TW109129873A TW109129873A TWI742828B TW I742828 B TWI742828 B TW I742828B TW 109129873 A TW109129873 A TW 109129873A TW 109129873 A TW109129873 A TW 109129873A TW I742828 B TWI742828 B TW I742828B
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
superlattice
aluminum
stress
Prior art date
Application number
TW109129873A
Other languages
Chinese (zh)
Other versions
TW202210668A (en
Inventor
李文中
鄭樵陽
曾頎堯
林逸庠
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW109129873A priority Critical patent/TWI742828B/en
Application granted granted Critical
Publication of TWI742828B publication Critical patent/TWI742828B/en
Publication of TW202210668A publication Critical patent/TW202210668A/en

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A gallium nitride (GaN) epitaxial wafer capable of reducing stress, including a substrate, a nucleation layer on the substrate, multiple aluminum gallium nitride (AlxGa(1-x)N) buffer layers on the nucleation layer, multiple inter-superlattice structure layers, wherein some inter-superlattice structure layers are intermediate between two of the aluminum gallium nitride buffer layers, a high resistive layer on the topmost aluminum gallium nitride buffer layer, an intrinsic gallium nitride layer on the high resistive layer, an electron donor layer on the intrinsic gallium nitride layer and a capping layer on the electron donor layer.

Description

可降低應力的氮化鎵磊晶片 Gallium nitride epitaxy wafer capable of reducing stress

本發明大體上與一種氮化鎵磊晶片有關,更具體言之,其係關於一種成長在絕緣層上覆矽晶圓(silicon-on-insulator,SOI)上、可降低成長應力的氮化鎵磊晶片。 The present invention is generally related to a gallium nitride epitaxial wafer, and more specifically, it relates to a gallium nitride grown on a silicon-on-insulator (SOI) wafer that can reduce growth stress. Epi wafer.

近幾年氮化鎵(GaN)材料在業界受到多方面的關注及應用,如未來5G市場、電動車、雷達衛星通訊、無線電傳輸以及醫療技術。因為氮化鎵材料具有高能帶、高擊穿電場、高導熱率、高飽和電子速度以及元件體積小等特性,這些特性使得氮化鎵在高功率及高速電晶體管的應用上被視為是相當理想的材料,尤其是在高頻元件的應用上相當廣泛。 In recent years, gallium nitride (GaN) materials have received many attentions and applications in the industry, such as the future 5G market, electric vehicles, radar satellite communications, radio transmission, and medical technology. Because gallium nitride material has the characteristics of high energy band, high breakdown electric field, high thermal conductivity, high saturated electron velocity and small component size, these characteristics make gallium nitride regarded as equivalent in the application of high power and high speed electrical transistors. Ideal material, especially in the application of high-frequency components is quite extensive.

矽基板在價格成本上有其競爭優勢,因此將氮化鎵生長在矽基板上的電路設計方案正在蓬勃地研究與發展。然而,氮化鎵與矽基板在先天上的晶格常數與熱膨脹係數等性質差異過大,如此將氮化鎵直接成長在矽基板上的異質磊晶方式會造成過大的晶格失配(約17%)及熱膨脹係數失配(約54%),成長期間會產生很大的拉應力,形成高密度的螺旋錯位,進而使晶圓翹曲甚至產生裂紋,如此在電性方面會導致所形成的氮化鎵元件漏電流增加並降低載子遷移率與運作效率。 Silicon substrates have competitive advantages in terms of price and cost. Therefore, circuit design schemes for growing gallium nitride on silicon substrates are being researched and developed vigorously. However, the inherent lattice constants and thermal expansion coefficients of gallium nitride and silicon substrates are too different in nature, so the heteroepitaxial method of directly growing gallium nitride on silicon substrates will cause excessive lattice mismatch (about 17 %) and thermal expansion coefficient mismatch (approximately 54%). During the growth period, a large tensile stress will be generated, forming a high-density spiral dislocation, which will cause the wafer to warp or even crack, which will lead to the formation of electrical Gallium nitride devices increase leakage current and reduce carrier mobility and operating efficiency.

目前業界已提出有數種方法來解決上述氮化鎵與矽基板不匹配的問 題,其中一種方法是將氮化鎵成長在絕緣層上覆矽晶圓(silicon-on-insulator,SOI)之上。 At present, the industry has proposed several methods to solve the above-mentioned problem of the mismatch between gallium nitride and silicon substrates. Question, one of the methods is to grow gallium nitride on a silicon-on-insulator (SOI) wafer.

有鑑於上述氮化鎵成長的習知問題,本發明基於現有業界所提出的解決方案,提出了一種改良的、具有高品質與低損耗特性的氮化鎵磊晶片,其透過將氮化鎵成長在絕緣層上覆矽晶圓(silicon-on-insulator,SOI),並搭配漸變層以及中間層超晶格結構(inter super lattices structure,inter-SLS)的變化來緩衝氮化鎵成長時所帶來的應力,並使得整體磊晶結構的厚度可超過10um,崩潰電壓可超過1000伏特,如此提升了氮化鎵元件的效率,其特別適合用來製作氮化鎵系的高電子遷移率電晶體(high electron mobility transistors,HEMTs)。 In view of the above-mentioned conventional problems in the growth of gallium nitride, the present invention proposes an improved gallium nitride epitaxial wafer with high quality and low loss characteristics based on the existing solutions proposed in the industry. Overlay a silicon-on-insulator (SOI) on the insulating layer, and match the graded layer and the change of the inter super lattices structure (inter-SLS) to buffer the growth of gallium nitride The stress caused by the overall epitaxial structure can exceed 10um, and the breakdown voltage can exceed 1000 volts. This improves the efficiency of gallium nitride devices. It is particularly suitable for making gallium nitride-based high electron mobility transistors. (high electron mobility transistors, HEMTs).

本發明的目的為提出一種可降低應力的氮化鎵磊晶片,包含一基板、一成核層位在該基板上、多個氮化鋁鎵緩衝層位在該成核層上、多個中間超晶格結構層,其中部分的該中間超晶格結構層位於兩個該氮化鋁鎵緩衝層之間、一高阻值層,位在最上層的該氮化鋁鎵緩衝層上、一本質氮化鎵層,位在該高阻值層上、一電子提供層位在該本質氮化鎵層上、以及一覆蓋層,位在該電子提供層上。 The purpose of the present invention is to provide a gallium nitride epitaxial wafer capable of reducing stress, comprising a substrate, a nucleation layer on the substrate, a plurality of aluminum gallium nitride buffer layers on the nucleation layer, and a plurality of intermediate layers. Superlattice structure layer, in which part of the intermediate superlattice structure layer is located between the two aluminum gallium nitride buffer layers, a high resistance layer, is located on the uppermost aluminum gallium nitride buffer layer, and The essential gallium nitride layer is located on the high resistance layer, an electron supply layer is located on the essential gallium nitride layer, and a covering layer is located on the electron supply layer.

本發明的這類目的與其他目的在閱者讀過下文中以多種圖示與繪圖來描述的較佳實施例之細節說明後應可變得更為明瞭顯見。 Such objects and other objects of the present invention should become more apparent after readers have read the detailed description of the preferred embodiments described below with various illustrations and drawings.

100:支撐晶圓 100: Support wafer

101:絕緣氧化層 101: insulating oxide layer

103:元件晶圓 103: Component Wafer

110:基板(絕緣層上覆矽晶圓) 110: Substrate (silicon wafer over insulating layer)

120:成核層 120: Nucleation layer

121:低溫氮化鋁層 121: low temperature aluminum nitride layer

122:高溫氮化鋁層 122: high temperature aluminum nitride layer

130:中間超晶格結構層 130: Intermediate superlattice structure layer

130a,130b,130c:超晶格組 130a, 130b, 130c: superlattice group

140:超晶格對 140: Superlattice Pair

140a:第一超晶格層 140a: the first superlattice layer

140b:第二超晶格層 140b: second superlattice layer

150:緩衝層 150: buffer layer

151:(第一)氮化鋁鎵緩衝層 151: (first) aluminum gallium nitride buffer layer

152:(第二)氮化鋁鎵緩衝層 152: (Second) Aluminum Gallium Nitride buffer layer

153:(第三)氮化鋁鎵緩衝層 153: (third) aluminum gallium nitride buffer layer

154:(第四)氮化鋁鎵緩衝層 154: (fourth) aluminum gallium nitride buffer layer

155:(第五)氮化鋁鎵緩衝層 155: (fifth) aluminum gallium nitride buffer layer

160:高阻值層 160: high resistance layer

170:本質氮化鎵層 170: Intrinsic GaN layer

180:電子提供層 180: electronic provision layer

190:覆蓋層 190: Overlay

本說明書含有附圖併於文中構成了本說明書之一部分,俾使閱者對本發明實施例有進一步的瞭解。該些圖示係描繪了本發明一些實施例並連同本文描述 一起說明了其原理。在該些圖示中:第1圖繪示出根據本發明實施例中一絕緣層上覆矽(silicon-on-insulator,SOI)晶圓的製作流程;第2圖繪示出根據本發明實施例中在絕緣層上覆矽晶圓上形成成核層的步驟;第3圖繪示出根據本發明較佳實施例中一中間超晶格結構層的細部結構;第4圖繪示出根據本發明一實施例中緩衝層形成在成核層上的型態;第5圖繪示出根據本發明另一實施例中緩衝層形成在成核層上的型態;第6圖繪示出根據本發明又一實施例中緩衝層形成在成核層上的型態;第7圖繪示出根據本發明又一實施例中緩衝層形成在成核層上的型態;第8圖繪示出根據本發明又一實施例中緩衝層形成在成核層上的型態;第9圖繪示出根據本發明又一實施例中緩衝層形成在成核層上的型態;以及第10圖繪示出根據本發明較佳實施例中一氮化鎵磊晶片的細部結構。 This specification contains drawings and constitutes a part of this specification in the text, so that readers can have a further understanding of the embodiments of the present invention. These diagrams depict some embodiments of the invention and are described herein together The principle is explained together. In these figures: Figure 1 illustrates the manufacturing process of a silicon-on-insulator (SOI) wafer according to an embodiment of the present invention; Figure 2 illustrates an implementation according to the present invention In the example, the step of forming a nucleation layer on a silicon wafer over an insulating layer; Fig. 3 illustrates the detailed structure of an intermediate superlattice structure layer in a preferred embodiment of the present invention; Fig. 4 illustrates a step according to The type of buffer layer formed on the nucleation layer in an embodiment of the present invention; FIG. 5 illustrates the type of buffer layer formed on the nucleation layer in another embodiment of the present invention; FIG. 6 illustrates According to another embodiment of the present invention, the buffer layer is formed on the nucleation layer; Fig. 7 shows the buffer layer formed on the nucleation layer in another embodiment of the present invention; Fig. 8 is Figure 9 illustrates the form of the buffer layer formed on the nucleation layer according to another embodiment of the present invention; Figure 9 depicts the form of the buffer layer formed on the nucleation layer according to another embodiment of the present invention; and Figure 10 illustrates the detailed structure of a gallium nitride epitaxial wafer according to a preferred embodiment of the present invention.

須注意本說明書中的所有圖示皆為圖例性質,為了清楚與方便圖示說明之故,圖示中的各部件在尺寸與比例上可能會被誇大或縮小地呈現,一般而言,圖中相同的參考符號會用來標示修改後或不同實施例中對應或類似的元件特徵。 It should be noted that all the illustrations in this manual are illustrations in nature. For clarity and convenience of illustration, the parts in the illustrations may be exaggerated or reduced in size and proportion. Generally speaking, the figures The same reference symbols will be used to indicate corresponding or similar element features in modified or different embodiments.

現在下文將詳細說明本發明的示例性實施例,其會參照附圖示出所描述之特徵以便閱者理解並實現技術效果。閱者將可理解文中之描述僅透過例示之方式來進行,而非意欲要限制本案。本案的各種實施例和實施例中彼此不衝突的各種特徵可以以各種方式來加以組合或重新設置。在不脫離本發明的精神與範疇的情況下,對本案的修改、等同物或改進對於本領域技術人員來說是 可以理解的,並且旨在包含在本案的範圍內。 Now, exemplary embodiments of the present invention will be described in detail below, which will illustrate the described features with reference to the accompanying drawings so that readers can understand and achieve technical effects. Readers will understand that the description in the text is only done by way of example, and is not intended to limit the case. The various embodiments of this case and various features in the embodiments that do not conflict with each other can be combined or re-arranged in various ways. Without departing from the spirit and scope of the present invention, modifications, equivalents or improvements to this case are for those skilled in the art It is understandable and intended to be included in the scope of this case.

閱者應能容易理解,本案中的「在…上」、「在…之上」和「在…上方」的含義應當以廣義的方式被解讀,以使得「在…上」不僅表示「直接在」某物「上」,而且還包括在某物「上」且其間有居間特徵或層的含義,並且「在…之上」或「在…上方」不僅表示「在」某物「之上」或「上方」的含義,而且還可以包括其「在」某物「之上」或「上方」且其間沒有居間特徵或層(即,直接在某物上)的含義。 Readers should be able to easily understand that the meanings of "on", "on" and "on" in this case should be interpreted in a broad way, so that "on" not only means "directly on" "Something is "on", but also includes "on" something with the meaning of intervening features or layers in between, and "on" or "on" not only means "on" something "on" Or "above", and it can also include the meaning of "above" or "above" something without intervening features or layers (that is, directly on something).

此外,為了描述方便,諸如「在…之下」、「在…下方」、「下部」、「在…之上」、「上部」等空間相關的術語在本文中可以用於描述一個元件或特徵與另一個或多個元件或特徵之間的關係,如在附圖中示出的。 In addition, for the convenience of description, space-related terms such as "below", "below", "lower", "above", "upper" and other space-related terms can be used herein to describe an element or feature The relationship with another element or features is as shown in the drawings.

在下文的描述中,「基底」與「晶圓」兩詞是可以互換的,其可包含內部中或表面上有電路形成的任何半導體結構。這些結構可包含矽、覆矽絕緣基底(SOI)、覆矽藍寶石基底(SOS)、摻雜或未摻雜的半導體、被半導體基材所支撐的矽質磊晶層、或是其他半導體結構等。半導體不一定要矽質的,其也可為矽鍺、鍺、或是砷化鎵。當下文中提到基底時,其半導體基材中或上方可能已經有進行過製程步驟而形成層、區域或接面等結構。 In the following description, the terms "substrate" and "wafer" are interchangeable, and can include any semiconductor structure with circuits formed inside or on the surface. These structures can include silicon, silicon-on-insulator (SOI), silicon-on-sapphire (SOS), doped or undoped semiconductors, silicon epitaxial layers supported by semiconductor substrates, or other semiconductor structures, etc. . The semiconductor does not have to be silicon, it can also be silicon germanium, germanium, or gallium arsenide. When the substrate is mentioned in the following, there may have been processing steps in or on the semiconductor substrate to form a layer, region, or junction structure.

如本文中使用的,術語「層」是指包括具有厚度區域的材料部分。層可以在下方或上方結構的整體之上延伸,或者可以具有小於下方或上方結構範圍的範圍。此外,層可以是厚度小於連續結構的厚度的均質或非均質連續結構的區域。例如,層可以位於在連續結構的頂表面和底表面之間或在頂表面和底表面處的任何水平面對之間。層可以水準、豎直和/或沿傾斜表面延伸。基底可以是層,其中可以包括一個或多個層,和/或可以在其上、其上方和/或其下方具有一個或多個層。 As used herein, the term "layer" refers to a portion of material that includes regions of thickness. The layer may extend over the entirety of the lower or upper structure, or may have a range smaller than the range of the lower or upper structure. In addition, the layer may be a region of a homogeneous or non-homogeneous continuous structure whose thickness is less than that of the continuous structure. For example, the layer may be located between the top and bottom surfaces of the continuous structure or between any horizontal faces at the top and bottom surfaces. The layers can extend horizontally, vertically, and/or along inclined surfaces. The substrate may be a layer, which may include one or more layers, and/or may have one or more layers on, above, and/or below it.

文中描述會使用「N」與「P」等稱號,一般以「N型」與「P型」的 方式,來指稱會促發電子與電洞作為主要載體的施體與受體類摻質。一個摻質類型後綴有「++」符號代表了其摻雜濃度是高於那些後綴為「+」符號的摻質的摻雜濃度。反之,後綴為「-」符號的摻質類型代表了其摻質的摻雜濃度是低於那些沒有後綴符號的摻質的摻雜濃度。 The description in the text will use names such as "N" and "P", generally with "N-type" and "P-type" It refers to the donor and acceptor dopants that promote electrons and holes as the main carriers. A dopant type suffixed with a "++" symbol indicates that its doping concentration is higher than that of those dopants suffixed with a "+" symbol. Conversely, the dopant type with the suffix "-" means that the dopant concentration of the dopant is lower than the dopant concentration of the dopants without the suffix symbol.

首先請參照第1圖,其繪示出根據本發明實施例中一絕緣層上覆矽(silicon-on-insulator,SOI)晶圓的製作流程。首先提供一片支撐晶圓(handle wafer)100,其較佳為重摻雜矽晶圓,也可使用硬度較大的碳化矽晶圓或是藍寶石晶圓等,其厚度約在300~800um之間。接著,對支撐晶圓100進行高溫氧化製程,使得其雙面上成長出絕緣氧化層101。高溫氧化製程期間的溫度可介於1000~1100℃,所成長出的絕緣氧化層101的厚度介於0.05~5um,其材料視來源的支撐晶圓100而定可為氧化矽(SiO2)或氧化鋁(Al2O3)。接著,將一片元件晶圓(device wafer)103鍵合到支撐晶圓100其中一面的絕緣氧化層101上並進行退火製程,使得兩者間的弱鍵結轉化為共價鍵堅固的接合狀態。最後,將接合後的元件晶圓103利用化學機械研磨(CMP)或是晶背研磨等製程減薄至所需厚度,約1~10um之間,如此即完成了一絕緣層上覆矽晶圓110。 Firstly, please refer to FIG. 1, which illustrates the manufacturing process of a silicon-on-insulator (SOI) wafer according to an embodiment of the present invention. First, a handle wafer 100 is provided, which is preferably a heavily doped silicon wafer, but also a harder silicon carbide wafer or sapphire wafer, with a thickness of about 300-800um. Then, a high-temperature oxidation process is performed on the supporting wafer 100, so that an insulating oxide layer 101 is grown on both sides of the supporting wafer 100. The temperature during the high-temperature oxidation process can range from 1000 to 1100°C, and the thickness of the grown insulating oxide layer 101 is between 0.05 to 5um. The material can be silicon oxide (SiO 2 ) or silicon oxide (SiO 2) depending on the source of the supporting wafer 100 Alumina (Al 2 O 3 ). Next, a piece of device wafer 103 is bonded to the insulating oxide layer 101 on one side of the support wafer 100 and an annealing process is performed to convert the weak bond between the two to a strong covalent bond. Finally, the bonded device wafer 103 is thinned to the required thickness, between about 1 and 10um, using a process such as chemical mechanical polishing (CMP) or backside polishing. In this way, a silicon-on-insulating wafer is completed. 110.

上述實施例中所形成的絕緣層上覆矽晶圓110將在後續實施例中作為本發明氮化鎵磊晶片的基底。其中,絕緣層上覆矽晶圓110中與元件晶圓103相接的絕緣氧化層101係可作為矽電晶體之間的絕緣體物質,可大量降低其間的寄生電容,另一面的絕緣氧化層101則可做為一固定層來補償後續磊晶製程期間所產生的應力,避免晶圓產生習知的翹曲問題。 The silicon-on-insulating wafer 110 formed in the above embodiments will be used as the base of the gallium nitride epitaxial wafer of the present invention in subsequent embodiments. Among them, the insulating oxide layer 101 in the silicon wafer 110 over the insulating layer that is connected to the device wafer 103 can be used as an insulator material between the silicon transistors, which can greatly reduce the parasitic capacitance therebetween. The insulating oxide layer 101 on the other side It can be used as a fixed layer to compensate the stress generated during the subsequent epitaxial process and avoid the conventional warpage problem of the wafer.

完成絕緣層上覆矽晶圓110的製備後,接下來即是進行本發明氮化鎵磊晶片的製作。為了要在絕緣層上覆矽晶圓110上成長異質磊晶,需要先在絕緣層上覆矽晶圓110上形成成核層與緩衝層,以確保所生長出的磊晶的品質。本發明較佳實施例採用雙層不同性質的成核層,首先,利用有機金屬化學氣相沉積 法(MOCVD)在絕緣層上覆矽晶圓110上先成長一低溫氮化鋁層(LT-AlN)121,其成長溫度介於900~1000℃,厚度則介於30~80nm之間。之後,在低溫氮化鋁層121上成長一高溫氮化鋁層(HT-AlN)122,其成長溫度介於1000~1300℃,厚度介於30~200nm之間。透過在成長氮化鎵磊晶層前先成長低溫/高溫兩種不同性質的氮化鋁成核層,後續的氮化鎵磊晶層的成長會趨於二維成長態樣,會具有較為平坦的表面以及較好的晶體品質。後文的實施例中將以成核層120來統稱低溫氮化鋁層121與高溫氮化鋁層122。 After completing the preparation of the silicon-on-insulation wafer 110, the next step is to proceed with the preparation of the gallium nitride epitaxial wafer of the present invention. In order to grow heteroepitaxial crystals on the silicon-on-insulating wafer 110, it is necessary to form a nucleation layer and a buffer layer on the silicon-on-insulating wafer 110 to ensure the quality of the grown epitaxial crystals. The preferred embodiment of the present invention adopts a double-layer nucleation layer with different properties. First, an organometallic chemical vapor deposition is used Firstly, a low-temperature aluminum nitride layer (LT-AlN) 121 is grown on the silicon-on-insulating wafer 110 by MOCVD method. The growth temperature is 900-1000° C., and the thickness is 30-80 nm. After that, a high temperature aluminum nitride layer (HT-AlN) 122 is grown on the low temperature aluminum nitride layer 121, the growth temperature of which is between 1000 and 1300° C., and the thickness is between 30 and 200 nm. By growing an aluminum nitride nucleation layer with two different properties of low temperature and high temperature before the growth of the gallium nitride epitaxial layer, the subsequent growth of the gallium nitride epitaxial layer will tend to be a two-dimensional growth pattern, which will be relatively flat. The surface and the better crystal quality. In the following embodiments, the nucleation layer 120 will be collectively referred to as the low temperature aluminum nitride layer 121 and the high temperature aluminum nitride layer 122.

完成了成核層120之製作後,接下來要進行緩衝層的製作。本發明的一大特點為,緩衝層是由多個漸變層與穿插在其間的一或多個中間超晶格結構(inter-superlattice structure,inter-SLS)層所構成的。其中,在本發明實施例中,該多個漸變層可為氮化鋁鎵(AlxGa(1-x)N)緩衝層,其各個氮化鋁鎵緩衝層中的鋁原子比例彼此不同,且每個單一氮化鋁鎵緩衝層中的鋁原子比例也呈漸變而非固定型態。另一方面,本發明的中間超晶格結構層是由兩種或多種材料所構成的周期性交替疊層結構,其設置在漸變緩衝層之間將有助於將兩側的晶格連在一起而不產生界面失配錯位,使晶格完全處於彈性應變狀態。 After the production of the nucleation layer 120 is completed, the production of the buffer layer is next. A major feature of the present invention is that the buffer layer is composed of multiple graded layers and one or more inter-superlattice structure (inter-SLS) layers interspersed therebetween. Wherein, in the embodiment of the present invention, the plurality of graded layers may be aluminum gallium nitride (Al x Ga (1-x) N) buffer layers, and the proportions of aluminum atoms in the aluminum gallium nitride buffer layers are different from each other, Moreover, the proportion of aluminum atoms in each single aluminum gallium nitride buffer layer is also gradual rather than fixed. On the other hand, the intermediate superlattice structure layer of the present invention is a periodic alternating laminated structure composed of two or more materials. The arrangement of the intermediate superlattice structure layer between the graded buffer layers will help to connect the crystal lattices on both sides to the At the same time, there is no interface misfit and dislocation, so that the crystal lattice is completely in a state of elastic strain.

現在請參照第3圖,其繪示出了本發明實施例中一中間超晶格結構層130的細部結構。在本發明中,每一個中間超晶格結構層130都是由多個超晶格組以層疊方式所組成,該多個超晶格組具有相同的材料組成,但是具有不同的厚度分布。本發明實施例中,中間超晶格結構層130內的超晶格組較佳為三組,在圖中以130a,130b,130c來代表。再者,每個超晶格組130a,130b,130c還進一步包含多個超晶格對。例如,在較佳實施例中,每個超晶格組130a,130b,130c具有40個超晶格對,在圖中以140來代表一個超晶格對,同一個超晶格組中的多個超晶格對140可具有完全相同的結構與材料組成。再者,每個超晶格對140還進一步包含一第一超晶格層140a以及位於第一超晶格層140a上的第二超晶格層140b。第一 超晶格層140a與第二超晶格層140b具有相同的材料組成,但是具有不同的原子比例以及厚度分布。 Please refer now to FIG. 3, which illustrates the detailed structure of an intermediate superlattice structure layer 130 in an embodiment of the present invention. In the present invention, each intermediate superlattice structure layer 130 is composed of a plurality of superlattice groups in a stacked manner, and the plurality of superlattice groups have the same material composition but different thickness distributions. In the embodiment of the present invention, the superlattice groups in the intermediate superlattice structure layer 130 are preferably three groups, which are represented by 130a, 130b, and 130c in the figure. Furthermore, each superlattice group 130a, 130b, 130c further includes a plurality of superlattice pairs. For example, in a preferred embodiment, each superlattice group 130a, 130b, 130c has 40 superlattice pairs. In the figure, 140 represents a superlattice pair. There are more than one superlattice pair in the same superlattice group. Each superlattice pair 140 may have exactly the same structure and material composition. Furthermore, each superlattice pair 140 further includes a first superlattice layer 140a and a second superlattice layer 140b located on the first superlattice layer 140a. First The superlattice layer 140a and the second superlattice layer 140b have the same material composition, but have different atomic ratios and thickness distributions.

現在將以實際數據來說明中間超晶格結構層130、超晶格組130a,130b,130c、超晶格對140、第一超晶格層140a以及第二超晶格層140b的細部特徵。在本發明較佳實施例中,一個中間超晶格結構層130共分為三個超晶格組130a,130b,130c,每個超晶格組130a,130b,130c進一步分為40個超晶格對140,故一個中間超晶格結構層130共有120個超晶格對140,其中第1-40對為第一組,第41-80對為第二組,第81-120對為第三組。其中,這三個超晶格組130a,130b,130c中的超晶格對140的組成都相同,每個超晶格對140都是由一第一超晶格層140a與一第二超晶格層140b組成。第一超晶格層140a與一第二超晶格層140b的材料可為氮化鋁鎵,但是兩者具有不同的鋁原子比例,例如第一超晶格層140a為AlxGa(1-x)N而第二超晶格層140b為AlyGa(1-y)N,其中x不等於y。再者,不同超晶格組130a,130b,130c中的超晶格對140的第一超晶格層140a與第二超晶格層140b會具有不同的厚度。例如第一超晶格組130a中的超晶格對140(第1-40對)的第一超晶格層140a與第二超晶格層140b的厚度的分布範圍分別為21~25nm/1~6nm,第二超晶格組130b中的超晶格對140(第41-80對)的第一超晶格層140a與第二超晶格層140b的厚度的分布範圍分別為11~15nm/11~15nm,第三超晶格組130c中的超晶格對140(第81-120對)的第一超晶格層140a與第二超晶格層140b的厚度的分布範圍分別為1~6nm/21~25nm,可以看出離基板110越遠(即越上層的)的超晶格組中的第一超晶格層140a的厚度會越小,離基板110越遠的超晶格組中的第二超晶格層140b的厚度越大。上述的超晶格層都可以透過MOCVD方式來成長形成,其成長溫度介於950~1150℃。此外,第一超晶格層140a與第二超晶格層140b的鋁原子比例將由其中間超晶格結構層130上下所連接的層結構中的鋁原子比例相同,其在後續實施例中將有進一步的說明。 The detailed characteristics of the intermediate superlattice structure layer 130, the superlattice groups 130a, 130b, 130c, the superlattice pair 140, the first superlattice layer 140a, and the second superlattice layer 140b will now be explained with actual data. In a preferred embodiment of the present invention, an intermediate superlattice structure layer 130 is divided into three superlattice groups 130a, 130b, 130c, and each superlattice group 130a, 130b, 130c is further divided into 40 superlattice groups. Lattice pair 140, so an intermediate superlattice structure layer 130 has a total of 120 superlattice pairs 140, of which pairs 1-40 are the first group, pairs 41-80 are the second group, and pairs 81-120 are the first group. Three groups. Among them, the composition of the superlattice pair 140 in the three superlattice groups 130a, 130b, 130c is the same, and each superlattice pair 140 is composed of a first superlattice layer 140a and a second superlattice layer 140a. The grid layer 140b is composed. The material of the first superlattice layer 140a and the second superlattice layer 140b can be aluminum gallium nitride, but they have different aluminum atomic ratios. For example, the first superlattice layer 140a is Al x Ga (1- x) N and the second superlattice layer 140b is Al y Ga (1-y) N, where x is not equal to y. Furthermore, the first superlattice layer 140a and the second superlattice layer 140b of the superlattice pair 140 in the different superlattice groups 130a, 130b, and 130c may have different thicknesses. For example, the thickness distribution ranges of the first superlattice layer 140a and the second superlattice layer 140b of the superlattice pair 140 (pairs 1-40) in the first superlattice group 130a are 21-25 nm/1. ~6nm, the thickness distribution range of the first superlattice layer 140a and the second superlattice layer 140b of the superlattice pair 140 (pairs 41-80) in the second superlattice group 130b is 11~15nm, respectively /11~15nm, the thickness distribution ranges of the first superlattice layer 140a and the second superlattice layer 140b of the superlattice pair 140 (pairs 81-120) in the third superlattice group 130c are 1 ~6nm/21~25nm, it can be seen that the farther from the substrate 110 (that is, the upper layer) the thickness of the first superlattice layer 140a in the superlattice group will be smaller, and the farther the superlattice is from the substrate 110 The thickness of the second superlattice layer 140b in the group is greater. The above-mentioned superlattice layer can be grown and formed by MOCVD, and its growth temperature is between 950 and 1150°C. In addition, the ratio of aluminum atoms in the first superlattice layer 140a and the second superlattice layer 140b will be the same as the ratio of aluminum atoms in the layer structure connected up and down by the intermediate superlattice structure layer 130, which will be described in subsequent embodiments. There is further explanation.

本發明上述的中間超晶格結構層130可以多種形式穿插在緩衝層的各層結構之間來達成所需功效,以下將以不同的實施例來說明: The above-mentioned intermediate superlattice structure layer 130 of the present invention can be interspersed between the various layer structures of the buffer layer in various forms to achieve the desired effect, which will be described in different embodiments as follows:

[實施例1] [Example 1]

請參照第4圖,其繪示出根據本發明一實施例中一緩衝層150形成在成核層120上的型態。在此實施例中,緩衝層150共包含五個氮化鋁鎵緩衝層(漸變層)151-155以及一個中間超晶格結構層130,其中中間超晶格結構層130係設置在成核層120與最下層的氮化鋁鎵緩衝層151之間。在結構成分方面,五個氮化鋁鎵緩衝層151-155的成分雖然都是氮化鋁鎵(AlzGa(1-2)N),但是其鋁原子的比例卻不相同。例如在實施例中,第一氮化鋁鎵緩衝層151的z介於0.7~0.95之間,第二氮化鋁鎵緩衝層152的z介於0.5~0.65之間,第三氮化鋁鎵緩衝層153的z介於0.3-0.45之間,第四氮化鋁鎵緩衝層154的z介於0.15-0.25之間,第五氮化鋁鎵緩衝層155的z介於0.05-0.15之間。可以看出在本發明實施例中,離基板110越遠、越靠上層的氮化鋁鎵緩衝層151-155,其設定的鋁原子比例越低。如此越靠上層鋁原子比例越低的氮化鋁鎵緩衝層之設計可以有效緩衝從氮化鋁材質的成核層120到後續所要成長的氮化鎵磊晶層的應力。另一方面,在本發明實施例中,單一氮化鋁鎵緩衝層中的鋁原子比例也可呈漸變型態,例如以第一氮化鋁鎵緩衝層151為例,其AlzGa(1-z)N成分中的z值(鋁原子比例)介於0.7~0.95之間,其可能是第一氮化鋁鎵緩衝層151中的z值從靠近基板110一側的0.95往遠離基板110一側的0.7逐漸變小。此氮化鋁鎵緩衝層中鋁原子比例漸變型態的設計亦有助於應力的逐步緩衝。上述的各氮化鋁鎵緩衝層151-155都可以透過MOCVD方式來成長形成,其成長溫度介於1000~1200℃。 Please refer to FIG. 4, which illustrates a type of a buffer layer 150 formed on the nucleation layer 120 according to an embodiment of the present invention. In this embodiment, the buffer layer 150 includes a total of five aluminum gallium nitride buffer layers (graded layers) 151-155 and an intermediate superlattice structure layer 130, wherein the intermediate superlattice structure layer 130 is disposed on the nucleation layer 120 and the lowermost aluminum gallium nitride buffer layer 151. In terms of structural composition, although the composition of the five aluminum gallium nitride buffer layers 151-155 are all aluminum gallium nitride (Al z Ga (1-2) N), the proportion of aluminum atoms is different. For example, in an embodiment, the z of the first aluminum gallium nitride buffer layer 151 is between 0.7 and 0.95, the z of the second aluminum gallium nitride buffer layer 152 is between 0.5 and 0.65, and the third aluminum gallium nitride buffer layer has z between 0.5 and 0.65. The z of the buffer layer 153 is between 0.3-0.45, the z of the fourth aluminum gallium nitride buffer layer 154 is between 0.15-0.25, and the z of the fifth aluminum gallium nitride buffer layer 155 is between 0.05-0.15 . It can be seen that in the embodiment of the present invention, the farther away from the substrate 110 and the closer to the upper aluminum gallium nitride buffer layer 151-155, the lower the proportion of aluminum atoms is set. In this way, the design of the aluminum gallium nitride buffer layer with the lower the atomic ratio of aluminum in the upper layer can effectively buffer the stress from the aluminum nitride nucleation layer 120 to the gallium nitride epitaxial layer to be subsequently grown. On the other hand, in the embodiment of the present invention, the proportion of aluminum atoms in a single aluminum gallium nitride buffer layer may also be in a gradual state. For example, taking the first aluminum gallium nitride buffer layer 151 as an example, the Al z Ga (1 -z) The z value (aluminum atomic ratio) in the N component is between 0.7 and 0.95, which may be that the z value in the first aluminum gallium nitride buffer layer 151 moves from 0.95 on the side close to the substrate 110 to far away from the substrate 110 The 0.7 on one side gradually becomes smaller. The gradient design of the aluminum atom ratio in the aluminum gallium nitride buffer layer also helps to gradually buffer the stress. The above-mentioned aluminum gallium nitride buffer layers 151-155 can be grown and formed by MOCVD, and the growth temperature is between 1000 and 1200°C.

除了鋁原子比例的變化,在本發明實施例中,各個氮化鋁鎵緩衝層151-155的厚度也有所不同。基本上,離基板110越遠的氮化鋁鎵緩衝層151-155 的厚度就越大。例如,在本發明實施例中,第一氮化鋁鎵緩衝層151的厚度介於50~200nm之間,第二氮化鋁鎵緩衝層152的厚度介於150~220nm之間,第三氮化鋁鎵緩衝層153的厚度介於350~600nm之間,第四氮化鋁鎵緩衝層151的厚度介於800~1500nm之間,第五氮化鋁鎵緩衝層155的厚度介於1600~2300nm之間。如此越往上層氮化鋁鎵緩衝層的厚度越厚的設計亦可有效緩解後續氮化鎵成長時的應力影響。 In addition to the change in the aluminum atomic ratio, in the embodiment of the present invention, the thickness of each aluminum gallium nitride buffer layer 151-155 is also different. Basically, the aluminum gallium nitride buffer layer 151-155 farther away from the substrate 110 The greater the thickness. For example, in the embodiment of the present invention, the thickness of the first aluminum gallium nitride buffer layer 151 is between 50 and 200 nm, the thickness of the second aluminum gallium nitride buffer layer 152 is between 150 and 220 nm, and the third nitrogen The thickness of the aluminum gallium nitride buffer layer 153 is between 350 and 600 nm, the thickness of the fourth aluminum gallium nitride buffer layer 151 is between 800 and 1500 nm, and the thickness of the fifth aluminum gallium nitride buffer layer 155 is between 1600 nm. Between 2300nm. In this way, the higher the thickness of the aluminum gallium nitride buffer layer is, the thicker the design can also effectively alleviate the stress effect during the subsequent growth of gallium nitride.

再者,在本發明實施例中,氮化鋁鎵緩衝層151-155中還可以摻入雜質,例如摻入碳、鐵、鎂以及鋅等或其組合的摻質,使得氮化鋁鎵緩衝層151-155變為摻雜氮化鋁鎵層。其中,所摻入的摻質濃度也會因各氮化鋁鎵緩衝層151-155而有所不同。例如,在本發明實施例中,第一氮化鋁鎵緩衝層151的摻質濃度大於1x1017離子/立方公分,第二氮化鋁鎵緩衝層152的摻質濃度大於3x1017離子/立方公分,第三氮化鋁鎵緩衝層153的摻質濃度大於5x1017離子/立方公分,第四氮化鋁鎵緩衝層154的摻質濃度大於7x1017離子/立方公分,第五氮化鋁鎵緩衝層155的摻質濃度大於1x1018離子/立方公分。可以看出越往上層的氮化鋁鎵緩衝層,其摻質濃度越大。此摻值濃度的漸變設計亦有助於電性的提升。 Furthermore, in the embodiment of the present invention, the aluminum gallium nitride buffer layer 151-155 may also be doped with impurities, such as doped with dopants of carbon, iron, magnesium, zinc, etc. or a combination thereof, so that the aluminum gallium nitride buffer layer Layers 151-155 become doped aluminum gallium nitride layers. Wherein, the dopant concentration doped will also be different for each aluminum gallium nitride buffer layer 151-155. For example, in the embodiment of the present invention, the dopant concentration of the first aluminum gallium nitride buffer layer 151 is greater than 1×10 17 ions/cm ^ 3, and the dopant concentration of the second aluminum gallium nitride buffer layer 152 is greater than 3×10 17 ions/cm ^ 3 doping concentration, a third aluminum gallium nitride buffer layer 153 is greater than 5x10 17 ions / cm ^, the fourth dopant concentration of aluminum gallium nitride buffer layer 154 is greater than 7x10 17 ions / cm ^, aluminum gallium nitride buffer fifth The dopant concentration of layer 155 is greater than 1×10 18 ions/cm ^ 3. It can be seen that the higher the aluminum gallium nitride buffer layer is, the greater its dopant concentration. The gradual design of the dopant concentration also contributes to the improvement of electrical properties.

關於在本實施例中,設置在成核層120與第一氮化鋁鎵緩衝層151之間的中間超晶格結構層130,前文中曾提到中間超晶格結構層130中的第一超晶格層140a與第二超晶格層140b的鋁原子比例將由其中間超晶格結構層130上下所連接的層結構中的鋁原子比例相同。以本實施例為例,中間超晶格結構層130的第一超晶格層140a會連接到下方的成核層120,在成核層120的材料為氮化鋁的基礎上,其氮化鋁鎵(AlxGa(1-x)N)材質的第一超晶格層140a中的鋁原子比例x較佳為接近或等於1。中間超晶格結構層130的第二超晶格層140b會連接到上方的第一氮化鋁鎵緩衝層151,在前述第一氮化鋁鎵緩衝層151的材料為氮化鋁鎵的基礎上(AlzGa(1-z)N,其z值介於0.7~0.95之間),同為氮化鋁鎵(AlxGa(1-x)N)材質的第二超晶 格層140b中的鋁原子比例x較佳也在0.7~0.95之間。以如此設置,穿插在緩衝層結構中的中間超晶格結構層130能藉由其多個超薄且具有與上下兩接面相同成分組成的超晶格對140的周期性交替疊層設置來達成將兩側的晶格連在一起而不產生介面失配錯位的功效。 Regarding the intermediate superlattice structure layer 130 disposed between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151 in this embodiment, the first part of the intermediate superlattice structure layer 130 was mentioned above. The ratio of aluminum atoms of the superlattice layer 140a and the second superlattice layer 140b will be the same as the ratio of aluminum atoms in the layer structure connected up and down by the intermediate superlattice structure layer 130. Taking this embodiment as an example, the first superlattice layer 140a of the middle superlattice structure layer 130 will be connected to the nucleation layer 120 below. The material of the nucleation layer 120 is aluminum nitride. The aluminum atom ratio x in the first superlattice layer 140a made of aluminum gallium (Al x Ga (1-x) N) is preferably close to or equal to one. The second superlattice layer 140b of the middle superlattice structure layer 130 will be connected to the first aluminum gallium nitride buffer layer 151 above. The material of the aforementioned first aluminum gallium nitride buffer layer 151 is based on aluminum gallium nitride Upper (Al z Ga (1-z) N, the z value is between 0.7 and 0.95), the second superlattice layer 140b is also made of aluminum gallium nitride (Al x Ga (1-x) N) Preferably, the ratio x of aluminum atoms is also between 0.7 and 0.95. With this arrangement, the intermediate superlattice structure layer 130 intersecting in the buffer layer structure can be arranged alternately and stacked by its multiple ultra-thin superlattice pairs 140 having the same composition as the upper and lower junctions. Achieve the effect of connecting the crystal lattices on both sides together without causing interface mismatch and dislocation.

[實施例2] [Example 2]

請參照第5圖,其繪示出根據本發明另一實施例中緩衝層150形成在成核層120上的型態。此實施例設計將兩個中間超晶格結構層130插入任意的氮化鋁鎵緩衝層151-155之間(包含最下方的成核層120),如此可有

Figure 109129873-A0305-02-0012-11
共15種的插入組合。以圖中為例,成核層120與第一氮化鋁鎵緩衝層151之間以及第一氮化鋁鎵緩衝層151與第二氮化鋁鎵緩衝層152之間插入有中間超晶格結構層130。其他關於緩衝層150中的氮化鋁鎵緩衝層151-155以及中間超晶格結構層130的成分、鋁原子比例、厚度、摻質濃度以及成長方式等規則與實施例1相同。 Please refer to FIG. 5, which illustrates a type of the buffer layer 150 formed on the nucleation layer 120 according to another embodiment of the present invention. In this embodiment, two intermediate superlattice structure layers 130 are inserted between arbitrary aluminum gallium nitride buffer layers 151-155 (including the lowest nucleation layer 120), so that there may be
Figure 109129873-A0305-02-0012-11
A total of 15 insert combinations. Taking the figure as an example, an intermediate superlattice is inserted between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151, and between the first aluminum gallium nitride buffer layer 151 and the second aluminum gallium nitride buffer layer 152. Structural layer 130. Other rules regarding the composition, aluminum atomic ratio, thickness, dopant concentration, and growth mode of the aluminum gallium nitride buffer layers 151-155 in the buffer layer 150 and the intermediate superlattice structure layer 130 are the same as those in the first embodiment.

[實施例3] [Example 3]

請參照第6圖,其繪示出根據本發明又一實施例中緩衝層150形成在成核層120上的型態。此實施例設計將三個中間超晶格結構層130插入任意的氮化鋁鎵緩衝層151-155之間(包含最下方的成核層120),如此可有

Figure 109129873-A0305-02-0012-12
共20種的插入組合。以圖中為例,成核層120與第一氮化鋁鎵緩衝層151之間、第一氮化鋁鎵緩衝層151與第二氮化鋁鎵緩衝層152之間、以及第二氮化鋁鎵緩衝層152與第三氮化鋁鎵緩衝層153之間插入有中間超晶格結構層130。其他關於緩衝層150中的氮化鋁鎵緩衝層151-155以及中間超晶格結構層130的成分、鋁原子比例、厚度、摻質濃度以及成長方式等規則與實施例1相同。 Please refer to FIG. 6, which depicts a pattern of the buffer layer 150 formed on the nucleation layer 120 according to another embodiment of the present invention. In this embodiment, three intermediate superlattice structure layers 130 are inserted between arbitrary aluminum gallium nitride buffer layers 151-155 (including the lowest nucleation layer 120), so that there may be
Figure 109129873-A0305-02-0012-12
A total of 20 insert combinations. Taking the figure as an example, between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151, between the first aluminum gallium nitride buffer layer 151 and the second aluminum gallium nitride buffer layer 152, and the second nitride An intermediate superlattice structure layer 130 is inserted between the aluminum gallium buffer layer 152 and the third aluminum gallium nitride buffer layer 153. Other rules regarding the composition, aluminum atomic ratio, thickness, dopant concentration, and growth mode of the aluminum gallium nitride buffer layers 151-155 in the buffer layer 150 and the intermediate superlattice structure layer 130 are the same as those in the first embodiment.

[實施例4] [Example 4]

請參照第7圖,其繪示出根據本發明又一實施例中緩衝層150形成在成核層120上的型態。此實施例設計將四個中間超晶格結構層130插入任意的氮化鋁鎵緩衝層151-155之間(包含最下方的成核層120),如此可有

Figure 109129873-A0305-02-0013-13
共15種的插入組合。以圖中為例,成核層120與第一氮化鋁鎵緩衝層151之間、第一氮化鋁鎵緩衝層151與第二氮化鋁鎵緩衝層152之間、第二氮化鋁鎵緩衝層152與第三氮化鋁鎵緩衝層153之間、以及第三氮化鋁鎵緩衝層153與第四氮化鋁鎵緩衝層154之間插入有中間超晶格結構層130。其他關於緩衝層150中的氮化鋁鎵緩衝層151-155以及中間超晶格結構層130的成分、鋁原子比例、厚度、摻質濃度以及成長方式等規則與實施例1相同。 Please refer to FIG. 7, which illustrates the type of the buffer layer 150 formed on the nucleation layer 120 according to another embodiment of the present invention. In this embodiment, four intermediate superlattice structure layers 130 are inserted between arbitrary aluminum gallium nitride buffer layers 151-155 (including the lowest nucleation layer 120).
Figure 109129873-A0305-02-0013-13
A total of 15 insert combinations. Taking the figure as an example, between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151, between the first aluminum gallium nitride buffer layer 151 and the second aluminum gallium nitride buffer layer 152, and the second aluminum nitride An intermediate superlattice structure layer 130 is inserted between the gallium buffer layer 152 and the third aluminum gallium nitride buffer layer 153 and between the third aluminum gallium nitride buffer layer 153 and the fourth aluminum gallium nitride buffer layer 154. Other rules regarding the composition, aluminum atomic ratio, thickness, dopant concentration, and growth mode of the aluminum gallium nitride buffer layers 151-155 in the buffer layer 150 and the intermediate superlattice structure layer 130 are the same as those in the first embodiment.

[實施例5] [Example 5]

請參照第8圖,其繪示出根據本發明又一實施例中緩衝層150形成在成核層120上的型態。此實施例設計將五個中間超晶格結構層130插入任意的氮化鋁鎵緩衝層151-155之間(包含最下方的成核層120),如此可有

Figure 109129873-A0305-02-0013-14
共6種的插入組合。以圖中為例,成核層120與第一氮化鋁鎵緩衝層151之間、第一氮化鋁鎵緩衝層151與第二氮化鋁鎵緩衝層152之間、第二氮化鋁鎵緩衝層152與第三氮化鋁鎵緩衝層153之間、第三氮化鋁鎵緩衝層153與第四氮化鋁鎵緩衝層154之間、以及第四氮化鋁鎵緩衝層154與第五氮化鋁鎵緩衝層155之間插入有中間超晶格結構層130。其他關於緩衝層150中的氮化鋁鎵緩衝層151-155以及中間超晶格結構層130的成分、鋁原子比例、厚度、摻質濃度以及成長方式等規則與實施例1相同。 Please refer to FIG. 8, which illustrates the type of the buffer layer 150 formed on the nucleation layer 120 according to another embodiment of the present invention. In this embodiment, five intermediate superlattice structure layers 130 are inserted between arbitrary aluminum gallium nitride buffer layers 151-155 (including the lowest nucleation layer 120), so that there may be
Figure 109129873-A0305-02-0013-14
A total of 6 kinds of insert combinations. Taking the figure as an example, between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151, between the first aluminum gallium nitride buffer layer 151 and the second aluminum gallium nitride buffer layer 152, and the second aluminum nitride Between the gallium buffer layer 152 and the third aluminum gallium nitride buffer layer 153, between the third aluminum gallium nitride buffer layer 153 and the fourth aluminum gallium nitride buffer layer 154, and between the fourth aluminum gallium nitride buffer layer 154 and An intermediate superlattice structure layer 130 is inserted between the fifth aluminum gallium nitride buffer layer 155. Other rules regarding the composition, aluminum atomic ratio, thickness, dopant concentration, and growth mode of the aluminum gallium nitride buffer layers 151-155 in the buffer layer 150 and the intermediate superlattice structure layer 130 are the same as those in the first embodiment.

[實施例6] [Example 6]

請參照第9圖,其繪示出根據本發明又一實施例中緩衝層150形成在 成核層120上的型態。此實施例設計將六個中間超晶格結構層130插入任意的氮化鋁鎵緩衝層151-155之間(包含最下方的成核層120),如此可有

Figure 109129873-A0305-02-0014-15
共1種的插入組合。以圖中為例,成核層120與第一氮化鋁鎵緩衝層151之間、第一氮化鋁鎵緩衝層151與第二氮化鋁鎵緩衝層152之間、第二氮化鋁鎵緩衝層152與第三氮化鋁鎵緩衝層153之間、第三氮化鋁鎵緩衝層153與第四氮化鋁鎵緩衝層154之間、第四氮化鋁鎵緩衝層154與第五氮化鋁鎵緩衝層155之間插入有中間超晶格結構層130,以及一中間超晶格結構層130位於第五氮化鋁鎵緩衝層155之上。其他關於緩衝層150中的氮化鋁鎵緩衝層151-155以及中間超晶格結構層130的成分、鋁原子比例、厚度、摻質濃度以及成長方式等規則與實施例1相同。 Please refer to FIG. 9, which illustrates the type of the buffer layer 150 formed on the nucleation layer 120 according to another embodiment of the present invention. In this embodiment, six intermediate superlattice structure layers 130 are inserted between arbitrary aluminum gallium nitride buffer layers 151-155 (including the lowest nucleation layer 120).
Figure 109129873-A0305-02-0014-15
A total of 1 insert combination. Taking the figure as an example, between the nucleation layer 120 and the first aluminum gallium nitride buffer layer 151, between the first aluminum gallium nitride buffer layer 151 and the second aluminum gallium nitride buffer layer 152, and the second aluminum nitride Between the gallium buffer layer 152 and the third aluminum gallium nitride buffer layer 153, between the third aluminum gallium nitride buffer layer 153 and the fourth aluminum gallium nitride buffer layer 154, and the fourth aluminum gallium nitride buffer layer 154 and the fourth aluminum gallium nitride buffer layer 154 An intermediate superlattice structure layer 130 is inserted between the five aluminum gallium nitride buffer layers 155, and an intermediate superlattice structure layer 130 is located on the fifth aluminum gallium nitride buffer layer 155. Other rules regarding the composition, aluminum atomic ratio, thickness, dopant concentration, and growth mode of the aluminum gallium nitride buffer layers 151-155 in the buffer layer 150 and the intermediate superlattice structure layer 130 are the same as those in the first embodiment.

在完成了前述由多個氮化鋁鎵緩衝(漸變)層151-155以及多個中間超晶格結構層130所構成的緩衝層150之後,接下來即進行後續氮化鎵磊晶層的成長。請參照第10圖,首先在緩衝層150上形成一高阻值層160,其成分可為氮化鎵,厚度介於0.5~5um之間。高阻值層160可以透過MOCVD方式在成長溫度介於1000~1200℃的環境下形成,並摻入碳、鐵、鎂以及鋅等或其組合的摻質,其摻雜物濃度介於1x1017離子/立方公分。在實施例6的例子中,最上層的中間超晶格結構層130會介於第五氮化鋁鎵緩衝層155與此高阻值層160之間。高電阻率的GaN高阻值層160可以降低GaN系的高電子遷移率電晶體(HEMTs)元件的漏電流、保持其電子氣的二維特性、提高元件的工作頻率、抑制電流崩塌效應、並提高HEMT元件的擊穿電壓。 After completing the aforementioned buffer layer 150 composed of a plurality of aluminum gallium nitride buffer (graded) layers 151-155 and a plurality of intermediate superlattice structure layers 130, the subsequent growth of the gallium nitride epitaxial layer is next. . Referring to FIG. 10, first, a high resistance layer 160 is formed on the buffer layer 150, the composition of which can be gallium nitride, and the thickness is between 0.5-5um. The high-resistance layer 160 can be formed by MOCVD at a growth temperature of 1000 to 1200°C, and doped with carbon, iron, magnesium, zinc, etc. or a combination of dopants, and the dopant concentration is 1x10 17 Ions/cm3. In the example of Embodiment 6, the uppermost middle superlattice structure layer 130 is between the fifth aluminum gallium nitride buffer layer 155 and the high resistance layer 160. The high-resistivity GaN high-resistance layer 160 can reduce the leakage current of GaN-based high electron mobility transistors (HEMTs) components, maintain the two-dimensional characteristics of the electron gas, increase the operating frequency of the components, suppress the current collapse effect, and Improve the breakdown voltage of HEMT components.

復參照第10圖,在形成了高阻值層160後,接下來在高阻值層160上成長一層本質氮化鎵層170,即未摻雜的氮化鎵層,其厚度介於0.2~1um之間,可以透過MOCVD方式在成長溫度介於1000~1200℃的環境下形成。本質氮化鎵層170可以做為HEMT元件的電子通道層。本質氮化鎵層170上會形成一層電子提供層(barrier layer)180,其成分可為未摻雜的氮化鋁鎵(AlhGa1-hN),其中0.1<h<0.3,厚度 介於10~40nm,成長溫度介於1000~1200度,可以透過MOCVD方式在成長溫度介於1000~1200℃的環境下形成。氮化鋁鎵的電子提供層與本質氮化鎵層170的異質接面會在該接面下形成低阻值的二維電子氣(2DEG),該二維電子氣可以使得元件具有很高的電子移動率,可做為通道來導通電流。 Referring again to Fig. 10, after the high resistance layer 160 is formed, an essential gallium nitride layer 170, that is, an undoped gallium nitride layer, is grown on the high resistance layer 160, with a thickness of 0.2~ Between 1um, it can be formed by MOCVD in an environment where the growth temperature is between 1000~1200℃. The intrinsic gallium nitride layer 170 can be used as the electron channel layer of the HEMT device. An electron supply layer 180 is formed on the intrinsic gallium nitride layer 170, and its composition can be undoped aluminum gallium nitride (Al h Ga 1-h N), where 0.1<h<0.3, the thickness is medium At 10~40nm, the growth temperature is between 1000~1200°C, and it can be formed in an environment with a growth temperature of 1000~1200°C by MOCVD method. The heterogeneous junction between the electron supply layer of aluminum gallium nitride and the intrinsic gallium nitride layer 170 will form a low-resistance two-dimensional electron gas (2DEG) under the junction. The two-dimensional electron gas can make the device have a high Electron mobility can be used as a channel to conduct current.

復參照第10圖,在形成了電子提供層180之後,最後在電子提供層180上形成一覆蓋層190,其成分可以為摻雜氮化鎵或是摻雜氮化鋁鎵(AliGa1-iN),其中0.1<i<0.3。當覆蓋層190的材料為摻雜氮化鎵時,其厚度範圍約介於1~20nm,可採用碳、鐵、鎂以及鋅等或其組合的摻質。當覆蓋層190的材料為摻雜氮化鋁鎵時,其摻雜元素會選用鎂,且鎂摻雜濃度約為1x1019離子/立方公分,厚度則介於10~150nm之間。覆蓋層190可以透過MOCVD方式在成長溫度介於1000~1200℃的環境下形成。以摻雜氮化鎵或氮化鋁鎵為主的覆蓋層190有助於降低HEMT元件中的閘極漏電流並使其具有較高的崩潰電壓。在覆蓋層190形成後,後續製程中還會在覆蓋層190上製作HEMT元件的閘極、源極以及汲極等部位。由於該些部位並非本案之重點,文中與圖中將省略其說明與圖示。 Referring again to FIG. 10, after the electron supply layer 180 is formed, a cover layer 190 is finally formed on the electron supply layer 180, the composition of which can be doped gallium nitride or doped aluminum gallium nitride (Al i Ga 1 -i N), where 0.1<i<0.3. When the material of the cover layer 190 is doped gallium nitride, its thickness ranges from about 1 to 20 nm, and dopants such as carbon, iron, magnesium, zinc, etc. or a combination thereof can be used. When the material of the covering layer 190 is doped aluminum gallium nitride, magnesium is selected as the doping element, and the magnesium doping concentration is about 1×10 19 ions/cm ^ 3, and the thickness is between 10 nm and 150 nm. The covering layer 190 can be formed by MOCVD in an environment with a growth temperature of 1000 to 1200°C. The cover layer 190 mainly doped with gallium nitride or aluminum gallium nitride can help reduce the gate leakage current in the HEMT device and make it have a higher breakdown voltage. After the cover layer 190 is formed, the gate, source, and drain of the HEMT device will be fabricated on the cover layer 190 in the subsequent process. Since these parts are not the focus of this case, their description and illustrations will be omitted in the text and figures.

綜觀上述本發明實施例,本發明提出了一種改良的、具有高品質與低損耗特性的氮化鎵磊晶片,其透過將氮化鎵成長在絕緣層上覆矽晶圓上,並搭配多層漸變層以及多層中間層超晶格結構的變化來大幅緩衝氮化鎵成長時所帶來的應力,形成在絕緣層上覆矽晶圓背面的絕緣氧化層也可做為一固定層來進一步補償後續磊晶製程期間所產生的應力,避免晶圓產生習知的翹曲問題。此外,多層緩衝結構並使得整體磊晶片的厚度可超過10um,崩潰電壓可超過1000伏特,如此提升了氮化鎵元件的效率,其特別適合用來製作氮化鎵系的HEMT元件。 Looking at the above-mentioned embodiments of the present invention, the present invention proposes an improved gallium nitride epitaxial wafer with high quality and low loss characteristics, which is achieved by growing gallium nitride on a silicon-on-insulating wafer with multi-layer gradation. The changes in the superlattice structure of the layer and the multi-layer intermediate layer greatly buffer the stress brought by the growth of gallium nitride. The insulating oxide layer formed on the insulating layer on the back of the silicon wafer can also be used as a fixed layer to further compensate for the subsequent The stress generated during the epitaxy process avoids the conventional warpage problem of the wafer. In addition, the multilayer buffer structure allows the thickness of the entire epitaxial wafer to exceed 10um, and the breakdown voltage can exceed 1000 volts, which improves the efficiency of gallium nitride devices and is particularly suitable for making gallium nitride-based HEMT devices.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

110:基板(絕緣層上覆矽晶圓) 110: Substrate (silicon wafer over insulating layer)

120:成核層 120: Nucleation layer

150:緩衝層 150: buffer layer

160:高阻值層 160: high resistance layer

170:本質氮化鎵層 170: Intrinsic GaN layer

180:電子提供層 180: electronic provision layer

190:覆蓋層 190: Overlay

Claims (18)

一種可降低應力的氮化鎵磊晶片,包含:一基板;一成核層,位在該基板上;多個氮化鋁鎵緩衝層,位在該成核層上;多個中間超晶格結構層,其中部分的該中間超晶格結構層位於兩個該氮化鋁鎵緩衝層之間;一高阻值層,位在最上層的該氮化鋁鎵緩衝層上;一本質氮化鎵層,位在該高阻值層上;一電子提供層,位在該本質氮化鎵層上,其中該高阻值層與該電子提供層之間具有該本質氮化鎵層;以及一覆蓋層,位在該電子提供層上。 A gallium nitride epitaxial wafer capable of reducing stress, comprising: a substrate; a nucleation layer located on the substrate; multiple aluminum gallium nitride buffer layers located on the nucleation layer; multiple intermediate superlattices Structure layer, part of the intermediate superlattice structure layer is located between the two aluminum gallium nitride buffer layers; a high resistance layer is located on the uppermost aluminum gallium nitride buffer layer; an intrinsic nitride A gallium layer located on the high resistance layer; an electron supply layer located on the intrinsic gallium nitride layer, wherein the intrinsic gallium nitride layer is located between the high resistance layer and the electron supply layer; and a The covering layer is located on the electron supply layer. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中一該中間超晶格結構層位於該成核層與最下層的該氮化鋁鎵緩衝層之間。 According to the stress-reducing gallium nitride epitaxial wafer described in item 1 of the scope of patent application, one of the intermediate superlattice structure layers is located between the nucleation layer and the lowermost aluminum gallium nitride buffer layer. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中一該中間超晶格結構層位於該高阻值層與最上層的該氮化鋁鎵緩衝層之間。 According to the stress-reducing gallium nitride epitaxy wafer described in item 1 of the scope of patent application, one of the intermediate superlattice structure layers is located between the high resistance layer and the uppermost aluminum gallium nitride buffer layer. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該基板為絕緣層上覆矽晶圓,包含一支撐晶圓、位於該支撐晶圓兩面的絕緣氧化層以及一元件晶圓位於其中一該絕緣氧化層上。 The stress-reducing gallium nitride epitaxial wafer according to the first item of the scope of patent application, wherein the substrate is a silicon-on-insulating wafer, including a support wafer, an insulating oxide layer on both sides of the support wafer, and a The device wafer is located on one of the insulating oxide layers. 根據申請專利範圍第4項所述之可降低應力的氮化鎵磊晶片,其中 該支撐晶圓與該元件晶圓的材料為矽晶圓、碳化矽晶圓或是藍寶石晶圓。 According to the 4th item of the scope of patent application, the stress-reducing gallium nitride epitaxy wafer, in which The material of the support wafer and the device wafer is silicon wafer, silicon carbide wafer or sapphire wafer. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該成核層包含一低溫氮化鋁層位於該基板上以及一高溫氮化鋁層位於該低溫氮化鋁層上。 The stress-reducing gallium nitride epitaxy wafer according to the first item of the patent application, wherein the nucleation layer includes a low-temperature aluminum nitride layer on the substrate and a high-temperature aluminum nitride layer on the low-temperature aluminum nitride layer superior. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中各個該氮化鋁鎵緩衝層的鋁原子比例不同,離該基板越遠的該氮化鋁鎵緩衝層的鋁原子比例越小。 According to the stress-reducing gallium nitride epitaxy wafer described in item 1 of the scope of patent application, the aluminum atomic ratio of each aluminum gallium nitride buffer layer is different, and the farther away from the substrate, the aluminum of the aluminum gallium nitride buffer layer The smaller the atomic ratio. 根據申請專利範圍第7項所述之可降低應力的氮化鎵磊晶片,其中每個該氮化鋁鎵緩衝層為漸變層且其鋁原子比例離該基板越遠就越小。 According to the stress-reducing gallium nitride epitaxy wafer described in item 7 of the scope of patent application, each of the aluminum gallium nitride buffer layers is a graded layer and the aluminum atom ratio is smaller the farther away from the substrate. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中各個該氮化鋁鎵緩衝層的厚度不同,離該基板越遠的該氮化鋁鎵緩衝層的厚度越大。 According to the stress-reducing gallium nitride epitaxy wafer described in item 1 of the scope of patent application, the thickness of each aluminum gallium nitride buffer layer is different, and the thickness of the aluminum gallium nitride buffer layer farther from the substrate is greater . 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該多個氮化鋁鎵緩衝層為具有摻質的摻雜氮化鋁鎵層,該摻質選自下列群組或其組合:碳、鐵、鎂以及鋅。 The stress-reducing gallium nitride epitaxial wafer according to the first item of the patent application, wherein the plurality of aluminum gallium nitride buffer layers are doped aluminum gallium nitride layers with dopants, and the dopants are selected from the following groups Group or combination: carbon, iron, magnesium and zinc. 根據申請專利範圍第10項所述之可降低應力的氮化鎵磊晶片,其中各個該氮化鋁鎵緩衝層的該摻質的濃度不同,離該基板越遠的該氮化鋁鎵緩衝層的該摻質的濃度越大。 According to the stress-reducing gallium nitride epitaxy wafer described in item 10 of the scope of patent application, the concentration of the dopant in each of the aluminum gallium nitride buffer layers is different, and the aluminum gallium nitride buffer layer farther from the substrate The greater the concentration of this dopant. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中每個該中間超晶格結構層包含多個超晶格組,每個該超晶格組包含多個超晶格對,每個該超晶格對包含第一超晶格層以及位於該第一超晶格層上的第二超晶格層。 According to the stress-reducing gallium nitride epitaxial wafer described in the first item of the patent application, each of the intermediate superlattice structure layers includes a plurality of superlattice groups, and each of the superlattice groups includes a plurality of supercrystals Lattice pairs, each of the superlattice pairs includes a first superlattice layer and a second superlattice layer located on the first superlattice layer. 根據申請專利範圍第12項所述之可降低應力的氮化鎵磊晶片,其中該第一超晶格層與該第二超晶格層的材料為氮化鋁鎵,該第一超晶格層的鋁原子濃度與該第二超晶格層的鋁原子比例不同。 The stress-reducing gallium nitride epitaxial wafer according to item 12 of the scope of patent application, wherein the material of the first superlattice layer and the second superlattice layer is aluminum gallium nitride, and the first superlattice The aluminum atom concentration of the layer is different from the aluminum atom ratio of the second superlattice layer. 根據申請專利範圍第13項所述之可降低應力的氮化鎵磊晶片,其中該第一超晶格層的鋁原子比例與下方最接近的該氮化鋁鎵緩衝層的鋁原子比例相同,該第二超晶格層的鋁原子比例與上方最接近的該氮化鋁鎵緩衝層的鋁原子比例相同。 According to the stress-reducing gallium nitride epitaxial wafer described in item 13 of the scope of patent application, the aluminum atom ratio of the first superlattice layer is the same as the aluminum atom ratio of the closest aluminum gallium nitride buffer layer below, The proportion of aluminum atoms of the second superlattice layer is the same as the proportion of aluminum atoms of the aluminum gallium nitride buffer layer closest above. 根據申請專利範圍第12項所述之可降低應力的氮化鎵磊晶片,其中各個該超晶格組中的該第一超晶格層的厚度不同,離該基板越遠的該超晶格組中的該第一超晶格層的厚度越小,離該基板越遠的該超晶格組中的該第二超晶格層的厚度越大。 According to the stress-reducing gallium nitride epitaxial wafer described in item 12 of the scope of patent application, the thickness of the first superlattice layer in each superlattice group is different, and the farther the superlattice is from the substrate The smaller the thickness of the first superlattice layer in the group, the greater the thickness of the second superlattice layer in the superlattice group that is farther from the substrate. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該高阻值層的材料為摻雜氮化鎵。 According to the stress-reducing gallium nitride epitaxial wafer described in item 1 of the scope of patent application, the material of the high resistance layer is doped gallium nitride. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該電子提供層的材料為氮化鋁鎵。 According to the stress-reducing gallium nitride epitaxy wafer described in item 1 of the scope of patent application, the material of the electron supply layer is aluminum gallium nitride. 根據申請專利範圍第1項所述之可降低應力的氮化鎵磊晶片,其中該覆蓋層的材料為摻雜氮化鎵或是摻雜氮化鋁鎵。 According to the stress-reducing gallium nitride epitaxy wafer described in item 1 of the scope of patent application, the material of the cover layer is doped gallium nitride or doped aluminum gallium nitride.
TW109129873A 2020-09-01 2020-09-01 Gallium nitride epitaxial wafer capable of reducing stress TWI742828B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129873A TWI742828B (en) 2020-09-01 2020-09-01 Gallium nitride epitaxial wafer capable of reducing stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129873A TWI742828B (en) 2020-09-01 2020-09-01 Gallium nitride epitaxial wafer capable of reducing stress

Publications (2)

Publication Number Publication Date
TWI742828B true TWI742828B (en) 2021-10-11
TW202210668A TW202210668A (en) 2022-03-16

Family

ID=80782576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129873A TWI742828B (en) 2020-09-01 2020-09-01 Gallium nitride epitaxial wafer capable of reducing stress

Country Status (1)

Country Link
TW (1) TWI742828B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI839891B (en) * 2022-10-13 2024-04-21 財團法人工業技術研究院 Semiconductor substrate with balance stress

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI257142B (en) * 2000-12-14 2006-06-21 Nitronex Corp Gallium nitride materials and methods
TW201816849A (en) * 2016-08-23 2018-05-01 美商克若密斯股份有限公司 Power components integrated with engineering substrates
US20200105905A1 (en) * 2018-09-27 2020-04-02 Globalfoundries Inc. Methods, apparatus, and manufacturing system for finfet devices with reduced parasitic capacitance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI257142B (en) * 2000-12-14 2006-06-21 Nitronex Corp Gallium nitride materials and methods
TW201816849A (en) * 2016-08-23 2018-05-01 美商克若密斯股份有限公司 Power components integrated with engineering substrates
US20200105905A1 (en) * 2018-09-27 2020-04-02 Globalfoundries Inc. Methods, apparatus, and manufacturing system for finfet devices with reduced parasitic capacitance

Also Published As

Publication number Publication date
TW202210668A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11699750B2 (en) Gallium nitride epitaxial structures for power devices
CN104137226B (en) Suitable for the buffer layer structure of the III-nitride device with foreign substrate
CN107799583B (en) P-type doping of group III nitride buffer layer structures on heterogeneous substrates
US10573516B2 (en) Methods for integrated devices on an engineered substrate
US10755986B2 (en) Aluminum nitride based Silicon-on-Insulator substrate structure
CN112447771B (en) GeSiOI substrate and preparation method thereof, and GeSiOI device and preparation method thereof
JP2010021583A (en) Semiconductor substrate, production process of semiconductor substrate, and electronic device
TWI841533B (en) High electron mobility transistor and methods for manufacturing the same
CN102859695A (en) Epitaxial substrate and method for producing epitaxial substrate
TWI645454B (en) Epitaxial substrate and method of manufacturing same
CN103314429A (en) Layer structures for controlling stress of heteroepitaxially grown III-nitride layers
TW202013433A (en) III-N semiconductor structure and method of forming III-N semiconductor structure
TWI552948B (en) Semiconductor component
WO2019194042A1 (en) Method for manufacturing transistor
TWI742828B (en) Gallium nitride epitaxial wafer capable of reducing stress
JP5972917B2 (en) Semiconductor structure including a spatially confined dielectric region
CN113539786B (en) Silicon-based gallium nitride epitaxial structure and preparation method thereof
TWI788869B (en) High electron mobility transistor and composite substrate thereof
TWI783618B (en) Semiconductor structure
TWI768957B (en) Composite substrate and manufacture method thereof
CN106449663A (en) Upper semiconductor structure of insulator and preparation method of upper semiconductor structure
CN106373871A (en) Semiconductor structure and preparation method
CN106449375A (en) Semiconductor device with silicon-doped aluminum nitride layer and production method thereof
CN116344598A (en) Semiconductor structure and its preparation method