[go: up one dir, main page]

TWI740176B - Manufacturing method of cement modifier and functional cement material containing the cement modifier - Google Patents

Manufacturing method of cement modifier and functional cement material containing the cement modifier Download PDF

Info

Publication number
TWI740176B
TWI740176B TW108123836A TW108123836A TWI740176B TW I740176 B TWI740176 B TW I740176B TW 108123836 A TW108123836 A TW 108123836A TW 108123836 A TW108123836 A TW 108123836A TW I740176 B TWI740176 B TW I740176B
Authority
TW
Taiwan
Prior art keywords
cement
content
modifier
cement modifier
manufacturing
Prior art date
Application number
TW108123836A
Other languages
Chinese (zh)
Other versions
TW202102457A (en
Inventor
趙英守
陳炳南
趙冠至
陳志豪
黃進修
Original Assignee
樺勝環保事業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樺勝環保事業股份有限公司 filed Critical 樺勝環保事業股份有限公司
Priority to TW108123836A priority Critical patent/TWI740176B/en
Publication of TW202102457A publication Critical patent/TW202102457A/en
Application granted granted Critical
Publication of TWI740176B publication Critical patent/TWI740176B/en

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一種水泥改質劑之製造方法,其係適用於將電弧爐的還原碴資源化來製造水泥改質劑之方法,該製造方法包括:提供電弧爐的還原碴;將電弧爐的還原碴粉碎成平均粒徑小於20毫米的首次細化品;利用磁力產生裝置去除第一粉碎材中的鐵質成分而得到尾礦;將尾礦更進一步粉碎成平均粒徑小於5毫米的二次細化品;將低含水量製品粉磨成細度為500 m2 /kg以上的水泥改質劑。又,將該水泥改質劑與卜特蘭水泥以特定比例混拌後即可得到具有不同特殊性能的機能性水泥材料。A method for manufacturing a cement modifier, which is suitable for recycling the reduced ballast of an electric arc furnace to produce a cement modifier. The manufacturing method includes: providing the reduced ballast of the electric arc furnace; pulverizing the reduced ballast of the electric arc furnace into The first refined product with an average particle diameter of less than 20 mm; the iron content in the first crushed material is removed by a magnetic generator to obtain tailings; the tailings are further crushed into a secondary refined product with an average particle diameter of less than 5 mm ; Grind low-water content products into cement modifiers with a fineness of 500 m 2 /kg or more. In addition, after mixing the cement modifier and Portland cement in a specific ratio, functional cement materials with different special properties can be obtained.

Description

水泥改質劑之製造方法及含有該水泥改質劑之機能性水泥材料Manufacturing method of cement modifier and functional cement material containing the cement modifier

本發明係有關於一種電弧爐還原碴的資源化方法,特別是關於一種以電弧爐還原碴來製造水泥改質劑的方法及含有該水泥改質劑的機能性水泥材料。The present invention relates to a resource utilization method of electric arc furnace reduction ballast, in particular to a method for manufacturing cement modifier by electric arc furnace reduction ballast and a functional cement material containing the cement modifier.

煉鋼主要可分成高爐煉鋼、轉爐煉鋼及電弧爐煉鋼,高爐煉鋼的原料是鐵礦砂,利用鼓風機將熱空氣通過煤炭後產生高溫,將鐵礦砂中的鐵成分提煉出鐵水,鐵水進入轉爐後投入廢鐵為原料,產出鋼液,冷卻後成為鋼材。轉爐煉鋼同樣是以鐵礦砂為原料,而電弧爐煉鋼的原料主要是廢鐵,使電流通過石墨及廢鐵後產生電弧來熔解廢鐵。Steelmaking can be divided into blast furnace steelmaking, converter steelmaking and electric arc furnace steelmaking. The raw material for blast furnace steelmaking is iron ore. The hot air is passed through the coal by a blower to generate high temperature, and the iron content in the iron ore is extracted into iron. After the water and molten iron enter the converter, scrap iron is used as raw material to produce molten steel, which becomes steel after cooling. The converter steelmaking also uses iron ore as the raw material, while the electric arc furnace steelmaking raw material is mainly scrap iron. The electric current is passed through the graphite and scrap iron to generate an electric arc to melt the scrap iron.

電弧爐煉鋼主要可分成五大階段:原料收集、冶煉的前置作業、熔化期、氧化期及還原期,電弧爐煉鋼的原料主要是廢鐵,廢鐵經過除銹及除去雜質及不適合冶煉的其他金屬才能成為用於冶煉的原料,然後根據希望得到的鋼材性質進行配料而完成冶煉的前置作業,原料在電弧爐中經過高壓通電產生電弧而被熔解,熔化期會產生少許的爐碴以覆蓋鋼液及穩定電弧,在氧化期主要是加入含有高價氧化鐵的礦石或直接通入純氧,在轉變成低價氧化鐵後氧化鋼液中的碳及磷,此時會產生氧化碴,除去氧化碴後進入還原期,在還原期加入氧化鈣(石灰)形成薄碴,然後加入碳粉,進行去氧脫硫後形成還原碴。Electric arc furnace steelmaking can be divided into five major stages: raw material collection, smelting pre-operation, melting period, oxidation period and reduction period. The raw material of electric arc furnace steelmaking is mainly scrap iron, which is derusted and impurity removed and is not suitable for smelting. The other metals can be used as raw materials for smelting, and then batching according to the properties of the desired steel to complete the pre-smelting operations. The raw materials are melted in the electric arc furnace through high-voltage energization to generate electric arcs, and a little slag will be produced during the melting period. In order to cover the molten steel and stabilize the arc, during the oxidation period, the ore containing high-valent iron oxide is added or pure oxygen is directly introduced. After being converted into low-valent iron oxide, the carbon and phosphorus in the molten steel will be oxidized, and oxide ballast will be generated at this time. , After removing the oxide ballast, it enters the reduction period. During the reduction period, calcium oxide (lime) is added to form thin ballast, and then carbon powder is added to perform deoxygenation and desulfurization to form reduced ballast.

電弧爐煉鋼後產生的爐碴主要是在氧化期及還原期,分別是氧化碴及還原碴,氧化碴的形狀類似天然火成岩,粗糙呈黑褐色,富有稜角且多孔洞,而還原碴呈灰白色粉末狀。目前國內電弧爐煉鋼廠每生產1000萬公噸的鋼材就產生約120萬公噸的氧化碴及40萬公噸的還原碴。氧化碴及還原碴屬於事業廢棄物, 依據經濟部工業局公告爐碴之再利用用途,主要包括氧化碴(石)再利用用途:水泥生料原料、瀝青混凝土粒料原料、管溝回填用控制性低強度回填材料原料、鋪面工程(道路、人行道、貨櫃場或停車場)之基層或底層級配粒料原料、紐澤西護欄原料,或經高壓蒸氣處理後作為非構造物用預拌混凝土粒料原料、非構造物用預拌混凝土原料、水泥製品用粒料原料或混凝土(地)磚、空心磚、水泥瓦、水泥板、緣石、混凝土管、人孔、溝蓋之原料;還原碴(石)再利用用途包括水泥原料、瀝青混凝土粒料原料、鋪面工程(道路、人行道、貨櫃場或停車場)之基層或底層級配粒料原料、紐澤西護欄原料,或經高壓蒸氣處理後作為非構造物用預拌混凝土粒料原料、非構造物用預拌混凝土原料、水泥製品用粒料原料或混凝土(地)磚、空心磚、水泥瓦、水泥板、緣石、混凝土管、人孔、溝蓋之原料。The slag produced after electric arc furnace steelmaking is mainly in the oxidation period and reduction period. They are oxidized ballast and reduced ballast respectively. The shape of oxide ballast is similar to natural igneous rock. Powder. At present, the domestic electric arc furnace steelmaking plants produce about 1.2 million metric tons of oxide ballast and 400,000 metric tons of reduced ballast for every 10 million metric tons of steel produced. Oxidized ballast and reduced ballast are industrial wastes. According to the announcement of the Industrial Bureau of the Ministry of Economic Affairs, the reuse of ballast mainly includes the reuse of oxide ballast (stone): raw material for cement, raw material for asphalt concrete, and control for pipe trench backfilling. Low-strength backfill materials, raw materials for paving projects (roads, sidewalks, container yards, or parking lots) with granular materials for base or bottom gradation, raw materials for New Jersey guardrails, or ready-mixed concrete granules for non-structural objects after high-pressure steam treatment Raw materials, ready-mixed concrete raw materials for non-structural objects, aggregate raw materials for cement products or raw materials for concrete (floor) bricks, hollow bricks, cement tiles, cement slabs, curbs, concrete pipes, manholes, and trench covers; reduced ballast (stone) ) Recycling uses include cement raw materials, asphalt concrete pellet raw materials, paving engineering (roads, sidewalks, container yards or parking lots) base or bottom-level aggregate raw materials, New Jersey guardrail raw materials, or as non-productive materials after high-pressure steam treatment. Ready-mixed concrete aggregate raw materials for structures, ready-mixed concrete raw materials for non-structural objects, aggregate raw materials for cement products or concrete (floor) bricks, hollow bricks, cement tiles, cement slabs, curbs, concrete pipes, manholes, trench covers The raw materials.

又,在上述用途之中,將氧化碴及還原碴應用於鋪面工程(道路、人行道、貨櫃場或停車場)之基層或底層級配粒料原料、管溝回填用控制性低強度回填材料原料等之處理方式主要有兩種,其一是以蒸氣養生方式來處理還原碴,藉以加速其安定化或穩定化,再將穩定化之還原碴利用來做為鋪面工程(道路、人行道、貨櫃場或停車場)之基層或底層級配粒料原料;其二是將安定化還原碴與氧化碴用於非構造物用預拌混凝土原料或管溝回填用控制性低強度回填材料原料。但是,目前還原碴尚待高壓養生設備運作處理。In addition, among the above-mentioned applications, oxidation ballast and reduction ballast are used in paving engineering (roads, sidewalks, container yards or parking lots) for the base or bottom level granular materials, controllable low-strength backfill materials for pipe trench backfilling, etc. There are two main treatment methods. One is to treat the reduced ballast by steam curing to accelerate its stabilization or stabilization, and then use the stabilized reduced ballast as a paving project (roads, sidewalks, container yards or The base or bottom grade of the parking lot) is the raw material of granular materials; the second is to use stabilized reduction ballast and oxide ballast for non-structural materials for ready-mixed concrete or controllable low-strength backfill materials for pipe trench backfilling. However, the current reduction of ballast has yet to be handled by the operation of high-pressure health equipment.

另外,近年也興起了將氧化碴及還原碴做為混凝土骨材、製成環保水泥等、及燒結熔劑等用途之研究。例如,將在還原碴中添加石膏而研磨製成水泥,再與電弧爐氣冷氧化碴(當粗骨材)及電弧爐水淬氧化碴(當細骨材)混煉後,製成U型溝、平板、敷石、涵管、岸壁、水泥磚、景觀材、消波塊及人工魚礁等水泥建材製成品。In addition, in recent years, researches on using oxidized ballast and reduced ballast as concrete aggregates, making environmentally friendly cement, etc., and sintering flux have also emerged. For example, gypsum is added to reduced ballast and ground into cement, and then mixed with electric arc furnace air-cooled oxidation ballast (when coarse aggregate) and electric arc furnace water quenched oxidation ballast (when fine aggregate) is mixed to make U-shaped Cement building materials such as trenches, slabs, stones, culvert pipes, quay walls, cement bricks, landscape materials, wave-eliminating blocks and artificial reefs.

其次,也有術研究發現:還原碴之卜作嵐活性指數良好,能改善水泥漿體之凝結時間,因而建議利用電弧爐爐碴做為卜作嵐材料,藉以改善其漿體的抗壓強度及收縮性,並減少水泥用量達到資源化再利用之目標。Secondly, some technical studies have found that the reduction ballast has a good activity index and can improve the setting time of the cement paste. Therefore, it is recommended to use electric arc furnace ballast as a material to improve the compressive strength and shrinkage of the paste, and Reduce the amount of cement to achieve the goal of recycling.

又,還有學術報導指出:由於還原碴之成份主要為CaO,能夠在水泥中扮演鹼活化劑的角色,具有取代水泥原料中石灰石礦物的潛力。例如,研究發現可以10%電弧爐煉鋼爐碴的還原碴取代部分水泥來拌製混凝土,28 天抗壓強度符合設計強度要求,且能有助於提升其耐久性。亦有研究指出:可以15%電弧爐煉鋼爐碴的還原碴取代部分水泥而不會降低其抗壓強度。In addition, academic reports pointed out that since the main component of reduced ballast is CaO, it can act as an alkali activator in cement and has the potential to replace limestone minerals in cement raw materials. For example, research has found that 10% of the reduced ballast from electric arc furnace steelmaking slag can replace part of the cement to mix concrete. The 28-day compressive strength meets the design strength requirements and can help improve its durability. Studies have also pointed out that 15% of the reduced ballast of electric arc furnace steelmaking slag can replace part of the cement without reducing its compressive strength.

另外,也有研究指出:可以在水泥原料中以適當比例添加電弧爐煉鋼爐碴與氣轉爐碴的混合物來對於水泥進行改質。例如,77%石灰石污泥、19.51%石材污泥、2.49%煤灰礦泥拌合料及1%還原碴,經燒結溫度為1,400 ℃,持溫2 小時後所燒製之全資源化環保水泥符合CNS 61 輸氣第IIIA 型水泥規範值,具有做為緊急修補工程材料之潛力。In addition, studies have also pointed out that a mixture of electric arc furnace steelmaking ballast and gas converter ballast can be added to the cement raw materials in an appropriate proportion to modify the cement. For example, 77% limestone sludge, 19.51% stone sludge, 2.49% coal ash sludge mixture and 1% reduced ballast are sintered at a temperature of 1,400 ℃, and after holding the temperature for 2 hours, the fully-resourced environmentally friendly cement produced The CNS 61 gas transmission type IIIA cement specification value has the potential to be used as an emergency repair engineering material.

此外, 在中華民國專利第I448556號中揭露了一種電弧爐爐碴資源化前處理方法,其包含提供一含還原碴之電弧爐爐碴,包含15wt%至30wt%之還原碴;進行一次篩分製程,將該含還原碴之電弧爐爐碴分為一粗料部分及一細料部分;進行一碎解洗選製程,將該粗料部分洗選分為一細粒料部分及一底泥部分;然後,研磨該底泥部分而形成一還原碴細粉、及進行一選粉製程而選出可取代水泥應用於混凝土的還原碴細粉。然而,該中華民國專利第I448556號充其量只不過是一種電弧爐爐碴資源化的前處理方法,僅能得到比表面積為300m2 /kg至500m2 /kg細度之還原碴細粉而已。In addition, the Republic of China Patent No. I448556 discloses a pre-treatment method for electric arc furnace slag recycling, which includes providing an electric arc furnace slag containing reduced ballast, containing 15wt% to 30wt% of reduced ballast; performing a screening In the process, the electric arc furnace ballast containing reduced ballast is divided into a coarse material part and a fine material part; a crushing and washing process is carried out, and the coarse material part is washed into a fine particle part and a bottom mud Then, the bottom mud part is ground to form a reduced ballast powder, and a powder selection process is performed to select the reduced ballast powder that can be used in concrete instead of cement. However, the Republic of China Patent No. I448556 is at best a pretreatment method for electric arc furnace ballast recycling, and can only obtain reduced ballast fine powder with a specific surface area of 300m 2 /kg to 500m 2 /kg.

從而,可以明白:對於將還原碴利用來取代部分的水泥原料在學術上已有一些初步的研究成果,然而對於還原碴到目前為止仍然沒有適當的資源化處理方法能夠以還原碴來製造可以高含量添加並取代水泥原料的水泥改質劑,亦沒有製造出一種已添加有該水泥改質之高機能性水泥、以及彼等之製造方法。Therefore, it can be understood that there have been some preliminary academic research results on the use of reduced ballast to replace part of the cement raw materials, but there is still no appropriate resource treatment method for reduced ballast. The content of cement modifiers that are added to replace cement raw materials has not produced a high-performance cement that has been modified by adding the cement, and their manufacturing methods.

有鑑於此,本發明人等乃潛心研究解決上述課題之優異手段及良好對策,進而研究開發出能夠對於還原碴加以資源化處理或回收再利用之方法。亦即,本發明之目的在於提供一種水泥改質劑之製造方法及以該方法所製造之水泥改質劑。此製造方法主要是將電弧爐的還原碴進行兩次的粉碎製程,形成粒徑小於5毫米的粉碎材,然後再以粉磨製程將粉碎材研磨成細度為大於500m2 /kg的水泥改質劑。In view of this, the inventors of the present invention devote themselves to researching excellent methods and good countermeasures to solve the above-mentioned problems, and then research and develop methods that can recycle or recycle the reduced ballast. That is, the object of the present invention is to provide a method for producing a cement modifier and a cement modifier produced by the method. This manufacturing method is mainly to pulverize the reduction ballast of the electric arc furnace twice to form a pulverized material with a particle size of less than 5 mm, and then grind the pulverized material into a cement modification with a fineness of more than 500m 2 /kg by the grinding process. Quality agent.

再者,將水泥改質劑與卜特蘭水泥混合,不但可以取代部分的水泥,而且可以得到一種具有能夠改善水泥凝結時所需的時間及膠結活性之機能性水泥材料。本發明之機能性水泥材料屬於特殊功能性,少量添加於水泥,具有抗滲透性、耐磨、抗輻射、低水合熱、抗腐蝕脹縮性能、耐磨性、抗凍性、抗碳化性等性能,若大於1:1添加則是可用於一種控制性低強度材料(Controlled Low Strength Material, CLSM)水泥材料,不但具有高流動性、低抗壓強度特性以外,而且非常有利於需要進行重複開挖時的管溝工程回填材料,因而能夠適用於做為經常性施工區域之水泥材料使用。Furthermore, mixing the cement modifier and portland cement can not only replace part of the cement, but also obtain a functional cement material that can improve the time required for cement setting and the cementing activity. The functional cement material of the present invention is of special functionality, added in a small amount to cement, has permeability resistance, abrasion resistance, radiation resistance, low heat of hydration, corrosion resistance, expansion and contraction resistance, abrasion resistance, frost resistance, carbonization resistance, etc. Performance, if it is added more than 1:1, it can be used for a controlled low strength material (CLSM) cement material. It not only has high fluidity and low compressive strength, but also is very conducive to the need for repeated opening. The backfill material of the pipe trench project during excavation can therefore be used as a cement material for frequent construction areas.

又,在本發明的一實施例中,該水泥改質劑之製造方法較佳為包括以下步驟:原料粉碎製程,其至少具備將原料予以粉碎而得到首次細化品之首次粉碎步驟;該原料屬於鋼爐碴,至少包含來自電弧爐的還原碴;鐵質分離製程,其為至少具備利用磁力以尾礦之第一磁選步驟;該磁力為來自一磁力產生裝置;二次細化製程,其為至少具備將該尾礦更進一步細化粉碎而得到二次細化品之二次粉碎步驟,並且對於該二次細化品可達到含水率小於5%的低含水量製品(前處理過程可降低水分);微細粉化製程,其為至少具備將該低含水量製品進一步精細研磨而得到水泥改質劑之微細粉化步驟。又,本發明中所稱之「尾礦」係指經由自該還原碴之首次細化品中去除含鐵成分後所留下的低鐵含量材料。Furthermore, in an embodiment of the present invention, the method for manufacturing the cement modifier preferably includes the following steps: a raw material crushing process, which at least includes a first crushing step of crushing the raw materials to obtain a first refined product; the raw material It belongs to steel ballast, which includes at least reduction ballast from an electric arc furnace; an iron separation process, which is at least equipped with a first magnetic separation step using magnetic force to tailings; the magnetic force comes from a magnetic force generating device; a secondary refinement process, which In order to have at least the secondary pulverization step of further pulverizing the tailings to obtain a secondary refined product, and for the secondary refined product, it can achieve a low-water content product with a moisture content of less than 5% (the pretreatment process can be Reduce moisture); The fine powdering process, which at least has the step of further finely grinding the low-water content product to obtain a cement modifier. In addition, the “tailings” referred to in the present invention refers to the low-iron content material left after the iron-containing components are removed from the first refined product of the reduced ballast.

其次,根據本發明之技術思想,該首次細化品之平均粒徑係小於20毫米,該二次細化品之平均粒徑係小於5毫米。又,本發明之該水泥改質劑之以氣透儀法測定的細度(比表面積)為500 m2 /kg 以上,較佳為該水泥改質劑之以氣透儀法測定的細度(比表面積)為1000 m2 /kg 以上;更佳者為該水泥改質劑之以氣透儀法測定的細度(比表面積)為1500 m2 /kg 以下,最佳者為該水泥改質劑的細度(比表面積)為1000 m2 /kg ~1500m2 /kg。Secondly, according to the technical idea of the present invention, the average particle size of the first refined product is less than 20 mm, and the average particle size of the second refined product is less than 5 mm. In addition, the cement modifier of the present invention has a fineness (specific surface area) of 500 m 2 /kg or more as measured by the air permeability method, preferably the fineness of the cement modifier as measured by the air permeability method (Specific surface area) is 1000 m 2 /kg or more; the better one is that the fineness (specific surface area) of the cement modifier measured by the air permeability method is less than 1500 m 2 /kg, and the best one is the cement modification The fineness (specific surface area) of the quality agent is 1000 m 2 /kg ~1500 m 2 /kg.

又,本發明之水泥改質劑含有二氧化矽、氧化鋁、氧化鐵及氧化鈣等物質,可以用來做為卜作嵐反應的材料。例如,在本發明之一實施例中,該水泥改質劑中之氧化鈣含量為55%~57%,三氧化二鋁含量為10.7%~11.1%,二氧化矽含量為16%~18%,氧化鎂含量為8%~9%。In addition, the cement modifier of the present invention contains substances such as silica, alumina, iron oxide, calcium oxide, etc., and can be used as a material for the Bu Zuolan reaction. For example, in an embodiment of the present invention, the calcium oxide content in the cement modifier is 55% to 57%, the aluminum oxide content is 10.7% to 11.1%, and the silicon dioxide content is 16% to 18%. , Magnesium oxide content is 8%-9%.

在本發明之另一實施例中,該水泥改質劑的氧化鈣含量為55%~57%,三氧化二鋁含量為10.7%~11.1%,二氧化矽含量為16%~18%,氧化鎂含量為8%~9%。In another embodiment of the present invention, the calcium oxide content of the cement modifier is 55%~57%, the aluminum oxide content is 10.7%~11.1%, the silicon dioxide content is 16%~18%, and the oxidation The magnesium content is 8%-9%.

在本發明之又一實施例中,本發明之該水泥改質劑的鹼度之下限較佳為1.5以上,該水泥改質劑的鹼度之下限更佳者為1.6以上,該水泥改質劑的鹼度之下限最佳者為1.8以上。又,本發明之該水泥改質劑的鹼度之上限較佳為3.5以下,該水泥改質劑的鹼度之上限更佳者為3.4以下,該水泥改質劑的鹼度之上限最佳者為3.3以下。另外,該水泥改質劑的鹼度最理想者為在1.5~3.5之範圍。又,該鹼度係指在水泥改質劑中之氧化鈣含量(CaO%)相對於二氧化矽含量(SiO2 %)與五氧化二磷含量(P2 O5 %)總和的比值: Alk = (CaO%) / [(SiO2 %) + (P2 O5 %)]。In another embodiment of the present invention, the lower limit of alkalinity of the cement modifier of the present invention is preferably 1.5 or more, and the lower limit of alkalinity of the cement modifier is more preferably 1.6 or more. The best lower limit of the alkalinity of the agent is 1.8 or more. Furthermore, the upper limit of the alkalinity of the cement modifier of the present invention is preferably 3.5 or less, the upper limit of the alkalinity of the cement modifier is more preferably 3.4 or less, and the upper limit of the alkalinity of the cement modifier is the best Those are less than 3.3. In addition, the ideal alkalinity of the cement modifier is in the range of 1.5 to 3.5. Moreover, the alkalinity refers to the ratio of the calcium oxide content (CaO%) in the cement modifier to the sum of the silica content (SiO 2 %) and the phosphorus pentoxide content (P 2 O 5 %): Alk = (CaO%) / [(SiO 2 %) + (P 2 O 5 %)].

在本發明之別個實施例中,該水泥改質劑的矽酸二鈣(C2 S)的含量為30%~40%,矽酸三鈣(C3 S) 的含量為11%~14%,鋁酸三鈣(C3 A) 的含量為26%~27%。In another embodiment of the present invention, the content of dicalcium silicate (C 2 S) of the cement modifier is 30%-40%, and the content of tricalcium silicate (C 3 S) is 11%-14% , The content of tricalcium aluminate (C 3 A) is 26%~27%.

在本發明之其他的實施例中,該粉磨製程係以輥式立磨磨粉裝置進行。In other embodiments of the present invention, the grinding process is performed by a roller type vertical milling device.

又,本發明的另一目的在於提供一種機能性水泥材料,其係以特定摻混比例將上述之水泥改質劑與卜特蘭水泥加以均勻混合而得到;其中該卜特蘭水泥中之爐石、飛灰及石灰的總含量為低於5%,且該水泥改質劑與該卜特蘭水泥的摻混比例為在1:10~10:1之範圍。另外,根據本發明的技術思想,該水泥改質劑與該卜特蘭水泥的摻混比例較佳為1:8~8:1之範圍;更佳為在1:5~5:1之範圍;最佳為在1:4~3:5之範圍。In addition, another object of the present invention is to provide a functional cement material, which is obtained by uniformly mixing the above-mentioned cement modifier and Portland cement at a specific mixing ratio; wherein the furnace in the Portland cement The total content of stone, fly ash and lime is less than 5%, and the blending ratio of the cement modifier and the portland cement is in the range of 1:10-10:1. In addition, according to the technical idea of the present invention, the blending ratio of the cement modifier and the Portland cement is preferably in the range of 1:8 to 8:1; more preferably in the range of 1:5 to 5:1 ; The best is in the range of 1:4~3:5.

此外,在本發明之另一實施例中,該機能性水泥材料之活性係數在第28天係高於75%。In addition, in another embodiment of the present invention, the activity coefficient of the functional cement material is higher than 75% on the 28th day.

以下,針對本發明的實施態樣列舉各種不同的具體實施例而更加詳盡地敘述與說明,以便使本發明的精神與內容更為完備而易於瞭解;然而,本項技藝中具有通常知識者應當明瞭本發明當然不受限於此等實例而已,亦可利用其他相同或均等的功能與步驟順序來達成本發明。Hereinafter, various specific embodiments are listed and explained in more detail in order to make the spirit and content of the present invention more complete and easy to understand; however, those with ordinary knowledge in this art should It is understood that the present invention is of course not limited to these examples, and other same or equal functions and sequence of steps can also be used to achieve the present invention.

在本文中,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具有通常知識者所理解與慣用的意義相同。此外,在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。In this article, the scientific and technical terms used here have the same meanings as understood and used by those with ordinary knowledge in the technical field to which the present invention belongs. In addition, without conflict with the context, the singular nouns used in this specification cover the plural nouns; and the plural nouns used also cover the singular nouns.

在本文中,對於用以界定本發明範圍的數值與參數,本質上不可避免地含有因個別測試方法所致的標準偏差,因而大多是以約略的數量值來表示,然而於具體實施例中則盡可能精確呈現的相關數值。在本文中,「約」通常視本發明所屬技術領域中具有通常知識者的考量而定,一般係指代表實際數值落在平均值的可接受標準誤差之內,例如,該實際數值為在一特定數值或範圍的±10%、±5%、±1%、或±0.5%以內。In this article, the numerical values and parameters used to define the scope of the present invention inevitably contain standard deviations due to individual test methods, so they are mostly expressed as approximate quantitative values. However, in specific embodiments, Relevant values presented as accurately as possible. In this context, "about" generally depends on the considerations of those with ordinary knowledge in the technical field to which the present invention belongs, and generally means that the actual value falls within the acceptable standard error of the average value. For example, the actual value is within an acceptable standard error of the average value. Within ±10%, ±5%, ±1%, or ±0.5% of a specific value or range.

請參閱圖1及圖2,其為表示本發明的水泥改質劑之製造方法的標準流程圖及製造系統架構示意圖。本發明的水泥改質劑之製造方法係將電弧爐的還原碴加以粉碎,通常在經過兩次粉碎製程,再以粉磨設備進一步磨成微粉而得到水泥改質劑。具體的製造步驟大致上包括:原料粉碎製程S1、鐵質分離製程S2、二次細化製程S3、以及微細粉化製程S4。Please refer to FIG. 1 and FIG. 2, which are a standard flow chart and a schematic diagram of the manufacturing system architecture of the manufacturing method of the cement modifier of the present invention. The manufacturing method of the cement modifier of the present invention is to pulverize the reduced ballast of the electric arc furnace, usually after two pulverization processes, and then further pulverized by a grinding equipment to obtain the cement modifier. The specific manufacturing steps generally include: a raw material crushing process S1, an iron separation process S2, a secondary refinement process S3, and a micronization process S4.

更具體而言,首先,說明原料粉碎製程S1。根據本發明的技術思想,在原料粉碎製程S1中,將來自電弧爐的還原碴Sb輸送至一第一粉碎單元10進行粉碎,粉碎後的顆粒經由以網孔小於20毫米的篩分機篩分,最後得到平均粒徑大於20毫米的粗粒料以及小於20毫米的細粒料,取平均粒徑小於20毫米的細粒料做為首次細化品Sc。在本發明之一實施例中,該第一粉碎單元10可以是進行粗碎的顎式破碎機、棒磨機或錐碎機。More specifically, first, the raw material crushing process S1 is described. According to the technical idea of the present invention, in the raw material crushing process S1, the reduced ballast Sb from the electric arc furnace is transported to a first crushing unit 10 for crushing, and the crushed particles are sieved by a sieving machine with a mesh size of less than 20 mm. Finally, coarse particles with an average particle size greater than 20 mm and fine particles with an average particle size of less than 20 mm are obtained, and fine particles with an average particle size of less than 20 mm are taken as the first refined product Sc. In an embodiment of the present invention, the first crushing unit 10 may be a jaw crusher, a rod mill or a cone crusher for coarse crushing.

接著,說明鐵質分離製程S2。根據本發明的技術思想,在鐵質分離製程S2中,使首次細化品Sc通過一磁選單元20,將首次細化品Sc中的含鐵質物質F分離出來,以去除首次細化品Sc中的含鐵質物質F,而得到尾礦Sd,接著進入二次細化製程S3。又,在本發明之一實施例中,該磁選單元20可以是一磁力產生裝置,例如筒式磁選機或平面輸送式磁選機。Next, the iron separation process S2 will be described. According to the technical idea of the present invention, in the iron separation process S2, the first refined product Sc is passed through a magnetic separation unit 20 to separate the iron-containing substance F in the first refined product Sc to remove the first refined product The iron-containing substance F in Sc is obtained tailings Sd, and then enters the secondary refinement process S3. Furthermore, in an embodiment of the present invention, the magnetic separation unit 20 may be a magnetic force generating device, such as a cylindrical magnetic separator or a plane conveying magnetic separator.

其次,說明二次細化製程S3。根據本發明的技術思想,在二次細化製程S3中,將尾礦Sd輸送至第二粉碎單元30進行二次細化製程,即進行再次粉碎的製程,粉碎後的顆粒經由以網孔小於5毫米的篩分機篩分,最後得到平均粒徑大於5毫米的粗粒料以及小於5毫米的細粒料,取平均粒徑小於5毫米的細粒料做為二次細化品Sf,接著進入微細粉化製程S4。在本發明之一實施例中,第二粉碎單元30可以是進行中碎的圓錐破碎機、錘式破碎機或反擊式破碎機。又,尾礦Sd經前述原料粉碎製程S1、鐵質分離製程S2及二次細化製程S3形成二次細化品Sf後,其含水量已降低至5%以下。Next, the second refinement process S3 is explained. According to the technical idea of the present invention, in the secondary refinement process S3, the tailings Sd is transported to the second crushing unit 30 for the secondary refinement process, that is, the process of re-pulverization is performed, and the crushed particles are smaller than the mesh size. Sieved by a 5 mm sieving machine, and finally obtained coarse particles with an average particle size greater than 5 mm and fine particles with an average particle size of less than 5 mm. The fine particles with an average particle size of less than 5 mm are used as the secondary refined product Sf, and then Enter the micronization process S4. In an embodiment of the present invention, the second crushing unit 30 may be a cone crusher, hammer crusher or impact crusher for ongoing crushing. In addition, after the tailings Sd undergoes the aforementioned raw material crushing process S1, iron separation process S2, and secondary refinement process S3 to form a secondary refined product Sf, its water content has been reduced to below 5%.

然後,說明微細粉化製程S4。在微細粉化製程S4中,將二次細化品Sf輸送至一粉磨單元50進行粉磨,使其成為成細度為1000m2 /kg ~1500m2 /kg的水泥改質劑Sg。在本實施例中,粉磨單元50可以是輥式立磨裝置,它集破碎、粉磨、選粉為一體,具有電耗低、密封性能好、噪音比球磨機低30~50db、可露天佈置、占地面積小、流程簡單等特點。通過調節選粉機轉速、磨機氣流量和碾磨壓力,並與合適的擋料圈高度相結合,可獲得要求的細度和粒徑分佈。在滿足入磨細微性要求以及降低鋼碴中鐵含量後,輥式立磨裝置的優勢立刻彰顯: 其產量高、電耗低,而且允許入磨水分可高達20%,成品的比表面積很容易達到 450~500m2 /kg以上,有利於鋼碴粉的大規模化生產。如圖3所示,該輥式立磨裝置在底部包括一磨盤51,在磨盤51上設置複數個輥子52,磨盤51及輥子52可相對轉動,低含水量製品Sf從進料口53進入粉磨單元50,並經由磨盤51與輥子52的研磨而得到水泥改質劑Sg,從底部吹入的氣體將水泥改質劑Sg揚起而自出料口54排出收集。又,根據本發明的技術思想,輥子52的數量較佳為在28個以下,以及磨盤51轉動的轉速為大於180rpm。Then, the micronization process S4 will be described. In the micronizing process S4, the secondary refined product Sf is transported to a grinding unit 50 for grinding, so that it becomes a cement modifier Sg with a fineness of 1000 m 2 /kg to 1500 m 2 /kg. In this embodiment, the grinding unit 50 can be a roller type vertical mill device, which integrates crushing, grinding, and powder selection. It has low power consumption, good sealing performance, 30-50db lower noise than a ball mill, and can be deployed in the open air. , Small footprint, simple process, etc. The required fineness and particle size distribution can be obtained by adjusting the speed of the separator, the air flow rate of the mill and the grinding pressure, and combining with the appropriate height of the retaining ring. After meeting the fineness requirements of the grinding and reducing the iron content in the steel ballast, the advantages of the roller vertical mill device are immediately evident: its output is high, the power consumption is low, and the allowable water content can be as high as 20%, and the specific surface area of the finished product is easy. It can reach above 450~500m 2 /kg, which is beneficial to the large-scale production of steel ballast powder. As shown in Figure 3, the roller type vertical mill device includes a grinding disc 51 at the bottom. A plurality of rollers 52 are arranged on the grinding disc 51. The grinding disc 51 and the rollers 52 can rotate relatively. The grinding unit 50 obtains the cement modifier Sg through the grinding of the grinding disc 51 and the roller 52, and the gas blown in from the bottom raises the cement modifier Sg and is discharged from the discharge port 54 for collection. Furthermore, according to the technical idea of the present invention, the number of rollers 52 is preferably 28 or less, and the rotation speed of the grinding disc 51 is greater than 180 rpm.

又,在本發明的另一實施例中,在二次細化製程S3及微細粉化製程S4之間可以進一步含有二次鐵質分離製程,是再次將二次細化品Sf中含鐵質物質F分離出來,用以確保進入微細粉化製程S4前的二次細化品Sf不含有鐵質物質F。又,在本發明之一實施例中,該二次磁選單元可以是一磁力產生裝置,例如筒式磁選機或平面輸送式磁選機。Furthermore, in another embodiment of the present invention, a secondary iron separation process may be further included between the secondary refinement process S3 and the micronization process S4, which is to re-refine the iron content in the secondary refinement Sf. The substance F is separated to ensure that the secondary refined product Sf before entering the micronization process S4 does not contain the iron substance F. Furthermore, in an embodiment of the present invention, the secondary magnetic separation unit may be a magnetic force generating device, such as a cylindrical magnetic separator or a plane conveying magnetic separator.

在本發明之一實施例中,經由本發明所得之水泥改質劑進一步與卜特蘭水泥P均勻混拌後能夠形成機能性水泥材料。根據本發明的技術思想,該水泥改質劑與該卜特蘭水泥的摻混比例一般為在1:10~10:1之範圍;較佳為1:8~8:1之範圍;更佳為在為在1:5~5:1之範圍;最佳為在1:4~3:5之範圍。In an embodiment of the present invention, the cement modifier obtained by the present invention can be further uniformly mixed with Portland cement P to form a functional cement material. According to the technical idea of the present invention, the mixing ratio of the cement modifier and the Portland cement is generally in the range of 1:10-10:1; preferably in the range of 1:8-8:1; more preferably It is in the range of 1:5~5:1; the best is in the range of 1:4~3:5.

粉磨後的水泥改質劑Sg可以做為卜作嵐反應的材料。所謂的卜作嵐反應是指二氧化矽與三氧化二鋁與水泥水化而產生的膠結作用,可以填補混凝土的微小空隙,如此使空氣中的水氣不易滲入混凝土材料而腐蝕鋼筋。水泥改質劑Sg與卜特蘭水泥混合,可以部分取代卜特蘭水泥中用來產生卜作嵐反應的水泥材料。在本實施例中,卜特蘭水泥P所包含之高爐石粉、飛灰及石灰的含量可低於5%。The cement modifier Sg after grinding can be used as the material for Bu Zuolan reaction. The so-called Bu Zuolan reaction refers to the cementation produced by the hydration of silica and aluminum oxide with cement, which can fill the tiny gaps in concrete, so that water in the air will not easily penetrate into the concrete materials and corrode the steel bars. The cement modifier Sg is mixed with Portland cement, which can partially replace the cement material used to produce the Portland reaction in Portland cement. In this embodiment, the content of blast furnace stone powder, fly ash and lime contained in Portland cement P may be less than 5%.

另外,根據經濟部工業局所出版的「電弧爐還原碴安定化技術手冊」之記載,研磨至非常細的水泥改質劑Sg也可以同時產生安定化的效果,即電弧爐還原碴中游離的氧化鎂及氧化鈣會穩定而不會膨脹。 《實施例》(實施例1至4) 水泥改質劑之製備In addition, according to the "Earc Furnace Reduction Ballast Stabilization Technical Manual" published by the Industrial Bureau of the Ministry of Economic Affairs, cement modifier Sg ground to a very fine level can also produce a stabilizing effect at the same time, that is, the free oxidation in the arc furnace reduction ballast Magnesium and calcium oxide will be stable without swelling. "Examples" (Examples 1 to 4) Preparation of cement modifier

在實施例1至4中,利用上述本發明的水泥改質劑之製造方法經由原料粉粹製程、鐵質分離製程、二次細化製程、及微細粉化製程而予以研磨製成水泥改質劑。In Examples 1 to 4, the above-mentioned method for producing the cement modifier of the present invention was ground to produce cement modification through a raw material powdering process, an iron separation process, a secondary refining process, and a fine powdering process. Agent.

具體而言,在實施例1至4中,首先,在原料粉粹製程中,使用棒磨機或錐碎機將取自電弧爐煉鋼還原碴加以粉碎並以篩分機分離而篩選得到平均粒徑係小於20毫米的粗碎物(即,首次細化品)。接著,在鐵質分離製程中,利用磁選設備(例如,磁力發生裝置)去除該首次細化品中之含鐵成分而得到尾礦;然後,在二次細化製程中將該尾礦更進一步細化粉碎並以篩分機分離而篩選得到平均粒徑小於5毫米的細碎物(即,二次細化品)。最後,在微細粉化製程中,將上述所得到的該低含水量製品進一步精細研磨而得到細度為1000m2 /kg ~1500m2 /kg的水泥改質劑Sg1、水泥改質劑Sg2、水泥改質劑Sg3、及水泥改質劑Sg4。Specifically, in Examples 1 to 4, first, in the raw material pulverization process, a rod mill or a cone crusher was used to pulverize the reduced ballast taken from the electric arc furnace steelmaking and be separated by a sieving machine to obtain an average particle size. Coarse debris with a diameter of less than 20 mm (ie, the first refined product). Then, in the iron separation process, use magnetic separation equipment (for example, a magnetic force generator) to remove the iron-containing components in the first refined product to obtain tailings; then, the tailings are further refined in the secondary refinement process Finely pulverized and separated by a sieving machine to obtain finely divided products with an average particle diameter of less than 5 mm (ie, secondary refined products). Finally, in the fine powdering process, the low water content product obtained above is further finely ground to obtain cement modifier Sg1, cement modifier Sg2, and cement with a fineness of 1000m 2 /kg ~1500m 2 /kg Modifier Sg3, and cement modifier Sg4.

接著,對於實施例1至4所得到的該水泥改質劑Sg1、水泥改質劑Sg2、水泥改質劑Sg3、及水泥改質劑Sg4,分別依據氣透儀法測定各細度(即,比表面積,m2 /kg),水泥改質劑Sg1的細度為1079m2 /kg,水泥改質劑Sg2的細度為最小值1356 m2 /kg、最大值1420 m2 /kg,水泥改質劑Sg3的細度為500m2 /kg水泥改質劑、以及Sg4的細度為800m2 /kg,並將所得到的分析結果記載於表1。Next, for the cement modifier Sg1, cement modifier Sg2, cement modifier Sg3, and cement modifier Sg4 obtained in Examples 1 to 4, each fineness (ie, Specific surface area, m 2 /kg), the fineness of cement modifier Sg1 is 1079m 2 /kg, and the fineness of cement modifier Sg2 is 1356 m 2 /kg at the minimum and 1420 m 2 /kg at the maximum. The fineness of the cement modifier Sg3 was 500 m 2 /kg, and the fineness of Sg4 was 800 m 2 /kg, and the obtained analysis results are described in Table 1.

此外,對於比較例1之市售卜特蘭水泥也同樣依據氣透儀法測定各細度(即,比表面積,m2 /kg)而得到其細度為390 m2 /kg,並將所得到的分析結果記載於表1。In addition, for the commercially available Portland cement of Comparative Example 1, the fineness (ie, specific surface area, m 2 /kg) was also measured according to the air permeability method to obtain a fineness of 390 m 2 /kg. The obtained analysis results are shown in Table 1.

從而,可以確認本發明之實施例至4分別得到的水泥改質劑Sg1、水泥改質劑Sg2、水泥改質劑Sg3、及水泥改質劑Sg4之細度明顯優於比較例1之市售卜特蘭水泥。因此,當使用本發明的實施例1至4所得到之水泥改質劑Sg1、水泥改質劑Sg2、水泥改質劑Sg3、及水泥改質劑Sg4添加於市售水泥中時,就能夠有效提升進行卜作嵐反應的活性。Therefore, it can be confirmed that the fineness of the cement modifier Sg1, cement modifier Sg2, cement modifier Sg3, and cement modifier Sg4 obtained in Examples to 4 of the present invention is significantly better than that of the commercially available cement modifier Sg4 of Comparative Example 1. Portland Cement. Therefore, when the cement modifier Sg1, cement modifier Sg2, cement modifier Sg3, and cement modifier Sg4 obtained in Examples 1 to 4 of the present invention are added to commercially available cement, it can be effective Enhance the activity of performing Bu Zuolan reaction.

然後,參照CNS規範,對於實施例1至4所得到的該水泥改質劑Sg1、水泥改質劑Sg2、水泥改質劑Sg3、及水泥改質劑Sg4來進行二氧化矽SiO2 (%)、三氧化二鋁Al2 O3 (%)、氧化鐵Fe2 O3 (%)、氧化鈣CaO(%)、氧化鎂MgO(%)、三氧化硫SO3 (%)、燒失量L.O.I(%)、不溶殘碴I.R(%)、硫化物S(%)、二氧化鈦TiO2 (%)、五氧化二磷P2 O5 (%)、氧化鈉Na2 O(%)、氧化鉀K2 O(%)、游離氧化鈣f-CaO(%)、氯Cl(%)、鹼度、矽酸二鈣C2 S(%)、鋁酸二鈣C3 A(%)、矽酸三鈣C3 S(%)、鋁鐵酸四鈣C4 AF(%)、C4 AF+2C3 A、C3 S+4.75C3 A等成分分析,並將所得到分析結果記載於表1。其中,鹼度係定義為氧化鈣的成分百分率與二氧化矽的成分百分率及五氧化二磷的成分百分率之和的比值,即鹼度= CaO%/(SiO2 %+P2 O5 %)。Then, referring to the CNS specification, the cement modifier Sg1, the cement modifier Sg2, the cement modifier Sg3, and the cement modifier Sg4 obtained in Examples 1 to 4 were subjected to silica SiO 2 (%) , Aluminum oxide Al 2 O 3 (%), iron oxide Fe 2 O 3 (%), calcium oxide CaO (%), magnesium oxide MgO (%), sulfur trioxide SO 3 (%), loss on ignition LOI (%), insoluble residue IR (%), sulfide S (%), titanium dioxide TiO 2 (%), phosphorus pentoxide P 2 O 5 (%), sodium oxide Na 2 O (%), potassium oxide K 2 O (%), free calcium oxide f-CaO (%), chlorine Cl (%), alkalinity, dicalcium silicate C 2 S (%), dicalcium aluminate C 3 A (%), three silicate Calcium C 3 S (%), tetracalcium aluminoferrite C 4 AF (%), C 4 AF+2C 3 A, C 3 S+4.75C 3 A and other component analysis, and the obtained analysis results are recorded in Table 1 . Among them, the alkalinity is defined as the ratio of the percentage of calcium oxide to the sum of the percentage of silicon dioxide and the percentage of phosphorus pentoxide, that is, alkalinity = CaO%/(SiO 2 %+P 2 O 5 %) .

另外地參照CNS規範進行二氧化矽SiO2 (%)、三氧化二鋁Al2 O3 (%)、氧化鐵Fe2 O3 (%)、氧化鈣CaO(%)、氧化鎂MgO(%)、三氧化硫SO3 (%)、燒失量L.O.I(%)、不溶殘碴I.R(%)、二氧化鈦TiO2 (%)、五氧化二磷P2 O5 (%)、鹼度、矽酸二鈣C2 S(%)、鋁酸二鈣C3 A(%)、矽酸三鈣C3 S(%)、鋁鐵酸四鈣C4 AF(%)等成分分析,並將所得到的分析結果記載於表1。 【表1】   比較例1 實施例1 實施例2 實施例3 實施例4 項目 卜特蘭水泥 水泥改質劑Sg1 水泥改質劑Sg2 水泥改質劑Sg3 水泥改質劑Sg4 細度(比表面積) (氣透儀法)(m2 /kg) 390 1079 最小值1356 最大值1420 500 800 二氧化矽SiO2 (%) 20.5 17.4 16.5 17.0  17.2  三氧化二鋁Al2 O3 (%) 4.6 11.1 10.7 10.8  11.0  氧化鐵Fe2 O3 (%) 3.59 1.4 3.7  1.5 2.0  氧化鈣CaO(%) 63.1 56.5 55.8  56.0 56.2  氧化鎂MgO(%) 2.1 8.9 8.3 8.5  8.6  三氧化硫SO3 (%) 2.49 0.94 1.27 1.02  1.10  燒失量L.O.I(%) 2.0 8.3 6.9  7.2 7.4  不溶殘碴I.R(%) 0.19 2.45 2.54  2,48 2.50  硫化物S(%) - 0.47 0.33 0.40  0.38  二氧化鈦TiO2 (%) 0.30 0.25 0.29 0.26  0.28  五氧化二磷P2 O5 (%) 0.09 0.03 0.05 0.03  0.04  氧化鈉Na2 O(%) - 0.16 0.17 0.15  0.16  氧化鉀K2 O(%) - 0.08 0.09 0.08  0.08  游離氧化鈣 f-CaO(%) - 0.81 0.82 0.80  0.81  氯Cl(%) - 0.007 0.066 0.008  0.007  鹼度 3.06 3.24 3.37 3.26   3.28 矽酸二鈣C2 S(%) 15 39.1 31.4 38.0  36.4  鋁酸三鈣C3 A(%) 6.1 26.9 22.0 25.0  24.2  矽酸三鈣C3 S(%) 58 14.2 11.4  12.6 13.2  鋁鐵酸四鈣C4 AF(%) 10.9 4.4 21.0 8.4  10.2  C4 AF+2C3 A - 58.2 55.3 56.2 57.2 C3 S+4.75C3 A - 142.1 125.4 136.2 130.0 In addition, refer to CNS specifications for silicon dioxide SiO 2 (%), aluminum oxide Al 2 O 3 (%), iron oxide Fe 2 O 3 (%), calcium oxide CaO (%), magnesium oxide MgO (%) , Sulfur trioxide SO 3 (%), loss on ignition LOI (%), insoluble residue IR (%), titanium dioxide TiO 2 (%), phosphorus pentoxide P 2 O 5 (%), alkalinity, silicic acid Dicalcium C 2 S (%), dicalcium aluminate C 3 A (%), tricalcium silicate C 3 S (%), tetracalcium aluminate ferrite C 4 AF (%) and other components are analyzed, and the obtained The results of the analysis are shown in Table 1. 【Table 1】 Comparative example 1 Example 1 Example 2 Example 3 Example 4 project Portland Cement Cement modifier Sg1 Cement modifier Sg2 Cement modifier Sg3 Cement modifier Sg4 Fineness (specific surface area) (air permeability method) (m 2 /kg) 390 1079 Minimum value 1356 Maximum value 1420 500 800 Silicon dioxide SiO 2 (%) 20.5 17.4 16.5 17.0 17.2 Aluminum oxide Al 2 O 3 (%) 4.6 11.1 10.7 10.8 11.0 Iron oxide Fe 2 O 3 (%) 3.59 1.4 3.7 1.5 2.0 Calcium oxide CaO (%) 63.1 56.5 55.8 56.0 56.2 Magnesium oxide MgO (%) 2.1 8.9 8.3 8.5 8.6 Sulfur trioxide SO 3 (%) 2.49 0.94 1.27 1.02 1.10 Loss on ignition LOI (%) 2.0 8.3 6.9 7.2 7.4 Insoluble residue IR(%) 0.19 2.45 2.54 2,48 2.50 Sulfide S(%) - 0.47 0.33 0.40 0.38 Titanium dioxide TiO 2 (%) 0.30 0.25 0.29 0.26 0.28 Phosphorus pentoxide P 2 O 5 (%) 0.09 0.03 0.05 0.03 0.04 Sodium oxide Na 2 O (%) - 0.16 0.17 0.15 0.16 Potassium oxide K 2 O (%) - 0.08 0.09 0.08 0.08 Free calcium oxide f-CaO(%) - 0.81 0.82 0.80 0.81 Chlorine Cl (%) - 0.007 0.066 0.008 0.007 Alkalinity 3.06 3.24 3.37 3.26 3.28 Dicalcium silicate C 2 S(%) 15 39.1 31.4 38.0 36.4 Tricalcium aluminate C 3 A(%) 6.1 26.9 22.0 25.0 24.2 Tricalcium silicate C 3 S(%) 58 14.2 11.4 12.6 13.2 Tetracalcium Aluminoferrate C 4 AF (%) 10.9 4.4 21.0 8.4 10.2 C 4 AF+2C 3 A - 58.2 55.3 56.2 57.2 C 3 S+4.75C 3 A - 142.1 125.4 136.2 130.0

由上述表1可知,本發明的實施例1至4所得到之水泥改質劑Sg1、Sg2、Sg3、及Sg4顯示出在二氧化矽、氧化鐵、及氧化鈣、及鹼度方面皆具有與比較例1的市售卜特蘭水泥相近的含量、構成分及特性。It can be seen from the above Table 1 that the cement modifiers Sg1, Sg2, Sg3, and Sg4 obtained in Examples 1 to 4 of the present invention have the same properties in terms of silica, iron oxide, calcium oxide, and alkalinity. The commercially available Portland cement of Comparative Example 1 has similar content, composition, and characteristics.

另外,在本發明的實施例1至4所得到之水泥改質劑Sg1、Sg2、Sg3、及Sg4中,三氧化二鋁的含量分別為11.1%、10.7%、10.8%、及11.0%,明顯高於比較例1之市售卜特蘭水泥,因而可以確認本發明的水泥改質劑Sg1、Sg2、Sg3、及Sg4非常適合用來做為卜作嵐反應的材料。 《流動性分析》In addition, in the cement modifiers Sg1, Sg2, Sg3, and Sg4 obtained in Examples 1 to 4 of the present invention, the content of aluminum oxide is 11.1%, 10.7%, 10.8%, and 11.0%, respectively, which is obviously It is higher than the commercially available Portland cement of Comparative Example 1, so it can be confirmed that the cement modifiers Sg1, Sg2, Sg3, and Sg4 of the present invention are very suitable as materials for the Portland reaction. "Liquidity Analysis"

再者,如上述表1所示,在本發明的實施例1至4所得到之水泥改質劑Sg1、Sg2、Sg3、及Sg4中之矽酸二鈣的含量分別為39.1%、31.4%、38.0%、及36.4%,在比較例1的市售卜特蘭水泥中之矽酸二鈣的含量則為15%。因而,可以確認:就矽酸二鈣而論,本發明的水泥改質劑Sg1、Sg2、Sg3、及Sg4的矽酸二鈣含量明顯高於比較例1的市售卜特蘭水泥的矽酸二鈣含量。Furthermore, as shown in Table 1 above, the content of dicalcium silicate in the cement modifiers Sg1, Sg2, Sg3, and Sg4 obtained in Examples 1 to 4 of the present invention are 39.1%, 31.4%, 38.0% and 36.4%. The content of dicalcium silicate in the commercially available Portland cement of Comparative Example 1 is 15%. Therefore, it can be confirmed that in terms of dicalcium silicate, the cement modifiers Sg1, Sg2, Sg3, and Sg4 of the present invention have a content of dicalcium silicate that is significantly higher than that of the commercially available portland cement of Comparative Example 1. Dicalcium content.

其次,如上述表1所示,在本發明的實施例1至4所得到的水泥改質劑Sg1、Sg2、Sg3、及Sg4中之矽酸三鈣分別為14.2%、11.4%、12.6%、及13.2%,而比較例1中之市售卜特蘭水泥的矽酸二鈣含量為58%。因而,可以確認:就矽酸三鈣而論,本發明的水泥改質劑Sg1、Sg2、Sg3、及Sg4的矽酸三鈣含量明顯低於比較例1的市售卜特蘭水泥的矽酸三鈣含量。Secondly, as shown in Table 1 above, the tricalcium silicate in the cement modifiers Sg1, Sg2, Sg3, and Sg4 obtained in Examples 1 to 4 of the present invention were 14.2%, 11.4%, 12.6%, respectively. And 13.2%, while the commercial Portland cement in Comparative Example 1 has a dicalcium silicate content of 58%. Therefore, it can be confirmed that in terms of tricalcium silicate, the cement modifiers Sg1, Sg2, Sg3, and Sg4 of the present invention have a content of tricalcium silicate that is significantly lower than that of the commercially available portland cement of Comparative Example 1. Tricalcium content.

由於矽酸二鈣的水化作用速度比矽酸三鈣慢許多,因此,當水泥中之矽酸二鈣含量較高時,則水泥在施工作業初期可以維持較佳的流動性;當水泥中之矽酸三鈣含量較低時,則水泥的強度就會降低。 《材料活性係數分析》Since the hydration rate of dicalcium silicate is much slower than that of tricalcium silicate, when the content of dicalcium silicate in cement is higher, the cement can maintain better fluidity in the early stage of construction; When the content of tricalcium silicate is low, the strength of cement will decrease. "Material Activity Coefficient Analysis"

將卜特蘭水泥、水泥改質劑Sg1、水泥改質劑Sg2、砂及水以表2所示之比例進行混拌而分別獲得混凝土樣品AS1、及AS2,並採用CNS10896卜特蘭水泥混凝土用飛灰或天然卜作嵐礦物攙料之取樣及檢驗法得到28天的活性係數,活性係數為樣品對控制組(純卜特蘭水泥砂漿試體)的抗壓強度比值百分比,當活性係數越高時,表示越能加速卜作嵐反應進行,加速水泥水化作用,縮短硬化時間。最後,將所得結果紀錄於表2中。 【表2】 組成分 控制組 (純卜特蘭水泥砂漿試體) 試驗組 AS1 試驗組 AS2 卜特蘭水泥(g) 500 400 400 水泥改質劑Sg1(g) 0 100 0 水泥改質劑Sg2(g) 0 0 100 砂(g) 1375 1375 1375 水(g) 242 242 242 28天活性係數(%) - 96.1 113.8 Portland cement, cement modifier Sg1, cement modifier Sg2, sand and water were mixed in the proportions shown in Table 2 to obtain concrete samples AS1, and AS2 respectively, and CNS10896 Portland cement concrete was used. The 28-day activity coefficient is obtained by sampling and inspection method of fly ash or natural Bozuolan mineral admixture. The activity coefficient is the percentage of the compressive strength ratio of the sample to the control group (pure portland cement mortar test body). When the activity coefficient is higher , Which means that the more it can accelerate the reaction of Bozuolan, accelerate the hydration of cement, and shorten the hardening time. Finally, record the results obtained in Table 2. 【Table 2】 Composition Control group (pure portland cement mortar specimen) Test group AS1 Test group AS2 Portland cement (g) 500 400 400 Cement modifier Sg1(g) 0 100 0 Cement modifier Sg2(g) 0 0 100 Sand (g) 1375 1375 1375 Water (g) 242 242 242 28-day activity coefficient (%) - 96.1 113.8

由表2之結果可知,將本發明之水泥改質劑Sg1、水泥改質劑Sg2添加於市售的卜特蘭水泥時,活性指數分別為96.1%及113.8%,皆遠高於規範值75%,顯示利用於市售水泥中添加本發明之水泥改質劑,就可以得到一種能夠明顯提高活性係數、加速卜作嵐反應進行,加速水泥水化作用的材料 (實施例5~實施例7) 機能性水泥之製備(性能測試)It can be seen from the results in Table 2 that when the cement modifier Sg1 and cement modifier Sg2 of the present invention are added to commercially available Portland cement, the activity indexes are 96.1% and 113.8%, respectively, which are far higher than the standard value of 75. %, which shows that by adding the cement modifier of the present invention to commercially available cement, a material that can significantly increase the activity coefficient, accelerate the progress of the Bozulan reaction, and accelerate the hydration of cement (Example 5~Example 7) Preparation of functional cement (performance test)

接著,在實施例5至實施例7中,按照如表3所示之配比,將水泥改質劑Sg2與卜特蘭水泥混拌而得到機能性水泥材料AS3、AS4、AS5。其中,機能性水泥材料AS3中之水泥改質劑的含量為20%,機能性水泥材料AS4中之水泥改質劑的含量為40%,機能性水泥材料AS5中之水泥改質劑的含量為60%。Next, in Example 5 to Example 7, the cement modifier Sg2 was mixed with Portland cement according to the mixing ratio shown in Table 3 to obtain functional cement materials AS3, AS4, and AS5. Among them, the content of cement modifier in functional cement material AS3 is 20%, the content of cement modifier in functional cement material AS4 is 40%, and the content of cement modifier in functional cement material AS5 is 60%.

然後,對於機能性水泥材料AS3、AS4、AS5,分別測定CNS15286所規範之各種物理性質,例如,至少測定篩餘量(%) (CNS11273)、細度(氣透法,m2 /kg)(CNS2924)、空氣含量% CNS787)、熱壓膨脹%(CNS1258)、密度(g/cm3 ) (CNS11272) 、初凝及終凝(min) (CNS786)、3天、7天、28天的抗壓強度(MPa)( CNS1010)、7天與28天的水合熱(kJ/kg)(CNS2248)、14天、56天、91天的水泥砂漿膨脹量(%)(CNS13619)等。然後,將結果記載於表3中。 【表3】 試驗項目 試驗方法 實施例 5 ( AS3) 實施例 6 ( AS4) 實施例 7 (AS5) 水泥改質劑   20% 40% 60% 卜特蘭水泥   80% 60% 40% 篩餘量*% CNS11273 3.6 2.9 2.0 細度(氣透法) (m2 /kg) CNS2924 471 560 863 空氣含量% CNS787 5.98 3.88 4.49 熱壓膨脹% CNS1258 +0.07 +0.05 +0.05 密度(g/cm3 ) CNS11272 3.06 2.98 2.82 凝結時間檢驗 ( 費開氏針法 ) 初凝(min) CNS786 110 80 5 終凝(min) 225 180 60 抗壓強度 (MPa) 3天 CNS1010 23.4 1.62 1.23 7天 33.2 16.48 10.01 28天 40.6 26.47 19.27 水合熱 (kJ/kg) 7天 CNS2248 227.7 228.5 196.8 28天 316.6 260.2 230.6 水泥砂漿膨脹量 (%) 14天 CNS13619 0.001 0.013 0.007 56天 0.005 0.014 0.011 91天 0.008 0.015 0.012 *篩餘量是以試驗篩0.045mm,CNS386規範的濕篩試驗所求得。Then, for the functional cement materials AS3, AS4, and AS5, measure various physical properties specified by CNS15286, for example, measure at least the sieve residue (%) (CNS11273) and fineness (air permeability method, m 2 /kg) ( CNS2924), air content% CNS787), thermal compression expansion% (CNS1258), density (g/cm 3 ) (CNS11272), initial setting and final setting (min) (CNS786), 3 days, 7 days, 28 days of resistance Compressive strength (MPa) (CNS1010), 7 days and 28 days heat of hydration (kJ/kg) (CNS2248), 14 days, 56 days, 91 days cement mortar expansion (%) (CNS13619), etc. Then, the results are described in Table 3. 【table 3】 Pilot projects experiment method Example 5 ( AS3 ) Example 6 ( AS4 ) Example 7 (AS5) Cement modifier 20% 40% 60% Portland Cement 80% 60% 40% Sieve residue*% CNS11273 3.6 2.9 2.0 Fineness (air permeability method) (m 2 /kg) CNS2924 471 560 863 Air content% CNS787 5.98 3.88 4.49 Thermal compression expansion% CNS1258 +0.07 +0.05 +0.05 Density (g/cm 3 ) CNS11272 3.06 2.98 2.82 Setting time test ( Fischer needle method ) Initial setting (min) CNS786 110 80 5 Final setting (min) 225 180 60 Compressive strength (MPa) 3 days CNS1010 23.4 1.62 1.23 7 days 33.2 16.48 10.01 28 days 40.6 26.47 19.27 Heat of Hydration (kJ/kg) 7 days CNS2248 227.7 228.5 196.8 28 days 316.6 260.2 230.6 Expansion of cement mortar (%) 14 days CNS13619 0.001 0.013 0.007 56 days 0.005 0.014 0.011 91 days 0.008 0.015 0.012 *The sieve allowance is obtained from the wet sieve test of the test sieve 0.045mm and CNS386 specification.

又, CNS 15286所規範之IS(<70)型、IS(70)型、及IP型混合水泥的標準為如表4所示。 【表4】 試驗項目 試驗方法 CNS15286規範 (IS型/IP型) 篩餘量*% CNS11273 20.0 細度(氣透法)(m2 /kg) CNS2924 - 空氣含量% CNS787 12 熱壓膨脹% CNS1258 0.8 密度(g/cm3 ) CNS11272 - 凝結時間檢驗 ( 費開氏針法 ) 初凝(min) CNS786 ≥45 終凝(min) ≤420 抗壓強度 (MPa) 3天 CNS1010 ≥13.0 7天 ≥20.0 28天 ≥25.0 水合熱 (kJ/kg) 7天 CNS2248 ≤290 28天 ≤330 水泥砂漿膨脹量 (%) 14天 CNS13619 ≤0.020 56天 ≤0.060 91天 ≤0.050 In addition, the standards for IS (<70), IS (70), and IP mixed cements regulated by CNS 15286 are shown in Table 4. 【Table 4】 Pilot projects experiment method CNS15286 specification (IS type/IP type) Sieve residue*% CNS11273 20.0 Fineness (air permeability method) (m 2 /kg) CNS2924 - Air content% CNS787 12 Thermal compression expansion% CNS1258 0.8 Density (g/cm 3 ) CNS11272 - Setting time test ( Fischer needle method ) Initial setting (min) CNS786 ≥45 Final setting (min) ≤420 Compressive strength (MPa) 3 days CNS1010 ≥13.0 7 days ≥20.0 28 days ≥25.0 Heat of Hydration (kJ/kg) 7 days CNS2248 ≤290 28 days ≤330 Expansion of cement mortar (%) 14 days CNS13619 ≤0.020 56 days ≤0.060 91 days ≤0.050

由上述表3、表4 所記載之數據,可以明確知道:實施例5的機能性水泥材料AS3之抗壓強度在第3天、第7天、及第28天時分別為23.4Mpa、33.2 Mpa、及40.6 Mpa,皆符合CNS15286之一般水泥規範標準,適合用來做為特殊功能的水泥如水硬性混合水泥;實施例6的機能性水泥材料AS4之抗壓強度在第3天、第7天時分別為1.62Mpa、及16.48Mpa,明顯低於CNS15286之一般水泥規範標準,但第28天時的抗壓強度為26.4Mpa,可以符合水硬性混合水泥標準,因而適合做為水硬性混合水泥使用;實施例7的機能性水泥材料AS5之抗壓強度在第3天、第7天、及第28天時分別為1.23Mpa、10.01Mpa、及19.27Mpa,皆稍微低於CNS15286之水硬性混合水泥標準,但第28天強度高於國內控制性低強度回填材料所需0.9 Mpa以上,因而適合做為控制性低強度回填材料使用之水泥材料使用。From the data recorded in Table 3 and Table 4 above, it is clear that the compressive strength of the functional cement material AS3 of Example 5 was 23.4 Mpa and 33.2 Mpa on the 3rd, 7th, and 28th days, respectively , And 40.6 Mpa, which are in compliance with the general cement specification standard of CNS15286, and are suitable for use as cement with special functions such as hydraulic cement; the compressive strength of the functional cement material AS4 of Example 6 is on the 3rd and 7th days They are 1.62Mpa and 16.48Mpa, which are obviously lower than the general cement specification standard of CNS15286, but the compressive strength at the 28th day is 26.4Mpa, which can meet the hydraulic cement standard, so it is suitable for use as hydraulic cement; The compressive strength of the functional cement material AS5 of Example 7 was 1.23Mpa, 10.01Mpa, and 19.27Mpa on the 3rd, 7th, and 28th days, respectively, which were all slightly lower than the hydraulic cement standard of CNS15286 , But the 28th day strength is higher than 0.9 Mpa required for domestic controlled low-strength backfill materials, so it is suitable for cement materials used as controlled low-strength backfill materials.

從而,本發明之水泥改質劑係非常適合於做為機能性水泥材料使用。添加少量時可以發揮抗滲透性、耐磨、抗輻射、低水合熱、抗腐蝕脹縮性能、耐磨性、抗凍性、抗碳化性等性能。特別是,就凝結時間及抗壓強度而論,機能性水泥材料的水泥改質劑添加量愈高者,其凝結時間愈低,抗壓強度也較低,但可以符合此用標準,顯示添加高含量有 本發明之水泥改質劑的機能性水泥材料係適合做為控制性低強度材料水泥材料使用。Therefore, the cement modifier system of the present invention is very suitable for use as a functional cement material. When a small amount is added, it can exert performances such as permeability resistance, abrasion resistance, radiation resistance, low heat of hydration, corrosion resistance, expansion and contraction resistance, abrasion resistance, frost resistance, and carbonization resistance. In particular, in terms of setting time and compressive strength, the higher the amount of cement modifier added to the functional cement material, the lower the setting time and the lower the compressive strength, but it can meet this standard. High content The functional cement material of the cement modifier of the present invention is suitable for use as a controllable low-strength cement material.

接著,對於實施例5至實施例7之機能性水泥材料AS30、AS4、AS5分別測定其各種構成成分,例如,測定MgO%最大值、SO3 %最大值、S%最大值、不溶殘碴%最大值、燒失量%最大值、SiO2 %、Al2 O3 %、CaO%、Na2 O%、K2 O%、鹼類、(Na2 O%+0.658 K2 O%)等,並將結果記載於表5中。另外,有關CNS 15286所規範的IS(<70)型、IS(70)型、及IP型的參考標準值也分別記載於表5中。 【表5】   CNS 15286 實施例5 (AS3) 實施例6 (AS4) 實施例7 (AS5) 項目 IS(<70) IS(≥70) IP MgO%最大值 - - ≤6.0 4.8 5.5 6.0 SO3 %最大值 ≤3.0 ≤4.0 ≤4.0 2.4 1.9 1.8 S%最大值 ≤2.0 ≤2.0 - 0.1 0.1 0.2 不溶殘渣%最大值 ≤1.0 ≤1.0 ≤1.0 0.6 0.9 2.0 燒失量%最大值 ≤3.0 ≤4.0 ≤5.0 3.1 4.7 8.9 SiO2 % - - - 22.4 22.7 19.7 Al2 O3 % - - - 5.6 6.5 8.1 CaO% - - - 59.4 57.5 58.4 Na2 O% - - - 0.25 0.21 0.21 K2 O% - - - 0.44 0.34 0.26 鹼類 (Na2 O%+0.658 K2 O%) - -   - 0.53 0.44 0.38 Next, the functional cement materials AS30, AS4, and AS5 of Example 5 to Example 7 were measured for various constituents, for example, the maximum value of MgO%, the maximum value of SO 3 %, the maximum value of S%, and the% of insoluble residue were measured. Maximum value, maximum ignition loss %, SiO 2 %, Al 2 O 3 %, CaO%, Na 2 O%, K 2 O%, alkalis, (Na 2 O%+0.658 K 2 O%), etc., And the results are recorded in Table 5. In addition, the reference standard values for the IS (<70) type, IS (70) type, and IP type regulated by CNS 15286 are also listed in Table 5. 【table 5】 CNS 15286 Example 5 (AS3) Example 6 (AS4) Example 7 (AS5) project IS(<70) IS(≥70) IP MgO% max - - ≤6.0 4.8 5.5 6.0 SO 3 % max ≤3.0 ≤4.0 ≤4.0 2.4 1.9 1.8 S% max ≤2.0 ≤2.0 - 0.1 0.1 0.2 Insoluble residue% maximum ≤1.0 ≤1.0 ≤1.0 0.6 0.9 2.0 Ignition loss% maximum ≤3.0 ≤4.0 ≤5.0 3.1 4.7 8.9 SiO 2 % - - - 22.4 22.7 19.7 Al 2 O 3 % - - - 5.6 6.5 8.1 CaO% - - - 59.4 57.5 58.4 Na 2 O% - - - 0.25 0.21 0.21 K 2 O% - - - 0.44 0.34 0.26 Alkali (Na 2 O%+0.658 K 2 O%) - - - 0.53 0.44 0.38

由上述表5所記載的數據,可以明確知道實施例5至實施例7的機能性水泥材料AS3、AS4、AS5的各種構成成分皆分別符合或接近CNS 15286所規範的IS(<70)型、IS(70)型、及IP型的參考標準值。從而,可以認為:添加有本發明之水泥改質劑的機能性水泥材料係適合做為水硬性混合水泥之材料使用。From the data recorded in Table 5 above, it can be clearly known that the various constituents of the functional cement materials AS3, AS4, and AS5 of Example 5 to Example 7 are in line with or close to the IS (<70) type specified by CNS 15286, respectively. The reference standard value of IS(70) type and IP type. Therefore, it can be considered that the functional cement material to which the cement modifier of the present invention is added is suitable for use as a material for hydraulic cement.

惟,以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only preferred embodiments of the present invention, and should not be used to limit the scope of implementation of the present invention, that is, simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the description of the invention , Are still within the scope of the invention patent.

S1:原料粉碎製程 S2:鐵質分離製程 S3:二次細化製程 S4:微細粉化製程 10:第一粉碎單元 20:磁選單元 30:第二粉碎單元 50:粉磨單元 51:磨盤 52:輥子 53:進料口 54:出料口 F:鐵質物質 Sb:還原碴 Sc:首次細化品 Sd:尾礦 Sf:二次細化品 Sg:水泥改質劑S1: Raw material crushing process S2: Iron separation process S3: Secondary refinement process S4: Micro powdering process 10: The first crushing unit 20: Magnetic separation unit 30: The second crushing unit 50: Grinding unit 51: Grinding Disc 52: Roller 53: Inlet 54: Outlet F: Iron material Sb: reduction ballast Sc: first refinement Sd: tailings Sf: secondary refinement Sg: cement modifier

圖1為顯示本發明之水泥改質劑之製造方法的標準流程圖。 圖2為顯示本發明之水泥改質劑之製造系統的架構示意圖。 圖3為本發明之水泥改質劑之製造系統中的粉磨單元結構示意圖。Figure 1 is a standard flow chart showing the manufacturing method of the cement modifier of the present invention. 2 is a schematic diagram showing the structure of the manufacturing system of the cement modifier of the present invention. Fig. 3 is a schematic diagram of the structure of the grinding unit in the manufacturing system of the cement modifier of the present invention.

S1:原料粉碎製程 S1: Raw material crushing process

S2:鐵質分離製程 S2: Iron separation process

S3:二次細化製程 S3: Secondary refinement process

S4:微細粉化製程 S4: Micro powdering process

Claims (10)

一種水泥改質劑之製造方法,其係適用於將電弧爐的還原碴資源化來製造水泥改質劑之方法,該製造方法包括:原料粉碎製程,其至少具備將原料予以粉碎而得到首次細化品之首次粉碎步驟;該原料屬於鋼爐碴,至少包含來自電弧爐的還原碴,該首次細化品之平均粒徑係小於20毫米;鐵質分離製程,其為至少具備利用磁力以去除該首次細化品中之含鐵成分而得到尾礦之第一磁選步驟,該磁力為來自一磁力產生裝置;二次細化製程,其為至少具備將該尾礦更進一步細化粉碎而得到二次細化品之二次粉碎步驟,該二次細化品之平均粒徑係小於5毫米;以及微細粉化製程,其為至少具備將該二次細化品進一步精細研磨成還原碴微粉末而得到水泥改質劑之微細粉化步驟;其中該水泥改質劑中之氧化鈣含量為55%~57%,三氧化二鋁含量為10.7%~11.1%,二氧化矽含量為16%~18%,氧化鎂含量為8%~9%。 A method for manufacturing a cement modifier, which is suitable for recycling the reduced ballast of an electric arc furnace to produce a cement modifier. The first crushing step of the chemical product; the raw material belongs to steel ballast, and at least contains the reduced ballast from the electric arc furnace. The average particle size of the first refined product is less than 20 mm; the iron separation process is at least capable of using magnetic force to remove The first step of refining the iron-containing components in the product to obtain the first magnetic separation step of the tailings, the magnetic force is derived from a magnetic force generating device; the second refining process, which is obtained by at least further refining and pulverizing the tailings The secondary pulverization step of the secondary refined product, the average particle size of the secondary refined product is less than 5 mm; and the fine powdering process, which is at least capable of further finely grinding the secondary refined product into reduced ballast micro Powder to obtain a fine powdering step of cement modifier; wherein the content of calcium oxide in the cement modifier is 55%~57%, the content of aluminum oxide is 10.7%~11.1%, and the content of silicon dioxide is 16% ~18%, the magnesium oxide content is 8%~9%. 如請求項1所述之水泥改質劑之製造方法,其中該水泥改質劑的鹼度為在1.5~3.5之範圍;該鹼度(Alk)係指在水泥改質劑中之氧化鈣含量(CaO%)相對於二氧化矽含量(SiO2%)與五氧化二磷含量(P2O5%)總和的比值:Alk=(CaO%)/〔(SiO2%)+(P2O5%)〕。 The method for manufacturing a cement modifier according to claim 1, wherein the alkalinity of the cement modifier is in the range of 1.5 to 3.5; the alkalinity (Alk) refers to the calcium oxide content in the cement modifier The ratio of (CaO%) to the sum of silicon dioxide content (SiO 2 %) and phosphorus pentoxide content (P 2 O 5 %): Alk=(CaO%)/〔(SiO 2 %)+(P 2 O 5 %)]. 如請求項1所述之水泥改質劑之製造方法,其中該水泥改質劑的矽酸二鈣(C2S)的含量為30%~40%,矽酸三鈣(C3S)的含量為11%~14%,鋁酸三鈣(C3A)的含量為26%~27%。 The method for manufacturing a cement modifier according to claim 1, wherein the content of dicalcium silicate (C 2 S) of the cement modifier is 30%-40%, and the content of tricalcium silicate (C 3 S) The content is 11% to 14%, and the content of tricalcium aluminate (C 3 A) is 26% to 27%. 如請求項1所述之水泥改質劑之製造方法,其中該水泥改質劑之以氣透儀法測定的細度(比表面積)為500m2/kg以上。 The method for manufacturing a cement modifier according to claim 1, wherein the fineness (specific surface area) of the cement modifier measured by the air permeability method is 500 m 2 /kg or more. 一種機能性水泥材料之製造方法,其係包括以特定摻混比例將如請求項1至3中任一項所述之製造方法所製得的水泥改質劑與卜特蘭水泥加以均勻混合而得到機能性水泥;其中該水泥改質劑與該卜特蘭水泥的摻混比例為在1:10~10:1之範圍;該卜特蘭水泥中之爐石、飛灰及石灰的總含量為低於5%;該水泥改質劑中之氧化鈣含量為55%~57%,三氧化二鋁含量為10.7%~11.1%,二氧化矽含量為16%~18%,氧化鎂含量為8%~9%;鹼度為3.2~3.4;該水泥改質劑的矽酸二鈣(C2S)的含量為30%~40%,矽酸三鈣(C3S)的含量為11%~14%,鋁酸三鈣(C3A)的含量為26%~27%;以及該機能性水泥之活性係數在第28天係高於75%。 A method for manufacturing a functional cement material, which includes uniformly mixing a cement modifier prepared by the manufacturing method described in any one of claims 1 to 3 and Portland cement at a specific mixing ratio. Obtain functional cement; wherein the blending ratio of the cement modifier and the portland cement is in the range of 1:10-10:1; the total content of the furnace stone, fly ash and lime in the portland cement Is less than 5%; the calcium oxide content in the cement modifier is 55%~57%, the aluminum oxide content is 10.7%~11.1%, the silicon dioxide content is 16%~18%, and the magnesium oxide content is 8%~9%; alkalinity is 3.2~3.4; the content of dicalcium silicate (C 2 S) of the cement modifier is 30%~40%, and the content of tricalcium silicate (C 3 S) is 11 %~14%, the content of tricalcium aluminate (C 3 A) is 26%~27%; and the activity coefficient of this functional cement is higher than 75% on the 28th day. 如請求項5所述之機能性水泥之製造方法,其中該水泥改質劑與該卜特蘭水泥的摻混比例為在1:8~8:1之範圍。 The method for manufacturing functional cement according to claim 5, wherein the blending ratio of the cement modifier and the Portland cement is in the range of 1:8-8:1. 如請求項5所述之機能性水泥之製造方法,其中該水泥改質劑之以氣透儀法測定的細度(比表面積)為500m2/kg以上。 The method for producing functional cement according to claim 5, wherein the fineness (specific surface area) of the cement modifier measured by the air permeability method is 500 m 2 /kg or more. 一種機能性水泥材料,其係利用如請求項5至7中任一項之製造方法而得到者,或者以特定摻混比例將如請求項1至3中任一項所述之水泥改質劑與卜特蘭水泥予以摻混而到者;其中該水泥改質劑之以氣透儀法測定的細度(比表面積)為在500m2/kg以上;該水泥改質劑中之矽酸二鈣(C2S)的含量為30%~40%,矽酸三鈣(C3S)的含量為11%~15%,鋁酸三鈣(C3A)的含量為22%~27%;以及該水泥改質劑的鹼度為在1.5~3.5之範圍;該鹼度(Alk)係指在水泥改質劑中之氧化鈣含量(CaO%)相對於二氧化矽含量(SiO2%)與五氧化二磷含量(P2O5%)總和的比值: Alk=(CaO%)/〔(SiO2%)+(P2O5%)〕。 A functional cement material, which is obtained by the manufacturing method according to any one of claims 5 to 7, or the cement modifier according to any one of claims 1 to 3 in a specific blending ratio It is blended with Portland cement; wherein the fineness (specific surface area) of the cement modifier measured by the air permeability tester is above 500m 2 /kg; the cement modifier contains two silicates The content of calcium (C 2 S) is 30% to 40%, the content of tricalcium silicate (C 3 S) is 11% to 15%, and the content of tricalcium aluminate (C 3 A) is 22% to 27% ; And the alkalinity of the cement modifier is in the range of 1.5~3.5; the alkalinity (Alk) refers to the calcium oxide content (CaO%) in the cement modifier relative to the silica content (SiO 2 % The ratio of) to the sum of phosphorus pentoxide content (P 2 O 5 %): Alk=(CaO%)/[(SiO 2 %)+(P 2 O 5 %)]. 如請求項8所述之機能性水泥材料,其中該水泥改質劑中之氧化鈣含量為55%~57%,三氧化二鋁含量為10.5%~11.5%,二氧化矽含量為16%~18%,氧化鎂含量為8%~9%。 The functional cement material described in claim 8, wherein the content of calcium oxide in the cement modifier is 55%~57%, the content of aluminum oxide is 10.5%~11.5%, and the content of silicon dioxide is 16%~ 18%, the magnesium oxide content is 8%-9%. 如請求項8所述之機能性水泥材料,其中該水泥改質劑之以氣透儀法測定的細度(比表面積)為1000m2/kg以上。 The functional cement material according to claim 8, wherein the fineness (specific surface area) of the cement modifier measured by the air permeability meter method is 1000 m 2 /kg or more.
TW108123836A 2019-07-05 2019-07-05 Manufacturing method of cement modifier and functional cement material containing the cement modifier TWI740176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123836A TWI740176B (en) 2019-07-05 2019-07-05 Manufacturing method of cement modifier and functional cement material containing the cement modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123836A TWI740176B (en) 2019-07-05 2019-07-05 Manufacturing method of cement modifier and functional cement material containing the cement modifier

Publications (2)

Publication Number Publication Date
TW202102457A TW202102457A (en) 2021-01-16
TWI740176B true TWI740176B (en) 2021-09-21

Family

ID=75234737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123836A TWI740176B (en) 2019-07-05 2019-07-05 Manufacturing method of cement modifier and functional cement material containing the cement modifier

Country Status (1)

Country Link
TW (1) TWI740176B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI787969B (en) * 2021-08-24 2022-12-21 鈺長科技有限公司 Bu Zuolan material, its manufacturing method and manufacturing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448556B (en) * 2011-08-23 2014-08-11 Lu Tung Hsuan Pretreatment method for recycling electric arc furnace slag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448556B (en) * 2011-08-23 2014-08-11 Lu Tung Hsuan Pretreatment method for recycling electric arc furnace slag

Also Published As

Publication number Publication date
TW202102457A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
Jiang et al. Characteristics of steel slags and their use in cement and concrete—A review
JP4700348B2 (en) Two-component wet cement, method for producing and using the same
US20080022903A1 (en) Process for the production of portland slag cement using granulated blast furnace slag
CN105314955B (en) A kind of filling in mine material
JP5800387B2 (en) Soil improvement material
JP2011207699A (en) Cement composition, method for producing the same and treatment method for arsenic-containing waste
Zhou et al. Insight to workability, compressive strength and microstructure of lithium slag-steel slag based cement under standard condition
Martins et al. Influence of a LAS-based modifying admixture on cement-based composites containing steel slag powder
CN107056099A (en) A kind of preparation method of low-intensity binder materials
Sai et al. Strength properties of concrete by using red mud as a replacement of cement with hydrated lime
CN114292081B (en) Cement-free low-carbon concrete and preparation method thereof
CN107382107B (en) A method for preparing sulfoaluminate cement clinker by utilizing magnesium slag and manganese slag
EP4253340A1 (en) Supplementary cementitious materials from recycled cement paste
CN107759176A (en) The solid waste comprehensive utilization of slag powders makes building material
JPWO2006098202A1 (en) Fired product
TWI740176B (en) Manufacturing method of cement modifier and functional cement material containing the cement modifier
CN106316185A (en) Concrete micro-expansion mineral admixture and preparation method thereof
TWI798568B (en) Cement-free permeable concrete and its forming method
SK286943B6 (en) Method for production of Portland clinker with use of crystalline blast-furnace slag
CN115259817B (en) A method of synergistically preparing foundation pit backfill by using multi-component solid waste
CN115028395B (en) A kind of solid waste building material product and preparation method thereof
Liu et al. Bird’s-eye view of recycled solid wastes in road engineering
CN105130222B (en) Method of preparing special sulfate cementing material through treatment on electrolytic manganese residue in fluidized bed boiler
JP7296839B2 (en) Cement manufacturing method
JP2022135892A (en) Clinker powder and production method thereof