[go: up one dir, main page]

TWI736248B - Semiconductor storing apparatus and flash memory operation method - Google Patents

Semiconductor storing apparatus and flash memory operation method Download PDF

Info

Publication number
TWI736248B
TWI736248B TW109114879A TW109114879A TWI736248B TW I736248 B TWI736248 B TW I736248B TW 109114879 A TW109114879 A TW 109114879A TW 109114879 A TW109114879 A TW 109114879A TW I736248 B TWI736248 B TW I736248B
Authority
TW
Taiwan
Prior art keywords
circuit
circuit part
enable signal
flash memory
dpd
Prior art date
Application number
TW109114879A
Other languages
Chinese (zh)
Other versions
TW202143231A (en
Inventor
須藤直昭
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109114879A priority Critical patent/TWI736248B/en
Application granted granted Critical
Publication of TWI736248B publication Critical patent/TWI736248B/en
Publication of TW202143231A publication Critical patent/TW202143231A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Read Only Memory (AREA)

Abstract

A semiconductor storing apparatus and a flash memory operation method shortening a recovery time from a deep power-down mode without a special command for the deep power-down mode are provided. A flash memory includes: a standard command I/F circuit and a DPD controller operating through an external power voltage; a voltage supply node supplying electrical power through a first current path; a voltage supply node supplying electrical power through a second current path; an internal circuit group connecting to the voltage supply node; and a charge pump circuit connecting to the voltage supply node. Enabling the internal circuit group after enabling the charge pump circuit in a releasing DPD mode.

Description

半導體存儲裝置及快閃記憶體的運行方法Semiconductor storage device and operating method of flash memory

本發明涉及一種快閃記憶體等半導體存儲裝置及方法,特別涉及待機模式或深度省電模式的運行。The present invention relates to a semiconductor storage device such as a flash memory and a method thereof, in particular to operation in a standby mode or a deep power saving mode.

與非(Not and,NAND)型快閃記憶體(flash memory)能以頁面為單位進行讀出或編程(program),而且以塊(block)為單位進行擦除。專利文獻1所示的快閃記憶體公開了下述技術,即:在待機模式(stand-by mode)與正常運行模式下,將不同的電源電壓供給至頁面緩衝器/讀出電路,由此減少待機模式的消耗電力。 [現有技術文獻] [專利文獻] NAND (Not and, NAND) flash memory can be read or programmed in units of pages, and erased in units of blocks. The flash memory shown in Patent Document 1 discloses a technique of supplying different power supply voltages to the page buffer/readout circuit in a standby mode (stand-by mode) and a normal operation mode, thereby Reduce power consumption in standby mode. [Prior Art Literature] [Patent Literature]

[專利文獻1]日本專利特開2006-252748號公報[Patent Document 1] Japanese Patent Laid-Open No. 2006-252748

[發明所要解決的問題][The problem to be solved by the invention]

快閃記憶體有主動模式和待機模式,所述主動模式回應來自使用者的命令而進行讀出、編程、擦除等,所述待機模式可受理來自使用者的命令。待機模式下,限制內部電路的運行以使消耗電力成為一定以下,但在從使用者輸入了命令的情況下,必須立即回應所述命令。因此,即便稱為待機模式,也在邏輯電路或寄存器(register)等的易失性電路產生撲電洩漏電流(off-leak current),撲電洩漏電流伴隨元件尺寸的縮小而增加,而且在使用內部電源電壓的情況下必須使內部電源電壓檢測電路運行,而消耗某種程度的電力。即,難以削減待機模式下的消耗電流。The flash memory has an active mode and a standby mode. The active mode performs reading, programming, erasing, etc. in response to commands from the user, and the standby mode can accept commands from the user. In the standby mode, the operation of the internal circuit is restricted so that the power consumption becomes less than a certain level, but when a command is input from the user, the command must be responded to immediately. Therefore, even in standby mode, off-leak current is generated in volatile circuits such as logic circuits or registers. The off-leak current increases with the reduction of component size, and it is in use. In the case of internal power supply voltage, the internal power supply voltage detection circuit must be operated, which consumes a certain amount of power. That is, it is difficult to reduce the current consumption in the standby mode.

為了進一步削減待機模式下的消耗電力,視快閃記憶體而定搭載著深度省電模式(deep power-down mode,以下稱為DPD模式)。DPD模式下,關停向用於待機模式的一部分主動的內部電路的內部供給電源,削減撲電洩漏電流。DPD模式例如通過DPD開始命令而進入所述模式,通過DPD解除命令而從所述模式復原。關於從DPD模式的復原,為了使關停的電路正常運行而需要一定的時間,但是另一方面,有可大幅度地減少消耗電力的優點。In order to further reduce the power consumption in standby mode, depending on the flash memory, a deep power-down mode (deep power-down mode, hereinafter referred to as DPD mode) is equipped. In the DPD mode, the internal power supply to a part of the active internal circuit used in the standby mode is shut down to reduce the power leakage current. The DPD mode is entered into the mode by, for example, a DPD start command, and is restored from the mode by a DPD release command. Regarding the recovery from the DPD mode, a certain amount of time is required for the shut down circuit to operate normally, but on the other hand, it has the advantage of drastically reducing power consumption.

圖1A中表示搭載了串列外設介面(Serial Peripheral interface,SPI)功能的NAND型快閃記憶體向DPD模式跳轉時的運行波形的一例。待機模式時,通過將晶片選擇信號/CS設為低電平從而選擇快閃記憶體,在此期間中與時鐘信號同步地從資料登錄端子DI輸入DPDDPD命令(B9h)。快閃記憶體在從輸入DPD命令起經過了一定期間tDP的時刻T DPD,跳轉至DPD模式,阻斷向特定的內部電路的內部供給電壓。時刻T DPD之前的期間中,消耗待機模式的電流,時刻T DPD之後的期間中,消耗DPD模式的電流。 Figure 1A shows an example of operating waveforms when a NAND-type flash memory equipped with a serial peripheral interface (Serial Peripheral interface, SPI) function transitions to DPD mode. In the standby mode, select the flash memory by setting the chip select signal /CS to low level, and input the DPDDPD command (B9h) from the data registration terminal DI in synchronization with the clock signal during this period. The flash memory transitions to the DPD mode at time T DPD when a certain period of tDP has elapsed since the input of the DPD command, and blocks the internal supply of voltage to a specific internal circuit. In the period before the time T DPD , the current in the standby mode is consumed, and in the period after the time T DPD , the current in the DPD mode is consumed.

另外,圖1B中表示從DPD模式復原時的運行波形的一例。待機模式時,通過將晶片選擇信號/CS設為低電平從而選擇快閃記憶體,在此期間中與時鐘信號同步地從資料登錄端子DI輸入解除DPD模式的DPD解除命令(ABh)。快閃記憶體從輸入DPD解除命令起,在tRES的期間中對關停的內部電路供給電力,在時刻T ST復原為內部電路進行正常運行的狀態。在時刻T ST之前,消耗DPD模式的電流,在時刻T ST之後,消耗待機模式的電流。 In addition, FIG. 1B shows an example of the operating waveform when recovering from the DPD mode. In the standby mode, the flash memory is selected by setting the chip select signal /CS to low level. During this period, the DPD release command (ABh) to release the DPD mode is input from the data registration terminal DI in synchronization with the clock signal. After the DPD release command is input, the flash memory supplies power to the shut down internal circuit during the period of tRES, and returns to a state in which the internal circuit is operating normally at time T ST. Before the time T ST , the current in the DPD mode is consumed, and after the time T ST , the current in the standby mode is consumed.

圖2為支援DPD模式的NAND型快閃記憶體的內部框圖。快閃記憶體10包含DPD控制器20、記憶體單元陣列(memory cell array)30、行解碼器40、頁面緩衝器/讀出電路50、週邊電路60及高電壓電路70等。對快閃記憶體10供給外部電源電壓(例如3.3V)VCC,DPD控制器20直接使用外部電源電壓VCC而運行。在外部電源電壓VCC與內部電路之間連接P溝道金屬氧化物半導體(Positive channel Metal Oxide Semiconductor,PMOS)電晶體P,對電晶體P的閘極施加DPD使能信號DPDEN。在主動模式及待機模式時,DPD控制器20生成L電平的DPD使能信號DPDEN,使電晶體P導通。由此,對各內部電路經由電壓供給節點INTVDD供給內部電壓VDD。在DPD模式時,DPD控制器20生成H電平的DPD使能信號DPDEN,將電晶體P設為非導通。由此,關停外部電源電壓VCC的供給,內部電路的運行停止。Figure 2 is an internal block diagram of a NAND-type flash memory that supports the DPD mode. The flash memory 10 includes a DPD controller 20, a memory cell array 30, a row decoder 40, a page buffer/readout circuit 50, a peripheral circuit 60, a high voltage circuit 70, and so on. An external power supply voltage (for example, 3.3V) VCC is supplied to the flash memory 10, and the DPD controller 20 directly uses the external power supply voltage VCC to operate. A P-channel Metal Oxide Semiconductor (PMOS) transistor P is connected between the external power supply voltage VCC and the internal circuit, and a DPD enable signal DPDEN is applied to the gate of the transistor P. In the active mode and the standby mode, the DPD controller 20 generates an L-level DPD enable signal DPDEN to turn on the transistor P. As a result, the internal voltage VDD is supplied to each internal circuit via the voltage supply node INTVDD. In the DPD mode, the DPD controller 20 generates an H-level DPD enable signal DPDEN, and sets the transistor P to be non-conductive. As a result, the supply of the external power supply voltage VCC is shut down, and the operation of the internal circuit is stopped.

在解除DPD模式的情況下,如圖1B所示,用戶從外部輸入DPD解除命令(ABh)。DPD控制器20回應DPD解除命令的輸入,使DPD使能信號DPDEN過渡為L電平,使電晶體P導通,開始從外部電源電壓VCC向內部電路供給電力。由此,內部電路在期間tRES後復原為可運行的狀態。In the case of releasing the DPD mode, as shown in FIG. 1B, the user inputs a DPD release command (ABh) from the outside. The DPD controller 20 responds to the input of the DPD release command, causes the DPD enable signal DPDEN to transition to the L level, turns on the transistor P, and starts to supply power from the external power supply voltage VCC to the internal circuit. As a result, the internal circuit is restored to an operable state after the period tRES.

這樣,對於現有的快閃記憶體來說,為了使用DPD模式,使用者不僅必須輸入DPD命令,而且必須輸入DPD解除命令,對於不支持DPD命令及DPD解除命令的快閃記憶體控制器來說,無法使用DPD模式。進而,當解除DPD模式而向電壓供給節點INTVDD供給來自外部電源電壓VCC的電力時,若內部電路的負載電容大,則電壓供給節點INTVDD到達內部電路可運行的電壓為止的時間tRES變長。In this way, for the existing flash memory, in order to use the DPD mode, the user must not only input the DPD command, but also the DPD release command. For flash memory controllers that do not support the DPD command and the DPD release command , Cannot use DPD mode. Furthermore, when the DPD mode is released and the power from the external power supply voltage VCC is supplied to the voltage supply node INTVDD, if the load capacitance of the internal circuit is large, the time tRES until the voltage supply node INTVDD reaches the voltage at which the internal circuit can operate becomes longer.

本發明解決這種現有的問題,其目的在於提供一種半導體存儲裝置,此半導體存儲裝置無需用於解除深度省電模式的專用的命令而可縮短從深度省電模式復原的復原時間。 [解決問題的技術手段] The present invention solves such existing problems, and its object is to provide a semiconductor storage device that does not require a dedicated command for releasing the deep power saving mode and can shorten the recovery time from the deep power saving mode. [Technical means to solve the problem]

本發明的快閃記憶體的運行方法包括:跳轉至深度省電模式的步驟,所述深度省電模式阻斷從電力供給源向內部電路的電力供給;當輸入了包含讀出、編程或擦除的標準命令時,解除所述深度省電模式的步驟;以及在解除所述深度省電模式後,執行所述標準命令的步驟,所述解除的步驟從所述電力供給源向所述內部電路的至少第一電路部分和第二電路部分各自分別供給電力。The operating method of the flash memory of the present invention includes the step of jumping to a deep power saving mode, which blocks the power supply from the power supply source to the internal circuit; when the input includes reading, programming or erasing When removing the standard command, the step of canceling the deep power saving mode; and after canceling the deep power saving mode, the step of executing the standard command, the step of canceling from the power supply source to the internal At least the first circuit part and the second circuit part of the circuit are each supplied with electric power.

本發明的快閃記憶體的一個實施方式中,所述解除的步驟還向所述第一電路部分供給用於使所述第一電路部分可運行的第一使能信號,在供給所述第一使能信號後,向所述第二電路部分供給用於使所述第二電路部分可運行的第二使能信號。本發明的快閃記憶體的一個實施方式中,所述執行的步驟在第一處理順序中使用所述第一電路部分,在所述第一處理順序後的第二處理順序中使用所述第二電路部分。本發明的快閃記憶體的一個實施方式中,直至供給所述第一使能信號為止的第一復原時間及直至供給所述第二使能信號為止的第二復原時間比用於使所述內部電路整體成為可運行的狀態的復原時間更短。本發明的快閃記憶體的一個實施方式中,所述第一電路部分的負載電容小於所述第二電路部分的負載電容。本發明的快閃記憶體的一個實施方式中,所述第一電路部分包含電荷泵電路,所述第二電路部分包含記憶體單元陣列的週邊電路,所述電荷泵生成升壓的電壓所需要的時間比所述第二復原時間與所述第一復原時間的差量更短。本發明的快閃記憶體的一個實施方式中,所述深度省電模式在待機模式持續一定時間時,從所述待機模式跳轉。In an embodiment of the flash memory of the present invention, the step of releasing further supplies a first enable signal for making the first circuit part operable to the first circuit part, and then supplies the first enable signal to the first circuit part. After an enable signal, a second enable signal for making the second circuit part operable is supplied to the second circuit part. In an embodiment of the flash memory of the present invention, the step of executing uses the first circuit part in a first processing sequence, and uses the first circuit part in a second processing sequence after the first processing sequence. Two circuit parts. In one embodiment of the flash memory of the present invention, the first recovery time until the first enable signal is supplied and the second recovery time until the second enable signal is supplied are longer than those used for the The recovery time for the entire internal circuit to become operable is shorter. In an embodiment of the flash memory of the present invention, the load capacitance of the first circuit part is smaller than the load capacitance of the second circuit part. In an embodiment of the flash memory of the present invention, the first circuit part includes a charge pump circuit, and the second circuit part includes a peripheral circuit of the memory cell array, and the charge pump generates a boosted voltage. The time is shorter than the difference between the second recovery time and the first recovery time. In an embodiment of the flash memory of the present invention, the deep power saving mode jumps from the standby mode when the standby mode continues for a certain period of time.

本發明的半導體存儲裝置包括:內部電路,至少包含第一電路部分及第二電路部分;跳轉部件,跳轉至深度省電模式,所述深度省電模式將從電力供給源向所述第一電路部分及第二電路部分的電力供給阻斷;解除部件,當輸入了包含讀出、編程或擦除的標準命令時,解除所述深度省電模式;以及執行部件,在解除所述深度省電模式後,執行所述標準命令,所述解除部件包含:第一電流路徑,從所述電力供給源向所述第一電路部分供給電力;以及第二電流路徑,從所述電力供給源向所述第二電路部分供給電力。The semiconductor memory device of the present invention includes: an internal circuit including at least a first circuit part and a second circuit part; a jump component, which jumps to a deep power saving mode, which will transfer a power supply source to the first circuit The power supply of the part and the second circuit part is blocked; the release part, when a standard command including read, program, or erase is input, releases the deep power saving mode; and the execution part releases the deep power saving After the mode, the standard command is executed, and the release means includes: a first current path for supplying power from the power supply source to the first circuit part; and a second current path for supplying power from the power supply source to all The second circuit part supplies power.

本發明的半導體存儲裝置的一個實施方式中,所述解除部件包含:第一供給部件,向所述第一電路部分供給用於使所述第一電路部分可運行的第一使能信號;以及第二供給部件,在供給所述第一使能信號後,向所述第二電路部分供給用於使所述第二電路可運行的第二使能信號。本發明的半導體存儲裝置的一個實施方式中,所述執行部件在第一處理順序中使用所述第一電路部分,在所述第一處理順序後的第二處理順序中使用所述第二電路部分。本發明的半導體存儲裝置的一個實施方式中,直至供給所述第一使能信號為止的第一復原時間及直至供給第二使能信號為止的第二復原時間比用於使所述第一電路部分及第二電路部分成為可運行的狀態的復原時間更短。本發明的半導體存儲裝置的一個實施方式中,所述第一電路部分的負載電容小於所述第二電路部分的負載電容。本發明的半導體存儲裝置的一個實施方式中,所述第一電路部分包含電荷泵電路,所述第二電路部分包含記憶體單元陣列的週邊電路,所述電荷泵生成升壓的電壓所需要的時間比所述第二復原時間與所述第一復原時間的差量更短。本發明的半導體存儲裝置的一個實施方式中,所述解除部件在所述第一電流路徑及所述第二電流路徑包含第一電晶體及第二電晶體,所述解除部件控制所述第一電晶體及所述第二電晶體的導通或非導通。本發明的半導體存儲裝置的一個實施方式中,所述半導體存儲裝置為快閃記憶體。 [發明的效果] In one embodiment of the semiconductor memory device of the present invention, the release means includes: a first supply means that supplies a first enable signal for making the first circuit part operable to the first circuit part; and The second supply part supplies a second enable signal for making the second circuit operable to the second circuit part after supplying the first enable signal. In one embodiment of the semiconductor memory device of the present invention, the execution unit uses the first circuit part in a first processing sequence, and uses the second circuit in a second processing sequence after the first processing sequence. part. In one embodiment of the semiconductor memory device of the present invention, the first recovery time until the first enable signal is supplied and the second recovery time until the second enable signal is supplied are longer than those for the first circuit The recovery time for the part and the second circuit part to become operable is shorter. In an embodiment of the semiconductor memory device of the present invention, the load capacitance of the first circuit part is smaller than the load capacitance of the second circuit part. In one embodiment of the semiconductor memory device of the present invention, the first circuit part includes a charge pump circuit, the second circuit part includes a peripheral circuit of the memory cell array, and the charge pump generates a boosted voltage required for The time is shorter than the difference between the second recovery time and the first recovery time. In one embodiment of the semiconductor memory device of the present invention, the release unit includes a first transistor and a second transistor in the first current path and the second current path, and the release unit controls the first transistor. Conduction or non-conduction of the transistor and the second transistor. In an embodiment of the semiconductor storage device of the present invention, the semiconductor storage device is a flash memory. [Effects of the invention]

根據本發明,無需用於解除深度省電模式的專用的命令而可回應標準命令的輸入來解除深度省電模式。進而,在解除深度省電模式時,從電力供給源分別向第一電路部分和第二電路部分供給電力,因而與向第一電路部分和第二電路部分共同供給電力的情況相比較,可縮短使第一電路部分或第二電路部分成為可運行的狀態的時間,結果可實現從深度省電模式的復原時間的最小化。According to the present invention, there is no need for a dedicated command for releasing the deep power saving mode, and the deep power saving mode can be released in response to the input of a standard command. Furthermore, when the deep power saving mode is released, power is supplied from the power supply source to the first circuit part and the second circuit part. Therefore, compared with the case where power is supplied to the first circuit part and the second circuit part together, it can be shortened. The time for the first circuit part or the second circuit part to become operable, as a result, the recovery time from the deep power saving mode can be minimized.

本發明的半導體存儲裝置並無特別限定,例如在NAND型或者或非(Not OR,NOR)型的快閃記憶體等中實施。 [實施例] The semiconductor storage device of the present invention is not particularly limited, and is implemented in, for example, a NAND type or NOR (Not OR, NOR) type flash memory. [Example]

接下來,參照圖式對本發明的實施例進行詳細說明。圖3為表示本發明的實施例的NAND型快閃記憶體的概略內部構成的圖。快閃記憶體100包含:接收標準命令的標準命令介面(interface,I/F)電路110、控制向DPD模式的跳轉及DPD模式的解除等的DPD控制器120、記憶體單元陣列130、行解碼器140、頁面緩衝器/讀出電路150、週邊電路160、高電壓電路170及電荷泵電路180等內部電路。Next, the embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 is a diagram showing a schematic internal structure of a NAND flash memory according to an embodiment of the present invention. The flash memory 100 includes: a standard command interface (interface, I/F) circuit 110 that receives standard commands, a DPD controller 120 that controls the jump to the DPD mode and the release of the DPD mode, etc., a memory cell array 130, and row decoding Internal circuits such as the processor 140, the page buffer/readout circuit 150, the peripheral circuit 160, the high voltage circuit 170, and the charge pump circuit 180.

本實施例的快閃記憶體100能以多個電力消耗模式運行。主動模式不限制消耗電力而規格齊全(full specification)地執行標準命令(例如讀出、編程、擦除)等運行。待機模式是在並非主動模式時,一邊按照規定的消耗電力的要求使內部電路運行,一邊以可對標準命令等的輸入作出回應的方式執行運行。在待機模式下,例如停止高電壓電路的電荷泵(charge pump),或使內部供給電壓降低。DPD模式為了進一步減少待機模式的消耗電力,而在待機模式時阻斷向特定電路的電力供給。The flash memory 100 of this embodiment can operate in multiple power consumption modes. The active mode does not limit power consumption and executes standard commands (such as read, program, erase) with full specifications. In the standby mode, when it is not in the active mode, the internal circuit is operated in accordance with the prescribed power consumption requirements, and the operation is executed in a manner that can respond to the input of standard commands and the like. In the standby mode, for example, the charge pump of the high-voltage circuit is stopped, or the internal supply voltage is reduced. In the DPD mode, in order to further reduce the power consumption in the standby mode, the power supply to a specific circuit is blocked in the standby mode.

標準命令I/F電路110及DPD控制器120直接使用外部電源電壓VCC(例如3.3V)而運行,即,在待機模式及DPD模式時可運行。標準命令I/F電路110為用於從外部受理為了進行快閃記憶體的標準運行而預先準備的標準命令的介面電路。標準命令例如為用於讀出、編程、擦除等的命令。標準命令I/F電路110包含用於對輸入的標準命令進行解碼的互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)邏輯器件,其解碼結果DEC提供給DPD控制器120及週邊電路160(包含用於控制標準命令的運行的控制器或狀態機(state machine)等)。The standard command I/F circuit 110 and the DPD controller 120 directly use the external power supply voltage VCC (for example, 3.3V) to operate, that is, they can operate in the standby mode and the DPD mode. The standard command I/F circuit 110 is an interface circuit for externally receiving standard commands prepared in advance for standard operation of the flash memory. The standard commands are, for example, commands for reading, programming, erasing, and the like. The standard command I/F circuit 110 includes a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) logic device for decoding the input standard command, and the decoded result DEC is provided to the DPD controller 120 and the peripheral circuit 160 (including A controller or state machine used to control the operation of standard commands).

DPD控制器120控制從待機模式向DPD模式的跳轉及DPD模式的解除。在外部電源電壓VCC與電壓供給節點INTVDD之間的第一電流路徑,連接著PMOS電晶體P1,在外部電源電壓VCC與電壓供給節點INTVDDCP之間的第二電流路徑,連接著PMOS電晶體P2。在電壓供給節點INTVDD,連接著行解碼器140、頁面緩衝器/讀出電路150、週邊電路160、高電壓電路170,在電壓供給節點INTVDDCP,連接著電荷泵電路180。The DPD controller 120 controls the transition from the standby mode to the DPD mode and the release of the DPD mode. The PMOS transistor P1 is connected to the first current path between the external power supply voltage VCC and the voltage supply node INTVDD, and the PMOS transistor P2 is connected to the second current path between the external power supply voltage VCC and the voltage supply node INTVDDCP. The voltage supply node INTVDD is connected to the row decoder 140, the page buffer/read circuit 150, the peripheral circuit 160, and the high voltage circuit 170, and the voltage supply node INTVDDCP is connected to the charge pump circuit 180.

對電晶體P1、電晶體P2的閘極共同施加來自DPD控制器120的DPD使能信號DPDEN。DPD控制器120在主動模式及待機模式時,生成L電平的DPD使能信號DPDEN,使電晶體P1、電晶體P2導通,由此從外部電源電壓VCC經由第一電流路徑向電壓供給節點INTVDD供給電力,另外經由第二電流路徑向電壓供給節點INTVDDCP供給電力。另外,DPD控制器120在DPD模式時,使DPD使能信號DPDEN過渡為H電平,將第一電流路徑及第二電流路徑的電晶體P1、電晶體P2設為非導通,阻斷向電壓供給節點INTVDD、電壓供給節點INTVDDCP的來自外部電源電壓VCC的電力供給。The DPD enable signal DPDEN from the DPD controller 120 is commonly applied to the gates of the transistor P1 and the transistor P2. In the active mode and standby mode, the DPD controller 120 generates an L-level DPD enable signal DPDEN to turn on the transistor P1 and the transistor P2, thereby from the external power supply voltage VCC to the voltage supply node INTVDD via the first current path Power is supplied, and power is also supplied to the voltage supply node INTVDDCP via the second current path. In addition, when the DPD controller 120 is in the DPD mode, the DPD enable signal DPDEN is transitioned to H level, the transistor P1 and the transistor P2 of the first current path and the second current path are set to be non-conducting, blocking the voltage The power supply from the external power supply voltage VCC is supplied to the node INTVDD and the voltage supply node INTVDDCP.

從待機模式向DPD模式跳轉的方法並無特別限定,在某個形態中,DPD控制器120並未從使用者輸入用於向DPD模式跳轉的命令,而回應來自週邊電路160(包含控制快閃記憶體的運行的控制器等)的信號自動跳轉至DPD模式。例如,若從週邊電路160向DPD控制器120提供表示向待機模式跳轉的信號,則DPD控制器120從表示向待機模式跳轉的時間點起測量時間,當待機模式的持續時間超過一定時間後跳轉至DPD模式,使DPD使能信號DPDEN過渡為H電平,阻斷來自外部電源電壓VCC的電力供給。另外,在另一形態中,DPD控制器120也可回應來自使用者的用於向DPD模式跳轉的命令的輸入而跳轉至DPD模式。The method of jumping from the standby mode to the DPD mode is not particularly limited. In a certain form, the DPD controller 120 does not input a command for jumping to the DPD mode from the user, but responds from the peripheral circuit 160 (including the control flash The signal of the memory operation controller, etc.) automatically jumps to the DPD mode. For example, if a signal indicating the transition to the standby mode is provided from the peripheral circuit 160 to the DPD controller 120, the DPD controller 120 measures the time from the point in time indicating the transition to the standby mode, and the transition occurs when the duration of the standby mode exceeds a certain time. To DPD mode, make the DPD enable signal DPDEN transition to H level, blocking the power supply from the external power supply voltage VCC. In addition, in another form, the DPD controller 120 may also jump to the DPD mode in response to the input of a command for jumping to the DPD mode from the user.

關於解除DPD模式的方法,現有的快閃記憶體中,需要從外部輸入用於解除DPD模式的專用的命令,但本實施例中,具備不輸入這種專用命令而自動解除DPD模式的功能。若在DPD模式中,標準命令I/F電路110輸入標準命令,則DPD控制器120回應所述標準命令的輸入而解除DPD模式。所輸入的標準命令是在從DPD模式復原所需要的時間經過後無縫地執行。Regarding the method of releasing the DPD mode, in the existing flash memory, a dedicated command for releasing the DPD mode needs to be input from the outside. However, in this embodiment, there is a function of automatically releasing the DPD mode without inputting such a dedicated command. If in the DPD mode, the standard command I/F circuit 110 inputs a standard command, the DPD controller 120 responds to the input of the standard command to release the DPD mode. The entered standard command is executed seamlessly after the time required to recover from the DPD mode has elapsed.

DPD控制器120還在解除DPD模式時,即,從外部電源電壓VCC經由第一電流路徑及第二電流路徑向電壓供給節點INTVDD、電壓供給節點INTVDDCP各自分別供給電力時,分別生成後續用於使電荷泵電路180可運行的泵使能信號PUMPEN、及用於使週邊電路160的控制器所含的中央處理器(Central Processing Unit,CPU)可運行的CPU使能信號CPUEN。泵使能信號PUMPEN供給於電荷泵電路180,CPU使能信號CPUEN供給於週邊電路160。這些運行的詳細將於後述,但DPD控制器120從解除DPD模式的時間點起,在電壓供給節點INTVDDCP到達目標電壓時,使泵使能信號PUMPEN過渡為H電平,使電荷泵電路180可運行,接著,在電壓供給節點INTVDD到達目標電壓時,CPU使能信號CPUEN過渡為H電平,使週邊電路160的控制器可運行。When the DPD controller 120 also releases the DPD mode, that is, when power is supplied from the external power supply voltage VCC to the voltage supply node INTVDD and the voltage supply node INTVDDCP via the first current path and the second current path, respectively, it generates the subsequent use A pump enable signal PUMPEN for the charge pump circuit 180 to be operable, and a CPU enable signal CPUEN for enabling a central processing unit (CPU) included in the controller of the peripheral circuit 160 to be operable. The pump enable signal PUMPEN is supplied to the charge pump circuit 180, and the CPU enable signal CPUEN is supplied to the peripheral circuit 160. The details of these operations will be described later, but the DPD controller 120 makes the pump enable signal PUMPEN transition to H level when the voltage supply node INTVDDCP reaches the target voltage from the time when the DPD mode is released, so that the charge pump circuit 180 can be enabled. Then, when the voltage supply node INTVDD reaches the target voltage, the CPU enable signal CPUEN transitions to the H level, so that the controller of the peripheral circuit 160 can be operated.

本實施例的DPD控制器120可使用硬體和/或軟體而構成,例如可包含微電腦、狀態機、邏輯器件等。The DPD controller 120 of this embodiment can be constructed using hardware and/or software, for example, it can include a microcomputer, a state machine, a logic device, and so on.

記憶體單元陣列130包含多個塊,各塊內包含多個NAND串(string)。NAND串可在基板上二維地形成,也可從基板的主面沿垂直方向三維地形成。另外,記憶體單元可存儲二值資料或多值資料。The memory cell array 130 includes a plurality of blocks, and each block includes a plurality of NAND strings. The NAND string can be formed two-dimensionally on the substrate, or three-dimensionally formed in the vertical direction from the main surface of the substrate. In addition, the memory unit can store binary data or multi-value data.

週邊電路160例如包含下述部分等:控制器或狀態機,基於由標準命令I/F電路110所接收的標準命令等而控制快閃記憶體100的運行;或錯誤檢查和糾正(Error Checking and Correction,ECC)電路、列選擇電路,進行資料的錯誤檢測、訂正。高電壓電路170接收經電荷泵電路180升壓的電壓,生成讀出、編程、擦除運行所需要的高電壓(例如編程脈衝電壓、擦除脈衝電壓、讀出路徑電壓等)。另外,快閃記憶體100可搭載SPI(Serial Peripheral Interface),在SPI,代替控制信號(允許位址鎖存、允許命令鎖存等)而與串列時鐘信號同步地辨識所輸入的命令、位址、資料。The peripheral circuit 160 includes, for example, the following parts: a controller or a state machine that controls the operation of the flash memory 100 based on standard commands received by the standard command I/F circuit 110; or error checking and correction (Error Checking and Correction). Correction, ECC) circuit, column selection circuit, error detection and correction of data. The high voltage circuit 170 receives the voltage boosted by the charge pump circuit 180, and generates high voltages (for example, program pulse voltage, erase pulse voltage, read path voltage, etc.) required for read, program, and erase operations. In addition, the flash memory 100 can be equipped with SPI (Serial Peripheral Interface). In SPI, instead of control signals (allowing address latching, allowing command latching, etc.), it recognizes the input commands and bits in synchronization with the serial clock signal. Address and information.

接下來,對本實施例的快閃記憶體的DPD模式的解除運行進行說明。圖4為表示解除DPD模式時的各部的運行波形的圖。當快閃記憶體100處於DPD模式時,DPD使能信號DPDEN為H電平,來自外部電源電壓VCC的電力供給被阻斷,電壓供給節點INTVDD、電壓供給節點INTVDDCP為接地(Ground,GND)電平。DPD模式中,關於標準命令I/F電路110及DPD控制器120,處於通過來自外部電源電壓VCC的電力而可運行的狀態。Next, the release operation of the DPD mode of the flash memory of this embodiment will be described. Fig. 4 is a diagram showing operation waveforms of each part when the DPD mode is cancelled. When the flash memory 100 is in the DPD mode, the DPD enable signal DPDEN is at H level, the power supply from the external power supply voltage VCC is blocked, and the voltage supply node INTVDD and the voltage supply node INTVDDCP are grounded (Ground, GND). flat. In the DPD mode, the standard command I/F circuit 110 and the DPD controller 120 are in a state in which they can be operated by electric power from the external power supply voltage VCC.

若對標準命令I/F電路110輸入標準命令,則標準命令I/F電路110向DPD控制器120及週邊電路160提供標準命令的解碼結果DEC。但是,在此時間點,週邊電路160不處於可運行的狀態。If a standard command is input to the standard command I/F circuit 110, the standard command I/F circuit 110 provides the DPD controller 120 and the peripheral circuit 160 with the decoded result DEC of the standard command. However, at this point in time, the peripheral circuit 160 is not in an operable state.

DPD控制器120若在DPD模式中,從標準命令I/F命令110接收解碼結果DEC,則自動解除DPD模式。即,DPD控制器120在時刻t1,使DPD使能信號DPDEN從H電平過渡為L電平,將電晶體P1、電晶體P2設為導通狀態。由此,對於電壓供給節點INTVDD,從外部電源電壓VCC經由第一電流路徑供給電力,對於電壓供給節點INTVDDCP,從外部電源電壓VCC經由第二電流路徑供給電力。即,電壓供給節點INTVDD及電壓供給節點INTVDCP各自分別由來自外部電源電壓VCC的電力充電。If the DPD controller 120 receives the decoding result DEC from the standard command I/F command 110 in the DPD mode, it automatically releases the DPD mode. That is, the DPD controller 120 makes the DPD enable signal DPDEN transition from the H level to the L level at the time t1, and sets the transistor P1 and the transistor P2 to the on state. Thus, to the voltage supply node INTVDD, power is supplied from the external power supply voltage VCC via the first current path, and to the voltage supply node INTVDDCP, power is supplied from the external power supply voltage VCC via the second current path. That is, the voltage supply node INTVDD and the voltage supply node INTVDCP are each charged by the electric power from the external power supply voltage VCC.

在電壓供給節點INTVDD,連接著行解碼器140、頁面緩衝器/讀出電路150、週邊電路160及高電壓電路170,在電壓供給節點INTVDDCP,連接著電荷泵電路180。連接於電壓供給節點INTVDD的週邊電路群140~170與連接於電壓供給節點INTVDDCP的電荷泵電路180相比較,電晶體的個數、配線電容更大(負載電容更大),因而電壓供給節點INTVDD上升至目標電壓的速度比電壓供給節點INTVDDCP更慢。因此,電壓供給節點INTVDDCP的到目標電壓的充電時間比電壓供給節點INTVDD更快,如圖4所示,電壓供給節點INTVDDCP從時刻t1起在tRESCP後的時刻t2到達目標電壓,但電壓供給節點INTVDD從時刻t1起在tRESVDD後的時刻t3到達目標電壓(tRESCP<tRESVDD)。此外,電壓供給節點INTVDDCP的目標電壓為電荷泵電路180成為可運行的狀態的電壓,電壓供給節點INTVDD的目標電壓為週邊電路160的CPU成為可運行的狀態的電壓。The voltage supply node INTVDD is connected to the row decoder 140, the page buffer/read circuit 150, the peripheral circuit 160, and the high voltage circuit 170, and the voltage supply node INTVDDCP is connected to the charge pump circuit 180. Compared with the charge pump circuit 180 connected to the voltage supply node INTVDDCP, the peripheral circuit groups 140 to 170 connected to the voltage supply node INTVDD have a larger number of transistors and larger wiring capacitance (larger load capacitance), so the voltage supply node INTVDD The speed of rising to the target voltage is slower than the voltage supply node INTVDDCP. Therefore, the charging time of the voltage supply node INTVDDCP to the target voltage is faster than that of the voltage supply node INTVDD. As shown in FIG. 4, the voltage supply node INTVDDCP reaches the target voltage from time t1 at time t2 after tRESCP, but the voltage supply node INTVDD The target voltage is reached at time t3 after tRESVDD from time t1 (tRESCP<tRESVDD). In addition, the target voltage of the voltage supply node INTVDDCP is the voltage at which the charge pump circuit 180 becomes operable, and the target voltage of the voltage supply node INTVDD is the voltage at which the CPU of the peripheral circuit 160 becomes operable.

DPD控制器120在電荷泵電路180成為可運行的狀態的時刻t2,使泵使能信號PUMPEN從L電平過渡為H電平。電荷泵電路180響應泵使能信號PUMPEN而在時刻t2開始泵運行,從時刻t2起在tPUMP後的時刻t2A生成所期望的泵電壓VWWPUMP。本實施例中,電荷泵電路180在電壓供給節點INTVDDCP到達目標電壓後可運行,無需等待電壓供給節點INTVDD到達目標電壓。The DPD controller 120 causes the pump enable signal PUMPEN to transition from the L level to the H level at a time t2 when the charge pump circuit 180 becomes an operable state. The charge pump circuit 180 starts pump operation at time t2 in response to the pump enable signal PUMPEN, and generates the desired pump voltage VWWPUMP at time t2A after tPUMP from time t2. In this embodiment, the charge pump circuit 180 can operate after the voltage supply node INTVDDCP reaches the target voltage, and there is no need to wait for the voltage supply node INTVDD to reach the target voltage.

另外,DPD控制器120在週邊電路160成為可運行的狀態的時刻t3,使CPU使能信號CPUEN從L電平過渡為H電平。週邊電路160的控制器(CPU)響應CPU使能信號CPUEN而在時刻t3開始標準命令的運行。在兩個電壓供給節點INTVDD、INTVDDCP到達目標電壓的時刻t3,從DPD模式復原的復原時間tRES結束。若為tPUMP<tRESVDD-tRESCP的關係,則在開始標準命令的運行的時間點已生成泵電壓VWWPUMP,因而高電壓生成電路170可立即將運行所需要的高電壓供給至頁面緩衝器/讀出電路150或行解碼器140等。相反地,即便為tPUMP>tRESVDD-tRESCP的關係,與不將電荷泵電路180的運行提前的情況相比,也可加快供給泵電壓VWWPUMP。In addition, the DPD controller 120 causes the CPU enable signal CPUEN to transition from the L level to the H level at a time t3 when the peripheral circuit 160 becomes an operable state. The controller (CPU) of the peripheral circuit 160 responds to the CPU enable signal CPUEN to start the operation of the standard command at time t3. At time t3 when the two voltage supply nodes INTVDD and INTVDDCP reach the target voltages, the recovery time tRES for recovering from the DPD mode ends. If the relationship is tPUMP<tRESVDD-tRESCP, the pump voltage VWWPUMP is already generated at the time when the operation of the standard command is started, so the high voltage generating circuit 170 can immediately supply the high voltage required for operation to the page buffer/readout circuit 150 or line decoder 140 and so on. Conversely, even if the relationship is tPUMP>tRESVDD-tRESCP, the supply pump voltage VWWPUMP can be accelerated compared to the case where the operation of the charge pump circuit 180 is not advanced.

利用DPD控制器120的時間t2、時間t3的控制方法並無特別限定,例如,DPD控制器120也可利用內置的計時器來測量從時刻t1起的時間,在到達tRESCP、tRESVDD時,讓使能信號PUMPEN、使能信號CPUEN過渡為H電平。另外,另一形態中,也可設置檢測電壓供給節點INTVDDCP、電壓供給節點INTVDD的電壓的檢測電路,在由所述檢測電路檢測到各電壓供給節點的目標電壓時,DPD控制器120讓使能信號PUMPEN、使能信號CPUEN過渡為H電平。The control method using the time t2 and time t3 of the DPD controller 120 is not particularly limited. For example, the DPD controller 120 can also use a built-in timer to measure the time from time t1, and when it reaches tRESCP and tRESVDD, let The enable signal PUMPEN and the enable signal CPUEN transition to H level. In another form, a detection circuit that detects the voltage of the voltage supply node INTVDDCP and the voltage supply node INTVDD may be provided. When the target voltage of each voltage supply node is detected by the detection circuit, the DPD controller 120 enables The signal PUMPEN and the enable signal CPUEN transition to H level.

作為具體的運行例,若在DPD模式中,讀出、編程或擦除命令輸入至標準命令I/F電路110,則DPD控制器120使DPD使能信號DPDEN過渡為L電平,使電晶體P1、電晶體P2導通,開始從外部電源電壓VCC供給電力,解除DPD模式。DPD控制器120在直至電壓供給節點INTVDD、電壓供給節點INTVDDCP的電壓復原為止的期間中,從時刻t1起在tRESCP後的時刻t2使電荷泵電路180運行,在從時刻t1起到tRESVDD後的時刻t3為止的期間中,通過電荷泵電路180生成泵電壓VWWPUMP,週邊電路160的控制器在時刻t3開始執行命令。可在執行命令後,立即利用讀出、編程或擦除所需要的升壓電壓。As a specific operation example, if a read, program, or erase command is input to the standard command I/F circuit 110 in the DPD mode, the DPD controller 120 causes the DPD enable signal DPDEN to transition to the L level, so that the transistor P1 and transistor P2 are turned on to start supplying power from the external power supply voltage VCC, and the DPD mode is released. During the period until the voltages of the voltage supply node INTVDD and the voltage supply node INTVDDCP are restored, the DPD controller 120 operates the charge pump circuit 180 from time t1 at time t2 after tRESCP, and from time t1 to time after tRESVDD During the period up to t3, the pump voltage VWWPUMP is generated by the charge pump circuit 180, and the controller of the peripheral circuit 160 starts to execute the command at time t3. The boost voltage required for reading, programming or erasing can be used immediately after executing the command.

如此,根據本實施例,對輸入標準命令作出回應而自動解除DPD模式,因此無需輸入解除DPD模式的專用的命令,即便是不支援DPD模式的解除命令的快閃記憶體,也可解除DPD模式。In this way, according to this embodiment, the DPD mode is automatically released in response to the input of the standard command, so there is no need to input a dedicated command to release the DPD mode. Even the flash memory that does not support the release command of the DPD mode can release the DPD mode. .

進而,在使經遮斷(shutdown)的內部電路從DPD模式復原時,並非如以往圖2所示那樣向連接於內部電路整體的電壓供給節點INTVDD供給電力,而是向連接於週邊電路群140~170的電壓供給節點INTVDD與連接於電荷泵電路180的電壓供給節點INTVDDCP分別分割地供給電力,將電荷泵電路180的運行提前,因而與以往相比,可縮短使內部電路復原為可運行的狀態的時間tRES(圖1B)。Furthermore, when the shut down internal circuit is restored from the DPD mode, the power is not supplied to the voltage supply node INTVDD connected to the entire internal circuit as shown in FIG. 2 but is connected to the peripheral circuit group 140 The voltage supply node INTVDD of ~170 and the voltage supply node INTVDDCP connected to the charge pump circuit 180 separately supply power, and the operation of the charge pump circuit 180 is advanced. Therefore, compared with the past, the internal circuit can be shortened and restored to be operable. State time tRES (Figure 1B).

此外,所述實施例中,表示了將由DPD模式阻斷電力供給的內部電路分為週邊電路群140~170與電荷泵電路180而從DPD模式復原的示例,但本發明未必限定於這種形態的分割。在從DPD模式復原時,使運行提前的內部電路未必包含電荷泵電路,也可為其它電路。進而,也可將從內部電路復原的電路分割為三個以上的電路部分,對各電路部分經由不同的電流路徑進行電力供給。In addition, in the above-mentioned embodiment, the internal circuit that blocks the power supply in the DPD mode is divided into the peripheral circuit groups 140 to 170 and the charge pump circuit 180 to recover from the DPD mode. However, the present invention is not necessarily limited to this form. Segmentation. When recovering from the DPD mode, the internal circuit that advances the operation does not necessarily include a charge pump circuit, but may be another circuit. Furthermore, the circuit restored from the internal circuit may be divided into three or more circuit parts, and power may be supplied to each circuit part via different current paths.

某個形態中,在使第一電路部分和第二電路部分從DPD模式復原的情況下,第一電路部分和第二電路部分的選擇也可與執行標準命令時的處理順序對應。即,執行標準命令時的第一處理順序使用第一電路部分,第二處理順序使用第二電路部分,相較於第二電路部分而使第一電路部分先成為可運行的狀態。當第一電路部分的負載電容小於第二電路部分的負載電容時,第一電路部分在第二電路部分的復原中開始運行,而更有效地縮短復原時間。例如,在編程運行包含編程校驗和編程兩個運行,且編程校驗先運行的情況下,僅使連接於電壓供給節點INTVDDx的與校驗有關的電路部分可先運行,在校驗運行中,與用於編程的電路部分連接的電壓供給節點INTVDDy到達目標電壓。In a certain aspect, when the first circuit part and the second circuit part are restored from the DPD mode, the selection of the first circuit part and the second circuit part may correspond to the processing sequence when the standard command is executed. That is, when the standard command is executed, the first processing sequence uses the first circuit portion, and the second processing sequence uses the second circuit portion, so that the first circuit portion becomes operable before the second circuit portion. When the load capacitance of the first circuit part is smaller than the load capacitance of the second circuit part, the first circuit part starts to operate during the restoration of the second circuit part, and the restoration time is more effectively shortened. For example, when the programming operation includes programming verification and programming, and the programming verification runs first, only the part of the circuit related to the verification connected to the voltage supply node INTVDDx can be run first, and during the verification operation , The voltage supply node INTVDDy connected to the circuit part for programming reaches the target voltage.

另外,所述實施例中,例示了讀出、編程及擦除作為標準命令,但標準命令除了這些以外,也可包含狀態讀取(Status Read)或識別字(Identifier,ID)讀取等。狀態讀取為讀出快閃記憶體是否為準備(ready)狀態,是否為寫入保護模式,是否為編程/擦除運行中的命令,ID讀取為讀出製造廠商或製品識別的命令。In addition, in the described embodiment, read, program, and erase are exemplified as standard commands, but in addition to these, standard commands may also include status read (Status Read) or identifier (ID) read. Status read is to read whether the flash memory is in a ready state, whether it is in write-protected mode, whether it is a command in program/erase operation, and ID read is a command to read out manufacturer or product identification.

另外,所述實施例中,表示了從外部電源電壓VCC對電壓供給節點INTVDD、電壓供給節點INTVDDCP供給電力的示例,但其為一例,也可對電壓供給節點INTVDD、電壓供給節點INTVDDCP從其它內部電源電壓供給電力而不從外部電源電壓VCC直接供給。In addition, in the above-mentioned embodiment, an example in which power is supplied from the external power supply voltage VCC to the voltage supply node INTVDD and the voltage supply node INTVDDCP is shown, but this is an example, and the voltage supply node INTVDD and the voltage supply node INTVDDCP may be supplied from other internal sources. The power supply voltage supplies power without being directly supplied from the external power supply voltage VCC.

對本發明的優選實施方式進行了詳述,但本發明不限定於特定的實施方式,可在權利要求書所記載的發明的主旨的範圍內進行各種變形、變更。The preferred embodiments of the present invention have been described in detail, but the present invention is not limited to specific embodiments, and various modifications and changes can be made within the scope of the gist of the invention described in the claims.

10、100:快閃記憶體 20、120:DPD控制器 30、130:記憶體單元陣列 40:行解碼器 50:頁面緩衝器/讀出電路 60:週邊電路 70:高電壓電路 110:標準命令I/F電路 140:行解碼器(週邊電路) 150:頁面緩衝器/讀出電路(週邊電路) 160:週邊電路(週邊電路) 170:高電壓電路(週邊電路) 180:電荷泵電路 ABh:DPD解除命令 B9h:DPDDPD命令 CPUEN:CPU使能信號 DEC:解碼結果 DI:資料登錄端子 DPDEN:DPD使能信號 INTVDD、INTVDDCP:電壓供給節點 P:PMOS電晶體 P1、P2:電晶體 PUMPEN:泵使能信號 T DPD、T ST:時刻 t1、t2、t2A、t3:時刻 tDP:一定期間 tRES:期間、時間、復原時間 VCC:外部電源電壓 VWWPUMP:泵電壓 /CS:晶片選擇信號 10.100: Flash memory 20, 120: DPD controller 30, 130: Memory cell array 40: Row decoder 50: Page buffer/readout circuit 60: Peripheral circuit 70: High voltage circuit 110: Standard command I/F circuit 140: Row decoder (peripheral circuit) 150: Page buffer/readout circuit (peripheral circuit) 160: Peripheral circuit (peripheral circuit) 170: High-voltage circuit (peripheral circuit) 180: Charge pump circuit ABh: DPD release command B9h: DPDDPD command CPUEN: CPU enable signal DEC: decoding result DI: data registration terminal DPDEN: DPD enable signal INTVDD, INTVDDCP: voltage supply node P: PMOS transistor P1, P2: transistor PUMPEN: pump enable Power signal T DPD , T ST : time t1, t2, t2A, t3: time tDP: a certain period of time tRES: period, time, recovery time VCC: external power supply voltage VWWPUMP: pump voltage/CS: chip selection signal

圖1A為表示現有的快閃記憶體向DPD模式跳轉時的運行波形的一例的圖。 圖1B為表示現有的快閃記憶體的解除DPD模式時的運行波形的一例的圖。 圖2為表示現有的快閃記憶體的內部構成的圖。 圖3為表示本發明的實施例的快閃記憶體的內部構成的圖。 圖4為表示解除本發明的實施例的DPD模式時的各部的運行波形的圖。 FIG. 1A is a diagram showing an example of operating waveforms when a conventional flash memory jumps to the DPD mode. FIG. 1B is a diagram showing an example of operating waveforms when the DPD mode of the conventional flash memory is released. Fig. 2 is a diagram showing the internal structure of a conventional flash memory. Fig. 3 is a diagram showing the internal structure of a flash memory according to an embodiment of the present invention. Fig. 4 is a diagram showing operation waveforms of various parts when the DPD mode of the embodiment of the present invention is cancelled.

100:快閃記憶體 100: Flash memory

110:標準命令I/F電路 110: Standard command I/F circuit

120:DPD控制器 120: DPD controller

130:記憶體單元陣列 130: Memory cell array

140:行解碼器(週邊電路) 140: Line decoder (peripheral circuit)

150:頁面緩衝器/讀出電路(週邊電路) 150: Page buffer/readout circuit (peripheral circuit)

160:週邊電路 160: Peripheral circuit

170:高電壓電路(週邊電路) 170: High voltage circuit (peripheral circuit)

180:電荷泵電路 180: charge pump circuit

CPUEN:CPU使能信號 CPUEN: CPU enable signal

DEC:解碼結果 DEC: Decoding result

DPDEN:DPD使能信號 DPDEN: DPD enable signal

INTVDD、INTVDDCP:電壓供給節點 INTVDD, INTVDDCP: voltage supply node

P1、P2:電晶體 P1, P2: Transistor

PUMPEN:泵使能信號 PUMPEN: Pump enable signal

VWWPUMP:泵電壓 VWWPUMP: Pump voltage

VCC:外部電源電壓 VCC: External power supply voltage

Claims (15)

一種快閃記憶體的運行方法,包括:跳轉至深度省電模式的步驟,所述深度省電模式阻斷從電力供給源向內部電路的電力供給;當輸入了包含讀出、編程或擦除的標準命令時,根據所述標準命令的解碼結果解除所述深度省電模式的步驟;以及在解除所述深度省電模式後,執行所述標準命令的步驟,所述解除的步驟從所述電力供給源向所述內部電路的至少第一電路部分和第二電路部分各自分別供給電力。 A method for operating a flash memory includes the step of jumping to a deep power saving mode that blocks the power supply from the power supply source to the internal circuit; when the input includes reading, programming or erasing The step of releasing the deep power saving mode according to the decoding result of the standard command; and after releasing the deep power saving mode, the step of executing the standard command, the step of releasing is from the The power supply source supplies power to at least the first circuit part and the second circuit part of the internal circuit, respectively. 如請求項1所述的快閃記憶體的運行方法,其中,所述解除的步驟還向所述第一電路部分供給用於使所述第一電路部分能夠運行的第一使能信號,在供給所述第一使能信號後,向所述第二電路部分供給用於使所述第二電路部分能夠運行的第二使能信號。 The method for operating a flash memory according to claim 1, wherein the step of releasing further supplies the first circuit part with a first enable signal for enabling the first circuit part to operate, and After the first enable signal is supplied, a second enable signal for enabling the second circuit part to operate is supplied to the second circuit part. 如請求項2所述的快閃記憶體的運行方法,其中,所述執行的步驟在第一處理順序中使用所述第一電路部分,在所述第一處理順序後的第二處理順序中使用所述第二電路部分。 The flash memory operating method according to claim 2, wherein the step of executing uses the first circuit part in a first processing sequence, and in a second processing sequence after the first processing sequence Use the second circuit part. 如請求項2或3所述的快閃記憶體的運行方法,其中,直至供給所述第一使能信號為止的第一復原時間及直至供給所述第二使能信號為止的第二復原時間比用於使所述內部電路整體成為能夠運行的狀態的復原時間更短。 The operating method of the flash memory according to claim 2 or 3, wherein the first recovery time until the first enable signal is supplied and the second recovery time until the second enable signal is supplied It is shorter than the recovery time for bringing the entire internal circuit into an operable state. 如請求項1至3中任一項所述的快閃記憶體的運行方法,其中,所述第一電路部分的負載電容小於所述第二電路部分的負載電容。 The method for operating a flash memory according to any one of claims 1 to 3, wherein the load capacitance of the first circuit part is smaller than the load capacitance of the second circuit part. 如請求項4所述的快閃記憶體的運行方法,其中,所述第一電路部分包含電荷泵電路,所述第二電路部分包含記憶體單元陣列的週邊電路,所述電荷泵生成升壓的電壓所需要的時間比所述第二復原時間與所述第一復原時間的差量更短。 The method for operating a flash memory according to claim 4, wherein the first circuit part includes a charge pump circuit, the second circuit part includes a peripheral circuit of the memory cell array, and the charge pump generates a boost The time required for the voltage is shorter than the difference between the second recovery time and the first recovery time. 如請求項1所述的快閃記憶體的運行方法,其中,所述深度省電模式在待機模式持續一定時間時,從所述待機模式跳轉。 The method for operating a flash memory according to claim 1, wherein the deep power saving mode jumps from the standby mode when the standby mode continues for a certain period of time. 一種半導體存儲裝置,包括:內部電路,至少包含第一電路部分及第二電路部分;跳轉部件,跳轉至深度省電模式,所述深度省電模式阻斷從電力供給源向所述第一電路部分及第二電路部分的電力供給;解除部件,當輸入了包含讀出、編程或擦除的標準命令時,根據所述標準命令的解碼結果解除所述深度省電模式;以及執行部件,在解除所述深度省電模式後,執行所述標準命令,所述解除部件包含:第一電流路徑,從所述電力供給源向所述第一電路部分供給電力;以及第二電流路徑,從所述電力供給源向所述第二電路部分供給電力。 A semiconductor storage device includes: an internal circuit including at least a first circuit part and a second circuit part; a jump component, which jumps to a deep power saving mode, the deep power saving mode blocking power supply to the first circuit Power supply for the second circuit part and the second circuit part; a release part, when a standard command including read, program, or erase is input, the deep power saving mode is released according to the decoded result of the standard command; and an execution part, in After the deep power saving mode is released, the standard command is executed, and the release means includes: a first current path for supplying power from the power supply source to the first circuit part; and a second current path for supplying power from the power supply source to the first circuit section The power supply source supplies power to the second circuit part. 如請求項8所述的半導體存儲裝置,其中,所述解除部件包含:第一供給部件,向所述第一電路部分供給用於使所述第一電路部分能夠運行的第一使能信號;以及第二供給部件,在供給所述第一使能信號後,向所述第二電路部分供給用於使所述第二電路能夠運行的第二使能信號。 The semiconductor storage device according to claim 8, wherein the release means includes: a first supply means for supplying the first circuit part with a first enable signal for enabling the operation of the first circuit part; And a second supply component, after supplying the first enable signal, supplies the second circuit part with a second enable signal for enabling the second circuit to operate. 如請求項8所述的半導體存儲裝置,其中,所述執行部件在第一處理順序中使用所述第一電路部分,在所述第一處理順序後的第二處理順序中使用所述第二電路部分。 The semiconductor storage device according to claim 8, wherein the execution unit uses the first circuit part in a first processing sequence, and uses the second circuit part in a second processing sequence after the first processing sequence. Circuit part. 如請求項9所述的半導體存儲裝置,其中,直至供給所述第一使能信號為止的第一復原時間及直至供給第二使能信號為止的第二復原時間比用於使所述第一電路部分及第二電路部分成為能夠運行的狀態的復原時間更短。 The semiconductor storage device according to claim 9, wherein the first recovery time until the supply of the first enable signal and the second recovery time until the supply of the second enable signal are greater than those used for making the first enable signal The recovery time for the circuit part and the second circuit part to become operable is shorter. 如請求項8至10中任一項所述的半導體存儲裝置,其中,所述第一電路部分的負載電容小於所述第二電路部分的負載電容。 The semiconductor storage device according to any one of claims 8 to 10, wherein the load capacitance of the first circuit part is smaller than the load capacitance of the second circuit part. 如請求項11所述的半導體存儲裝置,其中,所述第一電路部分包含電荷泵電路,所述第二電路部分包含記憶體單元陣列的週邊電路,所述電荷泵生成升壓的電壓所需要的時間比所述第二復原時間與所述第一復原時間的差量更短。 The semiconductor storage device according to claim 11, wherein the first circuit part includes a charge pump circuit, and the second circuit part includes a peripheral circuit of a memory cell array, and the charge pump generates a boosted voltage. The time is shorter than the difference between the second recovery time and the first recovery time. 如請求項8所述的半導體存儲裝置,其中, 所述解除部件在所述第一電流路徑及所述第二電流路徑包含第一電晶體及第二電晶體,所述解除部件控制所述第一電晶體及所述第二電晶體的導通或非導通。 The semiconductor storage device according to claim 8, wherein The release component includes a first transistor and a second transistor in the first current path and the second current path, and the release component controls the conduction or conduction of the first transistor and the second transistor. Non-conductive. 如請求項8至10中任一項所述的半導體存儲裝置,其中,所述半導體存儲裝置為快閃記憶體。 The semiconductor storage device according to any one of claims 8 to 10, wherein the semiconductor storage device is a flash memory.
TW109114879A 2020-05-05 2020-05-05 Semiconductor storing apparatus and flash memory operation method TWI736248B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109114879A TWI736248B (en) 2020-05-05 2020-05-05 Semiconductor storing apparatus and flash memory operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109114879A TWI736248B (en) 2020-05-05 2020-05-05 Semiconductor storing apparatus and flash memory operation method

Publications (2)

Publication Number Publication Date
TWI736248B true TWI736248B (en) 2021-08-11
TW202143231A TW202143231A (en) 2021-11-16

Family

ID=78283108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114879A TWI736248B (en) 2020-05-05 2020-05-05 Semiconductor storing apparatus and flash memory operation method

Country Status (1)

Country Link
TW (1) TWI736248B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142305A1 (en) * 2008-12-05 2010-06-10 Hynix Semiconductor Inc. Source control circuit and semiconductor memory device using the same
US20150071015A1 (en) * 2011-07-29 2015-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit for reducing leakage current
US20180203643A1 (en) * 2015-08-21 2018-07-19 Adesto Technologies Corporation Automatic switch to single spi mode when entering udpd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142305A1 (en) * 2008-12-05 2010-06-10 Hynix Semiconductor Inc. Source control circuit and semiconductor memory device using the same
US20150071015A1 (en) * 2011-07-29 2015-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit for reducing leakage current
US20180203643A1 (en) * 2015-08-21 2018-07-19 Adesto Technologies Corporation Automatic switch to single spi mode when entering udpd

Also Published As

Publication number Publication date
TW202143231A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
US8892917B2 (en) Memory system and memory chip
US7440337B2 (en) Nonvolatile semiconductor memory apparatus having buffer memory for storing a program and buffering work data
JP3583703B2 (en) Semiconductor device
CN103403808B (en) The semiconductor devices of the misoperation of the nonvolatile memory preventing power supply all standing from causing
CN101867169B (en) Protection circuit applied to flash memory
US11487343B2 (en) Semiconductor storing apparatus and flash memory operation method
JP7228657B2 (en) semiconductor storage device
TWI736248B (en) Semiconductor storing apparatus and flash memory operation method
TW202202973A (en) Power down detection circuit and semiconductor memory device
KR102300824B1 (en) Semiconductor storing apparatus and flash memory operation method
CN113724766B (en) Semiconductor memory device and flash memory operation method
US11307636B2 (en) Semiconductor storing apparatus and flash memory operation method
JP4091086B2 (en) Semiconductor integrated circuit and microcomputer
TWI713039B (en) Semiconductor storing apparatus and flash memory operation method
CN113724767B (en) Semiconductor storage device and flash memory operation method
JP2007115382A (en) Semiconductor integrated circuit, storage device, and control program
JP2003288791A (en) Semiconductor integrated circuit device and microprocessor
JP2009237602A (en) Memory system
JP5385220B2 (en) Nonvolatile memory, data processing apparatus, and microcomputer application system
JP2010272156A (en) Semiconductor device
CN105788638A (en) Semiconductor device
JP2006221677A (en) Memory card