[go: up one dir, main page]

TWI735847B - Package of photoelectric device - Google Patents

Package of photoelectric device Download PDF

Info

Publication number
TWI735847B
TWI735847B TW108106381A TW108106381A TWI735847B TW I735847 B TWI735847 B TW I735847B TW 108106381 A TW108106381 A TW 108106381A TW 108106381 A TW108106381 A TW 108106381A TW I735847 B TWI735847 B TW I735847B
Authority
TW
Taiwan
Prior art keywords
barrier layer
optoelectronic device
layer
device package
region
Prior art date
Application number
TW108106381A
Other languages
Chinese (zh)
Other versions
TW202015259A (en
Inventor
郭燕靜
洪健彰
廖貞慧
黃奕翔
葉樹棠
戴宏明
陳鴻毅
Original Assignee
財團法人工業技術研究院
創智智權管理顧問股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院, 創智智權管理顧問股份有限公司 filed Critical 財團法人工業技術研究院
Priority to CN201910316998.9A priority Critical patent/CN111048654B/en
Priority to US16/423,131 priority patent/US10985297B2/en
Publication of TW202015259A publication Critical patent/TW202015259A/en
Application granted granted Critical
Publication of TWI735847B publication Critical patent/TWI735847B/en

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

A package of photoelectric device including a substrate, at least one photoelectric device, a first barrier layer, a wavelength-converting layer and a second barrier layer is provided. The photoelectric device is disposed on the substrate. The first barrier layer is disposed on the substrate and covers the photoelectric device. The wavelength-converting layer is disposed on the first barrier layer. The second barrier layer covers the wavelength conversion layer. A composition of the first barrier layer includes a nitrogen content of more than 0 atomic percent (at%) to 10 at%, an oxygen content of 50at% to 70at%, and a silicon content of 30at% to 50at%.

Description

光電元件封裝體Optoelectronic component package

本發明是有關於一種光電元件封裝體。The invention relates to an optoelectronic device package.

近年來,波長轉換材料(例如量子點等)與光電元件(例如發光元件等)的研究逐漸受到關注。波長轉換材料具有發光頻譜集中的特性,色域廣且色彩飽和度佳,藉由波長轉換材料與光電元件的搭配,有機會達到更好的全彩顯示效果。然而,波長轉換材料易受到熱及/或水氧的影響而損壞,如何透過封裝技術提升光電元件搭載波長轉換材料對熱及/或水氧的阻障特性,進而增進光電元件封裝體的可靠度及其壽命,實為關鍵。In recent years, research on wavelength conversion materials (such as quantum dots, etc.) and optoelectronic devices (such as light-emitting devices, etc.) has gradually attracted attention. The wavelength conversion material has the characteristics of concentrated luminescence spectrum, wide color gamut and good color saturation. With the combination of wavelength conversion material and optoelectronic components, there is a chance to achieve a better full-color display effect. However, the wavelength conversion material is easily damaged by the influence of heat and/or water and oxygen. How to improve the barrier properties of the wavelength conversion material on the optoelectronic element to heat and/or water and oxygen through the packaging technology, thereby improving the reliability of the optoelectronic element package Its longevity is really the key.

本發明一實施例提供一種光電元件封裝體,此光電元件封裝體可具有良好的阻障性質。An embodiment of the present invention provides an optoelectronic device package, which can have good barrier properties.

本發明一實施例的光電元件封裝體包括基板、至少一光電元件、第一阻障層、波長轉換層以及第二阻障層。光電元件配置於基板上。第一阻障層配置於基板上且覆蓋光電元件。波長轉換層配置於第一阻障層上。第二阻障層覆蓋波長轉換層。第一阻障層的成份組成包含氮(N)元素含量大於0原子百分比(atomic percent,at%)至10at%、氧(O)元素含量介於50at%至70at%以及矽(Si)元素含量介於30at%至50at%。An optoelectronic device package according to an embodiment of the present invention includes a substrate, at least one optoelectronic device, a first barrier layer, a wavelength conversion layer, and a second barrier layer. The photoelectric element is arranged on the substrate. The first barrier layer is disposed on the substrate and covers the photoelectric element. The wavelength conversion layer is configured on the first barrier layer. The second barrier layer covers the wavelength conversion layer. The composition of the first barrier layer includes nitrogen (N) element content greater than 0 atomic percent (at%) to 10 at%, oxygen (O) element content ranging from 50 at% to 70 at%, and silicon (Si) element content Between 30at% and 50at%.

本發明一實施例的光電元件封裝體中,分別將第一阻障層以及第二阻障層的表面進行改質,可使第一阻障層提供阻熱(thermal resistance)兼具阻水氧的阻障效果,並使覆蓋在波長轉換層上的第二阻障層具備良好的阻障特性,有利於保護波長轉換層,藉此降低波長轉換層因受熱及/或水氧等損傷而影響發光效率。In the optoelectronic device package according to an embodiment of the present invention, the surfaces of the first barrier layer and the second barrier layer are modified respectively, so that the first barrier layer can provide thermal resistance and simultaneously block water and oxygen. The barrier effect of the wavelength conversion layer and the second barrier layer covering the wavelength conversion layer have good barrier characteristics, which is beneficial to protect the wavelength conversion layer, thereby reducing the wavelength conversion layer from being damaged by heat and/or water and oxygen. Luminous efficiency.

為使本發明能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more comprehensible, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows.

圖1A至圖1G為本發明第一實施例的光電元件封裝體製程的局部剖面示意圖。請參考圖1A,首先提供基板110,基板110可為具有可見光穿透性的硬質基板或可撓性基板。舉例而言,前述之硬質基板的材料例如是玻璃、晶圓或其他硬質材料,而前述之可撓性基板材料例如是聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚醯亞胺(polyimide,PI)、聚碳酸酯(polycarbonate,PC)、聚醯胺(polyamide,PA)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚乙烯亞胺(polyethylenimine,PEI)、聚氨酯(polyurethane,PU)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、壓克力系(acrylic)聚合物例如是聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)等、醚系(ether)聚合物例如是聚醚碸(polyethersulfone,PES)或聚醚醚酮(polyetheretherketone,PEEK)、聚烯(polyolefin)、薄玻璃或其他可撓性材料,但本發明並不以此為限。1A to 1G are partial cross-sectional schematic diagrams of the optoelectronic device packaging process according to the first embodiment of the present invention. Please refer to FIG. 1A. First, a substrate 110 is provided. The substrate 110 may be a rigid substrate or a flexible substrate with visible light penetration. For example, the aforementioned hard substrate material is glass, wafer or other hard materials, and the aforementioned flexible substrate material is polyethylene terephthalate (PET), polyimide, for example. (polyimide, PI), polycarbonate (PC), polyamide (PA), polyethylene naphthalate (PEN), polyethylenimine (PEI), polyurethane (polyurethane, PU), polydimethylsiloxane (PDMS), acrylic polymer, such as polymethylmethacrylate (PMMA), etc., ether polymer For example, it is polyethersulfone (PES) or polyetheretherketone (PEEK), polyolefin, thin glass or other flexible materials, but the present invention is not limited to this.

接著,形成至少一光電元件120,光電元件120配置於基板110上,光電元件120可包括發光元件等,發光元件可例如為有機發光元件、無機發光元件、量子點發光顯示元件等,本發明並不以此為限。以下實施例以無機發光元件為範例。Next, at least one optoelectronic element 120 is formed. The optoelectronic element 120 is disposed on the substrate 110. The optoelectronic element 120 may include a light-emitting element. The light-emitting element may be, for example, an organic light-emitting element, an inorganic light-emitting element, a quantum dot light-emitting display element, etc. Not limited to this. The following embodiments take the inorganic light-emitting device as an example.

於光電元件120形成後,可以藉由溶液製程(solution process)在基板110以及光電元件120上形成第一阻障層130,再將第一阻障層130進行固化(curing)。第一阻障層130可覆蓋光電元件120的頂表面以及側壁。溶液製程中使用的第一阻障層130材料可例如是包括聚矽氮烷(polysilazane)、聚矽氮氧烷(polysiloxazane)或其他適合的材料。After the optoelectronic device 120 is formed, the first barrier layer 130 may be formed on the substrate 110 and the optoelectronic device 120 by a solution process, and then the first barrier layer 130 is cured. The first barrier layer 130 may cover the top surface and sidewalls of the optoelectronic element 120. The material of the first barrier layer 130 used in the solution process may include, for example, polysilazane, polysiloxazane, or other suitable materials.

請參考圖1B,在本實施例中,可將固化後的第一阻障層130於大氣中進行水解(hydrolysis),水解的程度可視需求而定,再利用照光、加熱或電漿等處理方式對部分水解的第一阻障層130表面進行改質,以增進其阻障特性。照光處理可例如是使用真空紫外光(vacuum ultraviolet light,VUV);加熱處理可例如是利用加熱板(hot plate)、烘箱(oven)等方式進行加熱,使用的氣體可包括空氣、氮氣(N2 )、氧氣(O2 )等;電漿處理可包括使用鈍氣、氫氣(H2 )、氮氣(N2 )、氧氣(O2 )、含氟氣體、氯氣(Cl2 )等進行電漿改質。經過表面改質處理的第一阻障層130材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。Please refer to FIG. 1B. In this embodiment, the cured first barrier layer 130 can be hydrolyzed in the atmosphere. The degree of hydrolysis can be determined according to requirements, and treatment methods such as illumination, heating or plasma can be used. The surface of the partially hydrolyzed first barrier layer 130 is modified to improve its barrier properties. The irradiation treatment can be, for example, vacuum ultraviolet light (VUV); the heating treatment can be, for example, heating using a hot plate, oven, etc., and the gas used can include air, nitrogen (N 2 ), oxygen (O 2 ), etc.; plasma treatment can include the use of passivation gas, hydrogen (H 2 ), nitrogen (N 2 ), oxygen (O 2 ), fluorine-containing gas, chlorine (Cl 2 ), etc. for plasma modification quality. The material of the first barrier layer 130 subjected to the surface modification treatment may, for example, include silicon nitride, silicon oxynitride or other suitable materials.

在一實施例中,於形成第一阻障層130之前可選擇性地在光電元件120上形成覆蓋層(未繪示),其中形成覆蓋層的方法可例如是噴墨印刷(ink-jet printing,IJP)、電漿輔助化學氣相沈積(plasma-enhanced chemical vapor deposition,PECVD)、物理氣相沉積(physical vapor deposition,PVD)、濺鍍(sputter deposition)、原子層沉積(atomic layer deposition,ALD)或其他適合的製程方法。覆蓋層160的材料可例如是包括氮化矽(SiNx)、氧化鋁(AlOx)、氮氧化矽(SiON)、氧化銦鋅(indium zinc oxide,IZO)、聚合物例如是壓克力(acrylic)或其他適合的材料。本發明各實施例亦可依需求於形成第一阻障層130之前可選擇性地在光電元件120上形成覆蓋層。In one embodiment, before forming the first barrier layer 130, a cover layer (not shown) may be selectively formed on the optoelectronic element 120, wherein the method of forming the cover layer may be ink-jet printing (ink-jet printing). , IJP), plasma-enhanced chemical vapor deposition (PECVD), physical vapor deposition (PVD), sputter deposition, atomic layer deposition (ALD) ) Or other suitable manufacturing methods. The material of the covering layer 160 may include, for example, silicon nitride (SiNx), aluminum oxide (AlOx), silicon oxynitride (SiON), indium zinc oxide (IZO), and polymers such as acrylic. Or other suitable materials. According to various embodiments of the present invention, a cover layer may be selectively formed on the photoelectric element 120 before forming the first barrier layer 130 according to requirements.

請接續參考圖1C,第一阻障層130在經處理後形成具有第一區130a與第二區130b的第一阻障層130。第一區130a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第二區130b來說可具有較高的密度。在一實施例中,第一區130a與第二區130b相比可具有較高的的氮(N)元素含量。第二區130b的材料例如是氮氧化矽(silicon oxynitride) 或氧化矽(silicon oxide)。在一實施例中,第二區130b相較於第一區130a來說具有較高的氧(O)元素含量。藉由第一阻障層130中第一區130a材料的阻水氧特性以及第二區130b材料的阻熱特性,可使第一阻障層130兼具有阻熱以及阻水氧的阻障效果。整體而言,第一阻障層130的成份組成可例如是包含氮元素含量大於0原子百分比(atomic percent,at%)至10at%、氧元素含量介於50at%至70at%以及矽(Si)元素含量介於30at%至50at%,其中矽元素、氮元素以及氧元素含量總和可為100at%;第一阻障層130的熱傳導係數可例如是小於5瓦/米-絕對溫度,密度可例如是小於2.2克/立方公分,水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日。Please continue to refer to FIG. 1C, the first barrier layer 130 is processed to form a first barrier layer 130 having a first region 130a and a second region 130b. The material of the first region 130a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the second region 130b. In an embodiment, the first region 130a may have a higher nitrogen (N) element content than the second region 130b. The material of the second region 130b is, for example, silicon oxynitride or silicon oxide. In one embodiment, the second region 130b has a higher oxygen (O) element content than the first region 130a. The first barrier layer 130 has the water and oxygen barrier properties of the material in the first region 130a and the heat barrier properties of the material in the second region 130b, so that the first barrier layer 130 can have both heat and water and oxygen barriers. Effect. In general, the composition of the first barrier layer 130 may include, for example, a nitrogen content greater than 0 atomic percent (at%) to 10 at%, an oxygen content between 50 at% and 70 at%, and silicon (Si). The element content is between 30at% and 50at%, and the total content of silicon, nitrogen, and oxygen can be 100at%; the thermal conductivity of the first barrier layer 130 can be, for example, less than 5 watts/meter-absolute temperature, and the density can be, for example It is less than 2.2 g/cm ^3, and the water vapor transmission rate (WVTR) can be, for example, less than or equal to 10 -1 g/m ^ 2 -day.

在一實施例中,可利用能量色散X-射線光譜(energy dispersive spectroscopy,EDS)、X-射線光電子光譜(X-ray photoelectron spectroscopy,XPS)或其他適合的方法對第一阻障層130進行成份分析。能量色散X-射線光譜儀可附加於掃描式電子顯微鏡(scanning electron microscopy,SEM)或穿透式電子顯微鏡(transmission electron microscopy,TEM)等儀器中,使用例如線掃描(line scan)或單點量測進行元素分析;X-射線光電子光譜儀可藉由例如單點量測或縱深量測進行元素分析,在與量測區域內的其他元素成份相比可得知第一阻障層130的成份組成。In one embodiment, energy dispersive X-ray spectroscopy (energy dispersive spectroscopy, EDS), X-ray photoelectron spectroscopy (XPS) or other suitable methods may be used to compose the first barrier layer 130. analyze. Energy dispersive X-ray spectrometer can be attached to scanning electron microscopy (SEM) or transmission electron microscopy (TEM) and other instruments, such as line scan (line scan) or single point measurement Perform elemental analysis; the X-ray photoelectron spectrometer can perform elemental analysis by, for example, single-point measurement or depth measurement, and the composition of the first barrier layer 130 can be known in comparison with the composition of other elements in the measurement area.

請參考圖1D,接著形成波長轉換層140於第一阻障層130上,其中形成波長轉換層140的方法可例如是噴墨印刷(ink-jet printing,IJP)、黃光微影製程(photolithography process)或其他適合的製程方法。波長轉換層140通常為光致發光(photoluminescence,PL)材料,可例如是量子點(quantum dot,QD )等。1D, then a wavelength conversion layer 140 is formed on the first barrier layer 130, wherein the method of forming the wavelength conversion layer 140 can be, for example, ink-jet printing (IJP), photolithography process (photolithography process) Or other suitable manufacturing methods. The wavelength conversion layer 140 is usually a photoluminescence (PL) material, and may be, for example, a quantum dot (QD) or the like.

請參考圖1E,可以藉由溶液製程形成第二阻障層150於波長轉換層140上,再將第二阻障層150進行固化。第二阻障層150可覆蓋波長轉換層140的頂表面以及側壁,並藉由製程方式及/或條件(例如塗佈範圍、溶液黏度等)的控制使第二阻障層150具有島狀結構。溶液製程中使用的第二阻障層150材料可例如是包括聚矽氮烷(polysilazane)、聚矽氮氧烷(polysiloxazane)或其他適合的材料。1E, the second barrier layer 150 can be formed on the wavelength conversion layer 140 by a solution process, and then the second barrier layer 150 is cured. The second barrier layer 150 can cover the top surface and sidewalls of the wavelength conversion layer 140, and the second barrier layer 150 has an island-like structure by controlling the process method and/or conditions (such as coating range, solution viscosity, etc.) . The material of the second barrier layer 150 used in the solution process may include, for example, polysilazane, polysiloxazane, or other suitable materials.

請參考圖1F,在本實施例中,可利用照光、加熱或電漿等處理方式對第二阻障層150的頂表面以及側表面進行改質,以增進其阻障特性。經過改質處理的第二阻障層150材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。Please refer to FIG. 1F. In this embodiment, the top surface and the side surface of the second barrier layer 150 can be modified by treatment methods such as illumination, heating, or plasma to improve the barrier properties. The modified material of the second barrier layer 150 may, for example, include silicon nitride, silicon oxynitride or other suitable materials.

請接續參考圖1G,第二阻障層150在經處理後形成具有第三區150a以及第四區150b的第二阻障層150。第三區150a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第四區150b來說可具有較高的密度。在一實施例中,第三區150a與第四區150b相比可具有較高的的氮(N)元素含量。第四區150b的材料例如是氮氧化矽(silicon oxynitride)。在一實施例中,第四區150b相較於第三區150a來說具有較高的氧(O)元素含量。藉由第二阻障層150中第三區150a材料的阻障特性,可使第二阻障層150的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。整體而言,第二阻障層150的成份組成可例如是包含氮元素含量介於5at%至45at%、氧元素含量介於5at%至50at%以及矽元素含量介於30at%至50at%,其中矽元素、氮元素以及氧元素含量總和可為100at%;第二阻障層150的密度可例如是大於等於2.2克/立方公分。Please continue to refer to FIG. 1G, the second barrier layer 150 is processed to form a second barrier layer 150 having a third region 150a and a fourth region 150b. The material of the third region 150a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the fourth region 150b. In an embodiment, the third region 150a may have a higher nitrogen (N) element content than the fourth region 150b. The material of the fourth region 150b is, for example, silicon oxynitride. In one embodiment, the fourth region 150b has a higher oxygen (O) element content than the third region 150a. With the barrier properties of the material of the third region 150a in the second barrier layer 150, the water vapor transmission rate (WVTR) of the second barrier layer 150 can be, for example, less than or equal to 10 -1 G/m²-day, preferably less than or equal to 10 -2 g/m²-day. In general, the composition of the second barrier layer 150 may include, for example, a nitrogen content ranging from 5 at% to 45 at%, an oxygen content ranging from 5 at% to 50 at%, and a silicon content ranging from 30 at% to 50 at%. The total content of silicon element, nitrogen element, and oxygen element may be 100 at%; the density of the second barrier layer 150 may be, for example, greater than or equal to 2.2 g/cm ^3.

在一實施例中,考量光電元件封裝體100的可撓曲性,第一阻障層130及/或第二阻障層150的楊氏模數(Young’s modulus)可例如是3Gpa~10Gpa。此外,在其他實施例中,溶液製程中可使用類似甚或相同的材料分別形成第一阻障層130以及第二阻障層150,而基於不同功能性需求於後續採取不同處理方式,使得第二阻障層150的氮元素含量可高於第一阻障層130的氮元素含量;第一阻障層130的氧元素含量可高於第二阻障層150的氧元素含量;第一阻障層130的厚度可大於第二阻障層150的厚度;第一阻障層130的密度可小於第二阻障層150的密度。本發明各實施例亦可依需求採用前述設計調整之。In one embodiment, considering the flexibility of the optoelectronic device package 100, the Young's modulus of the first barrier layer 130 and/or the second barrier layer 150 may be, for example, 3Gpa-10Gpa. In addition, in other embodiments, similar or even the same materials may be used in the solution process to form the first barrier layer 130 and the second barrier layer 150 respectively, and different processing methods are adopted in the subsequent based on different functional requirements, so that the second barrier layer The nitrogen content of the barrier layer 150 may be higher than the nitrogen content of the first barrier layer 130; the oxygen content of the first barrier layer 130 may be higher than the oxygen content of the second barrier layer 150; the first barrier The thickness of the layer 130 may be greater than the thickness of the second barrier layer 150; the density of the first barrier layer 130 may be less than the density of the second barrier layer 150. The various embodiments of the present invention can also be adjusted according to requirements by adopting the aforementioned design.

圖2為本發明第二實施例的光電元件封裝體的局部剖面示意圖。第二實施例的光電元件封裝體200與圖1G的光電元件封裝體100類似,本實施例採用圖2針對光電元件封裝體200進行描述。在圖2中,相同或相似的標號表示相同或相似的構件,故針對圖1A至圖1G中說明過的構件於此不再贅述。2 is a schematic partial cross-sectional view of the optoelectronic device package according to the second embodiment of the present invention. The optoelectronic device package 200 of the second embodiment is similar to the optoelectronic device package 100 of FIG. 1G, and this embodiment uses FIG. 2 to describe the optoelectronic device package 200. In FIG. 2, the same or similar reference numerals indicate the same or similar components, so the components described in FIGS. 1A to 1G will not be repeated here.

在本實施例中,於形成第一阻障層130之前可選擇性地在光電元件120上形成平坦層260,其中形成平坦層260的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。平坦層260配置於基板110與第一阻障層130之間,且包覆至少一光電元件120。本發明各實施例亦可依需求於形成第一阻障層130之前可選擇性地在光電元件120上形成平坦層260。In this embodiment, before forming the first barrier layer 130, a planarization layer 260 may be selectively formed on the photoelectric element 120, wherein the method of forming the planarization layer 260 may be ink-jet printing (IJP), for example. , Slot die coating, spin coating or other suitable manufacturing process methods. The flat layer 260 is disposed between the substrate 110 and the first barrier layer 130 and covers at least one photoelectric element 120. According to various embodiments of the present invention, a flat layer 260 may be selectively formed on the photoelectric element 120 before forming the first barrier layer 130 as required.

圖3A至圖3F為本發明第三實施例的光電元件封裝體製程的局部剖面示意圖。在圖3A至圖3F中,相同或相似的標號表示相同或相似的構件,故針對圖1A至圖1G中說明過的構件於此不再贅述。3A to 3F are partial cross-sectional schematic diagrams of the optoelectronic device packaging process according to the third embodiment of the present invention. In FIGS. 3A to 3F, the same or similar reference numerals indicate the same or similar components, so the components described in FIGS. 1A to 1G will not be repeated here.

首先,請參考圖3A,在形成光電元件120之後,於光電元件120的周邊設置擋牆370。在一些實施例中,擋牆370的截面可具有矩形、梯形或其他合適的形狀;擋牆370的形成方法可例如是灑佈(spray)、網版印刷(screen printing)、微影蝕刻法、低溫燒結或其他合適的方法,本發明並不以此為限。First, referring to FIG. 3A, after the optoelectronic element 120 is formed, a barrier 370 is provided around the optoelectronic element 120. In some embodiments, the cross section of the retaining wall 370 may have a rectangular, trapezoidal or other suitable shape; the forming method of the retaining wall 370 may be, for example, spray, screen printing, photolithography, Low-temperature sintering or other suitable methods, the present invention is not limited to this.

在一實施例中,於光電元件120上以及擋牆370所圍繞的範圍內可選擇性的形成覆蓋層(未繪示),其中形成覆蓋層的方法可例如是噴墨印刷(ink-jet printing, IJP)。覆蓋層的材料可例如是包括壓克力系(acrylic)聚合物或其他適合的材料。In one embodiment, a covering layer (not shown) may be selectively formed on the photoelectric element 120 and in the area surrounded by the barrier wall 370. The method of forming the covering layer may be, for example, ink-jet printing (ink-jet printing). , IJP). The material of the cover layer may include, for example, acrylic polymer or other suitable materials.

接著請參考圖3B,可以藉由例如是噴墨印刷在光電元件120上以及擋牆370所圍繞的範圍內形成第一阻障層330,再將第一阻障層330進行固化。第一阻障層330可覆蓋光電元件120的頂表面以及側壁。印刷製程中使用的第一阻障層330材料可例如是包括聚矽氮烷(polysilazane)、聚矽氮氧烷(polysiloxazane)或其他適合的材料。接著,將固化後的第一阻障層330於大氣中進行水解,水解的程度可視需求而定,再利用照光、加熱或電漿等處理方式進行表面改質,以增進其阻障特性。照光處理可例如是使用真空紫外光(vacuum ultraviolet light,VUV);加熱處理可例如是利用加熱板(hot plate)、烘箱(oven)等方式進行加熱,使用的氣體可包括空氣、氮氣(N2 )、氧氣(O2 )等;電漿處理可包括使用惰性氣體、氫氣(H2 )、氮氣(N2 )、氧氣(O2 )、含氟氣體、氯氣(Cl2 )等進行電漿改質。經過改質處理的第一阻障層330材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。Next, referring to FIG. 3B, the first barrier layer 330 may be formed by inkjet printing on the photoelectric element 120 and the area surrounded by the barrier wall 370, and then the first barrier layer 330 is cured. The first barrier layer 330 may cover the top surface and sidewalls of the optoelectronic element 120. The material of the first barrier layer 330 used in the printing process may, for example, include polysilazane, polysiloxazane or other suitable materials. Next, the cured first barrier layer 330 is hydrolyzed in the atmosphere, and the degree of hydrolysis can be determined according to requirements, and then the surface is modified by treatment methods such as illumination, heating or plasma to improve its barrier properties. The irradiation treatment can be, for example, vacuum ultraviolet light (VUV); the heating treatment can be, for example, heating using a hot plate, oven, etc., and the gas used can include air, nitrogen (N 2 ), oxygen (O 2 ), etc.; plasma treatment can include the use of inert gas, hydrogen (H 2 ), nitrogen (N 2 ), oxygen (O 2 ), fluorine-containing gas, chlorine (Cl 2 ), etc. for plasma modification quality. The modified material of the first barrier layer 330 may, for example, include silicon nitride, silicon oxynitride or other suitable materials.

在一實施例中,第一阻障層330可覆蓋光電元件120以及擋牆370的頂表面與側壁,其中形成第一阻障層330的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。In an embodiment, the first barrier layer 330 may cover the top surface and sidewalls of the optoelectronic element 120 and the barrier wall 370. The method of forming the first barrier layer 330 may be ink-jet printing (IJP), for example. ), slot die coating, spin coating or other suitable manufacturing methods.

請參考圖3C,第一阻障層330在經處理後形成具有第一區330a以及第二區330b的第一阻障層330。第一區330a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第二區330b來說可具有較高的密度。在一實施例中,第一區330a與第二區330b相比可具有較高的的氮(N)元素含量。第二區330b的材料例如是氮氧化矽(silicon oxynitride) 或氧化矽(silicon oxide)。在一實施例中,第二區330b相較於第一區330a來說具有較高的氧(O)元素含量。藉由第一阻障層330中第一區330a材料的阻水氧特性以及第二區330b材料的阻熱特性,可使第一阻障層330兼具有阻熱以及阻水氧的阻障效果。整體而言,第一阻障層330的成份組成可例如是包含氮元素含量大於0at%至10at%、氧元素含量介於50at%至70at%以及矽元素含量介於30at%至50at%,其中矽元素、氮元素以及氧元素含量總和可為100at%;第一阻障層330的熱傳導係數可例如是小於5瓦/米-絕對溫度,密度可例如是小於2.2克/立方公分,水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日。Referring to FIG. 3C, the first barrier layer 330 is processed to form a first barrier layer 330 having a first region 330a and a second region 330b. The material of the first region 330a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the second region 330b. In an embodiment, the first region 330a may have a higher nitrogen (N) element content than the second region 330b. The material of the second region 330b is, for example, silicon oxynitride or silicon oxide. In one embodiment, the second region 330b has a higher oxygen (O) element content than the first region 330a. The first barrier layer 330 has the water and oxygen barrier properties of the material in the first region 330a and the heat barrier properties of the material in the second region 330b, so that the first barrier layer 330 can have both heat and water and oxygen barriers. Effect. In general, the composition of the first barrier layer 330 may include, for example, a nitrogen content greater than 0at% to 10at%, an oxygen content between 50at% and 70at%, and a silicon content between 30at% and 50at%, where The total content of silicon, nitrogen, and oxygen can be 100at%; the thermal conductivity of the first barrier layer 330 can be, for example, less than 5 watts/meter-absolute temperature, and the density can be, for example, less than 2.2 g/cm ^3, water vapor penetration The water vapor transmission rate (WVTR) can be, for example, less than or equal to 10 -1 g/m²-day.

請參考圖3D,接著在擋牆370所圍繞的範圍內形成波長轉換層340於第一阻障層330上,其中形成波長轉換層340的方法可例如是噴墨印刷或其他適合的製程方法。波長轉換層340通常為光致發光(photoluminescence,PL)材料,可例如是量子點(quantum dot,QD)等。Referring to FIG. 3D, a wavelength conversion layer 340 is then formed on the first barrier layer 330 within the area surrounded by the barrier wall 370. The method of forming the wavelength conversion layer 340 may be inkjet printing or other suitable manufacturing methods, for example. The wavelength conversion layer 340 is usually a photoluminescence (PL) material, and may be, for example, a quantum dot (QD) or the like.

請參考圖3E,可以藉由例如是噴墨印刷在擋牆370所圍繞的範圍內形成第二阻障層350於波長轉換層340上,再將第二阻障層350進行固化。第二阻障層350可覆蓋波長轉換層340的頂表面以及側壁。印刷製程中使用的第二阻障層350材料可例如是包括聚矽氮烷(polysilazane)、聚矽氮氧烷(polysiloxazane)或其他適合的材料。接著,將固化後的第一阻障層330利用照光、加熱或電漿等處理方式進行表面改質,以增進其阻障特性。經過改質處理的第二阻障層350材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。Referring to FIG. 3E, the second barrier layer 350 can be formed on the wavelength conversion layer 340 in the area surrounded by the barrier wall 370 by, for example, inkjet printing, and then the second barrier layer 350 is cured. The second barrier layer 350 may cover the top surface and sidewalls of the wavelength conversion layer 340. The material of the second barrier layer 350 used in the printing process may include, for example, polysilazane, polysiloxazane, or other suitable materials. Next, the cured first barrier layer 330 is subjected to surface modification using treatment methods such as illumination, heating or plasma to improve its barrier properties. The modified material of the second barrier layer 350 may, for example, include silicon nitride, silicon oxynitride or other suitable materials.

請接續參考圖3F,第二阻障層350在經處理後形成具有第三區350a以及第四區350b的第二阻障層350。第三區350a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第四區350b來說可具有較高的密度。在一實施例中,第三區350a與第四區350b相比可具有較高的的氮(N)元素含量。第二區130b的材料例如是氮氧化矽(silicon oxynitride)。在一實施例中,第四區350b相較於第三區350a來說具有較高的氧(O)元素含量。藉由第二阻障層350中第三區350a材料的阻障特性,可使第二阻障層350的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。整體而言,第二阻障層350的成份組成可例如是包含氮元素含量介於5at%至45at%、氧元素含量介於5at%至50at%以及矽元素含量介於30at%至50at%,其中矽元素、氮元素以及氧元素含量總和可為100at%;第二阻障層350的密度可例如是大於等於2.2克/立方公分。Please continue to refer to FIG. 3F, the second barrier layer 350 is processed to form a second barrier layer 350 having a third region 350a and a fourth region 350b. The material of the third region 350a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the fourth region 350b. In an embodiment, the third region 350a may have a higher nitrogen (N) element content than the fourth region 350b. The material of the second region 130b is, for example, silicon oxynitride. In one embodiment, the fourth region 350b has a higher oxygen (O) element content than the third region 350a. With the barrier properties of the material of the third region 350a in the second barrier layer 350, the water vapor transmission rate (WVTR) of the second barrier layer 350 can be, for example, less than or equal to 10 -1 G/m²-day, preferably less than or equal to 10 -2 g/m²-day. On the whole, the composition of the second barrier layer 350 may include, for example, a nitrogen content between 5 at% and 45 at%, an oxygen content between 5 at% and 50 at%, and a silicon content between 30 at% and 50 at%. The total content of silicon element, nitrogen element, and oxygen element may be 100 at%; the density of the second barrier layer 350 may be, for example, greater than or equal to 2.2 g/cm ^3.

此外,在其他實施例中,印刷製程中可使用類似甚或相同的材料分別形成第一阻障層330以及第二阻障層350,而基於不同功能性需求於後續採取不同處理方式,使得第二阻障層350的氮元素含量可高於第一阻障層330的氮元素含量;第一阻障層330的氧元素含量可高於第二阻障層350的氧元素含量;第一阻障層330的厚度可大於第二阻障層350的厚度;第一阻障層330的密度可小於第二阻障層350的密度。In addition, in other embodiments, similar or even the same materials may be used in the printing process to form the first barrier layer 330 and the second barrier layer 350 respectively, and different processing methods are subsequently adopted based on different functional requirements, so that the second barrier layer The nitrogen content of the barrier layer 350 may be higher than the nitrogen content of the first barrier layer 330; the oxygen content of the first barrier layer 330 may be higher than the oxygen content of the second barrier layer 350; the first barrier The thickness of the layer 330 may be greater than the thickness of the second barrier layer 350; the density of the first barrier layer 330 may be less than the density of the second barrier layer 350.

圖4為本發明第四實施例的光電元件封裝體的局部剖面示意圖。第四實施例的光電元件封裝體400與圖3F的光電元件封裝體300類似,本實施例採用圖4針對光電元件封裝體400進行描述。在圖4中,相同或相似的標號表示相同或相似的構件,故針對圖3A至圖3F中說明過的構件於此不再贅述。4 is a schematic partial cross-sectional view of the optoelectronic device package according to the fourth embodiment of the present invention. The optoelectronic device package 400 of the fourth embodiment is similar to the optoelectronic device package 300 of FIG. 3F, and this embodiment uses FIG. 4 to describe the optoelectronic device package 400. In FIG. 4, the same or similar reference numerals indicate the same or similar components, so the components described in FIGS. 3A to 3F will not be repeated here.

在本實施例中,光電元件封裝體400的第二阻障層450可覆蓋波長轉換層340以及擋牆370的頂表面與側壁,並藉由製程方式及/或條件(例如塗佈範圍、溶液黏度等)的控制使第二阻障層450具有島狀結構,其中形成第二阻障層450的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。接著,可利用照光、加熱或電漿等處理方式對第二阻障層450的頂表面以及側表面進行改質,以增進其阻障特性。經過改質處理的第二阻障層450材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。In this embodiment, the second barrier layer 450 of the optoelectronic device package 400 can cover the wavelength conversion layer 340 and the top surface and sidewalls of the barrier wall 370, and can be controlled by the process method and/or conditions (such as coating range, solution The control of viscosity, etc.) makes the second barrier layer 450 have an island-like structure. The method for forming the second barrier layer 450 may be ink-jet printing (IJP), slot die coating, etc., for example. coating), spin coating (spin coating) or other suitable manufacturing methods. Then, the top surface and the side surface of the second barrier layer 450 can be modified by treatment methods such as illumination, heating or plasma to improve its barrier properties. The modified material of the second barrier layer 450 may include, for example, silicon nitride, silicon oxynitride, or other suitable materials.

第二阻障層450在經處理後形成具有第三區450a以及第四區450b的第二阻障層450。第三區450a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第四區450b來說可具有較高的密度。在一實施例中,第三區450a與第四區450b相比可具有較高的的氮(N)元素含量。第四區450b的材料例如是氮氧化矽(silicon oxynitride)。在一實施例中,第四區450b相較於第三區450a來說具有較高的氧(O)元素含量。藉由第二阻障層450中第三區450a材料的阻障特性,可使第二阻障層450的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。整體而言,第二阻障層450的成份組成可例如是包含氮元素含量介於5at%至45at%、氧元素含量介於5at%至50at%以及矽元素含量介於30at%至50at%,其中矽元素、氮元素以及氧元素含量總和可為100at%;第二阻障層450的密度可例如是大於等於2.2克/立方公分。The second barrier layer 450 is processed to form a second barrier layer 450 having a third region 450a and a fourth region 450b. The material of the third region 450a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the fourth region 450b. In an embodiment, the third region 450a may have a higher nitrogen (N) element content than the fourth region 450b. The material of the fourth region 450b is, for example, silicon oxynitride. In one embodiment, the fourth zone 450b has a higher oxygen (O) element content than the third zone 450a. With the barrier properties of the material of the third region 450a in the second barrier layer 450, the water vapor transmission rate (WVTR) of the second barrier layer 450 can be, for example, less than or equal to 10 -1 G/m²-day, preferably less than or equal to 10 -2 g/m²-day. In general, the composition of the second barrier layer 450 may include, for example, a nitrogen content between 5 at% and 45 at%, an oxygen content between 5 at% and 50 at%, and a silicon content between 30 at% and 50 at%. The total content of silicon element, nitrogen element, and oxygen element may be 100 at%; the density of the second barrier layer 450 may be, for example, greater than or equal to 2.2 g/cm ^3.

圖5為本發明第五實施例的光電元件封裝體的局部剖面示意圖。第五實施例的光電元件封裝體500與圖2的光電元件封裝體200類似,本實施例採用圖5針對光電元件封裝體500進行描述。在圖5中,相同或相似的標號表示相同或相似的構件,故針對圖2中說明過的構件於此不再贅述。5 is a schematic partial cross-sectional view of the optoelectronic device package according to the fifth embodiment of the present invention. The optoelectronic device package 500 of the fifth embodiment is similar to the optoelectronic device package 200 of FIG. 2, and this embodiment uses FIG. 5 to describe the optoelectronic device package 500. In FIG. 5, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 2 will not be repeated here.

在本實施例中,於形成第一阻障層130之前可選擇性地在光電元件120上形成平坦層560,其中形成平坦層560的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。平坦層560配置於基板110與第一阻障層130之間,且包覆至少一光電元件120。本發明各實施例亦可依需求於形成第一阻障層130之前可選擇性地在光電元件120上形成平坦層560。In this embodiment, before forming the first barrier layer 130, a planarization layer 560 can be selectively formed on the optoelectronic element 120, wherein the method of forming the planarization layer 560 can be ink-jet printing (IJP), for example. , Slot die coating, spin coating or other suitable manufacturing process methods. The flat layer 560 is disposed between the substrate 110 and the first barrier layer 130 and covers at least one photoelectric element 120. According to various embodiments of the present invention, a flat layer 560 may be selectively formed on the photoelectric element 120 before forming the first barrier layer 130 according to requirements.

之後,可類似圖3A的方法,於對應光電元件120的周邊位置設置擋牆370,並在擋牆370所圍繞的範圍內形成波長轉換層140於第一阻障層130上。接著形成第二阻障層550,第二阻障層550可覆蓋波長轉換層140以及擋牆370的頂表面與側壁,並藉由製程方式及/或條件(例如塗佈範圍、溶液黏度等)的控制使第二阻障層550具有島狀結構,其中形成第二阻障層550的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。After that, similar to the method of FIG. 3A, a barrier wall 370 is arranged at a peripheral position corresponding to the optoelectronic element 120, and the wavelength conversion layer 140 is formed on the first barrier layer 130 in the range surrounded by the barrier wall 370. Next, a second barrier layer 550 is formed. The second barrier layer 550 can cover the wavelength conversion layer 140 and the top surface and sidewalls of the barrier wall 370, and is determined by the process method and/or conditions (such as coating range, solution viscosity, etc.) The second barrier layer 550 has an island-like structure under the control of, and the method for forming the second barrier layer 550 can be, for example, ink-jet printing (IJP), slot die coating, Spin coating or other suitable manufacturing methods.

接著,可利用照光、加熱或電漿等處理方式對第二阻障層550的頂表面以及側表面進行改質,以增進其阻障特性。第二阻障層550在經處理後形成具有第三區550a以及第四區550b的第二阻障層550。第三區550a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第四區550b來說可具有較高的密度。在一實施例中,第三區550a與第四區550b相比可具有較高的的氮(N)元素含量。第四區550b的材料例如是氮氧化矽(silicon oxynitride)。在一實施例中,第四區550b相較於第三區550a來說具有較高的氧(O)元素含量。藉由第二阻障層550中第三區550a材料的阻障特性,可使第二阻障層550的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。Then, the top surface and the side surface of the second barrier layer 550 can be modified by treatment methods such as illumination, heating or plasma to improve its barrier properties. The second barrier layer 550 is processed to form a second barrier layer 550 having a third region 550a and a fourth region 550b. The material of the third region 550a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the fourth region 550b. In an embodiment, the third region 550a may have a higher nitrogen (N) element content than the fourth region 550b. The material of the fourth region 550b is, for example, silicon oxynitride. In one embodiment, the fourth region 550b has a higher oxygen (O) element content than the third region 550a. With the barrier properties of the material of the third region 550a in the second barrier layer 550, the water vapor transmission rate (WVTR) of the second barrier layer 550 can be, for example, less than or equal to 10 -1 G/m²-day, preferably less than or equal to 10 -2 g/m²-day.

圖6為本發明第六實施例的光電元件封裝體的局部剖面示意圖。第六實施例的光電元件封裝體600與圖3F的光電元件封裝體300類似,本實施例採用圖6針對光電元件封裝體600進行描述。在圖6中,相同或相似的標號表示相同或相似的構件,故針對圖3F中說明過的構件於此不再贅述。6 is a schematic partial cross-sectional view of the optoelectronic device package according to the sixth embodiment of the present invention. The optoelectronic device package 600 of the sixth embodiment is similar to the optoelectronic device package 300 of FIG. 3F, and this embodiment uses FIG. 6 to describe the optoelectronic device package 600. In FIG. 6, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 3F will not be repeated here.

在本實施例中,於形成第二阻障層350之前可選擇性地在波長轉換層340上形成緩衝層680,其中形成緩衝層680的方法可例如是噴墨印刷(ink-jet printing,IJP)或其他適合的製程方法。緩衝層680配置於波長轉換層340與第二阻障層350之間,且包覆波長轉換層340。緩衝層680的材料可例如包括壓克力系(acrylic)聚合物、環氧系(epoxy)聚合物或聚醯亞胺(polyimide,PI)。本發明各實施例亦可依需求於形成第二阻障層350之前可選擇性地在波長轉換層340上形成緩衝層680。In this embodiment, the buffer layer 680 may be selectively formed on the wavelength conversion layer 340 before the second barrier layer 350 is formed. The method of forming the buffer layer 680 may be ink-jet printing (IJP). ) Or other suitable manufacturing methods. The buffer layer 680 is disposed between the wavelength conversion layer 340 and the second barrier layer 350 and covers the wavelength conversion layer 340. The material of the buffer layer 680 may include, for example, acrylic polymer, epoxy polymer, or polyimide (PI). According to various embodiments of the present invention, the buffer layer 680 may be selectively formed on the wavelength conversion layer 340 before forming the second barrier layer 350 according to requirements.

圖7為本發明第七實施例的光電元件封裝體的局部剖面示意圖。第七實施例的光電元件封裝體700與圖3F的光電元件封裝體300類似,本實施例採用圖7針對光電元件封裝體700進行描述。在圖7中,相同或相似的標號表示相同或相似的構件,故針對圖3F中說明過的構件於此不再贅述。FIG. 7 is a schematic partial cross-sectional view of the optoelectronic device package according to the seventh embodiment of the present invention. The optoelectronic device package 700 of the seventh embodiment is similar to the optoelectronic device package 300 of FIG. 3F, and this embodiment uses FIG. 7 to describe the optoelectronic device package 700. In FIG. 7, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 3F will not be repeated here.

在本實施例中,光電元件封裝體700可包括多個光電元件120排列成陣列。於多個光電元件上形成第一阻障層730,再將第一阻障層730進行固化。第一阻障層730可覆蓋多個光電元件120以及多個擋牆370的頂表面與側壁,其中形成第一阻障層730的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。接著,將固化後的第一阻障層730於大氣中進行水解,水解的程度可視需求而定,再利用照光、加熱或電漿等處理方式進行表面改質,以增進其阻障特性。經過改質處理的第一阻障層730材料可例如是包括氮化矽(silicon nitride)、氮氧化矽(silicon oxynitride)或其他適合的材料。In this embodiment, the optoelectronic device package 700 may include a plurality of optoelectronic devices 120 arranged in an array. A first barrier layer 730 is formed on a plurality of photoelectric elements, and then the first barrier layer 730 is cured. The first barrier layer 730 may cover the top surfaces and sidewalls of the plurality of optoelectronic elements 120 and the plurality of barrier walls 370, wherein the method of forming the first barrier layer 730 may be, for example, ink-jet printing (IJP), Slot die coating, spin coating or other suitable manufacturing methods. Then, the cured first barrier layer 730 is hydrolyzed in the atmosphere, and the degree of hydrolysis can be determined according to requirements, and then the surface is modified by treatment methods such as illumination, heating, or plasma to improve its barrier properties. The modified material of the first barrier layer 730 may, for example, include silicon nitride, silicon oxynitride, or other suitable materials.

第一阻障層730在經處理後形成具有第一區730a以及第二區730b的第一阻障層730。第一區730a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第二區730b來說可具有較高的密度。在一實施例中,第一區730a與第二區730b相比可具有較高的的氮(N)元素含量。第二區730b的材料例如是氮氧化矽(silicon oxynitride) 或氧化矽(silicon oxide)。在一實施例中,第二區730b相較於第一區730a來說具有較高的氧(O)元素含量。藉由第一阻障層730中第一區730a材料的阻水氧特性以及第二區730b材料的阻熱特性,可使第一阻障層730兼具有阻熱以及阻水氧的阻障效果。The first barrier layer 730 is processed to form a first barrier layer 730 having a first region 730a and a second region 730b. The material of the first region 730a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the second region 730b. In an embodiment, the first region 730a may have a higher nitrogen (N) element content than the second region 730b. The material of the second region 730b is, for example, silicon oxynitride or silicon oxide. In one embodiment, the second region 730b has a higher oxygen (O) element content than the first region 730a. The first barrier layer 730 has the water and oxygen barrier properties of the material in the first region 730a and the heat barrier properties of the material in the second region 730b, so that the first barrier layer 730 can have both heat and water and oxygen barriers. Effect.

圖8為本發明第八實施例的光電元件封裝體的局部剖面示意圖。第八實施例的光電元件封裝體800與圖4的光電元件封裝體400類似,本實施例採用圖8針對光電元件封裝體800進行描述。在圖8中,相同或相似的標號表示相同或相似的構件,故針對圖4中說明過的構件於此不再贅述。FIG. 8 is a schematic partial cross-sectional view of an optoelectronic device package according to an eighth embodiment of the present invention. The optoelectronic component package 800 of the eighth embodiment is similar to the optoelectronic component package 400 of FIG. 4, and this embodiment uses FIG. 8 to describe the optoelectronic component package 800. In FIG. 8, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 4 will not be repeated here.

在本實施例中,光電元件封裝體800可包括多個光電元件排列成陣列。第二阻障層850可覆蓋多個波長轉換層340以及多個擋牆370的頂表面與側壁,並藉由製程方式及/或條件(例如塗佈範圍、溶液黏度等)的控制使第二阻障層850具有島狀結構,其中形成第二阻障層850的方法可例如是噴墨印刷(ink-jet printing,IJP)、狹縫式塗佈(slot die coating)、旋轉塗佈(spin coating)或其他適合的製程方法。接著,可利用照光、加熱或電漿等處理方式對第二阻障層850的頂表面以及側表面進行改質,以增進其阻障特性。In this embodiment, the optoelectronic device package 800 may include a plurality of optoelectronic devices arranged in an array. The second barrier layer 850 can cover the top surface and sidewalls of the plurality of wavelength conversion layers 340 and the plurality of barrier walls 370, and is controlled by the process method and/or conditions (such as coating range, solution viscosity, etc.) to make the second The barrier layer 850 has an island-like structure, and the method for forming the second barrier layer 850 may be ink-jet printing (IJP), slot die coating, spin coating, or spin coating. coating) or other suitable manufacturing methods. Then, the top surface and the side surface of the second barrier layer 850 can be modified by treatment methods such as illumination, heating or plasma to improve its barrier properties.

第二阻障層850在經處理後形成具有第三區850a以及第四區850b的第二阻障層850。第三區850a的材料例如是氮化矽(silicon nitride)或氮氧化矽(silicon oxynitride),且相較於第四區850b來說可具有較高的密度。在一實施例中,第三區850a與第四區850b相比可具有較高的的氮(N)元素含量。第四區850b的材料例如是氮氧化矽(silicon oxynitride)。在一實施例中,第四區850b相較於第三區850a來說具有較高的氧(O)元素含量。藉由第二阻障層850中第三區850a材料的阻障特性,可使第二阻障層850的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。The second barrier layer 850 is processed to form a second barrier layer 850 having a third region 850a and a fourth region 850b. The material of the third region 850a is, for example, silicon nitride or silicon oxynitride, and can have a higher density than that of the fourth region 850b. In an embodiment, the third region 850a may have a higher nitrogen (N) element content than the fourth region 850b. The material of the fourth region 850b is silicon oxynitride, for example. In one embodiment, the fourth region 850b has a higher oxygen (O) element content than the third region 850a. By virtue of the barrier properties of the material of the third region 850a in the second barrier layer 850, the water vapor transmission rate (WVTR) of the second barrier layer 850 can be, for example, less than or equal to 10 -1 G/m²-day, preferably less than or equal to 10 -2 g/m²-day.

上述實施例的光電元件是以上發光結構無機發光元件為例,亦可置換為下發光結構無機發光元件。下發光結構無機發光元件可參考下述實施例。The photoelectric element of the above embodiment is an example of the inorganic light-emitting element of the above light-emitting structure, and can also be replaced with an inorganic light-emitting element of the lower light-emitting structure. For the inorganic light-emitting element with the lower light-emitting structure, reference may be made to the following embodiments.

圖9為本發明第九實施例的光電元件封裝體的局部剖面示意圖。第九實施例的光電元件封裝體900與圖1G的光電元件封裝體100類似,本實施例採用圖9針對光電元件封裝體900進行描述。在圖9中,相同或相似的標號表示相同或相似的構件,故針對圖1G中說明過的構件於此不再贅述。FIG. 9 is a schematic partial cross-sectional view of the optoelectronic device package according to the ninth embodiment of the present invention. The optoelectronic device package 900 of the ninth embodiment is similar to the optoelectronic device package 100 of FIG. 1G, and this embodiment uses FIG. 9 to describe the optoelectronic device package 900. In FIG. 9, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 1G will not be repeated here.

在本實施例中,光電元件封裝體900可更包括反射層990,反射層的材料可例如是包括金屬、合金或聚合物,其中金屬可例如是銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)或其他適用的金屬材料,合金可例如是採用前述金屬的組合,聚合物可例如矽氧烷化合物(siloxane)、壓克力系(acrylic)聚合物、環氧系(epoxy)聚合物或其他適用的材料。反射層990可配置於波長轉換層140與第二阻障層150之間。藉由反射層990可提升光電元件封裝體900的亮度(luminance)。In this embodiment, the optoelectronic device package 900 may further include a reflective layer 990, and the material of the reflective layer may include, for example, metal, alloy, or polymer. The metal may be, for example, silver (Ag), aluminum (Al), or copper ( Cu), palladium (Pd) or other suitable metal materials. The alloy can be a combination of the aforementioned metals, and the polymer can be, for example, a silicone compound (siloxane), an acrylic polymer, an epoxy system ( epoxy) polymer or other suitable materials. The reflective layer 990 may be disposed between the wavelength conversion layer 140 and the second barrier layer 150. The reflective layer 990 can improve the brightness of the optoelectronic device package 900.

圖10為本發明第十實施例的光電元件封裝體的局部剖面示意圖。第十實施例的光電元件封裝體1000與圖3F的光電元件封裝體300類似,本實施例採用圖10針對光電元件封裝體1000進行描述。在圖10中,相同或相似的標號表示相同或相似的構件,故針對圖3F中說明過的構件於此不再贅述。FIG. 10 is a schematic partial cross-sectional view of the optoelectronic device package according to the tenth embodiment of the present invention. The optoelectronic component package 1000 of the tenth embodiment is similar to the optoelectronic component package 300 of FIG. 3F, and this embodiment uses FIG. 10 to describe the optoelectronic component package 1000. In FIG. 10, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 3F will not be repeated here.

在本實施例中,光電元件封裝體1000可更包括反射層1090,反射層的材料可例如是包括金屬、合金或聚合物,其中金屬可例如是銀(Ag)、鋁(Al)、銅(Cu)、鈀(Pd)或其他適用的金屬材料,合金可例如是採用前述金屬的組合,聚合物可例如矽氧烷化合物(siloxane)、壓克力系(acrylic)聚合物、環氧系(epoxy)聚合物或其他適用的材料。反射層1090可配置於波長轉換層340與第二阻障層350之間。藉由反射層1090可提升光電元件封裝體1000的亮度(luminance)。In this embodiment, the optoelectronic device package 1000 may further include a reflective layer 1090, and the material of the reflective layer may include, for example, metal, alloy, or polymer. The metal may, for example, be silver (Ag), aluminum (Al), or copper ( Cu), palladium (Pd) or other suitable metal materials. The alloy can be a combination of the aforementioned metals, and the polymer can be, for example, a silicone compound (siloxane), an acrylic polymer, an epoxy system ( epoxy) polymer or other suitable materials. The reflective layer 1090 may be disposed between the wavelength conversion layer 340 and the second barrier layer 350. The reflective layer 1090 can improve the brightness of the optoelectronic device package 1000.

圖11為本發明一實施例的光電元件封裝體佈局的局部上視示意圖。為求清晰,圖11省略繪示部分膜層及構件。以下實施例中,單一光電元件封裝體係以光電元件封裝體100為範例,但本發明並不以此為限。在圖11中,相同或相似的標號表示相同或相似的構件,故針對圖1G中說明過的構件於此不再贅述。FIG. 11 is a schematic partial top view of the layout of the optoelectronic device package according to an embodiment of the present invention. For clarity, FIG. 11 omits some of the film layers and components. In the following embodiments, a single optoelectronic device packaging system takes the optoelectronic device package 100 as an example, but the present invention is not limited to this. In FIG. 11, the same or similar reference numerals indicate the same or similar components, so the components described in FIG. 1G will not be repeated here.

在本實施例中,光電元件封裝體佈局可包括多個光電元件120且電性連接至第一線路層1122以及第二線路層1124。多個光電元件120可以構成一畫素單元PU,且基板110上的多個畫素單元PU可以是陣列式排列,但本發明於此不加以限制。藉由將第一阻障層130進行表面改質形成具有第一區130a以及第二區130b的第一阻障層130,其中第一區130a材料具備阻水氧特性以及第二區130b材料具備阻熱特性,可使第一阻障層130兼具有阻熱以及阻水氧的阻障效果。在一實施例中,第一阻障層130可延伸至基板110周邊,第一阻障層130形成為一連續性膜層,有助於第一線路層1122及/或第二線路層1124的製作使之不易斷線。第二阻障層150在經改質處理後形成具有第三區150a以及第四區150b的第二阻障層150,其中第三區150a材料具備阻障特性,可使第二阻障層150的水氣穿透率(water vapor transmission rate,WVTR) 可例如是小於或等於10-1 公克/平方公尺-日,較佳的是小於或等於10-2 公克/平方公尺-日。In this embodiment, the optoelectronic device package layout may include a plurality of optoelectronic devices 120 and are electrically connected to the first circuit layer 1122 and the second circuit layer 1124. A plurality of photoelectric elements 120 may constitute a pixel unit PU, and the plurality of pixel units PU on the substrate 110 may be arranged in an array, but the present invention is not limited herein. The first barrier layer 130 is formed by surface modification of the first barrier layer 130 to form a first barrier layer 130 having a first region 130a and a second region 130b, wherein the material of the first region 130a has water and oxygen blocking properties and the material of the second region 130b has The heat resistance characteristics enable the first barrier layer 130 to have both heat resistance and water and oxygen barrier effects. In one embodiment, the first barrier layer 130 may extend to the periphery of the substrate 110, and the first barrier layer 130 is formed as a continuous film layer, which helps the first circuit layer 1122 and/or the second circuit layer 1124 Make it not easy to break. The second barrier layer 150 is modified to form a second barrier layer 150 having a third region 150a and a fourth region 150b, wherein the material of the third region 150a has barrier properties, which can make the second barrier layer 150 The water vapor transmission rate (WVTR) can be, for example, less than or equal to 10 -1 g/m²-day, and preferably less than or equal to 10 -2 g/m²-day.

本發明實施例的光電元件封裝體中,分別將第一阻障層以及第二阻障層的表面進行改質,可使第一阻障層提供阻熱兼具阻水氧的阻障效果,並使覆蓋在波長轉換層上的第二阻障層具備良好的阻障特性,有利於保護波長轉換層,藉此降低波長轉換層因受熱及/或水氧等損傷而影響發光效率。In the optoelectronic device package of the embodiment of the present invention, the surfaces of the first barrier layer and the second barrier layer are modified respectively, so that the first barrier layer can provide heat resistance and water and oxygen barrier effects. In addition, the second barrier layer covering the wavelength conversion layer has good barrier characteristics, which is beneficial to protect the wavelength conversion layer, thereby reducing the wavelength conversion layer from being damaged by heat and/or water and oxygen and affecting the luminous efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍及其均等範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope and its equivalent scope.

100、200、300、400、500、600、700、800、900、1000:光電元件封裝體 110:基板 120:光電元件 130、330、730:第一阻障層 130a、330a、730a:第一區 130b、330b、730b:第二區 140、340:波長轉換層 150、350、450、550、850:第二阻障層 150a、350a、450a、550a、850a:第三區 150b、350b、450b、550b、850b:第四區 1122:第一線路層 1124:第二線路層 260、560:平坦層 370:擋牆 680:緩衝層 990、1090:反射層 PU:畫素單元100, 200, 300, 400, 500, 600, 700, 800, 900, 1000: Optoelectronic component package 110: substrate 120: Optoelectronics 130, 330, 730: the first barrier layer 130a, 330a, 730a: Zone 1 130b, 330b, 730b: second zone 140, 340: wavelength conversion layer 150, 350, 450, 550, 850: second barrier layer 150a, 350a, 450a, 550a, 850a: Zone 3 150b, 350b, 450b, 550b, 850b: the fourth zone 1122: first circuit layer 1124: second circuit layer 260, 560: Flat layer 370: Retaining Wall 680: buffer layer 990, 1090: reflective layer PU: pixel unit

圖1A至圖1G為本發明第一實施例的光電元件封裝體製程的局部剖面示意圖。 圖2為本發明第二實施例的光電元件封裝體的局部剖面示意圖。 圖3A至圖3F為本發明第三實施例的光電元件封裝體製程的局部剖面示意圖。 圖4為本發明第四實施例的光電元件封裝體的局部剖面示意圖。 圖5為本發明第五實施例的光電元件封裝體的局部剖面示意圖。 圖6為本發明第六實施例的光電元件封裝體的局部剖面示意圖。 圖7為本發明第七實施例的光電元件封裝體的局部剖面示意圖。 圖8為本發明第八實施例的光電元件封裝體的局部剖面示意圖。 圖9為本發明第九實施例的光電元件封裝體的局部剖面示意圖。 圖10為本發明第十實施例的光電元件封裝體的局部剖面示意圖。 圖11為本發明一實施例的光電元件封裝體佈局的局部上視示意圖。1A to 1G are partial cross-sectional schematic diagrams of the optoelectronic device packaging process according to the first embodiment of the present invention. 2 is a schematic partial cross-sectional view of the optoelectronic device package according to the second embodiment of the present invention. 3A to 3F are partial cross-sectional schematic diagrams of the optoelectronic device packaging process according to the third embodiment of the present invention. 4 is a schematic partial cross-sectional view of the optoelectronic device package according to the fourth embodiment of the present invention. 5 is a schematic partial cross-sectional view of the optoelectronic device package according to the fifth embodiment of the present invention. 6 is a schematic partial cross-sectional view of the optoelectronic device package according to the sixth embodiment of the present invention. FIG. 7 is a schematic partial cross-sectional view of the optoelectronic device package according to the seventh embodiment of the present invention. FIG. 8 is a schematic partial cross-sectional view of an optoelectronic device package according to an eighth embodiment of the present invention. FIG. 9 is a schematic partial cross-sectional view of the optoelectronic device package according to the ninth embodiment of the present invention. FIG. 10 is a schematic partial cross-sectional view of the optoelectronic device package according to the tenth embodiment of the present invention. FIG. 11 is a schematic partial top view of the layout of the optoelectronic device package according to an embodiment of the present invention.

110:基板 110: substrate

120:光電元件 120: Optoelectronics

300:光電元件封裝體 300: Optoelectronic component package

330:第一阻障層 330: first barrier layer

330a:第一區 330a: District 1

330b:第二區 330b: District 2

340:波長轉換層 340: wavelength conversion layer

350:第二阻障層 350: second barrier layer

350a:第三區 350a: District 3

350b:第四區 350b: District 4

370:擋牆 370: Retaining Wall

Claims (14)

一種光電元件封裝體,包括:基板;至少一光電元件,配置於該基板上;第一阻障層,配置於該基板上且覆蓋該至少一光電元件;波長轉換層,配置於該第一阻障層上;以及第二阻障層,覆蓋該波長轉換層,其中該第一阻障層的成份組成包含氮元素含量大於0原子百分比(at%)至10at%、氧元素含量介於50at%至70at%以及矽元素含量介於30at%至50at%,該第二阻障層包括第一區與第二區,該第二區位於該第一區與該波長轉換層之間,而該第一區相較於該第二區具有較高的氮元素含量。 An optoelectronic element package includes: a substrate; at least one optoelectronic element is disposed on the substrate; a first barrier layer is disposed on the substrate and covers the at least one optoelectronic element; a wavelength conversion layer is disposed on the first barrier On the barrier layer; and a second barrier layer covering the wavelength conversion layer, wherein the composition of the first barrier layer includes a nitrogen element content greater than 0 atomic percent (at%) to 10 at%, and an oxygen element content between 50 at% The second barrier layer includes a first region and a second region, the second region is located between the first region and the wavelength conversion layer, and the second barrier layer is between the first region and the wavelength conversion layer, and the second barrier layer The first zone has a higher nitrogen content than the second zone. 如申請專利範圍第1項所述之光電元件封裝體,其中該第一阻障層的熱傳導係數小於5瓦/米-絕對溫度,且其水氣穿透率小於10-1克/平方米-天。 According to the optoelectronic device package described in item 1 of the scope of patent application, the thermal conductivity of the first barrier layer is less than 5 W/m-absolute temperature, and the water vapor transmission rate is less than 10 -1 g/m2- sky. 如申請專利範圍第1項所述之光電元件封裝體,其中該第二阻障層的成份組成包含氮元素含量介於5at%至45at%、氧元素含量介於5at%至50at%以及矽元素含量介於30at%至50at%。 According to the optoelectronic device package described in the first item of the patent application, the composition of the second barrier layer includes nitrogen element content ranging from 5at% to 45at%, oxygen element content ranging from 5at% to 50at%, and silicon element The content is between 30at% and 50at%. 如申請專利範圍第1項所述之光電元件封裝體,其中該第二阻障層的氮元素含量高於等於該第一阻障層的氮元素含量, 且該第一阻障層的氧元素含量高於等於該第二阻障層的氧元素含量。 The optoelectronic device package as described in item 1 of the scope of patent application, wherein the nitrogen content of the second barrier layer is higher than or equal to the nitrogen content of the first barrier layer, And the oxygen content of the first barrier layer is higher than or equal to the oxygen content of the second barrier layer. 如申請專利範圍第1項所述之光電元件封裝體,其中該第一阻障層的厚度大於該第二阻障層的厚度。 According to the optoelectronic device package described in claim 1, wherein the thickness of the first barrier layer is greater than the thickness of the second barrier layer. 如申請專利範圍第1項所述之光電元件封裝體,其中該第一阻障層的密度小於該第二阻障層的密度。 According to the optoelectronic device package described in claim 1, wherein the density of the first barrier layer is less than the density of the second barrier layer. 如申請專利範圍第1項所述之光電元件封裝體,其中該光電元件封裝體更包括至少一擋牆,該至少一擋牆配置於該至少一光電元件的周圍。 According to the optoelectronic device package described in item 1 of the scope of patent application, the optoelectronic device package further includes at least one retaining wall, and the at least one retaining wall is disposed around the at least one optoelectronic device. 如申請專利範圍第7項所述之光電元件封裝體,其中該第一阻障層及/或該第二阻障層包覆該至少一擋牆。 The optoelectronic device package as described in item 7 of the scope of patent application, wherein the first barrier layer and/or the second barrier layer cover the at least one retaining wall. 如申請專利範圍第1項所述之光電元件封裝體,其中該光電元件封裝體更包括緩衝層,該緩衝層配置於該波長轉換層與該第二阻障層之間。 According to the optoelectronic device package described in claim 1, wherein the optoelectronic device package further includes a buffer layer, and the buffer layer is disposed between the wavelength conversion layer and the second barrier layer. 如申請專利範圍第9項所述之光電元件封裝體,其中該緩衝層的材料包括壓克力系聚合物、環氧系聚合物或聚醯亞胺。 According to the optoelectronic device package described in item 9 of the scope of patent application, the material of the buffer layer includes acrylic polymer, epoxy polymer or polyimide. 如申請專利範圍第1項所述之光電元件封裝體,其中該光電元件封裝體更包括反射層,該反射層配置於該波長轉換層與該第二阻障層之間。 According to the optoelectronic device package described in item 1 of the scope of patent application, the optoelectronic device package further includes a reflective layer, and the reflective layer is disposed between the wavelength conversion layer and the second barrier layer. 如申請專利範圍第11項所述之光電元件封裝體,其中該反射層的材料包括金屬、合金或聚合物。 In the optoelectronic device package described in item 11 of the scope of patent application, the material of the reflective layer includes metal, alloy or polymer. 如申請專利範圍第1項所述之光電元件封裝體,其中該光電元件封裝體更包括平坦層,該平坦層配置於該基板與該第一阻障層之間,且包覆該至少一光電元件。 The optoelectronic device package according to claim 1, wherein the optoelectronic device package further includes a flat layer, the flat layer is disposed between the substrate and the first barrier layer, and covers the at least one optoelectronic device. element. 如申請專利範圍第1項所述之光電元件封裝體,其中該第一區完全覆蓋該第二區的頂面與側面而將該第二區密封。 According to the optoelectronic device package described in claim 1, wherein the first area completely covers the top surface and the side surface of the second area to seal the second area.
TW108106381A 2018-10-12 2019-02-25 Package of photoelectric device TWI735847B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910316998.9A CN111048654B (en) 2018-10-12 2019-04-19 Photoelectric component package
US16/423,131 US10985297B2 (en) 2018-10-12 2019-05-27 Package of photoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862744662P 2018-10-12 2018-10-12
US62/744,662 2018-10-12

Publications (2)

Publication Number Publication Date
TW202015259A TW202015259A (en) 2020-04-16
TWI735847B true TWI735847B (en) 2021-08-11

Family

ID=71130771

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106381A TWI735847B (en) 2018-10-12 2019-02-25 Package of photoelectric device

Country Status (1)

Country Link
TW (1) TWI735847B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117108A (en) * 2022-01-19 2022-09-27 友达光电股份有限公司 sensing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264836A1 (en) * 2006-05-09 2007-11-15 Neng-Kuo Chen Method for forming a gate and etching a conductive layer
JP2013033833A (en) * 2011-08-01 2013-02-14 Panasonic Corp Wavelength conversion film and light emitting device and lighting device which use the same
TW201442314A (en) * 2013-03-04 2014-11-01 Applied Materials Inc Organic light-emitting diode element and method of forming a sealed structure thereon
US20140339495A1 (en) * 2013-05-14 2014-11-20 LuxVue Technology Corporation Micro led with wavelength conversion layer
US20150219288A1 (en) * 2014-02-05 2015-08-06 Samsung Display Co., Ltd. Light-emitting diode package and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264836A1 (en) * 2006-05-09 2007-11-15 Neng-Kuo Chen Method for forming a gate and etching a conductive layer
JP2013033833A (en) * 2011-08-01 2013-02-14 Panasonic Corp Wavelength conversion film and light emitting device and lighting device which use the same
TW201442314A (en) * 2013-03-04 2014-11-01 Applied Materials Inc Organic light-emitting diode element and method of forming a sealed structure thereon
US20140339495A1 (en) * 2013-05-14 2014-11-20 LuxVue Technology Corporation Micro led with wavelength conversion layer
US20150219288A1 (en) * 2014-02-05 2015-08-06 Samsung Display Co., Ltd. Light-emitting diode package and method of manufacturing the same

Also Published As

Publication number Publication date
TW202015259A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
CN110832660B (en) Method for selectively depositing conductive coating on patterned coating and device comprising conductive coating
TWI678771B (en) Package of electronic device and display panel
US10930896B2 (en) Package method of OLED element and OLED package structure
CN103348502B (en) The hybrid method for packing of Organic Light Emitting Diode
TWI238675B (en) Organic light-emitting display and its manufacture method
US8445898B2 (en) Organic/inorganic hybrid thin film passivation layer for blocking moisture/oxygen transmission and improving gas barrier property
KR102327796B1 (en) OLED element encapsulation module and encapsulation method, display device
US9577211B2 (en) Organic electronic element and method for manufacturing organic electronic element
US11063240B2 (en) Display device having a buffer layer comprising a plurality of sub layers and interfaces
Kwon et al. Organic/inorganic hybrid thin-film encapsulation using inkjet printing and PEALD for industrial large-area process suitability and flexible OLED application
Park et al. High-performance thin H: SiON OLED encapsulation layer deposited by PECVD at low temperature
WO2015174391A1 (en) Film member having uneven structure
WO2018082168A1 (en) Thin-film encapsulated oled device and thin film encapsulation method for oled device
US10644259B2 (en) Package of electronic device and display panel
US10411220B2 (en) OLED display with an encapsulation with a plurality of inorganic layers
CN109088006B (en) Flexible substrate and display panel
KR20150131098A (en) Improvement of barrier film performance with n2o dilution process for thin film encapsulation
US20160359141A1 (en) Organic light-emitting display apparatus
TWI735847B (en) Package of photoelectric device
US10985297B2 (en) Package of photoelectric device
CN111162188A (en) Thin film packaging structure, preparation method thereof and display panel
US11825570B2 (en) Heater package
KR102113605B1 (en) Method of fabricating the organic light emitting diode display device
CN107154421B (en) Display device and forming method of barrier layer on substrate in display device
CN110943180A (en) Flexible OLED device packaging structure and packaging method thereof