TWI735275B - Methods of fabricating semiconductor structure - Google Patents
Methods of fabricating semiconductor structure Download PDFInfo
- Publication number
- TWI735275B TWI735275B TW109122494A TW109122494A TWI735275B TW I735275 B TWI735275 B TW I735275B TW 109122494 A TW109122494 A TW 109122494A TW 109122494 A TW109122494 A TW 109122494A TW I735275 B TWI735275 B TW I735275B
- Authority
- TW
- Taiwan
- Prior art keywords
- dielectric layer
- area
- semiconductor structure
- substrate
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 230000008569 process Effects 0.000 claims abstract description 38
- 230000002093 peripheral effect Effects 0.000 claims abstract description 37
- 238000007517 polishing process Methods 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 238000005498 polishing Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 229920002120 photoresistant polymer Polymers 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 238000005530 etching Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Element Separation (AREA)
Abstract
Description
本發明是關於一種半導體結構的製作方法,特別是關於一種半導體結構的平坦化方法。 The present invention relates to a manufacturing method of a semiconductor structure, in particular to a planarization method of a semiconductor structure.
三維積體封裝(3D IC packaging)與三維積體電路整合(3D IC integration)是先進半導體製程實現更微縮的封裝尺寸及更多的功能整合的重要技術,其基本作法是利用接合技術將晶片堆疊接合,並在晶片之間形成電連接結構(例如穿矽通孔,TSV)以在晶片之間傳遞信號。這樣的技術可有效利用空間,提升單位面積可容納的元件的數量。此外,由於堆疊架構可有效縮短電流信號傳輸的距離,因而可減少信號延遲。 3D IC packaging and 3D IC integration are important technologies for advanced semiconductor manufacturing processes to achieve smaller package sizes and more functional integration. The basic method is to use bonding technology to stack the chips. Bonding, and forming an electrical connection structure (such as through silicon via, TSV) between the wafers to transmit signals between the wafers. Such technology can effectively use space and increase the number of components that can be accommodated per unit area. In addition, because the stacked structure can effectively shorten the distance of current signal transmission, the signal delay can be reduced.
晶圓級接合(wafer level bonding)是先將兩晶圓接合,然後再進行切割以獲得三維堆疊之晶片的技術。熔融接合(Fusion Bonding)為本領域廣泛使用的晶圓接合技術之一,其通過在兩晶圓的表面之間形成鍵結(bonding)進而形成晶圓接合。熔融接合的製程通常包含先在常溫下將兩晶圓對準接觸以在兩晶圓的表面之間形成弱鍵結(weak bond)(此步驟又稱為預接合),然後再進行熱退火(thermal anneal)以將弱鍵結轉變成共價鍵(covalent bond),進而形成強而堅固之接合。 Wafer level bonding is a technology in which two wafers are bonded first, and then diced to obtain a three-dimensional stacked chip. Fusion Bonding is one of the wafer bonding technologies widely used in the field, which forms a wafer bond by forming a bond between the surfaces of two wafers. The process of fusion bonding usually involves first aligning and contacting two wafers at room temperature to form a weak bond between the surfaces of the two wafers (this step is also called pre-bonding), and then thermal annealing ( Thermal anneal) to transform the weak bond into a covalent bond (covalent bond) to form a strong and strong bond.
由於熔融接合涉及晶圓表面的接觸,因此晶圓表面的平坦度關係著接合品質。化學機械研磨(CMP)製程常用於晶圓表面的平坦化,但仍難以避免晶圓周邊區的滾降(edge roll off)現象。當滾降程度嚴重或滾降範圍擴大,會導致鄰近區域的接合不良。 Since fusion bonding involves the contact of the wafer surface, the flatness of the wafer surface is related to the quality of the bonding. The chemical mechanical polishing (CMP) process is often used to planarize the wafer surface, but it is still difficult to avoid edge roll off in the peripheral area of the wafer. When the degree of roll-off is severe or the roll-off range is expanded, it will lead to poor joints in adjacent areas.
本發明主要目的在於提供一種半導體結構的製作方法,通過在晶圓的周邊區的第一介電層上形成第二介電層作為研磨緩衝層,可減少周邊區的第一介電層的滾降程度,進而提升晶圓級接合的良率。 The main purpose of the present invention is to provide a method for manufacturing a semiconductor structure. By forming a second dielectric layer as a polishing buffer layer on the first dielectric layer in the peripheral area of the wafer, the rolling of the first dielectric layer in the peripheral area can be reduced. The degree of reduction, thereby improving the yield of wafer-level bonding.
根據本發明之一實施例提供的一種半導體結構的製作方法,包括以下步驟。首先提供一基底,包括一元件區及圍繞該元件區的一周邊區。接著於該元件區及該周邊區上形成一第一介電層,然後於該元件區的該第一介電層上形成一遮罩層。接著,於該元件區及該周邊區上形成一第二介電層,然後進行一掀離製程,以同時移除該遮罩層及該遮罩層上的該第二介電層,並顯露出該元件區的該第一介電層。後續對該第一介電層及該第一介電層上的該第二介電層進行一研磨製程,獲得一研磨表面。 According to an embodiment of the present invention, a method for manufacturing a semiconductor structure includes the following steps. First, a substrate is provided, including a device area and a peripheral area surrounding the device area. Next, a first dielectric layer is formed on the device region and the peripheral region, and then a mask layer is formed on the first dielectric layer of the device region. Then, a second dielectric layer is formed on the device area and the peripheral area, and then a lift-off process is performed to simultaneously remove the mask layer and the second dielectric layer on the mask layer, and expose The first dielectric layer in the device area is exited. Subsequently, a polishing process is performed on the first dielectric layer and the second dielectric layer on the first dielectric layer to obtain a polished surface.
10:基底 10: Base
10a:邊緣 10a: Edge
10b:主表面 10b: Main surface
12:元件區 12: component area
14:周邊區 14: Surrounding area
18:積體電路結構 18: Integrated circuit structure
18a:邊緣 18a: Edge
20:第一介電層 20: The first dielectric layer
22:遮罩層 22: Mask layer
22a:邊緣 22a: Edge
24:第二介電層 24: second dielectric layer
26:開口 26: opening
30:基底 30: Base
100:方法 100: method
102:步驟 102: Step
104:步驟 104: Step
106:步驟 106: step
108:步驟 108: Step
110:步驟 110: Step
112:步驟 112: Step
24A:介電層凸環 24A: Dielectric layer convex ring
24a:側壁 24a: side wall
AA':切線 AA': Tangent
B1:交界區 B1: Junction area
B2:交界區 B2: Junction area
C:中心 C: Center
D1:距離 D1: distance
D2:距離 D2: distance
D2’:距離 D2’: Distance
D3:距離 D3: distance
D4:斜率 D4: Slope
P1:蝕刻製程 P1: etching process
P2:掀離製程 P2: Lift off the process
P3:研磨製程 P3: Grinding process
R:半徑 R: radius
R1:半徑 R1: radius
S:研磨表面 S: Grinding surface
S1:平坦區 S1: flat zone
S2:滾降區 S2: Roll-off zone
T0:厚度 T0: thickness
T1:厚度 T1: thickness
T2:厚度 T2: thickness
T3:厚度 T3: thickness
T4:目標厚度 T4: target thickness
W:寬度 W: width
X:方向 X: direction
Y:方向 Y: direction
Z:方向 Z: direction
為了讓本發明之上述和其他目的、特徵、優點與實施例更明顯易懂,所附圖式之詳細說明如下: In order to make the above and other objectives, features, advantages and embodiments of the present invention more obvious and understandable, the detailed description of the accompanying drawings is as follows:
第1圖所繪示為根據本發明一實施例之半導體結構的製作方法的步驟流程 圖。 FIG. 1 shows a step flow of a method of fabricating a semiconductor structure according to an embodiment of the present invention picture.
第2圖所繪示為根據本發明一實施例之半導體結構的平面示意圖。 FIG. 2 is a schematic plan view of a semiconductor structure according to an embodiment of the invention.
第3圖至第10圖所繪示為沿著第2圖中AA’切線的剖面示意圖,用於說明第1圖之半導體結構的製作方法的步驟,其中:第3圖示出了在基底上形成積體電路結構及第一介電層;第4圖示出了在第一介電層上形成遮罩層;第5圖示出了在第一介電層和遮罩層上形成第二介電層;第6圖示出了對第二介電層進行蝕刻製程;第7圖示出了對半導體結構進行一掀離製程;第8圖示出了半導體結構於掀離製程後的平面示意圖;第9圖示出了對半導體結構進行一研磨製程;以及第10圖示出了半導體結構於研磨製程後的剖面示意圖。 Figures 3 to 10 are schematic cross-sectional views taken along the line AA' in Figure 2 to illustrate the steps of the manufacturing method of the semiconductor structure in Figure 1, where: Figure 3 shows the substrate The integrated circuit structure and the first dielectric layer are formed; Figure 4 shows the formation of a mask layer on the first dielectric layer; Figure 5 shows the formation of a second dielectric layer on the first dielectric layer and the mask layer Dielectric layer; Figure 6 shows the etching process for the second dielectric layer; Figure 7 shows a lift-off process on the semiconductor structure; Figure 8 shows the plane of the semiconductor structure after the lift-off process Schematic diagram; Figure 9 shows a polishing process for the semiconductor structure; and Figure 10 shows a schematic cross-sectional view of the semiconductor structure after the polishing process.
第11圖所繪示為根據本發明一實施例之接合的半導體結構的剖面示意圖。 FIG. 11 is a schematic cross-sectional view of a bonded semiconductor structure according to an embodiment of the present invention.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。須知悉的是,以下所舉實施例可以在不脫離本揭露的精神下,將數個不同實施例中的特徵進行替換、重組、混合以完成其他實施例。 In order to enable those who are familiar with the technical field of the present invention to understand the present invention further, the following specifically enumerates the preferred embodiments of the present invention, together with the accompanying drawings, to explain in detail the content of the present invention and the effects to be achieved. . It should be understood that the following embodiments can replace, recombine, and mix the features of several different embodiments without departing from the spirit of the present disclosure to complete other embodiments.
為了使讀者能容易瞭解及圖式的簡潔,本揭露中的多張圖式只繪出顯示裝置的一部分,且圖式中的特定元件並非依照實際比例繪圖。此外,圖中各元件的數量及尺寸僅作為示意,並非用來限制本揭露的範圍。圖式中,相同 或相似的元件可以用相同的標號表示。文中所描述對於圖形中相對元件之上下關係,在本領域之人皆應能理解其係指物件之相對位置而言,因此皆可以翻轉而呈現相同之構件,此皆應同屬本說明書所揭露之範圍。 In order to enable readers to easily understand and simplify the drawings, the multiple drawings in this disclosure only depict a part of the display device, and the specific elements in the drawings are not drawn according to actual scale. In addition, the number and size of each element in the figure are only for illustration, and are not used to limit the scope of the disclosure. In the scheme, the same Or similar elements can be represented by the same reference numerals. As for the relationship between the top and bottom of the relative elements in the figure described in the text, anyone in the art should understand that it refers to the relative position of the object, and therefore all can be flipped to present the same components, which should be the same as disclosed in this specification. The scope.
在本說明書中,當元件或膜層被稱為「在另一元件或膜層上」或「連接到另一元件或膜層」時,它可以直接在另一個元件或膜層上,或直接連接到另一個元件或膜層,或者兩者之間可存在有其他元件或膜層。相對的,當元件被稱為「直接在另一個元件或膜層上」,或「直接連接到另一個元件或膜層」時,兩者之間不存在有插入的元件或膜層。 In this specification, when an element or film layer is referred to as "on another element or film layer" or "connected to another element or film layer", it can be directly on another element or film layer, or directly It is connected to another element or film layer, or there may be other elements or film layers in between. In contrast, when an element is said to be "directly on another element or film" or "directly connected to another element or film", there is no intervening element or film between the two.
在本說明書中,「晶圓」、「基底」或「基板」意指任何包含一暴露面,可依據本發明實施例所示在其上沉積材料,製作積體電路結構的結構物,例如佈線層。須了解的是「基底」包含半導體晶圓,但並不限於此。「基底」在製程中也意指包含製作於其上的材料層的半導體結構物。 In this specification, "wafer", "base" or "substrate" means any structure that includes an exposed surface on which materials can be deposited according to the embodiments of the present invention to make an integrated circuit structure, such as wiring Floor. It should be understood that the "substrate" includes semiconductor wafers, but is not limited to this. "Substrate" in the manufacturing process also means a semiconductor structure including a material layer fabricated thereon.
本文中對於元件之間的「間距」或「距離」,或元件的「寬度」或「長度」等描述,是該元件在XY平面、YZ平面或XZ平面上的投影沿著X方向、Y方向或Z方向來定義。同樣的「平行」或「不平行」係指元件的延伸線在XY平面、YZ平面或XZ平面上的投影為「平行」或「不平行」。 In this article, the "spacing" or "distance" between components, or the "width" or "length" of the component, is the projection of the component on the XY plane, YZ plane or XZ plane along the X direction and Y direction Or Z direction to define. The same "parallel" or "non-parallel" means that the projection of the extension line of the component on the XY plane, YZ plane or XZ plane is "parallel" or "non-parallel".
請參考第1圖至第10圖。第1圖為根據本發明一實施例之半導體結構的製作方法的步驟流程圖。第2圖為根據本發明一實施例之半導體結構於X方向和Y方向定義之平面(XY平面)的平面示意圖。第3圖、第4圖、第5圖、第6圖、第 7圖、第8圖、第9圖及第10圖為半導體結構沿著AA’切線於X方向和Z方向定義之平面(XZ平面)的剖面示意圖。第8圖為半導體結構於XY平面的平面示意圖。 Please refer to Figure 1 to Figure 10. FIG. 1 is a flowchart of steps of a method of fabricating a semiconductor structure according to an embodiment of the present invention. FIG. 2 is a schematic plan view of a plane (XY plane) defined in the X direction and the Y direction of a semiconductor structure according to an embodiment of the present invention. Figure 3, Figure 4, Figure 5, Figure 6, Section Figures 7, 8, 9, and 10 are schematic cross-sectional views of a plane (XZ plane) defined in the X direction and the Z direction of the semiconductor structure along the AA' tangent line. Figure 8 is a schematic plan view of the semiconductor structure on the XY plane.
本實施例之半導體結構的製作方法100首先進行步驟102,提供一基底,其包括一元件區及圍繞該元件區的一周邊區。請參考第2圖,基底10可是由半導體材料構成,例如是矽基底、磊晶矽基底、碳化矽基底、三五族基底、矽覆絕緣(silicon-on-insulator,SOI),但不限於此。在一些實施例中,基底也可以是由非半導體材料構成,例如是玻璃、塑料或藍寶石基底。在一些實施例中,基底10例如是一晶圓(wafer),基底10的中心C至基底10的邊緣10a的距離為半徑R。基底10包括平行於XY平面的一主表面10b,並且包括一元件區12及一周邊區14。周邊區14介於基底10的邊緣10a元件區12之間並且圍繞著元件區12。基底10的元件區12可包括多個晶片區(圖未示),晶片區中可包括積體電路元件及/或電路結構,例如電晶體、二極體、電阻器、電容器、電感、解碼器、驅動器、放大器、定時器、緩衝器、內連線結構等,但不限於此。元件區12及周邊區14之間包括交界區B1。
The
在一些實施例中,周邊區14具有寬度W,元件區12大致上為以中心C為圓心並以半徑R1環繞一圈的區域,其中半徑R1大致上等於半徑R減去寬度W。舉例來說,基底10例如是12吋晶圓,其半徑R大約是150毫米(mm),周邊區14的寬度W大約是2mm,元件區12的半徑R1大約是148mm。應理解以上尺寸僅為舉例,周邊區14的寬度W及元件區12的半徑R1可根據實際情況調整。
In some embodiments, the
在一些實施例中,如第3圖所示,基底10的元件區12的主表面10a上可形成有積體電路結構18,積體電路結構18可包括積體電路元件及/或電路結
構,例如電晶體、二極體、電阻器、電容器、電感、解碼器、驅動器、放大器、定時器、緩衝器、內連線結構等,但不限於此。積體電路結構18的邊緣18a與基底10的邊緣10a之間包括距離D1。根據本發明一實施例,距離D1大於或等於周邊區14的寬度W,例如大於或等於2mm。換句話說,積體電路結構18的邊緣18a可大致上與元件區12和周邊區14的交界區B1對齊,或者位於元件區12內。
In some embodiments, as shown in FIG. 3, an
接著,進行步驟104,於該基底的該元件區及該周邊區上形成一第一介電層。請參考第3圖,第一介電層20全面性地形成在基底10上,完全覆蓋住基底10的元件區12以及設置在元件區12上的積體電路結構18,並且覆蓋至少部分周邊區14。第一介電層20可包括介電材料,例如氧化矽、氮化矽、氮氧化矽、碳氮化矽,低介電常數(low-k)介電材料,或上述之組合,但不限於此。根據本發明一實施例,第一介電層20包括可用於晶圓接合的介電材料,例如氧化矽。此時的第一介電層20可具有一預定的厚度T0。根據本發明一些實施例,厚度T0較佳介於大約5000埃(Å)至15000埃(Å)之間。在一實施例中,厚度T0大約是10000±1000埃(Å)。可通過化學氣相沉積(CVD)製程形成第一介電層20。
Next, proceed to step 104 to form a first dielectric layer on the device area and the peripheral area of the substrate. Please refer to FIG. 3, the
接著,進行步驟106,於該元件區的該第一介電層上形成一遮罩層。請參考第4圖,遮罩層22形成在元件區12的第一介電層20上,並且顯露出周邊區14的第一介電層20。遮罩層22較佳選用與第一介電層20之間具有蝕刻選擇性的材料。根據本發明一實施例,遮罩層22例如是光阻層。形成遮罩層22的方法例如將光阻材料全面性地塗佈在基底10上,然後利用光阻洗邊(edge bead removal,EBR)製程或晶邊曝光(wafer edge exposure,WEE)製程移除覆蓋在周邊區14上的光阻材料,顯露出周邊區14的第一介電層20。在其他實施例中,可利用圖案化製程例如微影暨蝕刻製程來移除周邊區14上的遮罩層22。
Next, proceed to step 106 to form a mask layer on the first dielectric layer in the device region. Referring to FIG. 4, the
如第4圖所示,遮罩層22可具有厚度T1。根據本發明一些實施例,厚度T1較佳大於或等於5倍的第二介電層24的厚度T2(參考圖5),例如大於或等於10微米(μm)。遮罩層22的邊緣22a與基底10的邊緣10a之間包括距離D2。根據本發明一實施例,距離D2大於或等於距離D1。換句話說,寬度W、距離D1和距離D2會滿足關係式W≦D1≦D2。
As shown in FIG. 4, the
接著進行步驟108,於該元件區及該周邊區上形成一第二介電層。請參考第5圖,第二介電層24全面性地形成在基底10的元件區12及周邊區14上,覆蓋住遮罩層22以及自遮罩層22顯露出來的第一介電層20的表面。第二介電層24可包括介電材料,例如氧化矽、氮化矽、氮氧化矽、碳氮化矽、碳氮化矽,低介電常數(low-k)介電材料,或上述之組合,但不限於此。根據本發明一實施例,第二介電層24與第一介電層20可包括相同材料,例如氧化矽。
Then, step 108 is performed to form a second dielectric layer on the device area and the peripheral area. Please refer to FIG. 5, the
值得注意的是,第二介電層24較佳是通過低階梯覆蓋度(low step coverage)的製程形成,以使第二介電層24在遮罩層22的側壁22a上的沉積速度小於第二介電層24在顯露出來的第一介電層20的表面上的沉積速度。因此,第二介電層24覆蓋在遮罩層22的側壁22a上的部分的厚度T3小於覆蓋在第一介電層20上的部分的厚度T2。根據本發明一些實施例,厚度T2較佳介於1.5微米(μm)至2.5微米(μm)之間,厚度T3較佳小於或等於500埃(Å)。例如在一實施例中,厚度T2大約是1.9±0.2微米(μm),厚度T3大約是500±50埃(Å)。可利用濺鍍(sputtering)製程形成第二介電層24。在一些實例中,當第二介電層24的階梯覆蓋度足夠低時,遮罩層22的側壁22a可未完全被第二介電層24覆蓋。
It is worth noting that the
接著,請參考第6圖,可選擇性地對第二介電層24進行一蝕刻製程P1,以移除部分第二介電層24直到遮罩層22的部分側壁自第二介電層24的開口26顯露出來。根據本發明一實施例,蝕刻製程P1可包括濕蝕刻製程。
Next, referring to FIG. 6, an etching process P1 may be selectively performed on the
接著進行步驟110,進行一掀離製程,以同時移除該遮罩層及該遮罩層上的該第二介電層,並顯露出該元件區的該第一介電層。請參考第7圖,根據本發明一實施例,掀離製程P2包括通過開口26對遮罩層22進行一溶劑處理,以將遮罩層22自第一介電層20上掀離(lift-off),顯露出元件區12的第一介電層20。溶劑處理較佳是使用對遮罩層22具有高蝕刻率且對第一介電層20具有低蝕刻率或者對第一介電層20不具蝕刻性的溶劑,以減少溶劑處理過程中第一介電層20的損耗。在一實施例中,當遮罩層22為光阻層時,掀離製程P2可使用光阻洗邊製程所用的溶劑。在其他實施例中,根據遮罩層22的材料,可使用合適的氣體或液體蝕刻劑來掀離遮罩層22。
Then, step 110 is performed to perform a lift-off process to simultaneously remove the mask layer and the second dielectric layer on the mask layer, and expose the first dielectric layer in the device area. Referring to FIG. 7, according to an embodiment of the present invention, the lift-off process P2 includes performing a solvent treatment on the
值得注意的是,沉積在遮罩層22上的第二介電層24會於掀離遮罩層22時被同時移除,因此掀離製程P2之後僅留下沉積在第一介電層20上的第二介電層24。根據本發明一實施例,如第8圖所示,剩餘的第二介電層24會形成一介電層凸環24A(網點標示區域),跨過元件區12和周邊區14之間的交界區B1並且圍繞著元件區12。第二介電層24的側壁24a與基底10的邊緣10a之間可包括距離D2’。根據本發明一實施例,距離D2’可大致上等於距離D2。
It is worth noting that the
接著進行步驟112,對該第一介電層及該第一介電層上的該第二介電層進行一研磨製程,獲得一研磨表面。請參考第9圖和第10圖,接著對第一介電層20及剩餘的第二介電層24(介電層凸環24A)進行研磨製程P3,以將積體電路結
構18上的第一介電層20從厚度T3研磨至目標厚度T4,並獲得一研磨表面S。根據本發明一實施例,在研磨製程P3中,第一介電層20和第二介電層24可具有大致上相同的移除速率。在其他實施例中,第二介電層24的移除速率可略大於第一介電層20的移除速率。在圖9所示實施例中,第二介電層24可在研磨製程P3中被完全移除,即研磨表面S完全由第一介電層20構成。在其他實施例中,研磨製程P3後可留下部分第二介電層24在周邊區14的第一介電層20上,此時研磨表面S可由第一介電層20第二介電層24共同構成。
Then, step 112 is performed to perform a polishing process on the first dielectric layer and the second dielectric layer on the first dielectric layer to obtain a polished surface. Please refer to Figures 9 and 10, and then the
如第10圖所示,研磨表面S包括一平坦區S1以及一滾降區S2,兩者之間包括交界區B2。平坦區S1大致上平行於基底10的主表面10b,滾降區S2則自交界區B2為往基底10主表面10b滾降下滑,偏離平坦區S1的延伸面。平坦區S1大致上對應於元件區12,滾降區S2大致上對應於周邊區14。根據本發明一實施例,平坦區S1與滾降區S2的交界區B2與基底10的邊緣10a之間包括距離D3,滾降區S2包括斜率D4。
As shown in FIG. 10, the polishing surface S includes a flat area S1 and a roll-off area S2, and there is a boundary area B2 therebetween. The flat area S1 is substantially parallel to the
本發明利用介電層凸環24A在研磨製程P3中作為第一介電層20的研磨緩衝層(buffer layer),可減少研磨製程P3後滾降區S2的滾降程度,例如使平坦區S1和滾降區S2之間的交界區B2更靠近基底10的邊緣10a(即縮小距離D3),及/或減少滾降區S2的斜率D4。根據本發明一實施例,距離D3小於距離D1,或者小於或等於周邊區14的寬度W,以確保平坦區S1可完全涵蓋設有積體電路結構18的範圍,或者可完全涵蓋元件區12的範圍並且延伸涵蓋部分周邊區14,以增加晶圓接合後切割製程的餘裕。
The present invention uses the dielectric layer
舉例來說,基底10例如是12吋晶圓,周邊區14的寬度W大約是2mm,
距離D1大於或等於2mm。通過本發明提供的方法,可使距離D3小於2mm。在一實施例中,滾降區S2與基底10的中心C相距148.5mm的位置與平坦區S1之延伸面在垂直方向上的距離可小於5微米(μm)。
For example, the
請參考第11圖,為根據本發明一實施例之接合的半導體結構的剖面示意圖。後續,可用第一介電層20的研磨表面S為接合面來接合另一基底30。基底30可例如是另一晶圓。基底30面向基底10的表面可包括用來與第一介電層20形成鍵結的材料,例如矽、氧化矽、氮化矽、氮氧化矽、碳氮化矽,低介電常數(low-k)介電材料,或上述之組合,但不限於此。在與基底30接合之前,可對第一介電層20的研磨表面S進行表面處理(例如電漿活化),以促進第一介電層20與基底30之間的鍵結的形成。
Please refer to FIG. 11, which is a schematic cross-sectional view of a bonded semiconductor structure according to an embodiment of the present invention. Subsequently, the ground surface S of the
綜合以上,本發明利用第二介電層(介電層凸環)作為研磨製程中第一介電層的研磨緩衝層,可減少周邊區的第一介電層的滾降程度,提高研磨表面的平坦度,有利於後續與另一基底接合。另外,本發明一實施例利用光阻作為遮罩層並,可方便地利用光阻洗邊(EBR)製程或晶邊曝光(WEE)製程調整遮罩層覆蓋的範圍進而控制第二介電層(介電層凸環)覆蓋第一介電層的範圍,以及可利用光阻清洗溶劑來進行掀離製程。此外,本發明一實施例利用濺鍍製程來形成第二介電層,可減少第二介電層覆蓋遮罩層側壁的厚度,便於掀離製程之溶劑或蝕刻劑從遮罩層側壁進行蝕刻。應理解,本發明之半導體結構的製作方法不限於應用在晶圓級接合的表面的平坦化,也可應用在半導體結構的其他平坦化步驟,例如針對研磨移除速率較快及/或表面形狀凹陷的區域形成研磨緩衝層,以提升研磨製程的平坦化效果。 In summary, the present invention uses the second dielectric layer (dielectric layer convex ring) as the polishing buffer layer of the first dielectric layer in the polishing process, which can reduce the degree of roll-off of the first dielectric layer in the peripheral area and improve the polishing surface The flatness is conducive to subsequent bonding with another substrate. In addition, in an embodiment of the present invention, photoresist is used as the mask layer, and the photoresist edge washing (EBR) process or the crystal edge exposure (WEE) process can be conveniently used to adjust the coverage of the mask layer to control the second dielectric layer. The (dielectric layer convex ring) covers the area of the first dielectric layer, and a photoresist cleaning solvent can be used for the lift-off process. In addition, an embodiment of the present invention uses a sputtering process to form the second dielectric layer, which can reduce the thickness of the second dielectric layer covering the sidewall of the mask layer, and facilitate the removal of the solvent or etchant during the process to etch from the sidewall of the mask layer . It should be understood that the manufacturing method of the semiconductor structure of the present invention is not limited to be applied to the planarization of the surface of the wafer-level bonding, and can also be applied to other planarization steps of the semiconductor structure, for example, for a faster polishing removal rate and/or surface shape The recessed area forms a polishing buffer layer to improve the planarization effect of the polishing process.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.
10:基底 10: Base
10a:邊緣 10a: Edge
10b:主表面 10b: Main surface
12:元件區 12: component area
14:周邊區 14: Surrounding area
18:積體電路結構 18: Integrated circuit structure
18a:邊緣 18a: Edge
20:第一介電層 20: The first dielectric layer
22:遮罩層 22: Mask layer
24:第二介電層 24: second dielectric layer
24A:介電層凸環 24A: Dielectric layer convex ring
24a:側壁 24a: side wall
C:中心 C: Center
D2’:距離 D2’: Distance
P2:掀離製程 P2: Lift off the process
X:方向 X: direction
Z:方向 Z: direction
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109122494A TWI735275B (en) | 2020-07-03 | 2020-07-03 | Methods of fabricating semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109122494A TWI735275B (en) | 2020-07-03 | 2020-07-03 | Methods of fabricating semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI735275B true TWI735275B (en) | 2021-08-01 |
TW202203313A TW202203313A (en) | 2022-01-16 |
Family
ID=78283476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109122494A TWI735275B (en) | 2020-07-03 | 2020-07-03 | Methods of fabricating semiconductor structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI735275B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090061545A1 (en) * | 2004-11-26 | 2009-03-05 | Applied Materials, Inc. | Edge Removal Of Silicon-On-Insulator Transfer Wafer |
-
2020
- 2020-07-03 TW TW109122494A patent/TWI735275B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090061545A1 (en) * | 2004-11-26 | 2009-03-05 | Applied Materials, Inc. | Edge Removal Of Silicon-On-Insulator Transfer Wafer |
Also Published As
Publication number | Publication date |
---|---|
TW202203313A (en) | 2022-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10580823B2 (en) | Wafer level packaging method | |
US12300662B2 (en) | DBI to SI bonding for simplified handle wafer | |
US11678133B2 (en) | Structure for integrated microphone | |
CN104658927B (en) | The bonding and wafer thinning optimization method of semiconductor wafer | |
JP6453796B2 (en) | Semiconductor device and manufacturing method thereof | |
CN102651379B (en) | The manufacture method of semiconductor device and semiconductor device | |
US9384978B1 (en) | Method of forming trenches | |
JP2003031781A (en) | Method for fabricating silicon device on sapphire by wafer bonding | |
TWI579971B (en) | Semiconductor device manufacturing method | |
US7807482B2 (en) | Method for transferring wafers | |
US12341023B2 (en) | Semiconductor device and method of manufacturing a semiconductor device using multiple CMP processes | |
WO2022110348A1 (en) | Semiconductor device and manufacturing method therefor, and chip bonding structure | |
TWI735275B (en) | Methods of fabricating semiconductor structure | |
JPH02177435A (en) | Manufacture of semiconductor substrate | |
JP7121499B2 (en) | Semiconductor device manufacturing method | |
TW202240796A (en) | Semiconductor device | |
CN111146141A (en) | Preparation method of on-chip single crystal material | |
CN113314404B (en) | Bonding method | |
EP4535411A1 (en) | A method for thinning a semiconductor substrate | |
CN118866820A (en) | Method for removing an epitaxial layer and corresponding semiconductor structure | |
JP2924821B2 (en) | Semiconductor integrated circuit manufacturing equipment | |
JP2025514785A (en) | Method for forming a semiconductor package using dielectric alignment marks and a laser lift-off process - Patents.com | |
CN120302717A (en) | Silicon-based GaN wafer-level integrated device and preparation method thereof | |
CN117690866A (en) | Manufacturing method for chip packaging and chip | |
JP2025504616A (en) | Semiconductor structure having embedded power interconnects - Patents.com |