TWI734050B - Vehicle recognition method and system using the same, object recognition method and system using the same - Google Patents
Vehicle recognition method and system using the same, object recognition method and system using the same Download PDFInfo
- Publication number
- TWI734050B TWI734050B TW107141325A TW107141325A TWI734050B TW I734050 B TWI734050 B TW I734050B TW 107141325 A TW107141325 A TW 107141325A TW 107141325 A TW107141325 A TW 107141325A TW I734050 B TWI734050 B TW I734050B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- vehicle
- image
- processing module
- image data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/017—Detecting movement of traffic to be counted or controlled identifying vehicles
- G08G1/0175—Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B15/00—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
- G07B15/02—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points taking into account a variable factor such as distance or time, e.g. for passenger transport, parking systems or car rental systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/62—Text, e.g. of license plates, overlay texts or captions on TV images
- G06V20/625—License plates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明係關於一種車輛識別方法與系統以及物件識別方法與系統。 The invention relates to a vehicle identification method and system and an object identification method and system.
在傳統的人工收費方式中,因為收費、找零或售、收回數票會消耗相當時間,所以收費站區域一直是高速公路的瓶頸所在,並且因而降低高速公路整體的行車速度。為了改善上述現象,於是發展出利用先進通訊及資訊技術的電子收費系統。 In the traditional manual toll collection method, it takes considerable time to collect fees, change or sell or collect the number of tickets, so the toll station area has always been the bottleneck of the expressway, and thus reduces the overall speed of the expressway. In order to improve the above phenomenon, an electronic toll collection system using advanced communication and information technology was developed.
目前之電子化自動收費方式之一是採用特定短距通訊技術識別,利用微波或是無線射頻標籤方式感應扣款,其需用路人安裝設備或標籤,且感應效果易受外界環境影響而不穩定。 One of the current electronic automatic charging methods is to use specific short-distance communication technology to identify, use microwave or radio frequency tags to detect deductions, which require passers-by to install equipment or tags, and the sensing effect is easily affected by the external environment and is unstable .
另一常見的電子化自動收費方式是利用影像車牌識別,此方式無需用路人安裝設備或標籤,然而,除了攝影機擺設位置、光源、天候、車牌污損等因素,影像車牌識別據以進行的車牌影像資料的取得效率及正確性,對其影響更為明顯。例如,因飛鳥觸發拍攝的影像,不含車牌內容,無法正確辨識,必須耗費人工排除。 Another common electronic automatic toll collection method is to use image license plate recognition. This method does not require passersby to install equipment or tags. However, in addition to the location of the camera, light source, weather, license plate contamination and other factors, the image license plate recognition is based on the license plate The efficiency and accuracy of image data acquisition have a more obvious impact on it. For example, the image triggered by a bird does not contain the license plate content, which cannot be correctly identified and must be manually eliminated.
本發明之主要目的在於提供一種車輛識別方法及系統,具有較佳的正確性。 The main purpose of the present invention is to provide a vehicle identification method and system with better accuracy.
本發明之另一目的在於提供一種物件識別方法及系統,具有較佳的正確性。 Another object of the present invention is to provide an object recognition method and system with better accuracy.
本發明之車輛識別方法包含以下步驟:(S1000)由影像獲取裝置獲取車輛於第一位置之第一影像資料;(S3000)由處理模組分辨第一 影像資料是否為車輛影像;(S5000)當第一影像資料為車輛影像,由處理模組根據第一影像資料產生識別結果;(S2000)由資料獲取裝置獲取車輛於第一位置之車輛資料;(S4000)由處理模組比對識別結果與車輛資料是否相符;(S6000)當識別結果與車輛資料相符,由處理模組產生確認訊號。 The vehicle identification method of the present invention includes the following steps: (S1000) Obtain the first image data of the vehicle at the first position by the image acquisition device; (S3000) Identify the first image data by the processing module Whether the image data is a vehicle image; (S5000) When the first image data is a vehicle image, the processing module generates a recognition result based on the first image data; (S2000) The data acquisition device acquires the vehicle data of the vehicle at the first position; (S2000) S4000) The processing module compares whether the recognition result matches the vehicle data; (S6000) When the recognition result matches the vehicle data, the processing module generates a confirmation signal.
在本發明的實施例中,步驟(S3000)包含以下步驟:(S3100)由處理模組將第一影像資料與車輛輪廓資料進行比對;(S3300)當第一影像資料與車輛輪廓資料之比對結果相符,由處理模組決定第一影像資料為車輛影像。 In the embodiment of the present invention, the step (S3000) includes the following steps: (S3100) the processing module compares the first image data with the vehicle contour data; (S3300) when the ratio of the first image data to the vehicle contour data If the results match, the processing module determines that the first image data is a vehicle image.
在本發明的實施例中,車輛識別方法在步驟(S1000)前進一步包含以下步驟:(S0511)由動作感測模組對第一位置進行感測;(S0512)當動作感測模組感測到動作,進行步驟(S1000)。 In the embodiment of the present invention, the vehicle identification method further includes the following steps before step (S1000): (S0511) the first position is sensed by the motion sensing module; (S0512) when the motion sensing module detects To the action, proceed to step (S1000).
本發明之車輛識別系統包含影像獲取裝置、資料獲取裝置、以及處理模組。影像獲取裝置供獲取車輛於第一位置之第一影像資料。資料獲取裝置供獲取車輛於第一位置之車輛資料。處理模組與影像獲取裝置及資料獲取裝置通訊連接,供分辨第一影像資料是否為車輛影像以及比對識別結果與車輛資料是否相符。當第一影像資料為車輛影像,由處理模組根據第一影像資料產生識別結果。當第一影像資料與車輛輪廓資料之比對結果相符,由處理模組決定第一影像資料為車輛影像。 The vehicle identification system of the present invention includes an image acquisition device, a data acquisition device, and a processing module. The image acquisition device is used to acquire the first image data of the vehicle at the first position. The data acquisition device is used to acquire vehicle data of the vehicle at the first position. The processing module is in communication connection with the image acquisition device and the data acquisition device for distinguishing whether the first image data is a vehicle image and whether the comparison and recognition result matches the vehicle data. When the first image data is a vehicle image, the processing module generates a recognition result according to the first image data. When the comparison result between the first image data and the vehicle profile data is consistent, the processing module determines that the first image data is a vehicle image.
在本發明的實施例中,車輛識別系統進一步包含動作感測模組與處理模組通訊連接,供對第一位置進行動作感測。 In an embodiment of the present invention, the vehicle identification system further includes a motion sensing module in communication with the processing module for motion sensing on the first position.
本發明之物件識別方法包含以下步驟:(T1000)由影像獲取裝置獲取物件於第一位置之第一影像資料;(T3000)由處理模組根據第一影像資料產生類別識別結果;(T2000)由資料獲取裝置獲取物件於第一位置之物件資料,其中物件資料包含類別資料;(T4000)由處理模組比對類別識別結果與類別資料是否相符;(T6000)當類別識別結果與類別資料相符,由處理模組產生確認訊號。 The object recognition method of the present invention includes the following steps: (T1000) Obtain the first image data of the object at the first position by the image acquisition device; (T3000) Generate the category recognition result according to the first image data by the processing module; (T2000) The data acquisition device acquires the object data of the object at the first location, where the object data includes category data; (T4000) The processing module compares whether the category recognition result matches the category data; (T6000) When the category recognition result matches the category data, A confirmation signal is generated by the processing module.
在本發明的實施例中,步驟(T3000)包含以下步驟:(T3100)由處理模組將第一影像資料與類別輪廓資料進行比對;(T3300)當第一影像資料與類別輪廓資料中之物件輪廓資料之比對結果相符,處理模組產生 類別識別結果。 In the embodiment of the present invention, the step (T3000) includes the following steps: (T3100) the processing module compares the first image data with the category profile data; (T3300) when the first image data and the category profile data are The comparison result of the object outline data matches, and the processing module generates Category recognition result.
在本發明的實施例中,步驟(T1000)進一步包含以下步驟:(T0511)由動作感測模組對第一位置進行感測;(T0512)當動作感測模組感測到動作,進行步驟(T1000)。 In the embodiment of the present invention, the step (T1000) further includes the following steps: (T0511) the first position is sensed by the motion sensing module; (T0512) when the motion sensing module senses the motion, perform the step (T1000).
本發明之物件識別系統包含影像獲取裝置、資料獲取裝置、以及處理模組。影像獲取裝置供獲取物件於第一位置之第一影像資料。資料獲取裝置供獲取物件於第一位置之物件資料,其中物件資料包含類別資料。處理模組與影像獲取裝置及資料獲取裝置通訊連接,供根據第一影像資料產生類別識別結果以及比對類別識別結果與類別資料是否相符。當類別識別結果與類別資料相符,由處理模組產生確認訊號。 The object recognition system of the present invention includes an image acquisition device, a data acquisition device, and a processing module. The image acquisition device is used to acquire the first image data of the object at the first position. The data acquisition device is used to acquire the object data of the object at the first position, where the object data includes category data. The processing module is in communication connection with the image acquisition device and the data acquisition device for generating a category recognition result based on the first image data and comparing whether the category recognition result matches the category data. When the category recognition result matches the category data, the processing module generates a confirmation signal.
在本發明的實施例中,物件識別系統進一步包含動作感測模組與處理模組通訊連接,供對第一位置進行動作感測。 In an embodiment of the present invention, the object recognition system further includes a motion sensing module in communication with the processing module for motion sensing on the first position.
100‧‧‧影像獲取裝置 100‧‧‧Image capture device
110‧‧‧影像獲取裝置 110‧‧‧Image capture device
200:資料獲取裝置 200: data acquisition device
210:資料獲取裝置 210: Data acquisition device
300:處理模組 300: Processing module
310:處理模組 310: Processing module
400:動作感測模組 400: Motion sensing module
410:動作感測模組 410: Motion sensing module
900:車輛識別系統 900: Vehicle Identification System
910:物件識別系統 910: Object Recognition System
S0511:步驟 S0511: Step
S0512:步驟 S0512: Step
S1000:步驟 S1000: steps
S2000:步驟 S2000: steps
S3000:步驟 S3000: steps
S3100:步驟 S3100: steps
S3300:步驟 S3300: steps
S4000:步驟 S4000: steps
S5000:步驟 S5000: steps
S6000:步驟 S6000: steps
T0511:步驟 T0511: Steps
T0512:步驟 T0512: Steps
T1000:步驟 T1000: steps
T2000:步驟 T2000: steps
T3000:步驟 T3000: steps
T3100:步驟 T3100: steps
T3300:步驟 T3300: steps
T4000:步驟 T4000: steps
T5000:步驟 T5000: steps
T6000:步驟 T6000: steps
圖1A為本發明車輛識別方法之實施例流程示意圖;圖1B為本發明車輛識別方法之不同實施例流程示意圖;圖2為本發明車輛識別方法之不同實施例流程示意圖;圖3為本發明車輛識別方法之不同實施例流程示意圖;圖4為本發明車輛識別系統之實施例示意圖;圖5為本發明車輛識別系統之不同實施例示意圖;圖6A為本發明物件識別方法之實施例流程示意圖;圖6B為本發明物件識別方法之不同實施例流程示意圖;圖7為本發明物件識別方法之不同實施例流程示意圖;圖8為本發明物件識別方法之不同實施例流程示意圖;圖9為本發明物件識別系統之實施例示意圖;圖10為本發明物件識別系統之不同實施例示意圖。 Fig. 1A is a schematic flow diagram of an embodiment of the vehicle identification method of the present invention; Fig. 1B is a schematic flow diagram of different embodiments of the vehicle identification method of the present invention; Fig. 2 is a schematic flow diagram of different embodiments of the vehicle identification method of the present invention; Fig. 4 is a schematic diagram of an embodiment of the vehicle recognition system of the present invention; Fig. 5 is a schematic diagram of different embodiments of the vehicle recognition system of the present invention; Fig. 6A is a schematic diagram of an embodiment of the object recognition method of the present invention; 6B is a schematic diagram of the flow of different embodiments of the object recognition method of the present invention; FIG. 7 is a schematic diagram of the flow of different embodiments of the object recognition method of the present invention; FIG. 8 is a schematic diagram of the flow of different embodiments of the object recognition method of the present invention; FIG. 9 is the present invention A schematic diagram of an embodiment of the object recognition system; FIG. 10 is a schematic diagram of different embodiments of the object recognition system of the present invention.
本發明之車輛識別方法及系統較佳係用於電子收費道路系統,但不限於此。例如,可應用在管制區域或停車場。 The vehicle identification method and system of the present invention are preferably used in an electronic toll road system, but it is not limited thereto. For example, it can be used in controlled areas or parking lots.
如圖1A所示之實施例,本發明車輛識別方法包含例如以下 步驟。 As shown in the embodiment shown in FIG. 1A, the vehicle identification method of the present invention includes, for example, the following step.
步驟S1000,由影像獲取裝置獲取車輛於第一位置之第一影像資料。具體而言,係以數位照相機作為影像獲取裝置,並對車輛照相作為第一影像資料。在不同實施例中,亦可使用數位攝影機對車輛錄影,然後再對錄影畫面中的車輛進行畫面擷取作為第一影像資料。其中,第一位置是一高速公路收費地點。在較佳實施例中,影像獲取裝置設置在第一位置,獲取經過該位置之第一影像資料,供作為通行費費用計算的依據之一。 In step S1000, the first image data of the vehicle at the first position is acquired by the image acquisition device. Specifically, a digital camera is used as the image acquisition device, and the vehicle is photographed as the first image data. In different embodiments, a digital camera may also be used to record the vehicle, and then the vehicle in the recorded image may be captured as the first image data. Among them, the first location is a highway toll location. In a preferred embodiment, the image acquisition device is set at the first location, and acquires the first image data passing through the location as one of the basis for calculating the toll fee.
步驟S3000,由處理模組分辨第一影像資料是否為車輛影像。具體而言,處理模組包含資料處理功能,可以例如是直接設置在影像獲取裝置的晶片組或與藉由網際網路、有線電話、行動電話、數據電纜、微波、無線電等方式與影像獲取裝置通訊連接的計算機或伺服器。其中,通訊連接泛指藉由網際網路、有線電話、行動電話、數據電纜、微波、無線電等方式可達成訊號傳輸的連接。第一影像資料可由影像獲取裝置傳送至處理模組。進一步而言,處理模組是利用人工智慧進行各種條件判斷以分辨第一影像資料是否為車輛影像。 In step S3000, the processing module distinguishes whether the first image data is a vehicle image. Specifically, the processing module contains data processing functions, which can be, for example, directly installed in the chipset of the image acquisition device or connected with the image acquisition device through the Internet, wired telephone, mobile phone, data cable, microwave, radio, etc. The computer or server to which the communication is connected. Among them, the communication connection generally refers to the connection that can achieve signal transmission through the Internet, wired phones, mobile phones, data cables, microwaves, and radio. The first image data can be sent to the processing module by the image acquisition device. Furthermore, the processing module uses artificial intelligence to perform various condition judgments to distinguish whether the first image data is a vehicle image.
進一步而言,如圖1B所示,在一實施例中,步驟S3000包含以下步驟。 Furthermore, as shown in FIG. 1B, in one embodiment, step S3000 includes the following steps.
步驟S3100,由處理模組將第一影像資料與車輛輪廓資料進行比對。步驟S3300,當第一影像資料與車輛輪廓資料之比對結果相符,由處理模組決定第一影像資料為車輛影像。其中,車輛輪廓資料泛指車輛外型的概括性輪廓,凡是能粗略視為車輛者均屬之。車輛輪廓資料可預存錄於處理模組,或存錄於外接儲存媒體供處理模組連接讀取。所謂第一影像資料與車輛輪廓資料之比對結果相符,包含第一影像資料與車輛輪廓資料具有相同的特徵。例如,均同時具有車輛前方的水箱罩、水箱罩兩側頭燈、牌照等特徵。換言之,若影像獲取裝置獲取的第一影像資料是行人影像,因為行人的外觀輪廓與車輛輪廓資料不具有相同或相似的特徵,所以處理模組不會決定第一影像資料為車輛影像。 In step S3100, the processing module compares the first image data with the vehicle profile data. In step S3300, when the comparison result between the first image data and the vehicle profile data is consistent, the processing module determines that the first image data is a vehicle image. Among them, the vehicle profile data generally refers to the general outline of the vehicle's appearance, which belongs to all those that can be roughly regarded as a vehicle. The vehicle profile data can be pre-stored and recorded in the processing module, or stored in an external storage medium for the processing module to connect and read. The so-called match between the first image data and the vehicle contour data includes the first image data and the vehicle contour data having the same characteristics. For example, they all have the characteristics of the water tank cover at the front of the vehicle, the headlights on both sides of the water tank cover, the license plate and so on at the same time. In other words, if the first image data acquired by the image acquisition device is a pedestrian image, the processing module will not determine that the first image data is a vehicle image because the appearance contour of the pedestrian does not have the same or similar characteristics as the vehicle contour data.
步驟S5000,當第一影像資料為車輛影像,由處理模組根據第一影像資料產生識別結果。其中,識別結果包含車牌辨識結果。 In step S5000, when the first image data is a vehicle image, the processing module generates a recognition result according to the first image data. Among them, the recognition result includes the license plate recognition result.
步驟S2000,由資料獲取裝置獲取車輛於第一位置之車輛資料。其中,資料獲取裝置包含無線射頻感應裝置、紅外線感應裝置等。車輛資料包含車輛的登記資料。具體而言,在一實施例中,是使用無線射頻感應裝置獲取車輛的無線射頻標籤的車輛的登記資料。其中,此登記資料可以為車輛的牌照號碼,或藉以可查詢得到牌照號碼的資料。 In step S2000, the vehicle data of the vehicle at the first position is acquired by the data acquisition device. Among them, the data acquisition device includes a radio frequency sensor device, an infrared sensor device, and so on. The vehicle information contains the registration information of the vehicle. Specifically, in one embodiment, a radio frequency sensing device is used to obtain the vehicle registration data of the radio frequency tag of the vehicle. Among them, the registration information can be the license plate number of the vehicle, or the license plate number can be queried.
步驟S4000,由處理模組比對識別結果與車輛資料是否相符。具體而言,在一實施例中,是比對識別結果的車牌號碼與車輛資料的車牌號碼,確認兩者是否相符。 In step S4000, the processing module compares whether the recognition result matches the vehicle data. Specifically, in one embodiment, the license plate number of the recognition result is compared with the license plate number of the vehicle data to confirm whether the two match.
步驟S6000,當識別結果與車輛資料相符,由處理模組產生確認訊號。 In step S6000, when the recognition result matches the vehicle data, the processing module generates a confirmation signal.
根據上述,在本發明之車輛識別方法中,因為是將根據第一影像資料產生之識別結果與獲取自資料獲取裝置之車輛資料兩者相互比對進行確認,而非直接採用兩者其中之一,所以可減少單獨採用影像識別或單獨採用資料讀取時發生問題,導致最終獲得車輛識別結果錯誤的機會,故具有較佳的正確性。 Based on the above, in the vehicle identification method of the present invention, because the identification result generated based on the first image data and the vehicle data obtained from the data acquisition device are compared with each other to confirm, instead of directly using one of the two Therefore, it is possible to reduce the chance of problems when using image recognition alone or data reading alone, resulting in an error in the final vehicle recognition result, so it has better accuracy.
在前述圖1A、1B所示的實施例中,步驟S2000、S4000、S6000是在步驟S1000、S3000、S5000後進行,然而在不同實施例中,步驟S2000、S4000、S6000可與步驟S1000、S3000、S5000同步進行或在其之前進行。如圖2所示的實施例,步驟S2000、S4000、S6000與步驟S1000、S3000、S5000係同步進行。 In the embodiment shown in FIGS. 1A and 1B, steps S2000, S4000, and S6000 are performed after steps S1000, S3000, and S5000. However, in different embodiments, steps S2000, S4000, and S6000 may be the same as steps S1000, S3000, and S3000. S5000 is performed simultaneously or before it. In the embodiment shown in FIG. 2, steps S2000, S4000, and S6000 are performed synchronously with steps S1000, S3000, and S5000.
如圖3所示的實施例,本發明車輛識別方法於步驟S1000前可進一步包含例如以下步驟。 As shown in the embodiment shown in FIG. 3, the vehicle identification method of the present invention may further include, for example, the following steps before step S1000.
步驟S0511,由動作感測模組對第一位置進行感測。步驟S0512,當動作感測模組感測到動作,進行步驟S1000。其中,動作感測模組包含使用光學(例如雷射、紅外線)、聲波(例如超音波)、影像差異分析等原理進行動作感測的感測裝置或電腦程式等。 Step S0511, the first position is sensed by the motion sensing module. Step S0512, when the motion sensing module senses the motion, proceed to step S1000. Among them, the motion sensing module includes a sensing device or computer program that uses optical (such as laser, infrared), sound waves (such as ultrasound), image difference analysis and other principles for motion sensing.
如圖4所示的實施例,本發明之車輛識別系統900包含影像獲取裝置100、資料獲取裝置200、以及處理模組300。影像獲取裝置100供獲取車輛於第一位置之第一影像資料。資料獲取裝置200供獲取車輛於
第一位置之車輛資料。處理模組300與影像獲取裝置100及資料獲取裝置200通訊連接,供分辨第一影像資料是否為車輛影像以及比對識別結果與車輛資料是否相符。當第一影像資料為車輛影像,由處理模組根據第一影像資料產生識別結果。當第一影像資料與車輛輪廓資料之比對結果相符,由處理模組決定第一影像資料為車輛影像。
As shown in the embodiment shown in FIG. 4, the
如圖5所示的實施例,本發明的車輛識別系統900進一步包含動作感測模組400與處理模組通訊連接,供對第一位置進行動作感測。
As shown in the embodiment shown in FIG. 5, the
基於上述本發明的特徵之一是將根據影像資料產生之識別結果與獲取自資料獲取裝置之資料兩者相互比對進行確認,而非直接採用兩者其中之一,所以可減少單獨採用影像識別或單獨採用資料讀取時發生問題,導致最終獲得識別結果錯誤的機會。基於相同的廣義發明概念,本發明提供了物件識別方法以及系統。 One of the characteristics of the present invention based on the above is to compare the recognition result generated from the image data and the data obtained from the data acquisition device for confirmation, instead of directly using one of the two, so it can reduce the use of image recognition alone. Or a problem occurs when the data is read alone, which leads to a chance of obtaining an incorrect recognition result. Based on the same broad invention concept, the present invention provides an object recognition method and system.
如圖6A所示之實施例,本發明物件識別方法包含例如以下步驟。 As shown in the embodiment shown in FIG. 6A, the object recognition method of the present invention includes, for example, the following steps.
步驟T1000,由影像獲取裝置獲取物件於第一位置之第一影像資料。具體而言,係以數位照相機作為影像獲取裝置,並對物件照相作為第一影像資料。在不同實施例中,亦可使用數位攝影機對物件錄影,然後再對錄影畫面中的物件進行畫面擷取作為第一影像資料。在一實施例中,物件可為機械零件,第一位置是倉儲輸送帶上的位置,影像獲取裝置設置在第一位置,獲取經過該位置之第一影像資料,供作為機械零件進出倉儲的紀錄之一。 Step T1000: Obtain the first image data of the object at the first position by the image acquisition device. Specifically, a digital camera is used as the image acquisition device, and the object is photographed as the first image data. In different embodiments, a digital camera may also be used to record an object, and then a screen capture of the object in the recorded screen is used as the first image data. In one embodiment, the object may be a mechanical part, the first position is a position on the storage conveyor belt, and the image acquisition device is set at the first position to obtain the first image data passing through the position for use as a record of the mechanical parts entering and leaving the storage. one.
步驟T3000,由處理模組根據第一影像資料產生類別識別結果。具體而言,處理模組包含資料處理功能,可以例如是直接設置在影像獲取裝置的晶片組或與藉由網際網路、有線電話、行動電話、數據電纜、微波、無線電等方式與影像獲取裝置通訊連接的計算機或伺服器。其中,通訊連接泛指藉由網際網路、有線電話、行動電話、數據電纜、微波、無線電等方式可達成訊號傳輸的連接。第一影像資料可由影像獲取裝置傳送至處理模組。進一步而言,處理模組是利用人工智慧進行各種條件判斷以根據第一影像資料產生類別識別結果。 In step T3000, the processing module generates a category recognition result according to the first image data. Specifically, the processing module contains data processing functions, which can be, for example, directly installed in the chipset of the image acquisition device or connected with the image acquisition device through the Internet, wired telephone, mobile phone, data cable, microwave, radio, etc. The computer or server to which the communication is connected. Among them, the communication connection generally refers to the connection that can achieve signal transmission through the Internet, wired phones, mobile phones, data cables, microwaves, and radio. The first image data can be sent to the processing module by the image acquisition device. Furthermore, the processing module uses artificial intelligence to perform various condition judgments to generate a category recognition result based on the first image data.
進一步而言,如圖6B所示,在一實施例中,步驟T3000包含以下步驟。 Furthermore, as shown in FIG. 6B, in one embodiment, step T3000 includes the following steps.
步驟T3100,由處理模組將第一影像資料與類別輪廓資料進行比對。步驟T3300,當第一影像資料與類別輪廓資料中之物件輪廓資料之比對結果相符,處理模組產生類別識別結果。 In step T3100, the processing module compares the first image data with the category contour data. In step T3300, when the comparison result of the first image data and the object outline data in the category outline data matches, the processing module generates the category recognition result.
其中,物件輪廓資料泛指物件外型的概括性輪廓。物件輪廓資料可預存錄於處理模組,或存錄於外接儲存媒體供處理模組連接讀取。 所謂第一影像資料與物件輪廓資料之比對結果相符,包含第一影像資料與物件輪廓資料具有相同的特徵。 Among them, the object outline data generally refers to the general outline of the object appearance. The object outline data can be pre-stored in the processing module, or stored in an external storage medium for the processing module to connect and read. The so-called match between the first image data and the object outline data includes that the first image data and the object outline data have the same characteristics.
步驟T2000,由資料獲取裝置獲取物件於第一位置之物件資料,其中物件資料包含類別資料。 In step T2000, the data acquisition device acquires the object data of the object at the first position, where the object data includes category data.
步驟T4000,由處理模組比對類別識別結果與類別資料是否相符。 In step T4000, the processing module compares whether the category recognition result matches the category data.
步驟T6000,當類別識別結果與類別資料相符,由處理模組產生確認訊號。 In step T6000, when the category identification result matches the category data, the processing module generates a confirmation signal.
接續上述物件為機械零件而第一位置是倉儲輸送帶上的位置的實施例,影像獲取裝置獲取的第一影像資料是方向盤物件的影像,與類別輪廓資料中之「方向盤」的物件輪廓資料之比對結果相符,則處理模組產生「方向盤」的類別識別結果。由資料獲取裝置獲取方向盤物件於第一位置之物件資料之類別資料亦為「方向盤」。處理模組比對兩者相符,產生確認訊號。藉此,可確認通過第一位置進出倉儲的物件為方向盤無誤。 Continuing the embodiment in which the object is a mechanical part and the first position is the position on the storage conveyor belt, the first image data acquired by the image acquisition device is the image of the steering wheel object, which is different from the object contour data of the "steering wheel" in the category contour data. If the comparison results match, the processing module will generate a "steering wheel" category recognition result. The category data of the object data obtained by the data acquisition device of the steering wheel object at the first position is also "steering wheel". The processing module compares the two and generates a confirmation signal. Thereby, it can be confirmed that the objects entering and leaving the storage through the first position are the steering wheel.
倉儲無人化管理已為未來趨勢,而利用無線標籤或影像辨識進行物件識別以紀錄、管理物件於倉儲之進出是重要的技術之一。根據上述,在本發明之物件識別方法中,因為是將根據第一影像資料產生之識別結果與獲取自資料獲取裝置之物件資料兩者相互比對進行確認,而非直接採用兩者其中之一,所以可減少單獨採用影像識別或單獨採用資料讀取時發生問題,導致最終獲得物件識別結果錯誤的機會,故具有較佳的正確性。 Unmanned storage management is the future trend, and the use of wireless tags or image recognition for object identification to record and manage the entry and exit of objects in the storage is one of the important technologies. According to the above, in the object recognition method of the present invention, the recognition result generated based on the first image data and the object data obtained from the data acquisition device are compared to confirm each other, instead of directly using one of the two Therefore, it is possible to reduce the chance of problems when using image recognition alone or data reading alone, resulting in an error in the final object recognition result, so it has better accuracy.
在前述圖6A、6B所示的實施例中,步驟T2000、T4000、T6000是在步驟T1000、T3000、T5000後進行,然而在不同實施例中,步驟T2000、 T4000、T6000可與步驟T1000、T3000、T5000同步進行或在其之前進行。如圖7所示的實施例,步驟T2000、T4000、T60000與步驟T1000、T3000、T5000係同步進行。 In the foregoing embodiment shown in FIGS. 6A and 6B, steps T2000, T4000, and T6000 are performed after steps T1000, T3000, and T5000. However, in different embodiments, steps T2000, T4000 and T6000 can be performed simultaneously with or before steps T1000, T3000, and T5000. In the embodiment shown in Fig. 7, steps T2000, T4000, and T60000 are performed synchronously with steps T1000, T3000, and T5000.
如圖8所示的實施例,本發明物件識別方法於步驟T1000前可進一步包含例如以下步驟。 As shown in the embodiment shown in FIG. 8, the object recognition method of the present invention may further include, for example, the following steps before step T1000.
步驟T0511,由動作感測模組對第一位置進行感測。步驟T0512,當動作感測模組感測到動作,進行步驟T1000。其中,動作感測模組包含使用光學(例如雷射、紅外線)、聲波(例如超音波)、影像差異分析等原理進行動作感測的感測裝置或電腦程式等。 Step T0511, the first position is sensed by the motion sensing module. Step T0512, when the motion sensing module senses the motion, proceed to step T1000. Among them, the motion sensing module includes a sensing device or computer program that uses optical (such as laser, infrared), sound waves (such as ultrasound), image difference analysis and other principles for motion sensing.
如圖9所示的實施例,本發明之物件識別系統910包含影像獲取裝置110、資料獲取裝置210、以及處理模組310。影像獲取裝置110供獲取物件於第一位置之第一影像資料。資料獲取裝置210供獲取物件於第一位置之物件資料,其中物件資料包含類別資料。處理模組310與影像獲取裝置210及資料獲取裝置310通訊連接,供根據第一影像資料產生類別識別結果以及比對類別識別結果與類別資料是否相符。當類別識別結果與類別資料相符,由處理模組產生確認訊號。
As shown in the embodiment shown in FIG. 9, the
如圖10所示的實施例,本發明的物件識別系統910進一步包含動作感測模組410與處理模組通訊連接,供對第一位置進行動作感測。
As shown in the embodiment shown in FIG. 10, the
雖然前述的描述及圖式已揭示本發明之較佳實施例,必須瞭解到各種增添、許多修改和取代可能使用於本發明較佳實施例,而不會脫離如所附申請專利範圍所界定的本發明原理之精神及範圍。熟悉本發明所屬技術領域之一般技藝者將可體會,本發明可使用於許多形式、結構、佈置、比例、材料、元件和組件的修改。因此,本文於此所揭示的實施例應被視為用以說明本發明,而非用以限制本發明。本發明的範圍應由後附申請專利範圍所界定,並涵蓋其合法均等物,並不限於先前的描述。 Although the foregoing description and drawings have disclosed the preferred embodiment of the present invention, it must be understood that various additions, many modifications and substitutions may be used in the preferred embodiment of the present invention without departing from the scope of the attached patent application. The spirit and scope of the principles of the present invention. Those skilled in the art familiar with the technical field of the present invention will appreciate that the present invention can be used in many forms, structures, arrangements, proportions, materials, elements, and component modifications. Therefore, the embodiments disclosed herein should be considered to illustrate the present invention, rather than to limit the present invention. The scope of the present invention should be defined by the scope of the attached patent application, and cover its legal equivalents, and is not limited to the previous description.
S1000‧‧‧步驟 S1000‧‧‧Step
S2000‧‧‧步驟 S2000‧‧‧Step
S3100‧‧‧步驟 S3100‧‧‧Step
S3300‧‧‧步驟 S3300‧‧‧Step
S4000‧‧‧步驟 S4000‧‧‧Step
S5000‧‧‧步驟 S5000‧‧‧Step
S6000‧‧‧步驟 S6000‧‧‧Step
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141325A TWI734050B (en) | 2018-11-20 | 2018-11-20 | Vehicle recognition method and system using the same, object recognition method and system using the same |
CN201910950015.7A CN111210636A (en) | 2018-11-20 | 2019-10-08 | Vehicle identification method and system and object identification method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141325A TWI734050B (en) | 2018-11-20 | 2018-11-20 | Vehicle recognition method and system using the same, object recognition method and system using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202020731A TW202020731A (en) | 2020-06-01 |
TWI734050B true TWI734050B (en) | 2021-07-21 |
Family
ID=70789529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107141325A TWI734050B (en) | 2018-11-20 | 2018-11-20 | Vehicle recognition method and system using the same, object recognition method and system using the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111210636A (en) |
TW (1) | TWI734050B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040218792A1 (en) * | 2003-04-29 | 2004-11-04 | Eastman Kodak Company | Probe position measurement to facilitate image registration and image manipulation in a medical application |
TW200629759A (en) * | 2005-02-04 | 2006-08-16 | Justin R Styers | Remote garage door monitoring system |
CN102821252A (en) * | 2011-06-06 | 2012-12-12 | 苹果公司 | Correcting rolling shutter using image stabilization |
CN102855762A (en) * | 2012-09-14 | 2013-01-02 | 广州市远望谷信息技术有限公司 | Method and device for acquiring and verifying data of vehicles entering or exiting from parking lot |
TWM549932U (en) * | 2017-03-27 | 2017-10-01 | 熊子傑 | A multi-function intelligent parking equipment with printers and camera or video devices |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350109B (en) * | 2008-09-05 | 2010-08-25 | 交通部公路科学研究所 | Method for locating and controlling multilane free flow video vehicle |
CN103514751A (en) * | 2012-06-19 | 2014-01-15 | 广州市捷众科贸有限公司 | Vehicle information identification apparatus |
CN103745597B (en) * | 2013-12-27 | 2015-11-25 | 高新兴科技集团股份有限公司 | A kind of video sensor and RFID sensor emerging system |
CN104368533B (en) * | 2014-10-08 | 2017-02-15 | 金陵科技学院 | Radio frequency mail treatment system and control method |
WO2018144275A1 (en) * | 2017-02-06 | 2018-08-09 | Walmart Apollo, Llc | Conveyors including sensors for detecting error conditions associated with moving products |
CN108491782B (en) * | 2018-03-16 | 2020-09-08 | 重庆大学 | A vehicle recognition method based on the collection of driving images |
CN108470263B (en) * | 2018-03-19 | 2019-03-15 | 中国烟草总公司北京市公司物流中心 | A kind of cigarette delivery scheduling system |
CN108765605A (en) * | 2018-05-21 | 2018-11-06 | 苏州八股网络科技有限公司 | A kind of highroad toll collection system and working method |
-
2018
- 2018-11-20 TW TW107141325A patent/TWI734050B/en active
-
2019
- 2019-10-08 CN CN201910950015.7A patent/CN111210636A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040218792A1 (en) * | 2003-04-29 | 2004-11-04 | Eastman Kodak Company | Probe position measurement to facilitate image registration and image manipulation in a medical application |
TW200629759A (en) * | 2005-02-04 | 2006-08-16 | Justin R Styers | Remote garage door monitoring system |
CN102821252A (en) * | 2011-06-06 | 2012-12-12 | 苹果公司 | Correcting rolling shutter using image stabilization |
CN102855762A (en) * | 2012-09-14 | 2013-01-02 | 广州市远望谷信息技术有限公司 | Method and device for acquiring and verifying data of vehicles entering or exiting from parking lot |
TWM549932U (en) * | 2017-03-27 | 2017-10-01 | 熊子傑 | A multi-function intelligent parking equipment with printers and camera or video devices |
Also Published As
Publication number | Publication date |
---|---|
CN111210636A (en) | 2020-05-29 |
TW202020731A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101937833B1 (en) | Parking Management Systems and Methods based Image Processing | |
Grassi et al. | Parkmaster: An in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments | |
CN103729629B (en) | Model recognizing method and device in ETC tracks | |
CN110826356B (en) | Non-motor vehicle violation detection system, method and server | |
CN109389622B (en) | Vehicle tracking method, device, identification equipment and storage medium | |
CN114202957B (en) | Parking management method, management device and storage medium | |
CN111696364A (en) | Roadside parking management method | |
AU2021240327A1 (en) | Infringement detection method, device and system | |
US20230342937A1 (en) | Vehicle image analysis | |
CN112597807A (en) | Violation detection system, method and device, image acquisition equipment and medium | |
CN111931673A (en) | Vision difference-based vehicle detection information verification method and device | |
CN106530739A (en) | License plate recognition method, device and system thereof based on multiple camera device | |
TW202341006A (en) | Object tracking integration method and integrating apparatus | |
TWI734050B (en) | Vehicle recognition method and system using the same, object recognition method and system using the same | |
JP2014048964A (en) | Parking lot system | |
CN118411679A (en) | Vehicle type identification method and device | |
US20080205702A1 (en) | Background image generation apparatus | |
KR20200126743A (en) | System and method for controlling access of vehicle | |
KR102521590B1 (en) | Entrance and exit vehicle detecting apparatus and the method thereof | |
CN112257555B (en) | Information processing method, device, equipment and storage medium | |
TWI760580B (en) | License plate image obtaining method and system using the same | |
JP4788926B2 (en) | Vehicle number reading device | |
TWI544454B (en) | License plate recognition method and system using the same | |
CN105336181B (en) | A kind of dynamic inspection coalignment, System and method for based on speed | |
JP3562417B2 (en) | Automatic toll collection system |