TWI724498B - System of hierarchical optimization for mobile network and method thereof - Google Patents
System of hierarchical optimization for mobile network and method thereof Download PDFInfo
- Publication number
- TWI724498B TWI724498B TW108129256A TW108129256A TWI724498B TW I724498 B TWI724498 B TW I724498B TW 108129256 A TW108129256 A TW 108129256A TW 108129256 A TW108129256 A TW 108129256A TW I724498 B TWI724498 B TW I724498B
- Authority
- TW
- Taiwan
- Prior art keywords
- network
- term
- optimization
- data
- mobile network
- Prior art date
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本案係關於一種無線行動網路參數優化技術,詳而言之,係關於一種行動網路階層優化之系統及其方法。 This case is about a wireless mobile network parameter optimization technology, in detail, it is about a mobile network hierarchical optimization system and method.
隨著即時通訊或行動支付等發展,人們越來越離不開行動網路,每一代行動通訊網路的發展,都帶來了更加優質的體驗,而智慧型手機的問世除了帶動行動世代的崛起,更加速通訊技術的革新。 With the development of instant messaging or mobile payment, people are increasingly inseparable from the mobile network. The development of each generation of mobile communication networks has brought a better experience, and the advent of smart phones has not only driven the rise of the mobile generation. , And accelerate the innovation of communication technology.
行動網路架構發展日漸複雜,現有的4G行動網路架構相較於以往,具有較高的資料吞吐量、較低時延、較低的建設和執行維護成本等,而未來的5G行動網路架構更是具有更高的資料壓縮密度調變/解調變、更高的傳輸速率、增強的頻譜效率等等。 The development of mobile network architecture is becoming more and more complex. Compared with the past, the existing 4G mobile network architecture has higher data throughput, lower latency, lower construction and execution and maintenance costs, and the future 5G mobile network The architecture has higher data compression density, modulation/demodulation, higher transmission rate, enhanced spectrum efficiency, and so on.
然而,隨著行動通信技術的發展以及行動通信需求量的提昇,無線訊號的強度、品質以及無線傳輸的效能、性能指標勢必受到影響,例如基地台之間相互干擾、無法掌握實際網路用戶的狀態、網路參數之間相互衝突以致難以優化等問題。 However, with the development of mobile communication technology and the increase in demand for mobile communication, the strength and quality of wireless signals, as well as the performance and performance indicators of wireless transmission will inevitably be affected. For example, the interference between base stations and the inability to grasp the actual network user’s The status and network parameters conflict with each other and make it difficult to optimize.
因此,如何有效地對網路參數進行優化、提昇網路效能為乃本領域亟需解決之重要議題之一。 Therefore, how to effectively optimize network parameters and improve network performance is one of the important issues that need to be resolved in this field.
為解決上述及其他問題,本案提出一種行動網路階層優化之系統及其方法。 In order to solve the above and other problems, this case proposes a system and method for optimizing the mobile network hierarchy.
本案之行動網路階層優化之系統係包括:資料儲存器;行動網路資料處理模組,接收及/或處理來自行動網路系統之行動網路系統資料,以將經接收的資料及/或經處理的資料儲存於該資料儲存器;以及行動網路參數優化模組,根據該資料儲存器中之該經接收的資料及該經處理的資料之至少一部分,對網路參數進行階層優化,以將優化結果儲存於該資料儲存器,其中,該優化結果包括網路參數初始值、網路參數短期優化結果、及/或網路參數長期優化結果。 The mobile network hierarchical optimization system in this case includes: data storage; mobile network data processing module, which receives and/or processes the mobile network system data from the mobile network system to combine the received data and/or The processed data is stored in the data storage; and the mobile network parameter optimization module, based on the received data in the data storage and at least a part of the processed data, performs hierarchical optimization of the network parameters, The optimization result is stored in the data storage, where the optimization result includes the initial value of the network parameter, the short-term optimization result of the network parameter, and/or the long-term optimization result of the network parameter.
此外,該行動網路系統資料包括包含組態管理、性能管理、障礙管理及/或無線網路關鍵性能指標之行動網路系統運作狀態,包含位置、服務類型、訊務量及/或移動路徑之用戶識別,包含用戶終端量測回報及/或用戶終端最小化路測之用戶資料回報,由用戶終端量測回報、掃描器量測及/或模擬估算軟體所獲得之射頻訊號,及/或包含設備型號、韌體版本及/或參數特性之基地台設備型態。 In addition, the mobile network system data includes the operating status of the mobile network system including configuration management, performance management, obstacle management and/or wireless network key performance indicators, including location, service type, traffic volume and/or movement path User identification, including user terminal measurement report and/or user terminal minimization drive test user data report, RF signal obtained by user terminal measurement report, scanner measurement and/or simulation estimation software, and/or Base station device type including device model, firmware version, and/or parameter characteristics.
此外,該行動網路參數優化模組係包括:網路參數初始值優化子模組,用以於基地台開台前,根據該資料儲存器所儲存之該經接收的資料中的射頻訊號及/或該經處理的資料中的射頻映圖,對該網路參數中的 頻率、頻寬、物理層小區識別碼、隨機存取通道、移動性及/或鄰細胞清單進行初步優化,以提供該網路參數初始值,致使行動網路系統根據該網路參數初始值運作;以及長期網路參數優化子模組及短期網路參數優化子模組,用以於該基地台開台後,根據該資料儲存器所儲存之該經接收的資料及該經處理的資料中的組態管理、性能管理、障礙管理、無線網路關鍵性能指標、用戶終端量測回報、用戶終端最小化路測、用戶位置、用戶服務類型、用戶訊號需求、核心網路及/或多接取邊緣運算,對該網路參數進行進一步優化,以分別提供該網路參數長期優化結果和該網路參數短期優化結果。 In addition, the mobile network parameter optimization module includes: a network parameter initial value optimization sub-module, which is used before the base station is set up, based on the radio frequency signal and the received data stored in the data storage / Or the radio frequency map in the processed data, the network parameter Preliminary optimization of frequency, bandwidth, physical layer cell ID, random access channel, mobility, and/or neighbor cell list to provide the initial value of the network parameter, causing the mobile network system to operate according to the initial value of the network parameter ; And the long-term network parameter optimization sub-module and the short-term network parameter optimization sub-module, which are used after the base station is launched, based on the received data and the processed data stored in the data storage Configuration management, performance management, obstacle management, wireless network key performance indicators, user terminal measurement reports, user terminal minimization drive test, user location, user service type, user signal requirements, core network and/or multiple connections Take edge calculations to further optimize the network parameters to provide the long-term optimization results of the network parameters and the short-term optimization results of the network parameters respectively.
此外,該長期網路參數優化子模組係對無法頻繁調整的網路參數和須較長時間運算的網路參數進行優化,該無法頻繁調整的網路參數包括頻率、頻寬、物理層小區識別碼、隨機存取通道及/或移動性,而該須較長時間運算的網路參數包括長時間用戶量測回報及/或射頻映圖。該短期網路參數優化子模組係對可即時性調整的網路參數進行優化,該可即時性調整的網路參數包括細胞個別偏移、功率及/或鄰細胞清單。 In addition, the long-term network parameter optimization sub-module optimizes network parameters that cannot be adjusted frequently and network parameters that require a long time to calculate. The network parameters that cannot be adjusted frequently include frequency, bandwidth, and physical layer cells. Identification code, random access channel and/or mobility, and the network parameters that require a long time calculation include long-term user measurement reports and/or radio frequency mapping. The short-term network parameter optimization sub-module optimizes network parameters that can be adjusted in real time. The network parameters that can be adjusted in real time include cell individual offset, power, and/or neighbor cell list.
此外,該短期網路參數優化子模組偵測該行動網路系統是否有異狀並偵測該長期網路參數優化子模組是否產生該網路參數長期優化結果,以及其中,該長期網路參數優化子模組偵測該行動網路系統是否有異狀並偵測該短期網路參數優化子模組是否產生該網路參數短期優化結果。 In addition, the short-term network parameter optimization sub-module detects whether the mobile network system is abnormal and whether the long-term network parameter optimization sub-module generates the long-term network parameter optimization result, and among them, the long-term network The path parameter optimization sub-module detects whether the mobile network system is abnormal and detects whether the short-term network parameter optimization sub-module generates a short-term optimization result of the network parameters.
此外,該行動網路資料處理模組於基地台開台前,對所接收之行動網路系統資料中的射頻訊號進行處理以獲得射頻映圖,以及其中,該行動網路資料處理模組於該基地台開台後,對所接收之行動網路系統資 料中的用戶終端量測回報進行處理以獲得射頻映圖,或者對所接收之行動網路系統資料中的用戶終端量測回報以及射頻訊號進行處理以獲得射頻映圖。 In addition, the mobile network data processing module processes the radio frequency signals in the received mobile network system data to obtain radio frequency maps before the base station is set up. After the base station is launched, the mobile network system data received The user terminal measurement report in the data is processed to obtain the radio frequency map, or the user terminal measurement report and the radio frequency signal in the received mobile network system data are processed to obtain the radio frequency map.
其次,本案之行動網路階層優化之方法係包括:接收及/或處理來自行動網路系統之行動網路系統資料;根據經接收的資料及/或經處理的資料對網路參數進行初步優化,以提供網路參數初始值,致使該行動網路系統根據該網路參數初始值運作;持續接收及/或繼續處理來自該行動網路系統之行動網路系統資料;以及根據該經接收的資料、該經處理的資料、經持續接收的資料以及經繼續處理的資料之至少一部分,對該網路參數進行短期網路參數優化和長期網路參數優化。 Secondly, the method for optimizing the mobile network hierarchy in this case includes: receiving and/or processing mobile network system data from the mobile network system; initial optimization of network parameters based on the received data and/or processed data , In order to provide the initial value of the network parameter, causing the mobile network system to operate according to the initial value of the network parameter; continue to receive and/or continue to process the mobile network system data from the mobile network system; and according to the received At least a part of the data, the processed data, the continuously received data, and the continuously processed data, perform short-term network parameter optimization and long-term network parameter optimization on the network parameters.
此外,該短期網路參數優化和該長期網路參數優化之進行係為事件觸發、週期觸發或常態運作。 In addition, the short-term network parameter optimization and the long-term network parameter optimization are performed by event triggering, periodic triggering, or normal operation.
此外,該經接收的資料為由掃描器量測之射頻訊號,該經處理的資料為射頻映圖,該經持續接收的資料為行動網路系統運作狀態、用戶識別及/或用戶量測回報,該經繼續處理的資料為無線網路關鍵性能指標。 In addition, the received data is the radio frequency signal measured by the scanner, the processed data is the radio frequency map, and the continuously received data is the mobile network system operation status, user identification and/or user measurement report , The data that has been processed continuously is the key performance indicator of the wireless network.
此外,該短期網路參數優化之進行係依據該長期網路參數優化之網路參數長期優化結果,或者,該長期網路參數優化之進行係依據該短期網路參數優化之網路參數短期優化結果。 In addition, the short-term network parameter optimization is performed based on the long-term network parameter optimization result of the long-term network parameter optimization, or the long-term network parameter optimization is performed based on the short-term network parameter optimization of the short-term network parameter optimization. result.
因此,本案之行動網路階層優化之系統及其方法係採用階層優化的概念,先透過網路參數初始值優化子模組提供一組合適的網路參數值以避免網路參數發生衝突,而使行動網路可維持基本的運作,再透過長 期網路參數優化子模組和短期網路參數優化子模組對行動網路做更深層的優化,藉由上述的三個子模組相互搭配,行動網路優化可兼具即時、穩定、精準等優勢。 Therefore, the mobile network hierarchical optimization system and method in this case adopts the concept of hierarchical optimization, and first provides a set of appropriate network parameter values through the network parameter initial value optimization sub-module to avoid network parameter conflicts. Enable the mobile network to maintain basic operations, and then through the long-term The long-term network parameter optimization sub-module and the short-term network parameter optimization sub-module do a deeper optimization of the mobile network. By combining the above three sub-modules, the mobile network optimization can be real-time, stable, and accurate. And other advantages.
1‧‧‧行動網路系統 1‧‧‧Mobile network system
2‧‧‧行動網路階層優化系統 2‧‧‧Mobile network level optimization system
21‧‧‧資料儲存器 21‧‧‧Data Storage
22‧‧‧行動網路資料處理模組 22‧‧‧Mobile network data processing module
221‧‧‧行動網路系統運作狀態 221‧‧‧Mobile network system operation status
222‧‧‧用戶識別 222‧‧‧User Identification
223‧‧‧用戶資料回報 223‧‧‧User Information Report
224‧‧‧射頻(RF)訊號 224‧‧‧Radio Frequency (RF) Signal
225‧‧‧基地台設備型態 225‧‧‧Base station equipment type
23‧‧‧行動網路參數優化模組 23‧‧‧Mobile network parameter optimization module
231‧‧‧網路參數初始值優化子模組 231‧‧‧Network parameter initial value optimization sub-module
232‧‧‧短期網路參數優化子模組 232‧‧‧Short-term network parameter optimization sub-module
233‧‧‧長期網路參數優化子模組 233‧‧‧Long-term network parameter optimization sub-module
31~36‧‧‧方塊 31~36‧‧‧Cube
51~55‧‧‧eNB A~eNB E 51~55‧‧‧eNB A~eNB E
S61~S64‧‧‧步驟 S61~S64‧‧‧Step
第1圖為本案之行動網路階層優化系統的實施例之示意圖;第2圖為本案之行動網路階層優化系統的行動網路資料處理模組的實施例之示意圖;第3圖為本案之行動網路階層優化系統的行動網路參數優化模組的實施例之示意圖;第4圖為本案之行動網路階層優化的實施例之方塊示意圖;第5圖為本案之行動網路階層優化系統及方法之行動網路的示意圖;以及第6圖為本案之行動網路階層優化方法的實施例之流程示意圖。 Figure 1 is a schematic diagram of an embodiment of the mobile network hierarchy optimization system of the project; Figure 2 is a schematic diagram of an embodiment of the mobile network data processing module of the mobile network hierarchy optimization system of the project; Figure 3 is a schematic diagram of an embodiment of the mobile network hierarchy optimization system of the project A schematic diagram of an embodiment of the mobile network parameter optimization module of the mobile network layer optimization system; Figure 4 is a block diagram of an embodiment of the mobile network layer optimization of the project; Figure 5 is a block diagram of the mobile network layer optimization system of the project A schematic diagram of the mobile network of the method and method; and Figure 6 is a schematic flow diagram of an embodiment of the mobile network hierarchy optimization method of this project.
以下藉由特定的實施例說明本案之實施方式,熟習此項技藝之人士可由本文所揭示之內容輕易地瞭解本案之其他優點及功效。本說明書所附圖式所繪示之結構、比例、大小等均僅用於配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,非用於限定本案可實施之限定 條件,故任何修飾、改變或調整,在不影響本案所能產生之功效及所能達成之目的下,均應仍落在本案所揭示之技術內容得能涵蓋之範圍內。 The following specific examples are used to illustrate the implementation of this case. Those who are familiar with this technique can easily understand the other advantages and effects of this case from the content disclosed in this article. The structure, ratio, size, etc. shown in the drawings in this manual are only used to match the content disclosed in the manual for the understanding and reading of those who are familiar with the art, and are not used to limit the implementation of this case. Conditions, so any modification, change or adjustment shall still fall within the scope of the technical content disclosed in this case without affecting the effects and objectives that can be achieved in this case.
請參閱第1圖,本案之行動網路階層優化系統2係連接並應用於行動網路系統1,該行動網路階層優化系統2至少包括資料儲存器21、行動網路資料處理模組22、及行動網路參數優化模組23。行動網路資料處理模組22接收及/或處理來自行動網路系統1的行動網路系統資料,例如行動網路系統運作狀態、用戶識別、用戶資料回報、射頻訊號和基地台設備型態等,再儲存於資料儲存器21中;行動網路參數優化模組23從資料儲存器21獲取所需的資料對網路參數進行階層優化,再將優化結果儲存於資料儲存器21中。資料儲存器21可儲存行動網路資料處理模組22之經接收的資料、經處理的資料、及行動網路參數優化模組23的優化結果,該優化結果包括網路參數初始值、網路參數短期優化結果、及/或網路參數長期優化結果。
Please refer to Figure 1. The mobile network
請參閱第2圖,行動網路資料處理模組22可接收行動網路系統運作狀態221,包含組態管理(Configuration Management;CM)、性能管理(Performance Management;PM)、障礙管理(Fault Management;FM)、無線網路關鍵性能指標(Key Performance Indicators;KPI)…等;用戶識別222,包含位置、服務類型、訊務量、移動路徑…等;用戶資料回報223,包含用戶終端量測回報(Measurement Report;MR)、用戶終端最小化路測(Minimization Drive Test;MDT)…等;射頻(Radio Frequency;RF)訊號224,由MR、掃描器(scanner)量測、模擬估算軟體…等獲得。此外,行動網路資料處理模組22也可接收基地台設備型態225,如設備型號、韌體版
本、參數特性...等,以作為後續之演算法的參考依據。此外,行動網路資料處理模組22具有產生行動網路參數優化模組23所需之KPI、RF映圖(RF Map)的能力,其中,RF Map為計算RF Signal所獲得。
Please refer to Figure 2, the mobile network
當基地台尚未開台時,RF Map可由scanner量測、模擬估算軟體…等計算獲得;當基地台開台後,由於RF訊號224的資料來源可增加搜集用戶終端量測回報(MR),因而RF Map可由MR獲得,亦也可以將scanner量測、模擬估算軟體…等結合MR獲得,由於MR為實際用戶終端的回報資料,故可提昇網路優化的準確性、精準性。 When the base station has not been set up, the RF Map can be calculated by scanner measurement, simulation estimation software... etc.; when the base station is set up, because the data source of the RF signal 224 can increase the collection of user terminal measurement reports (MR), so RF Map can be obtained by MR. It can also be obtained by combining scanner measurement and simulation estimation software with MR. Since MR is the return data of the actual user terminal, the accuracy and precision of network optimization can be improved.
行動網路參數優化模組23可依據CM、PM、FM、KPI、MR、MDT、用戶識別222的位置、服務類型、訊務量、移動路徑、RF訊號224、RF Map…等,對無線行動網路基地台參數(即網路參數)進行優化。
The mobile network
請參閱第3圖,行動網路參數優化模組23包括網路參數初始值優化子模組231、短期網路參數優化子模組232和長期網路參數優化子模組233。網路參數初始值優化子模組231、短期網路參數優化子模組232和長期網路參數優化子模組233具有設定行動網路系統參數的能力。此外,網路參數初始值優化子模組231、短期網路參數優化子模組232和長期網路參數優化子模組233具有根據基地台設備型態進行網路優化的能力。
Referring to FIG. 3, the mobile network
行動網路參數初始值優化子模組231於基地台開台前,可透過RF訊號、RF Map...等對頻率、頻寬、物理層小區識別碼(physical cell identity;PCI)、隨機存取通道(random access channel;RACH)、移動性(Mobility)、鄰細胞清單(Neighbor List)…等參數優化,提供一組合適的網
路參數初始值,以避免網路參數發生衝突,並使行動網路可維持基本的運作。
The mobile network parameter initial
當基地台開台後,因可增加搜集用戶終端(User Equipment;UE)回報的資料,如MR、MDT…等;搜集行動網路系統運作狀態的資料,如CM、PM、FM、KPI…等;搜集核心網路、多接取邊緣運算(Multi-access Edge Computing;MEC)或其它資料來源之用戶識別,如用戶位置、用戶服務類型、用戶訊號需求...等,長期網路參數優化子模組233和短期網路參數優化子模組232藉由這些資料可進一步的解決行動網路所發生的問題。此外,當基地台開台後,由於RF訊號的資料來源可增加搜集用戶終端量測回報(MR),因而RF Map可由MR獲得,亦也可以將scanner量測、模擬估算軟體…等結合MR而獲得,以作為長期網路參數優化子模組223和短期網路參數優化子模組232之優化依據。
After the base station is opened, it can increase the collection of user terminal (User Equipment; UE) report data, such as MR, MDT... etc.; collect the mobile network system operating status data, such as CM, PM, FM, KPI... etc. ; Collect user identification from core network, Multi-access Edge Computing (MEC) or other data sources, such as user location, user service type, user signal demand... etc., long-term network parameter optimization The
換言之,網路參數優化模組23採用階層優化的概念,先透過行動網路參數初始值優化子模組231提供一組合適的網路參數值以避免網路參數發生衝突,並使行動網路可維持基本的運作,再透過短期網路參數優化子模組232和長期網路參數優化子模組233對行動網路做更深層的優化。因此。當行動網路參數初始值優化子模組231提供一組合適的網路參數值,並對基地台設定後,由於此時基地台已開台,可進一步搜集CM、PM、FM、KPI、MR、MDT、用戶位置、用戶服務類型、用戶訊務量、RF Signal、RF Map…等資料,因而長期網路參數優化子模組233和短期網路參數優化子模組232可基於Service-based和Location-based進行網路參數優化,針對特定的應用服務和特定的區域做優化。再者,由於行動網路參數環環相扣,
不同的網路參數可能會相互影響,為提高行動網路優化的效率、性能和避免彼此優化結果產生衝突,長期網路參數優化子模組233和短期網路參數優化子模組232可基於對方的優化結果做計算、決策。
In other words, the network
在一實施例中,以LTE技術基地台間交遞為例,當基地台發現過晚交遞(Too Late handover(HO))時,可調整的參數有觸發時間(Time to Trigger;TTT)、A3 Offset、細胞個體偏移(Cell Individual Offset;CIO),其中各個參數皆有可調整的範圍,如TTT為0~5120ms、A3Offset為-15dB~15dB、CIO為-24dB~24dB,而A3 Event啟動門檻為Mn>Mp+Offsetn,其中Mn為鄰細胞訊號強度、Mp為主細胞訊號強度,Offsetn為A3Offset+Hys-CIO,因而當CIO達到上、下限時,可透過調整A3Offset使其仍有空間做優化,譬如CIO達到上限24dB時,若將A3 Offset減10dB,此時CIO可增加10調整至14dB。 In an embodiment, taking handover between LTE technology base stations as an example, when the base station finds too late handover (HO), the adjustable parameters include Time to Trigger (TTT), A3 Offset, Cell Individual Offset (CIO), each parameter has an adjustable range, such as TTT is 0~5120ms, A3Offset is -15dB~15dB, CIO is -24dB~24dB, and A3 Event starts The threshold is Mn>Mp+Offsetn, where Mn is the signal strength of neighboring cells, Mp is the signal strength of the main cell, and Offsetn is A3Offset+Hys-CIO. Therefore, when the CIO reaches the upper and lower limits, you can adjust A3Offset so that there is still room to do Optimization. For example, when the CIO reaches the upper limit of 24dB, if the A3 Offset is reduced by 10dB, then the CIO can be increased by 10 to 14dB.
行動網路的基地台設備為各家廠商實作議題,同一個網路參數在不同廠商設備下,其特性可能會不一樣,譬如發射功率(Tx Power)參數於一廠商是需重新啟動、於另一廠商是毋須啟重,因而長期網路參數優化子模組233的演算法、短期網路參數優化子模組232的演算法也會依據基地台設備型態做網路優化之參考依據。
The mobile network base station equipment is implemented by various manufacturers. The characteristics of the same network parameter may be different under the equipment of different manufacturers. For example, the transmission power (Tx Power) parameter of a manufacturer needs to be restarted. Another manufacturer does not need to start, so the algorithm of the long-term network
長期網路參數優化子模組233主要針對無法頻繁調整的網路參數進行優化,如頻率、頻寬、PCI、RACH、Mobility(部份)…等參數變動皆需要重新啟動基地台,且較不需要隨時變動,為避免頻繁地重啟基地台造成行動網路不穩定,會於離峰時段再啟動。此外,長期網路參數優化子模組233主要針對需要長時間數據或是需要長時間運算之優化演算法進
行優化,譬如搜集長時間用戶量測回報(MR),計算行動網路的RF Map,透過頻率優化演算法,找出可提供系統最好之SINR的頻率組態進行設定。
The long-term network
短期網路參數優化子模組232主要針對可即時性調整的網路參數進行優化,如CIO、Power、NeighborList…等參數變動不需要重啟基地台,並可以解決Mobility、Loading…等網路議題,除此之外,由於可即時進行網路參數調整,短期網路參數優化子模組可視行動網路當下的現況,以更精準的角度進行網路優化。
The short-term network
再者,長期網路參數優化子模組233、短期網路參數優化子模組232可透過事件觸發、週期觸發或常態(背景)運作,藉由兩塊模組相互搭配,行動網路優化可兼具即時、穩定、精準…等多方面優勢。
Furthermore, the long-term network
接著參閱第4圖,示意說明本案之行動網路階層優化之實施例。於此實施例中,由行動網路資料處理模組22自行動網路系統1所接收之行動網路資料為由掃描器所量測之RF訊號,如方塊31所示。行動網路資料處理模組22處理該RF訊號以成為RF MAP,再將經接收的及/或經處理的資料儲存至資料儲存器21中,如方塊32所示。行動網路參數優化模組23根據資料儲存器21中所儲存之來自行動網路資料處理模組22的經接收的資料及/或經處理的資料,啟動網路參數初始值優化子模組以進行初步優化,進而產生網路參數初始值供行動網路系統1據以運作,例如對基地台設定和開台,如方塊33所示。接著,由行動網路資料處理模組22自行動網路系統1所持續接收之行動網路資料為由行動網路系統運作狀態、用戶識別、用戶資料回報等資料,如方塊34所示。行動網路資料處理模組22計算出KPI,再將經持續接收的及/或經繼續處理的資料儲存至資料儲存器21中,如方塊35所
示。最後,啟動短期網路參數優化子模組和長期網路參數優化子模組,根據資料儲存器21中所儲存之來自行動網路資料處理模組22之經接收的資料、經處理的資料、經持續接收的資料、及經繼續處理的資料之至少一部分,進而產生網路參數短期優化結果和網路參數長期優化結果供行動網路系統1據以運作,再儲存至資料儲存器21中,如方塊36所示。
Next, referring to Figure 4, it schematically illustrates an embodiment of the mobile network hierarchy optimization in this case. In this embodiment, the mobile network data received by the mobile network
以下舉例說明本案行動網路階層優化之系統和方法的應用,並以行動網路發生Too-Late HO議題為例,行動網路示意圖如第5圖所示。如第5圖所示,LTE系統包括五個演進節點B(evolved node B;eNB),即eNB A 51、eNB B 52、eNB C 53、eNB D 54、eNB E 55。當用戶終端自eNB A 51的範圍移至eNB B 52的範圍,LTE系統在切換過程中往往會出現過晚交遞(too late HO)。
The following example illustrates the application of the system and method for the optimization of the mobile network hierarchy in this case, and takes the Too-Late HO issue on the mobile network as an example. The mobile network diagram is shown in Figure 5. As shown in Figure 5, the LTE system includes five evolved node B (evolved node B; eNB), namely
首先,1.scanner量測RF訊號。接著,2.依據scanner量測的RF訊號產生RF MAP,並儲存於資料儲存器。再者,3.啟動網路參數初始值優化子模組,即根據RF MAP計算基地台開台所需要的網路參數,包括頻率、頻寬、功率、PCI、TAC、RACH、Mobility、Neighbor List Table等,藉此對基地台進行設定和開台。再來,4.行動網路系統持續回報CM、PM、FM、MR、MDT、KPI等,以由行動網路資料處理模組處理後儲存於資料儲存器中。爾後,5.啟動長期網路參數優化子模組/短期網路參數優化子模組。此外,啟動長期網路參數優化子模組/短期網路參數優化子模組可包括以下方法:5-1.短期網路參數優化子模組持續偵測行動網路系統是否有問題,及長期網路參數優化是否有網路參數長期優化結果。長期網路參
數優化子模組持續偵測行動網路系統是否有問題,及短期網路參數優化子模組是否有網路參數短期優化結果。5-2.短期網路參數優化子模組判斷基地台回報之PM、KPI,偵測到行動網路系統中eNB A 51出現Too-Late HO議題,啟動優化演算法,並通知長期網路參數優化子模組其已啟動優化演算法。5-3.短期網路參數優化子模組透過優化演算法進行CIO調整,逐漸將eNB A 51的鄰細胞eNB B 52之CIO由0調整至24dB,而長期網路參數優化子模組則持續接收短期網路參數優化子模組的網路參數短期優化結果。5-4.長期網路參數優化子模組偵測到短期網路參數優化子模組的優化已達到上限(CIO的範圍為-24dB~24dB),事件觸發啟動優化演算法,並通知短期網路參數優化子模組停止其優化演算法。長期網路參數優化子模組的優化演算法將eNB A 51的A3 offset設定值由3調整至-7,並將eNB A 51的鄰細胞eNB B 52之CIO調整為14dB,eNB A 51的其餘鄰細胞eNB C 53、eNB D 54、eNB E 55)之CIO由0調整為-10dB。短期網路參數優化子模組停止優化演算法。5-5.長期網路參數優化子模組完成長期網路參數優化子模組優化,並通知短期網路參數優化子模組可再次啟動演算法。
First, 1.scanner measures the RF signal. Then, 2. Generate RF MAP based on the RF signal measured by the scanner and store it in the data storage. Furthermore, 3. Start the network parameter initial value optimization sub-module, that is, calculate the network parameters required by the base station to set up according to RF MAP, including frequency, bandwidth, power, PCI, TAC, RACH, Mobility, Neighbor List Table And so on, to set up and launch the base station. Next, 4. The mobile network system continuously reports CM, PM, FM, MR, MDT, KPI, etc., which are processed by the mobile network data processing module and stored in the data storage. Afterwards, 5. Start the long-term network parameter optimization sub-module/short-term network parameter optimization sub-module. In addition, starting the long-term network parameter optimization sub-module/short-term network parameter optimization sub-module may include the following methods: 5-1. The short-term network parameter optimization sub-module continuously detects whether the mobile network system has problems, and the long-term Whether network parameter optimization has long-term optimization results of network parameters. Long-term Internet Participation
The data optimization sub-module continuously detects whether there is a problem with the mobile network system, and whether the short-term network parameter optimization sub-module has short-term optimization results of network parameters. 5-2. The short-term network parameter optimization sub-module judges the PM and KPI reported by the base station, detects the Too-Late HO issue in
同樣以行動網路發生Too-Late HO議題為例,行動網路示意圖如第5圖所示。 Also take the Too-Late HO issue on the mobile network as an example. The schematic diagram of the mobile network is shown in Figure 5.
首先,1.scanner量測RF訊號。接著,2.依據scanner量測的RF訊號產生RF MAP,並儲存於資料儲存器。再者,3.啟動網路參數初始值優化子模組。網路參數初始值優化子模組根據RF MAP計算基地台開台所需要的網路參數,包括頻率、頻寬、功率、PCI、TAC、RACH、Mobility、Neighbor List Table等,進而對基地台進行設定和開台。再來,4.行動網
路系統持續回報CM、PM、FM、MR、MDT、KPI,並由行動網路資料處理模組處理後儲存於資料儲存器中。爾後,5.啟動長期網路參數優化子模組/短期網路參數優化子模組。此外,啟動長期網路參數優化子模組/短期網路參數優化子模組可包括以下方法:5-1.短期網路參數優化子模組持續偵測行動網路系統是否有問題,及長期網路參數優化子模組是否有網路參數長期優化結果。長期網路參數優化子模組持續偵測行動網路系統是否有問題,及短期網路參數優化子模組是否有網路參數短期優化結果。5-2.短期網路參數優化子模組判斷基地台回報之PM、KPI,偵測到行動網路系統eNB A 51出現Too-Late HO議題,啟動優化演算法,並通知長期網路參數優化子模組其已啟動優化演算法。5-3.短期網路參數優化子模組透過優化演算法進行CIO調整,逐漸將eNB A 51的鄰細胞eNB B 52之CIO由0調整至20dB。長期網路參數優化子模組持續接收短期網路參數優化子模組的網路參數短期優化結果。5-4.長期網路參數優化子模組週期性啟動優化演算法,並通知短期網路參數優化子模組停止演算法。偵測到短期網路參數優化子模組優化已接近下限值(CIO的範圍為-24dB~24dB),長期網路參數優化子模組將eNB A 51的A3 offset設定值由3調整至-2,並將eNB A 51的鄰細胞eNB B 52之CIO調整為15dB,eNB A 51的其餘鄰細胞eNB C 53、eNB D 54、eNB E 55之CIO調由0整為-5dB。短期網路參數優化子模組停止優化演算法。5-5.長期網路參數優化子模組完成長期網路參數優化子模組優化,並通知短期網路參數優化子模組可再次啟動演算法。
First, 1.scanner measures the RF signal. Then, 2. Generate RF MAP based on the RF signal measured by the scanner and store it in the data storage. Furthermore, 3. Start the network parameter initial value optimization sub-module. The network parameter initial value optimization sub-module calculates the network parameters required for the base station to open a station based on the RF MAP, including frequency, bandwidth, power, PCI, TAC, RACH, Mobility, Neighbor List Table, etc., and then sets the base station And open the stage. Next, 4. Action Network
The road system continuously reports CM, PM, FM, MR, MDT, and KPI, which are processed by the mobile network data processing module and stored in the data storage. Afterwards, 5. Start the long-term network parameter optimization sub-module/short-term network parameter optimization sub-module. In addition, starting the long-term network parameter optimization sub-module/short-term network parameter optimization sub-module may include the following methods: 5-1. The short-term network parameter optimization sub-module continuously detects whether the mobile network system has problems, and the long-term Whether the network parameter optimization sub-module has long-term optimization results of network parameters. The long-term network parameter optimization sub-module continuously detects whether the mobile network system has problems, and the short-term network parameter optimization sub-module has short-term optimization results of network parameters. 5-2. The short-term network parameter optimization sub-module judges the PM and KPI reported by the base station, detects the Too-Late HO issue in the mobile network
以上兩則實施例調整的參數特性為CIO無需重啟基地台,A3 Offset須重啟基地台才能生效,因而於長期網路參數優化子模組優化。以下所示實施例調整的參數特性為TX Power、Mobility參數之Qoffset和CIO、Neighbor List Table,無需重啟基地台可於長期網路參數優化子模組或短期網路參數優化子模組決策調整,頻率、頻寬、A5、A3 Offset須重啟基地台才能生效,因而於長期網路參數優化子模組決策調整。 The characteristics of the parameters adjusted in the above two embodiments are that the CIO does not need to restart the base station, and the A3 Offset can only take effect after restarting the base station. Therefore, the long-term network parameter optimization sub-module is optimized. The parameter characteristics adjusted in the embodiment shown below are TX Power, Mobility parameter Qoffset and CIO, Neighbor List Table, and can be adjusted in the long-term network parameter optimization sub-module or the short-term network parameter optimization sub-module without restarting the base station. The frequency, bandwidth, A5, and A3 offset must be restarted to take effect. Therefore, the long-term network parameter optimization sub-module makes a decision and adjustment.
首先,1.scanner量測RF訊號或/及工模手機量測RF訊號。接著,2.依據scanner或/及工模手機量測的RF訊號產生RF MAP,並儲存於資料儲存器再者,3.啟動網路參數初始值優化子模組。根據RF MAP計算基地台開台所需要的網路參數,包括頻率、頻寬、功率、PCI、TAC、RACH、Mobility、Neighbor List Table等,並對基地台進行設定和開台。再來,4.持續蒐集行動網路系統持續CM、PM、FM、MR、MDT、KPI、Call Trace、CTUM、服務型別等,並由行動網路資料處理模組處理後儲存於資料儲存器中。爾後,5.啟動長期網路參數優化子模組/短期網路參數優化子模組。 First, 1. Scanner measures the RF signal or/and the industrial model mobile phone measures the RF signal. Then, 2. Generate RF MAP based on the RF signal measured by the scanner or/and the mobile phone and store it in the data storage. 3. Start the network parameter initial value optimization sub-module. According to RF MAP, calculate the network parameters required for the base station to open, including frequency, bandwidth, power, PCI, TAC, RACH, Mobility, Neighbor List Table, etc., and set and open the base station. Next, 4. Continue to collect mobile network systems for continuous CM, PM, FM, MR, MDT, KPI, Call Trace, CTUM, service types, etc., and store them in the data storage after being processed by the mobile network data processing module in. Afterwards, 5. Start the long-term network parameter optimization sub-module/short-term network parameter optimization sub-module.
長期網路參數優化子模組持續根據RF Map偵測偵測行動網路品質是否發生觀測區間內超過臨界比例值(如50%)不滿足目標,目標如系統平均SINR>5dB,或/及CDF 10%資料點SINR>5dB,或/及指定資料點SINR>5dB等。若是,再判斷PM(如用戶數是否低於臨界值)或/及時間(如為凌晨2點),則對監控中網路參數進行系統訊號品質優化決策。其中,RF Map可根據scanner量測到的RF訊號,或/及工模手機量測RF訊號,或/及根據行動用戶終端回報的MR獲得;系統訊號品質優化為透過估算RF Map每一點 的SINR,以優化頻率、頻寬、功率、PCI、TAC、RACH、Mobility、Neighbor List Table相關參數以滿足目標,如平均SINR>5dB,或/及CDF 10%資料點SINR>5dB,或/及指定資料點SINR>5dB等。 The long-term network parameter optimization sub-module continues to detect whether the mobile network quality occurs according to the RF Map. The observation interval exceeds the critical ratio (such as 50%) and does not meet the target, such as the system average SINR>5dB, or/and CDF 10% data point SINR>5dB, or/and designated data point SINR>5dB, etc. If yes, then determine the PM (such as whether the number of users is below the critical value) or/and the time (such as 2 am), and then make a system signal quality optimization decision on the network parameters under monitoring. Among them, the RF Map can be obtained based on the RF signal measured by the scanner, or/and the RF signal measured by the industrial model mobile phone, or/and based on the MR reported by the mobile user terminal; the system signal quality is optimized by estimating every point of the RF Map SINR to optimize frequency, bandwidth, power, PCI, TAC, RACH, Mobility, Neighbor List Table related parameters to meet the target, such as average SINR>5dB, or/and CDF 10% data point SINR>5dB, or/and The designated data point SINR>5dB, etc.
短期網路參數優化子模組持續根據RF Map偵測行動網路品質是否發生觀測區間內超過臨界比例值(如50%)不滿足目標,目標如系統平均SINR>5dB,或/及CDF 10%資料點SINR>5dB,或/及指定資料點SINR>5dB等。若是,再判斷PM資料(如用戶數是否超過臨界值)或/及時間(如不是凌晨2點),則對監控中不需停止設備提供服務的網路參數進行系統訊號品質優化決策。其中RF Map可根據scanner量測到的RF訊號,或/及工模手機量測RF訊號,或/及根據行動用戶終端回報的MR獲得;系統訊號品質優化為透過估算RF Map每一點的SINR,以優化功率、Mobility、Neighbor List Table等參數以滿足目標,如平均SINR>5dB,或/及CDF 10%資料點SINR>5dB,或/及指定資料點SINR>5dB等。 The short-term network parameter optimization sub-module continues to detect whether the mobile network quality occurs based on the RF Map. The observation interval exceeds the critical proportion value (such as 50%) and does not meet the target, such as the system average SINR>5dB, or/and CDF 10% Data point SINR>5dB, or/and designated data point SINR>5dB, etc. If so, then determine the PM data (such as whether the number of users exceeds the threshold) or/and the time (if not at 2 am), and then make a system signal quality optimization decision on the network parameters that do not need to stop the equipment to provide services during the monitoring. The RF Map can be obtained based on the RF signal measured by the scanner, or/and the RF signal measured by the industrial mobile phone, or/and based on the MR reported by the mobile user terminal; the system signal quality is optimized by estimating the SINR at each point of the RF Map. Optimize power, Mobility, Neighbor List Table and other parameters to meet the target, such as average SINR>5dB, or/and CDF 10% data point SINR>5dB, or/and designated data point SINR>5dB, etc.
請參閱第6圖,示意說明本案之行動網路階層優化方法。如步驟S61所示,接收及/或處理來自行動網路系統之行動網路系統資料,即接收行動網路系統資料後先處理再儲存、或接收行動網路系統資料後予以儲存,其中,經接收的資料可為RF訊號,而經處理的資料可為RF MAP;如步驟S62所示,根據經接收的資料及/或經處理的資料對網路參數進行初步優化,以提供網路參數初始值致使行動網路系統運作,則行動網路系統可根據網路參數初始值維持基本運作;如步驟S63所示,持續接收及/或繼續處理來自行動網路系統之行動網路系統資料,亦即,行動網路系統依據網路參數初始值運行之時,仍持續回報行動網路系統資料,以供持續接收 後繼續處理以儲存、或供持續接收後以儲存,其中,經持續接收的資料可為行動網路係統運作狀態、用戶識別、用戶量測回報等,而經繼續處理的資料可為KPI;以及如步驟S64所示,根據經接收的資料、經處理的資料、經持續接收的資料以及經繼續處理的資料之至少一部分,對網路參數進行短期網路參數優化和長期網路參數優化,進而產生網路參數短期優化結果和網路參數長期優化結果,讓行動網路系統可依優化結果運作,其中,網路參數短期優化結果和網路參數長期優化結果可相互配合以決策何時啟動/停止長期優化、何時啟動/停止短期優化。 Please refer to Figure 6 to schematically illustrate the mobile network layer optimization method in this case. As shown in step S61, receiving and/or processing the mobile network system data from the mobile network system, that is, the mobile network system data is received and then processed and then stored, or the mobile network system data is received and stored, where The received data can be RF signals, and the processed data can be RF MAP; as shown in step S62, network parameters are initially optimized based on the received data and/or processed data to provide initial network parameters Value causes the mobile network system to operate, the mobile network system can maintain basic operation according to the initial values of the network parameters; as shown in step S63, continue to receive and/or continue to process the mobile network system data from the mobile network system. That is, when the mobile network system operates according to the initial value of the network parameters, it will continue to report the mobile network system data for continuous reception Then continue processing for storage, or continue to receive for storage, where the continuously received data can be mobile network system operating status, user identification, user measurement reports, etc., and the continued processing data can be KPIs; and As shown in step S64, according to at least a part of the received data, processed data, continuously received data, and continuously processed data, short-term network parameter optimization and long-term network parameter optimization are performed on the network parameters, and then Generate short-term optimization results of network parameters and long-term optimization results of network parameters, so that the mobile network system can operate according to the optimization results. Among them, the short-term optimization results of network parameters and the long-term optimization results of network parameters can cooperate with each other to decide when to start/stop Long-term optimization, when to start/stop short-term optimization.
綜上所述,本案之行動網路資料處理模組可自動化介接或人工方式獲得行動網路系統之行動網路資料,例如行動網路系統運作狀態(如CM、PM、FM、KPI…)、用戶識別(如位置、服務類型、訊務量、移動路徑...)、用戶終端量測回報(如MR、MDT…)、RF訊號、基地台設備型態(如設備型號、韌體版本、網路參數特性…),並具有計算產生RF Map能力以及具有計算客製/標準KPI能力。其次,本案之行動網路參數優化模組具有階層式網路優化概念並包含網路參數初始值優化模組、短期網路參數優化模組以及長期網路參數優化模組,其所使用之優化演算法具有依據基地台設備型態做網路優化的能力,以及具有依據用戶識別做Serviced-based、Location-based優化的能力。再次,本案之資料儲存器具有儲存行動網路系統之CM、PM、FM、KPI、MR、MDT、用戶位置、用戶服務類型、用戶訊務量、用戶移動路徑、RF Signal、RF Map、基地台設備型態…等資訊的能力,以及具有儲存行動網路參數優化模組之優化結果的能力。此外,本案之行動網路系統可包含用戶終端、基地台、核心網路、MEC、網管系 統...等行動網路設備。 In summary, the mobile network data processing module in this case can automatically interface or manually obtain mobile network data of the mobile network system, such as the operating status of the mobile network system (such as CM, PM, FM, KPI...) , User identification (such as location, service type, traffic volume, movement path...), user terminal measurement report (such as MR, MDT...), RF signal, base station equipment type (such as device model, firmware version) , Network parameter characteristics...), and has the ability to calculate RF Map and calculate custom/standard KPI capabilities. Secondly, the mobile network parameter optimization module in this case has a hierarchical network optimization concept and includes a network parameter initial value optimization module, a short-term network parameter optimization module, and a long-term network parameter optimization module. The optimization used The algorithm has the ability to perform network optimization based on the type of base station equipment, and has the ability to perform serviced-based and location-based optimization based on user identification. Thirdly, the data storage in this case can store CM, PM, FM, KPI, MR, MDT, user location, user service type, user traffic, user mobile path, RF Signal, RF Map, base station of mobile network system The ability of equipment type... and other information, and the ability to store the optimization results of the mobile network parameter optimization module. In addition, the mobile network system in this case can include user terminals, base stations, core networks, MEC, and network management systems. System...and other mobile network equipment.
上述實施例僅例示性說明本案之功效,而非用於限制本案,任何熟習此項技藝之人士均可在不違背本案之精神及範疇下對上述該些實施態樣進行修飾與改變。因此本案之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative of the effects of the present case, and are not used to limit the present case. Anyone familiar with this technique can modify and change the above-mentioned implementation aspects without departing from the spirit and scope of the present case. Therefore, the scope of protection of the rights in this case should be listed in the scope of patent application described later.
1‧‧‧行動網路系統 1‧‧‧Mobile network system
2‧‧‧行動網路階層優化系統 2‧‧‧Mobile network level optimization system
21‧‧‧資料儲存器 21‧‧‧Data Storage
22‧‧‧行動網路資料處理模組 22‧‧‧Mobile network data processing module
23‧‧‧行動網路參數優化模組 23‧‧‧Mobile network parameter optimization module
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129256A TWI724498B (en) | 2019-08-16 | 2019-08-16 | System of hierarchical optimization for mobile network and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129256A TWI724498B (en) | 2019-08-16 | 2019-08-16 | System of hierarchical optimization for mobile network and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202110220A TW202110220A (en) | 2021-03-01 |
TWI724498B true TWI724498B (en) | 2021-04-11 |
Family
ID=76035405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108129256A TWI724498B (en) | 2019-08-16 | 2019-08-16 | System of hierarchical optimization for mobile network and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI724498B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI838136B (en) * | 2023-02-23 | 2024-04-01 | 中華電信股份有限公司 | Fault tolerance system for access and mobility management, method and computer readable medium thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6829491B1 (en) * | 2001-08-15 | 2004-12-07 | Kathrein-Werke Kg | Dynamic and self-optimizing smart network |
CN102647737A (en) * | 2011-02-18 | 2012-08-22 | 中兴通讯股份有限公司 | A method and system for wireless parameter self-optimization |
WO2015077920A1 (en) * | 2013-11-26 | 2015-06-04 | 华为技术有限公司 | Method, terminal, management device and system for network device performance test |
CN106162721A (en) * | 2015-01-29 | 2016-11-23 | 财团法人电信技术中心 | System and method for testing efficiency of mobile network |
CN106612516A (en) * | 2015-10-26 | 2017-05-03 | 中兴通讯股份有限公司 | Parameter optimization method and device |
-
2019
- 2019-08-16 TW TW108129256A patent/TWI724498B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6829491B1 (en) * | 2001-08-15 | 2004-12-07 | Kathrein-Werke Kg | Dynamic and self-optimizing smart network |
CN102647737A (en) * | 2011-02-18 | 2012-08-22 | 中兴通讯股份有限公司 | A method and system for wireless parameter self-optimization |
WO2015077920A1 (en) * | 2013-11-26 | 2015-06-04 | 华为技术有限公司 | Method, terminal, management device and system for network device performance test |
CN106162721A (en) * | 2015-01-29 | 2016-11-23 | 财团法人电信技术中心 | System and method for testing efficiency of mobile network |
CN106612516A (en) * | 2015-10-26 | 2017-05-03 | 中兴通讯股份有限公司 | Parameter optimization method and device |
Also Published As
Publication number | Publication date |
---|---|
TW202110220A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107333293B (en) | Method and device for reporting measurement information | |
US9554289B2 (en) | Management method, apparatus, and system for coverage optimization | |
US11095393B2 (en) | Outer loop link adaptation adjustment method and apparatus | |
CN107426764B (en) | Cell measurement method and device | |
US8654658B2 (en) | Mobile communication system, base station controller, base station, mobile station, and base station radio parameter control method | |
US20210136615A1 (en) | Communication method and device | |
US9961604B2 (en) | Radio network information management method and network device | |
CN112105046B (en) | Model training method and system, pilot frequency measurement estimation method and system | |
EP3183903A1 (en) | Received signal strength based interferer classification of cellular network cells | |
WO2014056373A1 (en) | Neighbor relationship update method and base station | |
CN113079525A (en) | Method and apparatus for client steering control in a multi-access point network | |
CN114189883A (en) | Antenna weight value adjusting method and device and computer readable storage medium | |
TWI724498B (en) | System of hierarchical optimization for mobile network and method thereof | |
US20230071942A1 (en) | Cellular network indoor traffic auto-detection | |
WO2017177662A1 (en) | Method and device for obtaining noise floor value of base station | |
CN102714841A (en) | Method and apparatus for cross mode mobility optimization | |
US11706677B2 (en) | Handover processing between communication networks | |
CN114258071B (en) | Measurement reporting method and device, storage medium and terminal | |
WO2020216232A1 (en) | Adaptive configuration method and device of network | |
CN115623572A (en) | Uplink interference processing method and device | |
CN115412980A (en) | Method, device, equipment and storage medium for adjusting cell handover boundary | |
US20250080995A1 (en) | Coverage tuning based on uplink and downlink balancing | |
WO2024148510A1 (en) | Data collection method, data generation apparatus, model deployment apparatus, and data collection initiation apparatus | |
CN106817709B (en) | Method and device for determining switching threshold of different systems | |
CN117715207A (en) | A scheduling method for electronic communication base stations in inter-frequency self-organizing networks |