TWI721686B - Fingerprint identification module and optical imaging lens - Google Patents
Fingerprint identification module and optical imaging lens Download PDFInfo
- Publication number
- TWI721686B TWI721686B TW108144602A TW108144602A TWI721686B TW I721686 B TWI721686 B TW I721686B TW 108144602 A TW108144602 A TW 108144602A TW 108144602 A TW108144602 A TW 108144602A TW I721686 B TWI721686 B TW I721686B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical imaging
- imaging lens
- following conditional
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1324—Sensors therefor by using geometrical optics, e.g. using prisms
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Lenses (AREA)
Abstract
Description
本發明是有關於一種光學成像鏡頭及光學功能模組,且特別是有關於一種光學成像鏡頭及指紋辨識模組。 The present invention relates to an optical imaging lens and an optical function module, and particularly relates to an optical imaging lens and a fingerprint recognition module.
因應電子產品迅速發展,微距鏡頭的應用也開始出現,其應用領域諸如為指紋辨識或微距拍攝等領域,但都希望設計的輕薄短小。但是,在現階段的微距鏡頭中通常具有較長的鏡頭長度(Total Track Length,TTL),不利於鏡頭的薄型化。有鑑於上述之問題,如何設計一種具有成像品質良好、較短的鏡頭長度並且具有微距鏡頭一直是本領域的技術人員努力的方向 In response to the rapid development of electronic products, the application of macro lenses has also begun to appear. Its application areas are such as fingerprint recognition or macro shooting, but it is hoped that the design is thin and short. However, the current macro lens usually has a longer lens length (Total Track Length, TTL), which is not conducive to the thinning of the lens. In view of the above-mentioned problems, how to design a lens with good imaging quality, a short lens length and a macro lens has always been the direction for those skilled in the art.
本發明提供一種光學成像鏡頭及指紋辨識模組,其能夠在體積小的情況下兼具有良好的光學品質。 The invention provides an optical imaging lens and a fingerprint recognition module, which can have good optical quality in a small volume.
在本發明的實施例中提供一種光學成像鏡頭,從物側至像側沿一光軸依序包括第一透鏡、第二透鏡及第三透鏡。第一透 鏡至第三透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面,且具有屈光度的透鏡只有上述三片透鏡。第一透鏡具有負屈光度,且第一透鏡的像側面為凹面。第二透鏡,具有正屈光度,且第二透鏡的物側面為凸面。第三透鏡,具有正屈光度,且第三透鏡的像側面為凸面。 In an embodiment of the present invention, an optical imaging lens is provided, which includes a first lens, a second lens, and a third lens in sequence along an optical axis from the object side to the image side. First pass The mirror to the third lens each include an object side surface facing the object side and passing imaging light rays, and an image side surface facing the image side and passing imaging light rays, and the lenses with diopter only have the above three lenses. The first lens has a negative refractive power, and the image side surface of the first lens is concave. The second lens has a positive refractive power, and the object side surface of the second lens is convex. The third lens has a positive refractive power, and the image side surface of the third lens is convex.
在本發明的實施例中提供一種指紋辨識模組,包括蓋板、上述的光學成像鏡頭及影像感測器。光學成像鏡頭設置於蓋板的光路下游。影像感測器設置於光學成像鏡頭的光路下游。 In an embodiment of the present invention, a fingerprint recognition module is provided, which includes a cover plate, the above-mentioned optical imaging lens, and an image sensor. The optical imaging lens is arranged downstream of the optical path of the cover plate. The image sensor is arranged downstream of the optical path of the optical imaging lens.
在本發明的一實施例中,上述的光學成像鏡頭更包括一光圈,設置於第二透鏡與第三透鏡之間。 In an embodiment of the present invention, the above-mentioned optical imaging lens further includes an aperture, which is disposed between the second lens and the third lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:(R1+R2)/(R1-R2)<2,其中R1為第一透鏡的物側面的曲率半徑,且R2為第一透鏡的像側面的曲率半徑。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: (R1+R2)/(R1-R2)<2, where R1 is the curvature radius of the object side surface of the first lens, and R2 Is the curvature radius of the image side surface of the first lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,其中ET1為通過第一透鏡的兩邊緣且與光軸方向平行的一厚度,且CT1代表為通過第一透鏡的中心且在光軸平行的一厚度。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: (ET1-CT1)/(ET1+CT1)>0, where ET1 is passed through the two edges of the first lens and is in line with the optical axis. A thickness that is parallel, and CT1 represents a thickness that passes through the center of the first lens and is parallel to the optical axis.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.86>(n1+n2+n3)/(n1*n2*n3)>0.85,其中n1為第一透鏡的折射率,n2為第二透鏡的折射率,且n3為第三透鏡的折射率。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.86>(n1+n2+n3)/(n1*n2*n3)>0.85, where n1 is the refractive index of the first lens , N2 is the refractive index of the second lens, and n3 is the refractive index of the third lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以 下的條件式:2.74≧tan(HFOV)≧0.92,其中HFOV為光學成像鏡頭的半視場角。 In an embodiment of the present invention, the above-mentioned optical imaging lens is more satisfied with The following conditional formula: 2.74≧tan(HFOV)≧0.92, where HFOV is the half angle of view of the optical imaging lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:5≧TTL/ImgH≧1,其中TTL代表為第一透鏡的物側面至一成像面在光軸上的一距離,ImgH為光學成像鏡頭的像高。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 5≧TTL/ImgH≧1, where TTL represents a distance from the object side of the first lens to an imaging surface on the optical axis , ImgH is the image height of the optical imaging lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.9≧|f/f1|≧0.4,其中f代表為光學成像鏡頭的有效焦距,f1代表為第一透鏡的焦距,且|f/f1|代表為f/f1的絕對值。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.9≧|f/f1|≧0.4, where f represents the effective focal length of the optical imaging lens, and f1 represents the focal length of the first lens , And |f/f1| represents the absolute value of f/f1.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:1.2≧f/f2≧0.1,其中f代表為光學成像鏡頭的有效焦距,且f2代表為第二透鏡的焦距。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: 1.2≧f/f2≧0.1, where f represents the effective focal length of the optical imaging lens, and f2 represents the focal length of the second lens.
在本發明的一實施例中,上述的光學成像鏡頭更滿足以下的條件式:更滿足以下的條件式:1.8≧f/f3≧0.2,其中f代表為光學成像鏡頭的有效焦距,且f3代表為第三透鏡的焦距。 In an embodiment of the present invention, the above-mentioned optical imaging lens further satisfies the following conditional formula: it satisfies the following conditional formula: 1.8≧f/f3≧0.2, where f represents the effective focal length of the optical imaging lens, and f3 represents Is the focal length of the third lens.
基於上述,在本發明實施例的光學成像鏡頭及指紋辨識模組中,其藉由滿足上述第一至第三透鏡的屈光率組合及面形設計,藉此在能夠在體積小的情況下兼具有良好的光學品質。 Based on the above, in the optical imaging lens and fingerprint recognition module of the embodiment of the present invention, by satisfying the refractive index combination and surface design of the first to third lenses, it can be used in a small volume. It also has good optical quality.
0:光圈 0: aperture
1:第一透鏡 1: the first lens
2:第二透鏡 2: second lens
3:第三透鏡 3: The third lens
211、11、21、31、221:物側面 211, 11, 21, 31, 221: Object side
212、12、22、32、222:像側面 212, 12, 22, 32, 222: like side
100:光學成像鏡頭 100: Optical imaging lens
200:指紋辨識模組 200: Fingerprint recognition module
210:蓋板 210: cover
220:濾光片 220: filter
230:影像感測器 230: image sensor
C:第一透鏡的中心 C: The center of the first lens
CT1:中心厚度 CT1: Center thickness
E1、E2:邊 E1, E2: Edge
ET1:邊緣厚度 ET1: Edge thickness
IP:成像面 IP: imaging surface
I:光軸 I: Optical axis
IS:像側 IS: image side
OS:物側 OS: Object side
圖1是本發明的第一實施例的指紋辨識模組的示意圖。 FIG. 1 is a schematic diagram of the fingerprint recognition module according to the first embodiment of the present invention.
圖2A至圖2C是第一實施例的各項像差圖。 2A to 2C are various aberration diagrams of the first embodiment.
圖3是本發明的第二實施例的指紋辨識模組的示意圖。 Fig. 3 is a schematic diagram of a fingerprint recognition module according to a second embodiment of the present invention.
圖4A至圖4C是第二實施例的各項像差圖。 4A to 4C are various aberration diagrams of the second embodiment.
圖5是本發明的第三實施例的指紋辨識模組的示意圖。 Fig. 5 is a schematic diagram of a fingerprint recognition module according to a third embodiment of the present invention.
圖6A至圖6C是第三實施例的各項像差圖。 6A to 6C are various aberration diagrams of the third embodiment.
圖7是本發明的第四實施例的指紋辨識模組的示意圖。 FIG. 7 is a schematic diagram of a fingerprint recognition module according to a fourth embodiment of the present invention.
圖8A至圖8C是第四實施例的各項像差圖。 8A to 8C are various aberration diagrams of the fourth example.
圖9是本發明的第五實施例的指紋辨識模組的示意圖。 FIG. 9 is a schematic diagram of a fingerprint recognition module according to a fifth embodiment of the present invention.
圖10A至圖10C是第五實施例的各項像差圖。 10A to 10C are various aberration diagrams of the fifth example.
在本說明書中,「透鏡具有正屈光力(或負屈光力)」是指所述透鏡以高斯光學理論計算出來之光軸上的屈光力為正(或為負)。在光學成像鏡頭中,每一透鏡以光軸為對稱軸徑向地相互對稱。每一透鏡具有物側面及相對於物側面的像側面。物側面及像側面定義為透鏡被成像光線通過的表面,其中成像光線包括了主光線(chief ray)及邊緣光線(marginal ray)。物側面(或像側面)具有光軸附近區域以及連接且環繞光軸附近區域的圓周附近區域。光軸附近區域為成像光線通過光軸上的區域。圓周附近區域為被邊緣光線通過的區域。 In this specification, "the lens has positive refractive power (or negative refractive power)" means that the refractive power on the optical axis of the lens calculated by the Gaussian optics theory is positive (or negative). In the optical imaging lens, each lens is radially symmetrical to each other with the optical axis as the symmetry axis. Each lens has an object side and an image side opposite to the object side. The object side and the image side are defined as the surface through which the imaging light passes through the lens. The imaging light includes chief ray and marginal ray. The object side (or image side) has an area near the optical axis and an area near the circumference connected to and surrounding the area near the optical axis. The area near the optical axis is the area where the imaging light passes through the optical axis. The area near the circumference is the area passed by the edge rays.
「透鏡的一表面(物側面或像側面)在光軸附近區域(或圓周附近區域)為凸面或凹面」可以是以平行通過該區域的光線(或光線延伸線)與光軸的交點在像側或物側來決定(光線焦點判定 方式)。舉例言之,當光線通過該區域後,光線會朝像側聚焦,與光軸的焦點會位在像側,則該區域為凸面部。反之,若光線通過該某區域後,光線會發散,其延伸線與光軸的焦點在物側。所述表面在光軸附近區域的面形判斷可以依據本領域中的技術人員的判斷方式,也就是以R值(指近軸的曲率半徑)的正負來判斷凹凸。以物側面來說,當R值為正時,判定物側面在光軸附近區域為凸面;當R值為負時,判定物側面在光軸附近區域為凹面。以像側面來說,當R值為正時,判定像側面在光軸附近區域為凹面;當R值為負時,判定像側面在光軸附近區域為凸面。 ``A lens surface (object side or image side) in the area near the optical axis (or area near the circumference) is convex or concave'' can be the intersection of the light (or light extension line) passing through the area in parallel with the optical axis in the image Side or object side to decide (light focus judgment the way). For example, when the light passes through this area, the light will focus toward the image side, and the focal point with the optical axis will be on the image side, and the area is a convex surface. On the contrary, if the light passes through the certain area, the light will diverge, and the focal point of the extension line and the optical axis is on the object side. The surface shape of the surface near the optical axis can be judged according to the judgment method of those skilled in the art, that is, the positive or negative R value (referring to the radius of curvature of the paraxial) is used to judge the unevenness. For the object side surface, when the R value is positive, the object side surface is determined to be convex in the area near the optical axis; when the R value is negative, the object side surface is determined to be concave in the area near the optical axis. For the image side surface, when the R value is positive, it is determined that the area near the optical axis of the image side surface is concave; when the R value is negative, it is determined that the area near the optical axis of the image side surface is convex.
圖1是本發明第一實施例的指紋辨識模組的示意圖。圖2A至圖2C是第一實施例的各項像差圖。 FIG. 1 is a schematic diagram of a fingerprint recognition module according to a first embodiment of the present invention. 2A to 2C are various aberration diagrams of the first embodiment.
請參照圖1,在本第一實施例中,指紋辨識模組200包括從物側OS至像側IS沿光軸I依序設置的蓋板210、光學成像鏡頭100、紅外線濾除濾光片220及影像感測器230。換言之,光學成像鏡頭100設置於蓋板210的光路下游,影像感測器230設置於光學成像鏡頭100的光路下游。光學成像鏡頭100從物側OS至像側IS沿光軸I依序包括第一透鏡1、第二透鏡2、光圈0及第三透鏡3。當由一待拍攝物(例如是手指,未示出)所發出的光線進入指紋辨識模組200後,並依序經由蓋板210、第一透鏡1、第二透鏡2、光圈0、第三透鏡3及紅外線濾除濾光片220之後,會在一成像面IP(Image Plane)形成一影像,其中成像面IP例如是影像感測器230的表面。紅外線濾除濾光片220設置於第三透鏡3與成
像面IP之間。補充說明的是,物側OS是朝向待拍攝物的一側,而像側IS是朝向成像面IP的一側。光學成像鏡頭100例如是用於指紋辨識模組,但於其他實施例中亦可使用於相機或望遠鏡頭等不同的光學鏡頭模組,本發明並不以此為限。於以下段落中會詳細說明上述各元件。
1, in the first embodiment, the
蓋板210可包括指壓板、顯示面板、觸控顯示面板或上述至少兩個的組合,其例如是作為指紋按壓區域,供使用者按壓。
The
在本實施例中,蓋板210、光學成像鏡頭100的第一透鏡1至第三透鏡3及紅外線濾除濾光片220都各自具有一朝向物側且使成像光線通過之物側面211、11、21、31、221及一朝向像側且使成像光線通過之像側面212、12、22、32、222。即,物側面211、11、21、31、221、像側面212、12、22、32、222是被定義為成像光線通過的範圍
In this embodiment, the
第一透鏡1具有負屈光率。第一透鏡1的物側面11為凸面,且其像側面12為凹面。在本實施例中,第一透鏡3的物側面11與像側面12皆為非球面(aspheric surface)。
The first lens 1 has a negative refractive power. The
第二透鏡2具有正屈光率。第二透鏡2的物側面21為凸面,且其像側面22為凹面。在本實施例中,第二透鏡2的物側面21與像側面22皆為非球面。
The
第三透鏡3具有正屈光率。第三透鏡3的物側面31為凸面,且其像側面32為凸面。在本實施例中,第三透鏡3的物側面31與像側面32皆為非球面。
The third lens 3 has positive refractive power. The
在本實施例的光學成像鏡頭100中,具有屈光率的透鏡只有上述三片。並且,於本實施例中,第一透鏡1至第三透鏡3可由塑膠材質製成,以滿足輕量化的需求,但不以此為限制。於另一例中,第一透鏡1至第三透鏡3可由玻璃材質製成。再一例中,第一透鏡1至第三透鏡3中的至少一者可由玻璃材質製成,而其餘的透鏡則由塑膠材質製成。
In the
影像感測器230用以接收來自光學成像鏡頭100的成像光線,其例如是電荷藕合器件(Charge-Coupled Device,CCD)或者是互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS,本發明並不以此為限。當影像感測器230接收來自光學成像鏡頭100的成像光線後,會將其轉換成電訊號,以供後端的處理器(未示出)進行運算,以辨識使用者的指紋。
The
第一實施例的光學成像鏡頭100的其他詳細光學數據如表一所示。在表一中,第一透鏡1的物側面11所對應的間距(mm)為0.200代表第一透鏡1的物側面11到第一透鏡1的像側面12在光軸I上的距離(即為第一透鏡1在光軸I上的厚度)為0.200mm。第一透鏡1的像側面12所對應的間距為0.211代表第一透鏡1的像側面12到第二透鏡2的物側面21在光軸I上的距離為0.211mm。間距(mm)的其它欄位可依此類推,下文便不再重述。
Other detailed optical data of the
在本實施例中,第一透鏡1至第三透鏡3的物側面11、21、31及像側面12、22、32共計六個面均是偶次非球面,而這些非球面是依公式(1)定義:
在公式(1)中,Y為非球面曲線上的點與光軸I的距離。Z為非球面之深度。R為透鏡表面近光軸I處的曲率半徑。K為錐面係數(conic constant)。 A 2i 為第2i階非球面係數,
第一透鏡1的物側面11到第三透鏡3的像側面32在公式(1)中的各項非球面係數如表二所示。其中,表二中欄位編號11表示其為第一透鏡1的物側面11的非球面係數,其它欄位可依此類推。其中A2皆為0故省略。
In formula (1), Y is the distance between the point on the aspherical curve and the optical axis I. Z is the depth of the aspheric surface. R is the radius of curvature of the lens surface near the optical axis I. K is the conic constant. A 2 i is the 2i-th order aspheric coefficient. The aspheric coefficients of the
第一實施例之光學成像鏡頭100中各重要參數間的關係如下表三所示。
The relationship among the important parameters in the
其中,EFL為光學成像鏡頭100的系統焦距;ET1為通過第一透鏡1的兩邊緣E1、E2且與光軸I平行的一厚度(或稱邊緣厚度);CT1代表為通過第一透鏡1的中心C且在光軸I上的一厚度(或稱中心厚度);HFOV為光學成像鏡頭100的半視場角(Half angle of view);Fno為光學成像鏡頭100的光圈值;
R1為第一透鏡1的物側面11的曲率半徑;R2為第一透鏡1的像側面12的曲率半徑;TTL(鏡頭總長)為第一透鏡1的物側面11到成像面IP在光軸I上的距離;另外,再定義:f1為第一透鏡1的焦距;f2為第二透鏡2的焦距;f3為第三透鏡3的焦距;|f/f1|為f/f1的絕對值;n1為第一透鏡1的折射率;n2為第二透鏡2的折射率;及n3為第三透鏡3的折射率。
Among them, EFL is the system focal length of the
再配合參閱圖2A至圖2C,圖2A與圖2B的圖式則分別說明第一實施例當其波長為430奈米、450奈米、530奈米、500奈米、550奈米時在成像面100上有關弧矢(Sagittal)方向的場曲(Field Curvature)像差及子午(Tangential)方向的場曲像差,圖2C的圖式則說明第一實施例當其波長為430奈米、450奈米、500奈米、530奈米、580奈米時在成像面IP上的畸變像差(Distortion Aberration)。
Also refer to Figures 2A to 2C. The diagrams of Figures 2A and 2B respectively illustrate the imaging of the first embodiment when the wavelength is 430nm, 450nm, 530nm, 500nm, 550nm. On the
在圖2A與圖2B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.14毫米內。而圖2C的畸變像差圖式則顯示本第一實施例的畸變像差維持在±0.8%的範圍內。據此可知,本第一實施例的光學成像鏡頭100在鏡頭全長已縮短至2.40毫米左右的條件下,可具有良好的光學成像品質。
In the two field curvature aberration diagrams in FIGS. 2A and 2B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.14 mm. The distortion aberration diagram in FIG. 2C shows that the distortion aberration of the first embodiment is maintained within the range of ±0.8%. It can be seen from this that the
圖3為本發明的第二實施例的一種指紋辨識模組的示意圖。圖4A至圖4C為第二實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第二實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。
FIG. 3 is a schematic diagram of a fingerprint recognition module according to the second embodiment of the present invention. 4A to 4C are various aberration diagrams of the second embodiment. Please refer to FIG. 3 first. A second embodiment of the
第二實施例的其他的詳細光學數據如下方表四所示。第二實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在
公式(1)中的各項非球面係數如表五所示:
第二實施例的光學成像鏡頭10中各重要參數間的關係如表六所示。 The relationship among the important parameters in the optical imaging lens 10 of the second embodiment is shown in Table 6.
在圖4A與圖4B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.12毫米內。而圖4C的畸變像差圖式則顯示本第二實施例的畸變像差維持在±1.4%的範圍內。據此可知,本第二實施例的光學成像鏡頭100在鏡頭全長已
縮短至2.03毫米左右的條件下,可具有良好的光學成像品質。
In the two field curvature aberration diagrams in FIGS. 4A and 4B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.12 mm. The distortion aberration diagram in FIG. 4C shows that the distortion aberration of the second embodiment is maintained within a range of ±1.4%. Based on this, it can be seen that the
圖5為本發明的第三實施例的一種指紋辨識模組的示意圖。圖6A至圖6C為第三實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第三實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。
FIG. 5 is a schematic diagram of a fingerprint recognition module according to the third embodiment of the present invention. 6A to 6C are various aberration diagrams of the third embodiment. Please refer to FIG. 3 first, a third embodiment of the
第三實施例的其他的詳細光學數據如下方表七所示。第三實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表八所示:
第三實施例的光學成像鏡頭100中各重要參數間的關係如表九所示。
The relationship among the important parameters in the
在圖6A與圖6B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.14毫米內。而圖6C的畸變像差圖式則顯示本第三實施例的畸變像差維持在±1.8%的範圍內。據此可知,本第三實施例的光學成像鏡頭100在鏡頭全長已縮短至2.21毫米左右的條件下,可具有良好的光學成像品質。
In the two field curvature aberration diagrams in FIGS. 6A and 6B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.14 mm. The distortion aberration diagram in FIG. 6C shows that the distortion aberration of the third embodiment is maintained within the range of ±1.8%. Based on this, it can be seen that the
圖7為本發明的第二實施例的一種指紋辨識模組的示意圖。圖8A至圖8C為第四實施例的各項像差圖。請先參照圖3,本發明指紋辨識模組200的一第四實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。
FIG. 7 is a schematic diagram of a fingerprint recognition module according to the second embodiment of the present invention. 8A to 8C are various aberration diagrams of the fourth embodiment. Please refer to FIG. 3 first. A fourth embodiment of the
第四實施例的其他的詳細光學數據如下方表十所示。第四實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表十一所示:
第四實施例的光學成像鏡頭100中各重要參數間的關係如表十二所示。
The relationship among the important parameters in the
在圖8A與圖8B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.18毫米內。而圖8C的畸變像差圖式則顯示本第四實施例的畸變像差維持在±1.1%的範圍內。據此可知,本第四實施例的光學成像鏡頭100在鏡頭全長已縮短至2.26毫米左右的條件下,可具有良好的光學成像品質。
In the two field curvature aberration diagrams in FIGS. 8A and 8B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.18 mm. The distortion aberration diagram of FIG. 8C shows that the distortion aberration of the fourth embodiment is maintained within the range of ±1.1%. It can be seen from this that the
圖9為本發明的第五實施例的一種指紋辨識模組的示意圖。圖10A至圖10C為第五實施例的各項像差圖。請先參照圖9,本發明指紋辨識模組200的一第五實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3的參數或多或少有些不同。
FIG. 9 is a schematic diagram of a fingerprint recognition module according to the fifth embodiment of the present invention. 10A to 10C are various aberration diagrams of the fifth embodiment. Please refer to FIG. 9 first. A fifth embodiment of the
第五實施例的其他的詳細光學數據如下方表十三所示。
第五實施例的第一透鏡1的物側面11到第五透鏡5的像側面52在公式(1)中的各項非球面係數如表十四所示:
第五實施例的光學成像鏡頭100中各重要參數間的關係如表十五所示。
The relationship among the important parameters in the
在圖10A與圖10B的二個場曲像差圖示中,三種代表波長在整個視場範圍內的焦距變化量落在±0.3毫米內。而圖10C的畸變像差圖式則顯示本第五實施例的畸變像差維持在±4.5%的範
圍內。據此可知,本第五實施例的光學成像鏡頭100在鏡頭全長已縮短至1.85毫米左右的條件下,可具有良好的光學成像品質。
In the two field curvature aberration diagrams in FIGS. 10A and 10B, the focal length variation of the three representative wavelengths within the entire field of view falls within ±0.3 mm. The distortion aberration diagram in FIG. 10C shows that the distortion aberration of the fifth embodiment is maintained in the range of ±4.5%.
Inside. Based on this, it can be seen that the
應注意的是,在上述的實施例中,第一透鏡1的物側面11為凸面,即其光軸附近區域與圓周附近區域皆為凸面。於其他實施例中,第一透鏡的物側面的光軸附近區域及圓周附近區域亦可分別被設計為以下三種面形組合:1.凸面、凹面;2.凹面、凸面;3.凹面、凹面,本發明並不以第一透鏡的物側面的面形為限。
It should be noted that in the above-mentioned embodiment, the
在本發明的實施例的光學成像鏡頭100可以獲致下述的功效:
在本發明實施例的光學成像鏡頭100中,藉由將第一至第三透鏡1~3的屈光率依序設計為負、正、正,並搭配以下的面形設計,即第一透鏡1的像側面12為凹面、第二透鏡2的物側面21為凸面、第三透鏡3的像側面32為凸面,藉此在能夠在短的鏡頭總長的情況下兼具有良好的光學品質。
The
在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.9≧|f/f1|≧0.4。
In the
在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.2≧f/f2≧0.1。
In the
在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:1.8≧f/f3≧0.2。
In the
承上述,詳細來說,在本發明實施例的光學成像鏡頭100中,搭配上述的透鏡屈光率組合、面形設計並滿足上述焦距的條
件式,可達到以下效果:第一透鏡1的屈光率設計為負,是為了要將大角度的成像光線收進後方的透鏡,以達到廣視場角及降低畸變的目的。第二透鏡2的屈光率設計為正且其將其焦距設計為較大,可以聚焦並輔助第一透鏡1提升視場角及降低畸變,以縮小第一透鏡1外徑達成縮小體積之目的。並且,搭配將第三透鏡3的屈光率設計為正且將其焦距設計為較小,其可用以聚焦並修正入射像平面的角度。
In view of the above, in detail, in the
在本發明實施例的光學成像鏡頭100中,藉由將光圈0的位置設於第二、第三鏡片2、3之間,可以加大光圈並且提升像高以增加成像面積。
In the
在本發明實施例的光學成像鏡頭100中,藉由滿足以下的條件式:(R1+R2)/(R1-R2)<2,可使第一透鏡1的像側面12相較於其物側面11的變形較為明顯,以讓第一透鏡1收光角度比較大。
In the
在本發明實施例的光學成像鏡頭100中,藉由滿足以下的條件式:(ET1-CT1)/(ET1+CT1)>0,可使第一透鏡1的中心厚度CT1較邊緣厚度ET1為薄,以讓第一透鏡1收光角度比較大,畸變較小。
In the
在本發明實施例的光學成像鏡頭100中,第一透鏡1至第三透鏡3的材質可滿足以下的條件式:1.86≧(n1+n2+n3)/(n1*n2*n3)≧0.85,即第一透鏡1至第三透鏡3的折射率n1~n3可選擇折射率介於1.4至1.7範圍內的物質。
In the
在本發明實施例的光學成像鏡頭100中,其視場角在85
度至140度之間,具有較廣視場角的範圍,即光學成像鏡頭100滿足以下的條件式:2.74≧tan(HFOV)≧0.92。
In the
在本發明實施例的光學成像鏡頭100中,其滿足以下的條件式:5≧TTL/ImgH≧1,藉由滿足此條件式,可限制鏡頭總長與像高比例關係。若TTL/ImgH小於1,則代表鏡頭總長相對像高太短則公差敏感且製造性差。若TTL/ImgH大於5,則代表鏡頭總長相對像高太長會導致產品體積過大。
In the
0:光圈 0: aperture
1:第一透鏡 1: the first lens
2:第二透鏡 2: second lens
3:第三透鏡 3: The third lens
211、11、21、31、221:物側面 211, 11, 21, 31, 221: Object side
212、12、22、32、222:像側面 212, 12, 22, 32, 222: like side
100:光學成像鏡頭 100: Optical imaging lens
200:指紋辨識模組 200: Fingerprint recognition module
210:蓋板 210: cover
220:濾光片 220: filter
230:影像感測器 230: image sensor
C:第一透鏡的中心 C: The center of the first lens
CT1:中心厚度 CT1: Center thickness
E1、E2:邊 E1, E2: Edge
ET1:邊緣厚度 ET1: Edge thickness
IP:成像面 IP: imaging surface
I:光軸 I: Optical axis
IS:像側 IS: image side
OS:物側 OS: Object side
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144602A TWI721686B (en) | 2019-12-06 | 2019-12-06 | Fingerprint identification module and optical imaging lens |
CN201911300565.0A CN112925084A (en) | 2019-12-06 | 2019-12-17 | Fingerprint identification module and optical imaging lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144602A TWI721686B (en) | 2019-12-06 | 2019-12-06 | Fingerprint identification module and optical imaging lens |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI721686B true TWI721686B (en) | 2021-03-11 |
TW202122854A TW202122854A (en) | 2021-06-16 |
Family
ID=76035942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144602A TWI721686B (en) | 2019-12-06 | 2019-12-06 | Fingerprint identification module and optical imaging lens |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112925084A (en) |
TW (1) | TWI721686B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737080A (en) * | 2018-07-19 | 2020-01-31 | 新巨科技股份有限公司 | Thin imaging lens group |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11832791B2 (en) * | 2021-09-17 | 2023-12-05 | Altek Biotechnology Corporation | Optical imaging lens assembly and endoscopic optical device |
CN113777759B (en) * | 2021-10-14 | 2024-12-27 | 辽宁中蓝光电科技有限公司 | Fingerprint recognition optical lens |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070046926A1 (en) * | 2005-08-26 | 2007-03-01 | Jung-Chun Wu | Fingerprint identification assembly using reflection to identify pattern of a fingerprint |
US20080260365A1 (en) * | 2007-04-20 | 2008-10-23 | Hon Hai Precision Industry Co., Ltd. | Image capturing apparatus |
TWI533020B (en) * | 2015-01-09 | 2016-05-11 | 大立光電股份有限公司 | Compact optical system, image capturing unit and electronic device |
TWM569426U (en) * | 2018-08-13 | 2018-11-01 | 印芯科技股份有限公司 | Optical imaging lens set and fingerprint identification device |
WO2019164359A1 (en) * | 2018-02-23 | 2019-08-29 | 삼성전자 주식회사 | Method for acquiring image corresponding to infrared rays by using camera module comprising lens capable of absorbing light in visible light band and electronic device implementing same |
TWI676045B (en) * | 2018-03-31 | 2019-11-01 | 金佶科技股份有限公司 | Image capturing apparatus |
TWI691733B (en) * | 2019-04-10 | 2020-04-21 | 大立光電股份有限公司 | Optical photographing lens assembly, fingerprint identification module and electronic device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002055278A (en) * | 2000-05-30 | 2002-02-20 | Minolta Co Ltd | Image pickup lens device |
JP2007041080A (en) * | 2005-07-29 | 2007-02-15 | Hoya Corp | Imaging lens and imaging apparatus |
JP2007133324A (en) * | 2005-11-14 | 2007-05-31 | Sony Corp | Lens unit |
JP4815319B2 (en) * | 2006-09-29 | 2011-11-16 | 富士フイルム株式会社 | Imaging lens and camera device provided with the same |
JP5096226B2 (en) * | 2008-05-16 | 2012-12-12 | パナソニック株式会社 | Wide angle lens |
CN201383032Y (en) * | 2008-12-16 | 2010-01-13 | 富士能株式会社 | Camera lens and camera head using same |
TWM368071U (en) * | 2009-03-06 | 2009-11-01 | Fujinon Corp | Photographing lens and photographing device |
KR101118910B1 (en) * | 2010-03-05 | 2012-03-13 | 주식회사 코렌 | Photographic lens optical system |
TWI427355B (en) * | 2011-02-23 | 2014-02-21 | Largan Precision Co Ltd | Wide viewing angle optical lens assembly |
TWI506296B (en) * | 2011-10-14 | 2015-11-01 | Hon Hai Prec Ind Co Ltd | Lens module system |
CN103048767B (en) * | 2011-10-14 | 2016-05-11 | 鸿富锦精密工业(深圳)有限公司 | Lens system |
TWM459408U (en) * | 2013-04-15 | 2013-08-11 | Ability Opto Electronics Technology Co Ltd | Thin type wide-angle three-piece type imaging lens module |
CN103777315B (en) * | 2013-11-15 | 2016-05-11 | 浙江舜宇光学有限公司 | Miniature wide-angle imaging lens |
CN105988201B (en) * | 2015-04-08 | 2018-09-07 | 浙江舜宇光学有限公司 | Interactive camera lens |
CN106443977B (en) * | 2015-08-06 | 2018-10-09 | 亚太精密工业(深圳)有限公司 | Wide-angle lens |
CN206282024U (en) * | 2015-09-28 | 2017-06-27 | 富士胶片株式会社 | Imaging lens system and possesses the camera head of imaging lens system |
WO2017068726A1 (en) * | 2015-10-23 | 2017-04-27 | オリンパス株式会社 | Imaging device and optical device provided with same |
CN207636833U (en) * | 2017-03-27 | 2018-07-20 | 惠州市众泰光电科技有限公司 | A kind of optical lenses |
CN108037577B (en) * | 2017-12-08 | 2020-06-26 | 深圳市莱通光学科技有限公司 | Image capturing lens |
CN207516710U (en) * | 2017-12-13 | 2018-06-19 | 浙江舜宇光学有限公司 | Projection lens |
CN110412715A (en) * | 2018-04-26 | 2019-11-05 | 光芒光学股份有限公司 | Lens and its manufacturing method |
CN210038312U (en) * | 2018-08-21 | 2020-02-07 | 深圳市汇顶科技股份有限公司 | Lens system, fingerprint identification device and terminal equipment |
CN209014800U (en) * | 2018-11-28 | 2019-06-21 | 中山联合光电科技股份有限公司 | An ultra-short conjugate distance optical lens |
CN110187480B (en) * | 2019-07-23 | 2019-10-25 | 江西联益光学有限公司 | Imaging Lens System |
-
2019
- 2019-12-06 TW TW108144602A patent/TWI721686B/en active
- 2019-12-17 CN CN201911300565.0A patent/CN112925084A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070046926A1 (en) * | 2005-08-26 | 2007-03-01 | Jung-Chun Wu | Fingerprint identification assembly using reflection to identify pattern of a fingerprint |
US20080260365A1 (en) * | 2007-04-20 | 2008-10-23 | Hon Hai Precision Industry Co., Ltd. | Image capturing apparatus |
TWI533020B (en) * | 2015-01-09 | 2016-05-11 | 大立光電股份有限公司 | Compact optical system, image capturing unit and electronic device |
WO2019164359A1 (en) * | 2018-02-23 | 2019-08-29 | 삼성전자 주식회사 | Method for acquiring image corresponding to infrared rays by using camera module comprising lens capable of absorbing light in visible light band and electronic device implementing same |
TWI676045B (en) * | 2018-03-31 | 2019-11-01 | 金佶科技股份有限公司 | Image capturing apparatus |
TWM569426U (en) * | 2018-08-13 | 2018-11-01 | 印芯科技股份有限公司 | Optical imaging lens set and fingerprint identification device |
TWI691733B (en) * | 2019-04-10 | 2020-04-21 | 大立光電股份有限公司 | Optical photographing lens assembly, fingerprint identification module and electronic device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737080A (en) * | 2018-07-19 | 2020-01-31 | 新巨科技股份有限公司 | Thin imaging lens group |
Also Published As
Publication number | Publication date |
---|---|
CN112925084A (en) | 2021-06-08 |
TW202122854A (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250093625A1 (en) | Optical imaging system | |
TWI660194B (en) | Optical system | |
TWI516791B (en) | Mobile device and optical imaging lens thereof | |
TWI391701B (en) | Imaging lens assembly | |
TWI541556B (en) | Mobile device and optical imaging lens thereof | |
TWI424187B (en) | Image capturing optical system | |
CN201984203U (en) | Optical lens assembly for image pickup | |
TWI507722B (en) | Mobile device and optical imaging lens thereof | |
TWI512319B (en) | Mobile device and optical imaging lens thereof | |
TWI629501B (en) | Wide angle imaging lens assembly | |
TWI407140B (en) | Photographing lens assembly | |
TWI479188B (en) | Electronic device and its optical imaging lens | |
CN209388019U (en) | imaging device | |
TWI467217B (en) | Mobile device and optical imaging lens thereof | |
TWI704386B (en) | Image capturing apparatus | |
TWI424214B (en) | Photographing optical lens assembly | |
TWM569426U (en) | Optical imaging lens set and fingerprint identification device | |
TWI475245B (en) | Optics lens assembly for image capture and image capture device thereof | |
TW201525519A (en) | Mobile device and optical imaging lens thereof | |
TWI721686B (en) | Fingerprint identification module and optical imaging lens | |
TWI529411B (en) | Optical imaging lens and eletronic device comprising the same | |
TWI421559B (en) | Optical photographing lens assembly | |
TW201533468A (en) | Mobile device and optical imaging lens thereof | |
TW202011074A (en) | Wide angle imaging lens | |
TW201329499A (en) | Mobile device and optical imaging lens thereof |