TWI719631B - Apparatus and method for scanning artificial structure - Google Patents
Apparatus and method for scanning artificial structure Download PDFInfo
- Publication number
- TWI719631B TWI719631B TW108132837A TW108132837A TWI719631B TW I719631 B TWI719631 B TW I719631B TW 108132837 A TW108132837 A TW 108132837A TW 108132837 A TW108132837 A TW 108132837A TW I719631 B TWI719631 B TW I719631B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic field
- field sensor
- axis
- measurement value
- sequence
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000005259 measurement Methods 0.000 claims abstract description 618
- 239000013598 vector Substances 0.000 claims description 90
- 230000006698 induction Effects 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 21
- 230000005358 geomagnetic field Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 101000937756 Homo sapiens Box C/D snoRNA protein 1 Proteins 0.000 description 4
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 4
- 102100020679 Krueppel-like factor 6 Human genes 0.000 description 4
- 238000009412 basement excavation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
本發明係有關一種人造物結構掃瞄裝置及其掃瞄方法,由指一種具有至少四個設置於不共平面之磁場感應器之人造物結構掃瞄裝置及其掃瞄方法。 The invention relates to an artificial object structure scanning device and its scanning method, and refers to an artificial object structure scanning device and its scanning method having at least four magnetic field sensors arranged in a non-coplanar plane.
請參閱第12圖,其係為習知技術磁場量測示意圖。習知技術是應用於精確量測一地磁場BEarth(向量場)。但由於磁場量測很容易受到干擾,習知技術係將一精密磁場量測儀91懸吊於一直昇機90之下方,由直昇機90懸吊著精密磁場量測儀91在待測區域進行磁場量測。其懸吊之長度要足夠長,才能避免直昇機90感應產生之一感應磁場影響到精密磁場量測儀91之量測數據;且需使用高精密度的精密磁場量測儀91,才能精確量測磁場。然而,地面上的人造物結構會因感應而產生出一人造物結構磁場BArtificial(向量場),特別是當人造物結構包括有導體的材料時,更容易因感應而產生出人造物結構磁場BArtificial。因此,習知技術在進行磁場量測時,精密磁場量測儀91需離地面有一定之高度,以避免受到地面上的一些物體,特別是人造物結構,感應而產生之人造物結構磁場BArtificial之影響。
Please refer to Figure 12, which is a schematic diagram of conventional magnetic field measurement. The conventional technique is applied to accurately measure the BEAth (vector field) of a geomagnetic field. However, since the magnetic field measurement is easily interfered, the conventional technology is to suspend a precision magnetic
一般在進行道路路面挖掘或是一些施工區域的挖掘工作時,常常會遇到不小心挖到一些管線的狀況。偶爾還會不小心挖到像是瓦
斯管線等,非常危險。如何能在進行挖掘之前,就先發現地下是否有管線存在,這一直是個無法解決的問題。習知技術雖能精確地量測磁場,但其所量測到的磁場量測值(向量)是包含了量測位置之地磁場BEarth以及人造物結構磁場BArtificial之總和。故,習知技術以一個精密磁場量測儀91是無法分別出其磁場量測值(向量)的地磁場BEarth的分量之大小以及方向,也無法分別出人造物結構磁場BArtificial的分量之大小以及方向。故習知技術並無法應用於量測人造物結構感應而產生之人造物結構磁場BArtificial,無法將其應用於掃瞄地面下之人造物結構。
Generally, during road excavation or excavation in some construction areas, some pipelines are often accidentally dug. Occasionally, accidentally digging into gas pipelines, etc., is very dangerous. How to find out whether there are pipelines underground before digging has been an unsolvable problem. Although the conventional technology can accurately measure the magnetic field, but its measurement of the magnetic field measured value (vector) comprising the sum of the geomagnetic field measuring position and BEarth BArtificial field of man-made structures. Therefore, the conventional technology using a precision magnetic
有鑑於此,發明人開發出簡便組裝的設計,能夠以量測磁場之技術來掃瞄地面下之人造物結構,不僅安裝方便,又具有成本低廉的優點,以兼顧使用彈性與經濟性等考量,因此遂有本發明之產生。 In view of this, the inventor has developed a design that is easy to assemble, which can scan the structure of man-made objects under the ground with the technology of measuring magnetic field. It is not only convenient to install, but also has the advantages of low cost, in order to take into account flexibility and economic considerations Therefore, the present invention was born.
本發明所欲解決之技術問題是如何提供一種人造物結構掃瞄裝置及其掃瞄方法,以掃瞄地面下之人造物結構,以避免挖掘到地面下之人造物結構。 The technical problem to be solved by the present invention is how to provide a man-made structure scanning device and a scanning method thereof to scan the man-made structure under the ground so as to avoid the man-made structure under the ground.
為解決前述問題,以達到所預期之功效,本發明提供一種人造物結構掃瞄方法,其中一人造物結構掃瞄裝置包括一磁場感應部,磁場感應部包括一第一磁場感應器、一第二磁場感應器、一第三磁場感應器以及一第四磁場感應器,第一磁場感應器、第二磁場感應器、第三磁場感應器以及第四磁場感應器係設置於不共平面上,人造物結構掃瞄方法包括以下步驟:步驟A:使人造物結構掃瞄裝置沿著一待測區域內之一掃瞄路徑移動,於移動期間分別以第一磁場感應器、第二磁場感應器、第三磁場感應 器以及第四磁場感應器進行磁場量測而分別測得一第一磁場量測值序列、一第二磁場量測值序列、一第三磁場量測值序列以及一第四磁場量測值序列,並記錄磁場量測時之一位置序列;以及步驟B:由第一磁場量測值序列、第二磁場量測值序列、第三磁場量測值序列、第四磁場量測值序列以及位置序列計算而得一磁場變異分佈,其中磁場變異分佈係相對應於一人造物結構分佈。 In order to solve the aforementioned problems and achieve the expected effect, the present invention provides a scanning method for man-made structures, wherein a scanning device for man-made structures includes a magnetic field sensor, and the magnetic field sensor includes a first magnetic field sensor and a second magnetic field sensor. The magnetic field sensor, a third magnetic field sensor, and a fourth magnetic field sensor. The first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, and the fourth magnetic field sensor are arranged on a non-coplanar plane. The object structure scanning method includes the following steps: Step A: Move the man-made object structure scanning device along a scanning path in an area to be measured, and use the first magnetic field sensor, the second magnetic field sensor, and the second magnetic field sensor respectively during the movement. Three magnetic field induction The device and the fourth magnetic field sensor perform magnetic field measurement to respectively measure a first magnetic field measurement value sequence, a second magnetic field measurement value sequence, a third magnetic field measurement value sequence, and a fourth magnetic field measurement value sequence , And record a position sequence during the magnetic field measurement; and Step B: From the first magnetic field measurement value sequence, the second magnetic field measurement value sequence, the third magnetic field measurement value sequence, the fourth magnetic field measurement value sequence, and the position The sequence calculation obtains a magnetic field variation distribution, where the magnetic field variation distribution corresponds to the structure distribution of an artificial object.
於實施時,前述之人造物結構掃瞄方法,其更包括以下一步驟:步驟A0:由第一磁場感應器、第二磁場感應器、第三磁場感應器以及第四磁場感應器分別量測人造物結構掃瞄裝置所產生之一儀器磁場而分別測得一第一儀器磁場量測值、一第二儀器磁場量測值、一第三儀器磁場量測值以及一第四儀器磁場量測值;其中在步驟B中,磁場變異分佈係由第一磁場量測值序列減去第一儀器磁場量測值、第二磁場量測值序列減去第二儀器磁場量測值、第三磁場量測值序列減去第三儀器磁場量測值、第四磁場量測值序列減去第四儀器磁場量測值以及位置序列計算而得;其中方法之步驟執行順序係為(1)依序執行步驟A0、步驟A以及步驟B,或(2)依序執行步驟A、步驟A0以及步驟B。 When implemented, the aforementioned artificial object structure scanning method further includes the following step: Step A0: measure by the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, and the fourth magnetic field sensor respectively An instrument magnetic field generated by the man-made structure scanning device separately measures a first instrument magnetic field measurement value, a second instrument magnetic field measurement value, a third instrument magnetic field measurement value, and a fourth instrument magnetic field measurement Value; where in step B, the magnetic field variation distribution system is subtracted from the first magnetic field measurement value sequence minus the first instrument magnetic field measurement value, the second magnetic field measurement value sequence minus the second instrument magnetic field measurement value, the third magnetic field The measurement value sequence is calculated by subtracting the third instrument's magnetic field measurement value, the fourth magnetic field measurement value sequence subtracting the fourth instrument's magnetic field measurement value and the position sequence; the method's step execution sequence is (1) Sequential Perform step A0, step A, and step B, or (2) perform step A, step A0, and step B in sequence.
於實施時,前述之人造物結構掃瞄方法,步驟B包括以下步驟:由位置序列以及將第一磁場量測值序列減去第一儀器磁場量測值計算出一第一磁場量測值分佈;由位置序列以及將第二磁場量測值序列減去第二儀器磁場量測值計算出一第二磁場量測值分佈;由位置序列以及將第三磁場量測值序列減去第三儀器磁場量測值計算出一第三磁場量測值分佈;由位置序列以及將第四磁場量測值序列減去第四儀器磁場量測值計算出一 第四磁場量測值分佈;以及由第一磁場量測值分佈、第二磁場量測值分佈、第三磁場量測值分佈以及第四磁場量測值分佈計算出磁場變異分佈。 In the implementation, step B of the aforementioned artificial object structure scanning method includes the following steps: calculate a first magnetic field measurement value distribution from the position sequence and the first magnetic field measurement value sequence minus the first instrument magnetic field measurement value ; Calculate a second magnetic field measurement value distribution from the position sequence and the second magnetic field measurement value sequence minus the second instrument’s magnetic field measurement value; subtract the third instrument from the position sequence and the third magnetic field measurement value sequence The magnetic field measurement value calculates a third magnetic field measurement value distribution; from the position sequence and the fourth magnetic field measurement value sequence minus the fourth instrument’s magnetic field measurement value, a third magnetic field measurement value distribution is calculated. A fourth magnetic field measurement value distribution; and the magnetic field variation distribution is calculated from the first magnetic field measurement value distribution, the second magnetic field measurement value distribution, the third magnetic field measurement value distribution, and the fourth magnetic field measurement value distribution.
於實施時,前述之人造物結構掃瞄方法,其中磁場感應部更包括一第五磁場感應器、一第六磁場感應器、一第七磁場感應器以及一第八磁場感應器;其中步驟A更包括以下步驟:於移動期間分別以第五磁場感應器、第六磁場感應器、第七磁場感應器以及第八磁場感應器進行磁場量測而分別測得一第五磁場量測值序列、一第六磁場量測值序列、一第七磁場量測值序列以及一第八磁場量測值序列;其中於步驟B中,磁場變異分佈係由第一磁場量測值序列、第二磁場量測值序列、第三磁場量測值序列、第四磁場量測值序列、第五磁場量測值序列、第六磁場量測值序列、第七磁場量測值序列、第八磁場量測值序列以及位置序列計算而得。 In the implementation of the aforementioned artificial object structure scanning method, the magnetic field sensor further includes a fifth magnetic field sensor, a sixth magnetic field sensor, a seventh magnetic field sensor, and an eighth magnetic field sensor; where step A It further includes the following steps: performing magnetic field measurements with the fifth magnetic field sensor, the sixth magnetic field sensor, the seventh magnetic field sensor, and the eighth magnetic field sensor during the movement to respectively measure a fifth magnetic field measurement value sequence, A sixth magnetic field measurement value sequence, a seventh magnetic field measurement value sequence, and an eighth magnetic field measurement value sequence; wherein in step B, the magnetic field variation distribution is determined by the first magnetic field measurement value sequence and the second magnetic field measurement value sequence Measured value sequence, third magnetic field measurement value sequence, fourth magnetic field measurement value sequence, fifth magnetic field measurement value sequence, sixth magnetic field measurement value sequence, seventh magnetic field measurement value sequence, and eighth magnetic field measurement value sequence Sequence and position sequence are calculated.
於實施時,前述之人造物結構掃瞄方法,其更包括以下一步驟:步驟A0:由第一磁場感應器、第二磁場感應器、第三磁場感應器、第四磁場感應器、第五磁場感應器、第六磁場感應器、第七磁場感應器以及第八磁場感應器分別量測人造物結構掃瞄裝置所產生之一儀器磁場而分別測得一第一儀器磁場量測值、一第二儀器磁場量測值、一第三儀器磁場量測值、一第四儀器磁場量測值、一第五儀器磁場量測值、一第六儀器磁場量測值、一第七儀器磁場量測值以及一第八儀器磁場量測值;其中在步驟B中,磁場變異分佈係由第一磁場量測值序列減去第一儀器磁場量測值、第二磁場量測值序列減去第二儀器磁場量測值、第三磁場量測值序列減去第三儀器磁場量測值、第四磁場量測值序列減去第四儀器磁場量測值、第五磁場量測值序列減去第五儀器磁場量測值、第六磁場量測值序列減去第六 儀器磁場量測值、第七磁場量測值序列減去第七儀器磁場量測值、第八磁場量測值序列減去第八儀器磁場量測值以及位置序列計算而得;其中方法之步驟執行順序係為(1)依序執行步驟A0、步驟A以及步驟B,或(2)依序執行步驟A、步驟A0以及步驟B。 When implemented, the aforementioned scanning method for man-made structures further includes the following steps: Step A0: From the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, the fourth magnetic field sensor, and the fifth magnetic field sensor. The magnetic field sensor, the sixth magnetic field sensor, the seventh magnetic field sensor, and the eighth magnetic field sensor respectively measure an instrument magnetic field generated by the artificial object structure scanning device, and respectively measure a first instrument magnetic field measurement value and a first instrument magnetic field measurement value. The magnetic field measurement value of the second instrument, the magnetic field measurement value of the third instrument, the magnetic field measurement value of the fourth instrument, the magnetic field measurement value of the fifth instrument, the magnetic field measurement value of the sixth instrument, the magnetic field measurement value of the seventh instrument Measured value and an eighth instrument magnetic field measurement value; wherein in step B, the magnetic field variation distribution is the first magnetic field measurement value sequence minus the first instrument magnetic field measurement value, and the second magnetic field measurement value sequence minus the first Second, the magnetic field measurement value of the instrument, the third magnetic field measurement value sequence minus the third instrument magnetic field measurement value, the fourth magnetic field measurement value sequence subtracts the fourth instrument magnetic field measurement value, the fifth magnetic field measurement value sequence subtracts The fifth instrument magnetic field measurement value, the sixth magnetic field measurement value sequence minus the sixth Calculated by the instrument magnetic field measurement value, the seventh magnetic field measurement value sequence minus the seventh instrument magnetic field measurement value, the eighth magnetic field measurement value sequence minus the eighth instrument magnetic field measurement value and the position sequence; the steps of the method The execution sequence is (1) Step A0, Step A, and Step B are executed in sequence, or (2) Step A, Step A0, and Step B are executed in sequence.
於實施時,前述之人造物結構掃瞄方法,其中在步驟A0中,由第一磁場感應器量測儀器磁場,包括以下步驟:步驟A11:使人造物結構掃瞄裝置沿著第一磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第一磁場感應器進行磁場量測而測得一第一磁場感應器第一軸量測值序列;步驟A12:使人造物結構掃瞄裝置沿著第一磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第一磁場感應器進行磁場量測而測得一第一磁場感應器第二軸量測值序列,其中第一磁場感應器之第一軸係與第一磁場感應器之第二軸正交;以及步驟A13:由第一磁場感應器第一軸量測值序列以及第一磁場感應器第二軸量測值序列計算出第一儀器磁場量測值;其中由第二磁場感應器量測儀器磁場,包括以下步驟:步驟A21:使人造物結構掃瞄裝置沿著第二磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第二磁場感應器進行磁場量測而測得一第二磁場感應器第一軸量測值序列;步驟A22:使人造物結構掃瞄裝置沿著第二磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第二磁場感應器進行磁場量測而測得一第二磁場感應器第二軸量測值序列,其中第二磁場感應器之第一軸係與第二磁場感應器之第二軸正交;以及步驟A23:由第二磁場感應器第一軸量測值序列以及第二磁場感應器第二軸量測值序列計算出第二儀器磁場量測值;其中由第三磁場感應器量測儀器磁場,包括以下步驟:步驟A31:使人造物結構掃瞄裝 置沿著第三磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第三磁場感應器進行磁場量測而測得一第三磁場感應器第一軸量測值序列;步驟A32:使人造物結構掃瞄裝置沿著第三磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第三磁場感應器進行磁場量測而測得一第三磁場感應器第二軸量測值序列,其中第三磁場感應器之第一軸係與第三磁場感應器之第二軸正交;以及步驟A33:由第三磁場感應器第一軸量測值序列以及第三磁場感應器第二軸量測值序列計算出第三儀器磁場量測值;其中由第四磁場感應器量測儀器磁場,包括以下步驟:步驟A41:使人造物結構掃瞄裝置沿著第四磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第四磁場感應器進行磁場量測而測得一第四磁場感應器第一軸量測值序列;步驟A42:使人造物結構掃瞄裝置沿著第四磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第四磁場感應器進行磁場量測而測得一第四磁場感應器第二軸量測值序列,其中第四磁場感應器之第一軸係與第四磁場感應器之第二軸正交;以及步驟A43:由第四磁場感應器第一軸量測值序列以及第四磁場感應器第二軸量測值序列計算出第四儀器磁場量測值。 In implementation, the aforementioned artificial object structure scanning method, wherein in step A0, the first magnetic field sensor measures the magnetic field of the instrument, including the following steps: Step A11: the artificial object structure scanning device is induced along the first magnetic field One of the first axis of the device is rotated at least 180°, and the first magnetic field sensor performs magnetic field measurement during the rotation to obtain a first axis measurement value sequence of the first magnetic field sensor; Step A12: Scan the man-made structure The sight device rotates at least 180° along a second axis of the first magnetic field sensor, and during the rotation, the first magnetic field sensor performs magnetic field measurement to obtain a sequence of first magnetic field sensor second axis measurement values, The first axis of the first magnetic field sensor is orthogonal to the second axis of the first magnetic field sensor; and Step A13: the first axis measurement sequence of the first magnetic field sensor and the second axis of the first magnetic field sensor The measured value sequence is used to calculate the magnetic field measurement value of the first instrument. The measurement of the instrument magnetic field by the second magnetic field sensor includes the following steps: Step A21: Move the man-made structure scanning device along one of the second magnetic field sensors One axis rotates at least 180°, and the second magnetic field sensor performs the magnetic field measurement during the rotation to obtain a second magnetic field sensor first axis measurement value sequence; Step A22: Move the artificial object structure scanning device along A second axis of the second magnetic field sensor rotates at least 180°, and during the rotation, the second magnetic field sensor performs magnetic field measurement to obtain a second axis measurement value sequence of the second magnetic field sensor, wherein the second magnetic field The first axis of the sensor is orthogonal to the second axis of the second magnetic field sensor; and Step A23: The first axis measurement value sequence of the second magnetic field sensor and the second axis measurement value sequence of the second magnetic field sensor Calculate the measured value of the magnetic field of the second instrument; wherein the third magnetic field sensor measures the magnetic field of the instrument, including the following steps: Step A31: Scanning the structure of the man-made object The third magnetic field sensor is rotated at least 180° along a first axis of the third magnetic field sensor, and the third magnetic field sensor performs magnetic field measurement during the rotation to obtain a measurement value sequence of the first axis of the third magnetic field sensor; step A32: Rotate the man-made structure scanning device at least 180° along one of the second axis of the third magnetic field sensor, and measure the magnetic field by the third magnetic field sensor during the rotation to obtain a third magnetic field sensor A sequence of two-axis measurement values, in which the first axis of the third magnetic field sensor is orthogonal to the second axis of the third magnetic field sensor; and Step A33: the sequence of the first axis measurement value of the third magnetic field sensor and the second axis The second-axis measurement value sequence of the three magnetic field sensor calculates the magnetic field measurement value of the third instrument; wherein the fourth magnetic field sensor measures the magnetic field of the instrument, including the following steps: Step A41: Move the man-made structure scanning device along the first The first axis of one of the four magnetic field sensors rotates at least 180°, and the fourth magnetic field sensor performs magnetic field measurement during the rotation to obtain a sequence of the first axis measurement values of the fourth magnetic field sensor; Step A42: Make artificial The object structure scanning device rotates at least 180° along one of the second axis of the fourth magnetic field sensor, and the fourth magnetic field sensor performs the magnetic field measurement during the rotation to obtain the second axis measurement of the fourth magnetic field sensor A sequence of values, in which the first axis of the fourth magnetic field sensor is orthogonal to the second axis of the fourth magnetic field sensor; and Step A43: the sequence of values measured by the first axis of the fourth magnetic field sensor and the fourth magnetic field sensor The second axis measurement value sequence calculates the fourth instrument magnetic field measurement value.
於實施時,前述之人造物結構掃瞄方法,其中在步驟A0中,其中由第五磁場感應器量測儀器磁場,包括以下步驟:步驟A51:使人造物結構掃瞄裝置沿著第五磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第五磁場感應器進行磁場量測而測得一第五磁場感應器第一軸量測值序列;步驟A52:使人造物結構掃瞄裝置沿著第五磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第五磁場感應器進行磁場量測而測得一第五磁場感應器第二軸量測值序列,其中第五磁場感應器之第一軸係與第五磁場感 應器之第二軸正交;以及步驟A53:由第五磁場感應器第一軸量測值序列以及第五磁場感應器第二軸量測值序列計算出第五儀器磁場量測值;其中由第六磁場感應器量測儀器磁場,包括以下步驟:步驟A61:使人造物結構掃瞄裝置沿著第六磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第六磁場感應器進行磁場量測而測得一第六磁場感應器第一軸量測值序列;步驟A62:使人造物結構掃瞄裝置沿著第六磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第六磁場感應器進行磁場量測而測得一第六磁場感應器第二軸量測值序列,其中第六磁場感應器之第一軸係與第六磁場感應器之第二軸正交;以及步驟A63:由第六磁場感應器第一軸量測值序列以及第六磁場感應器第二軸量測值序列計算出第六儀器磁場量測值;其中由第七磁場感應器量測儀器磁場,包括以下步驟:步驟A71:使人造物結構掃瞄裝置沿著第七磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第七磁場感應器進行磁場量測而測得一第七磁場感應器第一軸量測值序列;步驟A72:使人造物結構掃瞄裝置沿著第七磁場感應器之一第二軸旋轉至少180°,並於旋轉期間由第七磁場感應器進行磁場量測而測得一第七磁場感應器第二軸量測值序列,其中第七磁場感應器之第一軸係與第七磁場感應器之第二軸正交;以及步驟A73:由第七磁場感應器第一軸量測值序列以及第七磁場感應器第二軸量測值序列計算出第七儀器磁場量測值;其中由第八磁場感應器量測儀器磁場,包括以下步驟:步驟A81:使人造物結構掃瞄裝置沿著第八磁場感應器之一第一軸旋轉至少180°,並於旋轉期間由第八磁場感應器進行磁場量測而測得一第八磁場感應器第一軸量測值序列;步驟A82:使人造物結構掃瞄裝置沿著第八磁場感應器之一第二軸旋轉至少 180°,並於旋轉期間由第八磁場感應器進行磁場量測而測得一第八磁場感應器第二軸量測值序列,其中第八磁場感應器之第一軸係與第八磁場感應器之第二軸正交;以及步驟A83:由第八磁場感應器第一軸量測值序列以及第八磁場感應器第二軸量測值序列計算出第八儀器磁場量測值。 In implementation, the aforementioned artificial object structure scanning method, wherein in step A0, the fifth magnetic field sensor measures the magnetic field of the instrument, including the following steps: Step A51: Make the artificial object structure scanning device follow the fifth magnetic field The first axis of one of the sensors is rotated at least 180°, and the fifth magnetic field sensor performs the magnetic field measurement during the rotation to obtain a sequence of the first axis measurement value of the fifth magnetic field sensor; Step A52: Make the man-made object structure The scanning device rotates at least 180° along a second axis of the fifth magnetic field sensor, and the fifth magnetic field sensor performs magnetic field measurement during the rotation to obtain a sequence of the second axis measurement value of the fifth magnetic field sensor , The first axis of the fifth magnetic field sensor and the fifth magnetic field sensor The second axis of the sensor is orthogonal; and Step A53: Calculate the magnetic field measurement value of the fifth instrument from the first axis measurement value sequence of the fifth magnetic field sensor and the second axis measurement value sequence of the fifth magnetic field sensor; where The measurement of the magnetic field of the instrument by the sixth magnetic field sensor includes the following steps: Step A61: Rotate the man-made structure scanning device at least 180° along one of the first axis of the sixth magnetic field sensor, and use the sixth magnetic field during the rotation The sensor performs the magnetic field measurement to obtain a measurement value sequence of the first axis of the sixth magnetic field sensor; Step A62: Rotate the man-made structure scanning device at least 180° along the second axis of one of the sixth magnetic field sensors, During the rotation, the sixth magnetic field sensor performs the magnetic field measurement to obtain a sequence of the second axis measurement value of the sixth magnetic field sensor, where the first axis of the sixth magnetic field sensor and the second axis of the sixth magnetic field sensor Two-axis orthogonal; and step A63: calculate the sixth instrument magnetic field measurement value from the sixth magnetic field sensor first axis measurement value sequence and the sixth magnetic field sensor second axis measurement value sequence; where the seventh magnetic field The sensor measures the magnetic field of the instrument, including the following steps: Step A71: Rotate the artificial object structure scanning device at least 180° along the first axis of one of the seventh magnetic field sensors, and the seventh magnetic field sensor performs the magnetic field during the rotation A first axis measurement sequence of the seventh magnetic field sensor is obtained by measurement; Step A72: Rotate the man-made structure scanning device along a second axis of the seventh magnetic field sensor at least 180° during the rotation The seventh magnetic field sensor performs magnetic field measurement to obtain a seventh magnetic field sensor second axis measurement sequence, where the first axis of the seventh magnetic field sensor is orthogonal to the second axis of the seventh magnetic field sensor And Step A73: Calculate the magnetic field measurement value of the seventh instrument from the first axis measurement value sequence of the seventh magnetic field sensor and the second axis measurement value sequence of the seventh magnetic field sensor; wherein the eighth magnetic field sensor measures The magnetic field of the instrument includes the following steps: Step A81: Rotate the man-made structure scanning device at least 180° along one of the first axis of the eighth magnetic field sensor, and perform the magnetic field measurement by the eighth magnetic field sensor during the rotation Obtain a first axis measurement value sequence of the eighth magnetic field sensor; Step A82: Rotate the man-made structure scanning device along one of the second axis of the eighth magnetic field sensor at least 180°, and the eighth magnetic field sensor performs the magnetic field measurement during the rotation to obtain a sequence of the second axis measurement value of the eighth magnetic field sensor, where the first axis of the eighth magnetic field sensor and the eighth magnetic field sensor The second axis of the device is orthogonal; and Step A83: Calculate the eighth instrument magnetic field measurement value from the eighth magnetic field sensor first axis measurement value sequence and the eighth magnetic field sensor second axis measurement value sequence.
於實施時,前述之人造物結構掃瞄方法,步驟B包括以下步驟:由位置序列以及將第一磁場量測值序列減去第一儀器磁場量測值計算出一第一磁場量測值分佈;由位置序列以及將第二磁場量測值序列減去第二儀器磁場量測值計算出一第二磁場量測值分佈;由位置序列以及將第三磁場量測值序列減去第三儀器磁場量測值計算出一第三磁場量測值分佈;由位置序列以及將第四磁場量測值序列減去第四儀器磁場量測值計算出一第四磁場量測值分佈;由位置序列以及將第五磁場量測值序列減去第五儀器磁場量測值計算出一第五磁場量測值分佈;由位置序列以及將第六磁場量測值序列減去第六儀器磁場量測值計算出一第六磁場量測值分佈;由位置序列以及將第七磁場量測值序列減去第七儀器磁場量測值計算出一第七磁場量測值分佈;由位置序列以及將第八磁場量測值序列減去第八儀器磁場量測值計算出一第八磁場量測值分佈;以及由第一磁場量測值分佈、第二磁場量測值分佈、第三磁場量測值分佈、第四磁場量測值分佈、第五磁場量測值分佈、第六磁場量測值分佈、第七磁場量測值分佈以及第八磁場量測值分佈計算出磁場變異分佈。 In the implementation, step B of the aforementioned artificial object structure scanning method includes the following steps: calculate a first magnetic field measurement value distribution from the position sequence and the first magnetic field measurement value sequence minus the first instrument magnetic field measurement value ; Calculate a second magnetic field measurement value distribution from the position sequence and the second magnetic field measurement value sequence minus the second instrument’s magnetic field measurement value; subtract the third instrument from the position sequence and the third magnetic field measurement value sequence The magnetic field measurement value calculates a third magnetic field measurement value distribution; a fourth magnetic field measurement value distribution is calculated from the position sequence and the fourth magnetic field measurement value sequence minus the fourth instrument magnetic field measurement value; from the position sequence And calculate a fifth magnetic field measurement value distribution by subtracting the fifth magnetic field measurement value sequence from the fifth magnetic field measurement value sequence; subtract the sixth instrument magnetic field measurement value from the position sequence and the sixth magnetic field measurement value sequence Calculate a sixth magnetic field measurement value distribution; calculate a seventh magnetic field measurement value distribution from the position sequence and the seventh magnetic field measurement value sequence subtracting the seventh instrument’s magnetic field measurement value; calculate the seventh magnetic field measurement value distribution from the position sequence and the eighth The magnetic field measurement value sequence subtracts the eighth instrument’s magnetic field measurement value to calculate an eighth magnetic field measurement value distribution; and from the first magnetic field measurement value distribution, the second magnetic field measurement value distribution, and the third magnetic field measurement value distribution , The fourth magnetic field measurement value distribution, the fifth magnetic field measurement value distribution, the sixth magnetic field measurement value distribution, the seventh magnetic field measurement value distribution, and the eighth magnetic field measurement value distribution to calculate the magnetic field variation distribution.
於實施時,前述之人造物結構掃瞄方法,其中磁場變異分佈係為一磁場梯度向量分佈、一磁場梯度向量大小分佈、一磁場梯度向量之一水平分量分佈或一磁場梯度向量之一水平分量大小分佈。 In the implementation of the aforementioned artificial object structure scanning method, the magnetic field variation distribution is a magnetic field gradient vector distribution, a magnetic field gradient vector size distribution, a magnetic field gradient vector and a horizontal component distribution or a magnetic field gradient vector. Size distribution.
於實施時,前述之人造物結構掃瞄方法,其中第一磁場感應器、第二磁場感應器、第三磁場感應器、第四磁場感應器、第五磁場感應器、第六磁場感應器、第七磁場感應器以及第八磁場感應器係分別位於一平行六面體之八個頂點、一長方體之八個頂點或一正六面體之八個頂點。 In implementation, the aforementioned scanning method for man-made structures includes the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, the fourth magnetic field sensor, the fifth magnetic field sensor, and the sixth magnetic field sensor. The seventh magnetic field sensor and the eighth magnetic field sensor are respectively located at the eight vertices of a parallelepiped, the eight vertices of a rectangular parallelepiped, or the eight vertices of a regular hexahedron.
於實施時,前述之人造物結構掃瞄方法,其中第一磁場感應器、第二磁場感應器、第三磁場感應器以及第四磁場感應器係分別位於一正三稜錐之四個頂點或一正四面體之四個頂點。 In the implementation of the aforementioned artificial object structure scanning method, the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, and the fourth magnetic field sensor are respectively located at the four vertices or one of a regular triangular pyramid. The four vertices of a regular tetrahedron.
於實施時,前述之人造物結構掃瞄方法,其中人造物結構掃瞄裝置更包括一定位部。 In the implementation, in the aforementioned artificial object structure scanning method, the artificial object structure scanning device further includes a positioning part.
於實施時,前述之人造物結構掃瞄方法,其中定位部係包括選自以下群組之一者:一測距輪、一測距儀、一尺規、一捲尺、一雷射定位裝置、一超音波定位裝置、一雷達波定位裝置、一GPS定位裝置以及一影像定位裝置。 In implementation, the aforementioned artificial object structure scanning method, wherein the positioning part includes one selected from the following groups: a distance measuring wheel, a distance meter, a ruler, a tape measure, a laser positioning device, An ultrasonic positioning device, a radar wave positioning device, a GPS positioning device and an image positioning device.
此外,本發明更提供一種人造物結構掃瞄裝置,包括:一磁場感應部,其中磁場感應部包括一第一磁場感應器、一第二磁場感應器、一第三磁場感應器以及一第四磁場感應器,第一磁場感應器、第二磁場感應器、第三磁場感應器以及第四磁場感應器係設置於不共平面上;其中人造物結構掃瞄裝置係用以執行如前述之人造物結構掃瞄方法。 In addition, the present invention further provides an artificial object structure scanning device, including: a magnetic field sensing part, wherein the magnetic field sensing part includes a first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor, and a fourth magnetic field sensor. The magnetic field sensor, the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor and the fourth magnetic field sensor are arranged on a non-coplanar plane; wherein the artificial object structure scanning device is used to perform the artificial Object structure scanning method.
於實施時,前述之人造物結構掃瞄裝置,其中磁場感應部更包括一第五磁場感應器、一第六磁場感應器、一第七磁場感應器以及一第八磁場感應器。 In implementation, in the aforementioned artificial object structure scanning device, the magnetic field sensor further includes a fifth magnetic field sensor, a sixth magnetic field sensor, a seventh magnetic field sensor, and an eighth magnetic field sensor.
於實施時,前述之人造物結構掃瞄裝置,其中第一磁場感應 器、第二磁場感應器、第三磁場感應器、第四磁場感應器、第五磁場感應器、第六磁場感應器、第七磁場感應器以及第八磁場感應器係分別位於一平行六面體之八個頂點、一長方體之八個頂點或一正六面體之八個頂點。 In implementation, the aforementioned artificial object structure scanning device, in which the first magnetic field induces The sensor, the second magnetic field sensor, the third magnetic field sensor, the fourth magnetic field sensor, the fifth magnetic field sensor, the sixth magnetic field sensor, the seventh magnetic field sensor, and the eighth magnetic field sensor are respectively located on a parallel six faces The eight vertices of a body, the eight vertices of a rectangular parallelepiped, or the eight vertices of a regular hexahedron.
於實施時,前述之人造物結構掃瞄裝置,其中第一磁場感應器、第二磁場感應器、第三磁場感應器以及第四磁場感應器係分別位於一正三稜錐之四個頂點或一正四面體之四個頂點。 In implementation, in the aforementioned artificial object structure scanning device, the first magnetic field sensor, the second magnetic field sensor, the third magnetic field sensor, and the fourth magnetic field sensor are respectively located at the four vertices or one of a regular triangular pyramid. The four vertices of a regular tetrahedron.
於實施時,前述之人造物結構掃瞄裝置,其更包括一定位部。 In implementation, the aforementioned artificial object structure scanning device further includes a positioning portion.
於實施時,前述之人造物結構掃瞄裝置,其中定位部係包括選自以下群組之一者:一測距輪、一測距儀、一尺規、一捲尺、一雷射定位裝置、一超音波定位裝置、一雷達波定位裝置、一GPS定位裝置以及一影像定位裝置。 In implementation, the aforementioned artificial object structure scanning device, wherein the positioning part includes one selected from the following groups: a distance measuring wheel, a distance meter, a ruler, a tape measure, a laser positioning device, An ultrasonic positioning device, a radar wave positioning device, a GPS positioning device and an image positioning device.
為進一步了解本發明,以下舉較佳之實施例,配合圖式、圖號,將本發明之具體構成內容及其所達成的功效詳細說明如下。 In order to further understand the present invention, the following is a detailed description of the specific components of the present invention and the effects achieved by the preferred embodiments, in conjunction with the drawings and figure numbers.
1‧‧‧第一磁場感應器 1‧‧‧The first magnetic field sensor
2‧‧‧第二磁場感應器 2‧‧‧Second magnetic field sensor
3‧‧‧第三磁場感應器 3‧‧‧The third magnetic field sensor
4‧‧‧第四磁場感應器 4‧‧‧The fourth magnetic field sensor
5‧‧‧第五磁場感應器 5‧‧‧Fifth Magnetic Field Sensor
6‧‧‧第六磁場感應器 6‧‧‧The sixth magnetic field sensor
7‧‧‧第七磁場感應器 7‧‧‧The seventh magnetic field sensor
8‧‧‧第八磁場感應器 8‧‧‧The eighth magnetic field sensor
10‧‧‧人造物結構掃瞄裝置 10‧‧‧Man-made object structure scanning device
20‧‧‧定位部 20‧‧‧Positioning Department
30‧‧‧承載部 30‧‧‧Carrier Department
31‧‧‧前方 31‧‧‧Front
40‧‧‧移動部 40‧‧‧Mobile Department
50‧‧‧磁場感應部 50‧‧‧Magnetic field sensor
60‧‧‧資料處理部 60‧‧‧Data Processing Department
61‧‧‧轉接部 61‧‧‧Transfer
70‧‧‧待測區域 70‧‧‧Area to be tested
71‧‧‧掃瞄路徑 71‧‧‧Scan Path
81,82,83,84‧‧‧磁場變異較大的區域 81,82,83,84‧‧‧Areas with large magnetic field variation
90‧‧‧直昇機 90‧‧‧Helicopter
91‧‧‧精密磁場量測儀 91‧‧‧Precision magnetic field measuring instrument
K‧‧‧旋轉軸 K‧‧‧Rotating axis
T1,T2‧‧‧金屬水管 T1, T2‧‧‧Metal water pipe
V,Vrot‧‧‧向量 V,V rot ‧‧‧vector
X1,Y1,Z1‧‧‧第一磁場感應器之三軸 X1, Y1, Z1‧‧‧Three axes of the first magnetic field sensor
X2,Y2,Z2‧‧‧第二磁場感應器之三軸 X2, Y2, Z2‧‧‧Three axis of the second magnetic field sensor
X3,Y3,Z3‧‧‧第三磁場感應器之三軸 X3, Y3, Z3‧‧‧Three axis of the third magnetic field sensor
X4,Y4,Z4‧‧‧第四磁場感應器之三軸 X4, Y4, Z4‧‧‧Three axis of the fourth magnetic field sensor
X5,Y5,Z5‧‧‧第五磁場感應器之三軸 X5, Y5, Z5‧‧‧Three axis of the fifth magnetic field sensor
X6,Y6,Z6‧‧‧第六磁場感應器之三軸 X6, Y6, Z6‧‧‧Three axis of the sixth magnetic field sensor
X7,Y7,Z7‧‧‧第七磁場感應器之三軸 X7, Y7, Z7‧‧‧Three axis of the seventh magnetic field sensor
X8,Y8,Z8‧‧‧第八磁場感應器之三軸 X8, Y8, Z8‧‧‧Three axis of the eighth magnetic field sensor
θ‧‧‧旋轉角度 θ‧‧‧Rotation angle
第1圖係為本發明之一種人造物結構掃瞄裝置之一具體實施例之立體外觀示意圖。 FIG. 1 is a schematic diagram of a three-dimensional appearance of a specific embodiment of a scanning device for man-made structures according to the present invention.
第2圖係為待測區域內之掃瞄路徑以及磁場變異分佈與相對應之人造物結構分佈之示意圖。 Figure 2 is a schematic diagram of the scanning path and the magnetic field variation distribution in the area to be measured and the corresponding man-made structure distribution.
第3圖係為本發明之一種人造物結構掃瞄裝置之另一具體實施例之立體外觀示意圖。 FIG. 3 is a schematic diagram of a three-dimensional appearance of another embodiment of the scanning device for man-made structures according to the present invention.
第4圖係為第3圖之人造物結構掃瞄裝置之具體實施例之磁場感應部之每一 個磁場感應器的三個軸之示意圖。 Figure 4 shows each of the magnetic field sensing parts of the specific embodiment of the man-made structure scanning device in Figure 3 Schematic diagram of the three axes of a magnetic field sensor.
第5圖係為向量V沿著K軸旋轉θ角之示意圖。 Figure 5 is a schematic diagram of the vector V rotated by the angle θ along the K axis.
第6圖係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之Z1軸旋轉之示意圖。 FIG. 6 is a schematic diagram of the specific embodiment of the artificial object structure scanning device of FIG. 3 rotating along the Z1 axis of the first magnetic field sensor.
第7A圖係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之Z1軸旋轉期間由第一磁場感應器所量測到之磁場之X1軸以及Y1軸之分量。 Figure 7A is a specific embodiment of the man-made structure scanning device of Figure 3 during the rotation of the first magnetic field sensor along the Z1 axis of the X1 axis and Y1 axis of the magnetic field measured by the first magnetic field sensor Weight.
第7B圖係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之Z1軸旋轉期間由第一磁場感應器所量測到之磁場之Z1軸之分量。 FIG 7B is based on the specific embodiment of the man-made structure of FIG. 3 scanning apparatus of embodiments of the Z1-axis component of the magnetic field detected along the first axis Z1 during magnetic field sensor by the amount of the first magnetic field sensor.
第8圖係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之X1軸旋轉之示意圖。 Fig. 8 is a schematic diagram of the specific embodiment of the man-made structure scanning device shown in Fig. 3 rotating along the X1 axis of the first magnetic field sensor.
第9圖係為本發明之一種人造物結構掃瞄裝置之一具體實施例之立體外觀示意圖。 FIG. 9 is a schematic diagram of a three-dimensional appearance of a specific embodiment of a scanning device for man-made structures according to the present invention.
第10圖係為本發明之一種人造物結構掃瞄裝置之另一具體實施例之立體外觀示意圖。 FIG. 10 is a schematic diagram of a three-dimensional appearance of another specific embodiment of a scanning device for man-made structures according to the present invention.
第11圖係為第10圖之人造物結構掃瞄裝置之具體實施例之磁場感應部之每一個磁場感應器的三個軸之示意圖。 Fig. 11 is a schematic diagram of the three axes of each magnetic field sensor of the magnetic field sensing part of the specific embodiment of the man-made structure scanning device of Fig. 10.
第12圖係為習知技術磁場量測示意圖。 Figure 12 is a schematic diagram of conventional magnetic field measurement.
請參閱第1圖,其係為本發明之一種人造物結構掃瞄裝置之一具體實施例之立體外觀示意圖。本發明提供一種人造物結構掃瞄裝置10,包括:一承載部30以及一磁場感應部50。其中磁場感應部50係設置於承
載部30之上。磁場感應部50係用以量測磁場。其中磁場感應部50包括一第一磁場感應器1、一第二磁場感應器2、一第三磁場感應器3以及一第四磁場感應器4,其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於不共平面上。在此實施例中,人造物結構掃瞄裝置10之承載部30係以能避免產生感應磁場的材料所構成,例如塑膠,或一些非金屬材料。由於人造物結構會因感應而產生出一人造物結構磁場BArtificial(向量場),特別是當人造物結構包括有導體的材料時,更容易因感應而產生出人造物結構磁場BArtificial。在以人造物結構掃瞄裝置10進行人造物結構掃瞄時,對於任一個磁場感應器而言,其所量測到的磁場量測值(向量)是包含了量測位置之地磁場BEarth以及人造物結構磁場BArtificial之總和。對於人造物結構掃瞄裝置10上之第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4來說,地磁場BEarth的來源距離非常遙遠,若將地磁場BEarth視為一個磁偶極子(magnetic dipole),則其中一極位於地理北極附近,而另一極則位於地理南極附近。相對來說,人造物結構磁場BArtificial的來源距離較近。而由於本發明之第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於不共平面上,因此,以不同之磁場感應器所量測而得之磁場值(包括一地球磁場分量以及一人造物結構磁場分量),其中地球磁場分量幾乎相同,但人造物結構磁場分量會有所差異。請同時參見第2圖,其係為待測區域內之掃瞄路徑以及磁場變異分佈與相對應之人造物結構分佈之示意圖。本發明提供一種人造物結構掃瞄方法,包括以下步驟:步驟A:使人造物結構掃瞄裝置10沿著一待測區域70內之一掃瞄路徑71移動,於移動期間分別以第一磁場感應器1、第
二磁場感應器2、第三磁場感應器3以及第四磁場感應器4進行磁場量測,並記錄磁場量測時之一位置序列[PS],其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4分別測得一第一磁場量測值序列[BUC1](向量序列)、一第二磁場量測值序列[BUC2](向量序列)、一第三磁場量測值序列[BUC3](向量序列)以及一第四磁場量測值序列[BUC4](向量序列);以及步驟B:由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]以及位置序列[PS]計算而得一磁場變異分佈BVarD。由於在一個局部區域而言(例如待測區域70),在短時間內之地磁場BEarth不太會變化。且對於第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4來說地磁場BEarth的來源距離非常遙遠。因此,由第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4所分別量測出之地磁場BEarth分量並無差異,而人造物結構磁場BArtificial分量則因為人造物結構磁場BArtificial來源距離較近,且由於本發明之第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於不共平面上,因此不論人造物結構磁場BArtificial之向量方向為何,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4中至少有兩個磁場感應器所量測到的人造物結構磁場BArtificial分量是不相同的。因此,可由第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4所分別量測而得之第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]來分別計算出人造物結構磁場BArtificial分量,也可計算出地磁場BEarth分量。在此
實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]所計算而得之一磁場梯度向量大小序列(純量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量大小分佈(純量),而其中磁場變異分佈BVarD係由人造物結構所產生之人造物結構磁場BArtificial的部分,亦即磁場變異分佈BVarD係相對應於一人造物結構分佈。由於本發明之第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於不共平面上,因此不論人造物結構磁場BArtificial之向量方向為何,皆可以在任一方向上計算磁場梯度(若是第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於一共平面上,則無法計算該共平面之法向量上之磁場梯度)。在第2圖中,係以灰階顏色來顯示磁場變異分佈BVarD,其中灰階顏色越深表示磁場變異越大。其中磁場變異較大的四個區域為圖中之81、82、83以及84。由此可知,待測區域70內之81、82、83以及84之下方應有相對應之人造物結構分佈。其中在第2圖之上方之左邊之照片有金屬水管T1以及右邊之照片有金屬水管T2。其中左邊之照片有金屬水管T1延伸至待測區域70內相對應於82之區域之下方。其中右邊之照片有金屬水管T2延伸至待測區域70內相對應於84之區域之下方。因此,本發明之一種人造物結構掃瞄方法確實可掃瞄出待測區域70內之下方相對應之人造物結構分佈,以利於施工挖掘時能避開這些人造物結構。
Please refer to FIG. 1, which is a schematic diagram of a three-dimensional appearance of a specific embodiment of a scanning device for man-made structures of the present invention. The present invention provides a
在一些實施例中,係可以選擇以手持之方式來移動人造物結構掃瞄裝置10。在一些實施例中,記錄磁場量測時之位置序列[PS]係可以簡
易之測距工具來達成,例如一測距輪、一測距儀、一尺規或一捲尺等等。在一些實施例中,係可將人造物結構掃瞄裝置10固定於測距輪之把手上,以達到邊移動邊量測磁場邊記錄位置。在一些實施例中,係可以於待測區域70內之掃瞄路徑71上,事先規劃好欲量測磁場之點,並先量測出這些點的位置而得到位置序列[PS],再將人造物結構掃瞄裝置10移動至這些點並進行磁場量測。在一些實施例中,係可於承載部30之下安裝輪子,以方便穩定移動人造物結構掃瞄裝置10,惟,輪子之材料係以能避免產生感應磁場的材料所構成。在一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]所計算而得之一磁場梯度(gradient)向量序列,再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度(gradient)向量分佈(向量)。在一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]所計算而得之一磁場梯度向量之一水平分量序列(向量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量之一水平分量分佈(向量)。在另一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]所計算而得之一磁場梯度向量之一水平分量大小序列(純量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量之一水平分量大小分佈(純量)。由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]以及量測位置之位置序列[PS]計算出磁場變異
分佈BVarD並不限於以上方法。當量測出第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]以及知道量測位置之位置序列[PS],即可很輕易地計算出磁場變異分佈BVarD。
In some embodiments, the man-made
請參閱第3圖,其係為本發明之一種人造物結構掃瞄裝置之一具體實施例之立體外觀示意圖。第3圖之實施例之主要結構係與第1圖之實施例之結構大致相同,惟,其更包括一轉接部61、一移動部40以及一定位部20。其中定位部20以及轉接部61係設置於承載部30之上。定位部20係用以定位位置,以記錄磁場量測時的位置序列[PS]。其中一資料處理部60係與轉接部61以有線之方式相連接,並藉由轉接部61分別與第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4以及定位部20以有線之方式相連接。資料處理部60係用以記錄第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4所量測之磁場資料以及來自定位部20之定位位置資料(或者用以記錄資料以及處理資料)。在此實施例中,資料處理部60係設置於人造物結構掃瞄裝置10之外。人造物結構掃瞄裝置10具有一前方31。移動部40係設置於承載部30之下,移動部40係用以承載人造物結構掃瞄裝置10,並使人造物結構掃瞄裝置10移動。移動部40也可以轉動方向,使得人造物結構掃瞄裝置10之前方31之方向轉向。請同時參閱第4圖,其係為第3圖之人造物結構掃瞄裝置之具體實施例之磁場感應部之每一個磁場感應器的三個軸之示意圖。其中磁場感應部50之每一個磁場感應器都具有三個軸,例如,第一磁場感應器1具有一X1軸、一Y1軸以及一Z1軸;第二磁場感應器2具有一X2軸、一Y2軸以及一Z2軸;第三磁場感應器3
具有一X3軸、一Y3軸以及一Z3軸;第四磁場感應器4具有一X4軸、一Y4軸以及一Z4軸。通常磁場感應部50之每一個磁場感應器所具有之三個軸於磁場感應器出廠時即已標示於磁場感應器之上,以利於使用者之使用。在此實施例中,移動部40係為具有馬達動力且可轉向之輪子,由於馬達的運作會產生出磁場來,故本發明之人造物結構掃瞄裝置10會產生出一儀器磁場BInst(向量場)。因此,在以人造物結構掃瞄裝置10進行人造物結構掃瞄時,對於任一個磁場感應器而言,其所量測到的磁場量測值(向量)是包含了量測位置之地磁場BEarth、人造物結構磁場BArtificial以及儀器磁場BInst之總和。儀器磁場BInst會對磁場感應部50之每一個磁場感應器都造成干擾,因此必須先將儀器磁場BInst對磁場感應部50之每一個磁場感應器之干擾去除。由於儀器磁場BInst是由人造物結構掃瞄裝置10所產生,因此儀器磁場BInst之方向會隨著人造物結構掃瞄裝置10之前方31朝向何方而有所改變。而第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係設置於人造物結構掃瞄裝置10之承載部30之上,因此當人造物結構掃瞄裝置10之前方31朝向何方有所改變時,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4所分別具有之X1軸、Y1軸、Z1軸、X2軸、Y2軸、Z2軸、X3軸、Y3軸、Z3軸、X4軸、Y4軸以及Z4軸會隨著人造物結構掃瞄裝置10之前方31之朝向何方而改變。也因此,不論人造物結構掃瞄裝置10之前方31之朝向如何改變,對於磁場感應部50之每一個磁場感應器來說,儀器磁場BInst都分別是一個大小以及方向不變之向量,只是對於磁場感應部50之不同之磁場感應器來說所能量測到的儀器磁場BInst之值(向量)並不相同,亦即分別以第一磁場感應器1、第二磁場感應器2、
第三磁場感應器3以及第四磁場感應器4量測儀器磁場BInst(向量場),所量測到的值分別為一第一儀器磁場量測值BInst1(向量)、一第二儀器磁場量測值BInst2(向量)、一第三儀器磁場量測值BInst3(向量)以及一第四儀器磁場量測值BInst4(向量),其中第一儀器磁場量測值BInst1、第二儀器磁場量測值BInst2、第三儀器磁場量測值BInst3以及第四儀器磁場量測值BInst4係分別為四個各不相同之向量。然而,地磁場BEarth並不會隨著人造物結構掃瞄裝置10之前方31朝向何方而有所改變。也就是說當人造物結構掃瞄裝置10之前方31若由朝向東方轉為朝向北方(亦即逆時針轉90度),則儀器磁場BInst之方向也會跟著逆時針轉90度;但地磁場BEarth並不會因此改變方向。
Please refer to FIG. 3, which is a schematic diagram of a three-dimensional appearance of a specific embodiment of a scanning device for man-made structures of the present invention. The main structure of the embodiment in FIG. 3 is substantially the same as that of the embodiment in FIG. 1, except that it further includes an
利用此特性,若將人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉一θ角,想像一下以第一磁場感應器1之角度來看,將看到地磁場BEarth是在繞著第一磁場感應器1之Z1軸旋轉;而以第一磁場感應器1之角度來看,儀器磁場BInst則是一個固定值(不會繞著第一磁場感應器1之Z1軸旋轉)。請同時參閱第5圖,其係為向量V沿著K軸旋轉θ角之示意圖。有關向量繞著一旋轉軸旋轉以及旋轉角度θ之間的關係,可參照羅德里格旋轉公式(Rodrigues’rotation formula):V rot =V cos θ+(K×V)sin θ+K(K.V)(1-cos θ)...............(式1)(其中向量V沿著K軸旋轉了θ角之後變成V rot ;×是外積;‧是內積)
Using this feature, if the man-made
請同時參閱第6圖,其係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之Z1軸旋轉之示意圖。如第6圖所示,當人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸(第一軸)旋轉了θ角時,若以第一
磁場感應器1來進行磁場量測,則第一磁場感應器1所量測到的結果如下:BZ1 total_θ=BEarth rotate_Z1_θ+BInst1=(BEarth cos θ+(Z1×BEarth)sin θ+Z1(Z1.BEarth)(1-cos θ))+BInst1......................................................(式2)
Please also refer to FIG. 6, which is a schematic diagram of the specific embodiment of the man-made structure scanning device in FIG. 3 rotating along the Z1 axis of the first magnetic field sensor. As shown in Figure 6, when the man-made
在式2中,第一磁場感應器第一軸量測值BZ1 total_θ是人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉了θ角時,第一磁場感應器1所量測到的磁場量測值(向量);BEarth rotate_Z1_θ是第一磁場感應器第一軸量測值BZ1 total_θ當中的地磁場BEarth的分量,亦即人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉了θ角時,第一磁場感應器1所量測到的地磁場BEarth的磁場量測值(向量);第一儀器磁場量測值BInst1是第一磁場感應器第一軸量測值BZ1 total_θ當中的儀器磁場BInst的分量,亦即人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉了θ角時,第一磁場感應器1所量測到的儀器磁場BInst的磁場量測值(向量)。其實不論人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉了幾度,第一磁場感應器1所量測到的儀器磁場BInst的磁場量測值都是第一儀器磁場量測值BInst1。利用上述之特性,本發明之一種人造物結構掃瞄方法更包括以下一步驟:步驟A0:由第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4分別逐一量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4分別量測得到一第一儀器磁場量測值BInst1、一第二儀器磁場量測值BInst2、一第三儀器磁場量測值BInst3以及一第四儀器磁場量測值BInst4。其
中在步驟B中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]減去第一儀器磁場量測值BInst1、第二磁場量測值序列[BUC2]減去第二儀器磁場量測值BInst2、第三磁場量測值序列[BUC3]減去第三儀器磁場量測值BInst3、第四磁場量測值序列[BUC4]減去第四儀器磁場量測值BInst4、以及位置序列[PS]計算而得,藉此以分別去除儀器磁場BInst對第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4之干擾。其中本發明之一種人造物結構掃瞄方法之步驟執行順序係可為(1)依序執行步驟A0、步驟A以及步驟B,或(2)依序執行步驟A、步驟A0以及步驟B。其中在步驟A0中,由第一磁場感應器1量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A11、步驟A12以及步驟A13。其中步驟A11:(如第6圖所示)將人造物結構掃瞄裝置10沿著第一磁場感應器1之第一軸(在此實施例中,第一磁場感應器1之第一軸係為Z1軸或與Z1軸幾乎重合之軸)旋轉至少180°,並於旋轉期間由第一磁場感應器1進行磁場量測,而測得一第一磁場感應器第一軸量測值序列[BZ1](向量的序列);其中第一磁場感應器第一軸量測值序列[BZ1]係由第一磁場感應器第一軸量測值BZ1 total_θ所組成之序列,亦即當人造物結構掃瞄裝置10沿著第一磁場感應器1之Z1軸旋轉期間,在不同的θ角時,由第一磁場感應器1所量測到之磁場量測值(向量)所組成之序列。請同時參見第7A圖以及第7B圖,其係分別為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之第一軸(Z1軸)旋轉期間由第一磁場感應器所量測到之磁場之X1軸、Y1軸之分量以及Z1軸之分量。第7A圖以及第7B圖是人造物結構掃瞄裝置10沿著第一磁場感應器1之第一軸(Z1軸)旋轉360°的例子。其中第7A圖中顯示第一磁場感應器第一軸
量測值序列[BZ1]中的每一個第一磁場感應器第一軸量測值BZ1 total_θ之X1軸以及Y1軸之分量;在第7B圖中顯示第一磁場感應器第一軸量測值序列[BZ1]中的每一個第一磁場感應器第一軸量測值BZ1 total_θ之Z1軸之分量。但由於實際旋轉的軸係為幾乎與第一磁場感應器1之第一軸(Z1軸)重合之軸,因此第7B圖中之第一磁場感應器第一軸量測值序列[BZ1]亦有小幅度之變化。上述之式2可以改寫成底下的式3:BZ1 total_θ=(BEarth cos θ+(Z1×BEarth)sin θ-Z1(Z1.BEarth)cos θ)+(Z1(Z1.BEarth)+BInst1).....................(式3)
In
在式3當中,(BEarth cos θ+(Z1×BEarth)sin θ-Z1(Z1.BEarth)cos θ)是與θ角有關的分量,而(Z1(Z1.BEarth)+BInst1)則是與θ角無關的分量。在不知道地磁場BEarth的大小的狀況下,並無法從步驟A11之量測而計算出儀器磁場BInst1。因此,還需要進行步驟A12。請同時參見第8圖,其係為第3圖之人造物結構掃瞄裝置之具體實施例沿著第一磁場感應器之X1軸旋轉之示意圖。其中步驟A12:(如第8圖所示)將人造物結構掃瞄裝置10沿著第一磁場感應器1之第二軸(在此實施例中,第一磁場感應器1之第二軸係為X1軸或與X1軸幾乎重合之軸)旋轉至少180°,並於旋轉期間由第一磁場感應器1進行磁場量測,而測得一第一磁場感應器第二軸量測值序列[BX1](向量的序列),其中第一磁場感應器1之第二軸係與第一磁場感應器1之第一軸正交。其中第一磁場感應器第二軸量測值序列[BX1]係由第一磁場感應器第二軸量測值BX1 total_θ所組成之序列,亦即當人造物結構掃瞄裝置10沿著第一磁場感應器1之第二軸(X1軸)旋轉期間,在不同的θ角
時,由第一磁場感應器1所量測到之磁場量測值(向量)所組成之序列。其中第一磁場感應器第二軸量測值BX1 total_θ,請見底下式4:BX1 total_θ=BEarth rotate_X1_θ+BInst1=(BEarth cos θ+(X1×BEarth)sin θ+X1(X1.BEarth)(1-cos θ))+BInst1=(BEarth cos θ+(X1×BEarth)sin θ-X1(X1.BEarth)cos θ)+(X1(X1.BEarth)+BInst1)........................(式4)在式4中,第一磁場感應器第二軸量測值BX1 total_θ是人造物結構掃瞄裝置10沿著第一磁場感應器1之第二軸(X1軸)旋轉了θ角時,第一磁場感應器1所量測到的磁場量測值(向量);BEarth rotate_X1_θ是第一磁場感應器第二軸量測值BX1 total_θ當中的地磁場BEarth的分量,亦即人造物結構掃瞄裝置10沿著第一磁場感應器1之第二軸(X1軸)旋轉了θ角時,第一磁場感應器1所量測到的地磁場BEarth的磁場量測值(向量);第一儀器磁場量測值BInst1是第一磁場感應器第二軸量測值BX1 total_θ當中的儀器磁場BInst的分量。其中步驟A13:由第一磁場感應器第一軸量測值序列[BZ1]以及第一磁場感應器第二軸量測值序列[BX1]計算出第一儀器磁場量測BInst1。
In
相似地,在步驟A0中,由第二磁場感應器2量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A21:將人造物結構掃瞄裝置10沿著第二磁場感應器2之第一軸(Z2軸)旋轉至少180°,並於旋轉期間由第二磁場感應器2進行磁場量測,而測得一第二磁場感應器第一軸量測值序列[BZ2](向量的序列);步驟A22:將人造物結構掃瞄裝置10沿
著第二磁場感應器2之第二軸(X2軸)旋轉至少180°,並於旋轉期間由第二磁場感應器2進行磁場量測,而測得一第二磁場感應器第二軸量測值序列[BX2](向量的序列),其中第二磁場感應器2之第二軸係與第二磁場感應器2之第一軸正交;以及步驟A23:由第二磁場感應器第一軸量測值序列[BZ2]以及第二磁場感應器第二軸量測值序列[BX2]計算出第二儀器磁場量測值BInst2。在步驟A0中,由第三磁場感應器3量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A31:將人造物結構掃瞄裝置10沿著第三磁場感應器3之第一軸(Z3軸)旋轉至少180°,並於旋轉期間由第三磁場感應器3進行磁場量測,而測得一第三磁場感應器第一軸量測值序列[BZ3](向量的序列);步驟A32:將人造物結構掃瞄裝置10沿著第三磁場感應器3之第二軸(X3軸)旋轉至少180°,並於旋轉期間由第三磁場感應器3進行磁場量測,而測得一第三磁場感應器第二軸量測值序列[BX3](向量的序列),其中第三磁場感應器3之第二軸係與第三磁場感應器3之第一軸正交;以及步驟A33:由第三磁場感應器第一軸量測值序列[BZ3]以及第三磁場感應器第二軸量測值序列[BX3]計算出第三儀器磁場量測值BInst3。在步驟A0中,由第四磁場感應器4量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A41:將人造物結構掃瞄裝置10沿著第四磁場感應器4之第一軸(Z4軸)旋轉至少180°,並於旋轉期間由第四磁場感應器4進行磁場量測,而測得一第四磁場感應器第一軸量測值序列[BZ4](向量的序列);步驟A42:將人造物結構掃瞄裝置10沿著第四磁場感應器4之第二軸(X4軸)旋轉至少180°,並於旋轉期間由第四磁場感應器4進行磁場量測,而測得一第四磁場感應器第二軸量測值序列[BX4](向量的序列),其中第
四磁場感應器4之第二軸係與第四磁場感應器4之第一軸正交;以及步驟A33:由第四磁場感應器第一軸量測值序列[BZ4]以及第四磁場感應器第二軸量測值序列[BX4]計算出第四儀器磁場量測值BInst4。
Similarly, in step A0, measuring the instrument magnetic field BInst generated by the man-made structure scanning device 10 by the second magnetic field sensor 2 includes the following steps: Step A21: moving the man-made structure scanning device 10 along the second The first axis (Z2 axis) of the magnetic field sensor 2 is rotated at least 180°, and the second magnetic field sensor 2 performs the magnetic field measurement during the rotation, and a sequence of the first axis measurement value of the second magnetic field sensor is measured [ BZ2] (vector sequence); Step A22: Rotate the artificial object structure scanning device 10 along the second axis ( X2 axis) of the second magnetic field sensor 2 by at least 180°, and during the rotation, the second magnetic field sensor 2 Perform magnetic field measurement, and obtain a second-axis measurement value sequence of a second magnetic field sensor [BX2] (a sequence of vectors), where the second-axis system of the second magnetic field sensor 2 and the second magnetic field sensor 2 The first axis is orthogonal to each other; and Step A23: Calculate the magnetic field of the second instrument from the first axis measurement value sequence of the second magnetic field sensor [BZ2] and the second axis measurement value sequence of the second magnetic field sensor [BX2] Measured value BInst2 . In step A0, measuring the instrument magnetic field BInst generated by the man-made
在一些實施例中,資料處理部60係與定位部20以無線之方式相連接。在一些實施例中,資料處理部60係分別與第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4以無線之方式相連接。在一些實施例中,資料處理部60係不設置於人造物結構掃瞄裝置10之承載部30之上。在一些實施例中,移動部40係為輪子。在一些實施例中,定位部20係包括選自以下群組之一者:一測距輪、一測距儀、一尺規、一捲尺、一雷射定位裝置、一超音波定位裝置、一雷達波定位裝置、一GPS定位裝置以及一影像定位裝置。在一些實施例中,人造物結構掃瞄裝置10係藉由定位部20之定位功能使人造物結構掃瞄裝置10沿著待測區域70內之掃瞄路徑71移動。在一較佳之實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係可同步進行磁場量測,且定位部20係可同步記錄下磁場量測時之位置。故,在第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]以及第四磁場量測值序列[BUC4]中之每一個磁場量測值係相對應於位置序列[PS]中之一個磁場量測時之位置。
In some embodiments, the
在一些實施例中,步驟B包括以下步驟:由位置序列[PS]以及將第一磁場量測值序列[BUC1]減去第一儀器磁場量測值BInst1計算出一第一磁場量測值分佈BCD1(亦即,第一磁場量測值與其量測位置之分佈);由位置序列[PS]以及將第二磁場量測值序列[BUC2]減去第二儀器磁場量測 值BInst2計算出一第二磁場量測值分佈BCD2;由位置序列[PS]以及將第三磁場量測值序列[BUC3]減去第三儀器磁場量測值BInst3計算出一第三磁場量測值分佈BCD3;由位置序列[PS]以及將第四磁場量測值序列[BUC4]減去第四儀器磁場量測值BInst4計算出一第四磁場量測值分佈BCD4;以及由第一磁場量測值分佈BCD1、第二磁場量測值分佈BCD2、第三磁場量測值分佈BCD3以及第四磁場量測值分佈BCD4計算出磁場變異分佈BVarD。 In some embodiments, step B includes the following steps: calculate a first magnetic field measurement value distribution from the position sequence [PS] and the first magnetic field measurement value sequence [BUC1] minus the first instrument magnetic field measurement value BInst1 BCD1 (that is, the distribution of the first magnetic field measurement value and its measurement position); calculate one from the position sequence [PS] and the second magnetic field measurement value sequence [BUC2] minus the second instrument magnetic field measurement value BInst2 second magnetic field distribution measured values BCD2; the position in the sequence [the PS] and the third magnetic field measurement value sequence [BUC3] subtracting the third measurement field instrument BInst3 value calculating a third magnetic field distribution measuring value BCD3; a The position sequence [PS] and the fourth magnetic field measurement value sequence [BUC4] minus the fourth instrument magnetic field measurement value BInst4 to calculate a fourth magnetic field measurement value distribution BCD4 ; and the first magnetic field measurement value distribution BCD1 , second magnetic field distribution measured value BCD2, third magnetic field distribution measuring value BCD3 and fourth magnetic field distribution of the measured values calculated from the magnetic field variation distribution BCD4 BVarD.
在一些實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係分別位於一正三稜錐之四個頂點。在另一些實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3以及第四磁場感應器4係分別位於一正四面體之四個頂點。
In some embodiments, the first
請參閱第9圖,其係為本發明之一種人造物結構掃瞄裝置之另一具體實施例之立體外觀示意圖。第9圖之實施例之主要結構係與第1圖之實施例之結構大致相同,惟,其中磁場感應部50更包括一第五磁場感應器5、一第六磁場感應器6、一第七磁場感應器7以及一第八磁場感應器8,其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係設置於一正六面體之八個頂點(設置於不共平面上)。在此實施例中,本發明提供一種人造物結構掃瞄方法,包括以下步驟:步驟A:使人造物結構掃瞄裝置10沿著一待測區域70內之一掃瞄路徑71移動,於移動期間分別以第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8進行磁場量測進行磁場量測,並記錄磁場量測時之一位置序列
[PS],其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、一第六磁場感應器6、一第七磁場感應器7以及一第八磁場感應器8分別測得一第一磁場量測值序列[BUC1](向量序列)、一第二磁場量測值序列[BUC2](向量序列)、一第三磁場量測值序列[BUC3](向量序列)、一第四磁場量測值序列[BUC4](向量序列)、一第五磁場量測值序列[BUC5](向量序列)、一第六磁場量測值序列[BUC6](向量序列)、一第七磁場量測值序列[BUC7](向量序列)以及一第八磁場量測值序列[BUC8](向量序列);以及步驟B:由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]以及位置序列[PS]計算而得一磁場變異分佈BVarD,其中磁場變異分佈BVarD係相對應於一人造物結構分佈。在此實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]所計算而得之一磁場梯度向量大小序列(純量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量大小分佈(純量)。在另一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]所計算而得之一磁場梯度(gradient)
向量序列,再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度(gradient)向量分佈(向量)。在一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]所計算而得之一磁場梯度向量之一水平分量序列(向量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量之一水平分量分佈(向量)。在另一些實施例中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]所計算而得之一磁場梯度向量之一水平分量大小序列(純量序列),再搭配上磁場量測時的位置序列[PS]而成為一磁場梯度向量之一水平分量大小分佈(純量)。由第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]、第五磁場量測值序列[BUC5]、第六磁場量測值序列[BUC6]、第七磁場量測值序列[BUC7]、第八磁場量測值序列[BUC8]計算出磁場變異分佈BVarD並不限於以上方法。當量測出第一磁場量測值序列[BUC1]、第二磁場量測值序列[BUC2]、第三磁場量測值序列[BUC3]、第四磁場量測值序列[BUC4]以及知道量測位置之位置序列[PS],即可很輕易地計算出磁場變異分佈BVarD。
Please refer to FIG. 9, which is a three-dimensional schematic diagram of another embodiment of the scanning device for man-made structures of the present invention. The main structure of the embodiment in Fig. 9 is roughly the same as that of the embodiment in Fig. 1. However, the
在一些實施例中,磁場感應部50包括四個磁場感應器或是多於四個磁場感應器,其中磁場感應部50之其中至少四個磁場感應器係設置
於不共平面上。
In some embodiments, the magnetic
請參閱第10圖,其係為本發明之一種人造物結構掃瞄裝置之另一具體實施例之立體外觀示意圖。第10圖之實施例之主要結構係與第3圖之實施例之結構大致相同,惟,其中磁場感應部50更包括一第五磁場感應器5、一第六磁場感應器6、一第七磁場感應器7以及一第八磁場感應器8,其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係設置於一正六面體之八個頂點(此部分與第9圖之實施例相同);資料處理部60係設置於承載部30之上;且此實施例並不包括轉接部61;其中資料處理部60係分別與第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7、第八磁場感應器8以及定位部20以有線之方式相連接,用以記錄第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8所量測之磁場資料以及來自定位部20之定位位置資料(或者用以記錄資料以及處理資料)。請同時參閱第11圖,其係為第10圖之人造物結構掃瞄裝置之具體實施例之磁場感應部之每一個磁場感應器的三個軸之示意圖。其中磁場感應部50之每一個磁場感應器都具有三個軸,例如,第一磁場感應器1具有一X1軸、一Y1軸以及一Z1軸;第二磁場感應器2具有一X2軸、一Y2軸以及一Z2軸;第三磁場感應器3具有一X3軸、一Y3軸以及一Z3軸;第四磁場感應器4具有一X4軸、一Y4軸以及一Z4軸;第五磁場感應器5具有一X5軸、一Y5軸以及一Z5軸;第六磁場感應器6具有一X6軸、一Y6軸以及一Z6軸;
第七磁場感應器7具有一X7軸、一Y7軸以及一Z7軸;第八磁場感應器8具有一X8軸、一Y8軸以及一Z8軸。相似地,本發明之人造物結構掃瞄裝置10也會產生出一儀器磁場BInst(向量場),尤其是當移動部40係為具有馬達動力之輪子,馬達的運作會產生出磁場來。儀器磁場BInst會對磁場感應部50之每一個磁場感應器都造成干擾,因此必須先將儀器磁場BInst對磁場感應部50之每一個磁場感應器之干擾去除。因此,在此實施例中,本發明提供一種人造物結構掃瞄方法係大致與第9圖之實施例之步驟相同,惟,其更包括以下一步驟:步驟A0:由第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8分別逐一量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,其中第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8分別量測得到一第一儀器磁場量測值BInst1、一第二儀器磁場量測值BInst2、一第三儀器磁場量測值BInst3、一第四儀器磁場量測值BInst4、一第五儀器磁場量測值BInst5、一第六儀器磁場量測值BInst6、一第七儀器磁場量測值BInst7以及一第八儀器磁場量測值BInst8。其中在步驟B中,磁場變異分佈BVarD係由第一磁場量測值序列[BUC1]減去第一儀器磁場量測值BInst1、第二磁場量測值序列[BUC2]減去第二儀器磁場量測值BInst2、第三磁場量測值序列[BUC3]減去第三儀器磁場量測值BInst3、第四磁場量測值序列[BUC4]減去第四儀器磁場量測值BInst4、第五磁場量測值序列[BUC5]減去第五儀器磁場量測值BInst5、第六磁場量測值序列[BUC6]減去第六儀器磁場量測值BInst6、第七磁場量測值序列[BUC7]
減去第七儀器磁場量測值BInst7、第八磁場量測值序列[BUC8]減去第八儀器磁場量測值BInst8、以及位置序列[PS]計算而得,藉此以分別去除儀器磁場BInst對第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8之干擾。其中本發明之一種人造物結構掃瞄方法之步驟執行順序係可為(1)依序執行步驟A0、步驟A以及步驟B,或(2)依序執行步驟A、步驟A0以及步驟B。
Please refer to FIG. 10, which is a perspective view of another embodiment of the scanning device for man-made structures of the present invention. The main structure of the embodiment in FIG. 10 is roughly the same as that of the embodiment in FIG. 3. However, the
其中在步驟A0中,由第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4分別量測人造物結構掃瞄裝置10所產生之儀器磁場BInst之步驟請參見在前述之說明。相似地,在步驟A0中,由第五磁場感應器5量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A51:將人造物結構掃瞄裝置10沿著第五磁場感應器5之第一軸(Z5軸)旋轉至少180°,並於旋轉期間由第五磁場感應器5進行磁場量測,而測得一第五磁場感應器第一軸量測值序列[BZ5](向量的序列);步驟A52:將人造物結構掃瞄裝置10沿著第五磁場感應器5之第二軸(X5軸)旋轉至少180°,並於旋轉期間由第五磁場感應器5進行磁場量測,而測得一第五磁場感應器第二軸量測值序列[BX5](向量的序列),其中第五磁場感應器5之第二軸係與第五磁場感應器5之第一軸正交;以及步驟A53:由第五磁場感應器第一軸量測值序列[BZ5]以及第五磁場感應器第二軸量測值序列[BX5]計算出第五儀器磁場量測值BInst5。在步驟A0中,由第六磁場感應器6量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A61:將人造物結構掃瞄裝置10沿著第六磁場感應器6之第一軸(Z6軸)旋
轉至少180°,並於旋轉期間由第六磁場感應器6進行磁場量測,而測得一第六磁場感應器第一軸量測值序列[BZ6](向量的序列);步驟A62:將人造物結構掃瞄裝置10沿著第六磁場感應器6之第二軸(X6軸)旋轉至少180°,並於旋轉期間由第六磁場感應器6進行磁場量測,而測得一第六磁場感應器第二軸量測值序列[BX6](向量的序列),其中第六磁場感應器6之第二軸係與第六磁場感應器6之第一軸正交;以及步驟A63:由第六磁場感應器第一軸量測值序列[BZ6]以及第六磁場感應器第二軸量測值序列[BX6]計算出第六儀器磁場量測值BInst6。在步驟A0中,由第七磁場感應器7量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A71:將人造物結構掃瞄裝置10沿著第七磁場感應器7之第一軸(Z7軸)旋轉至少180°,並於旋轉期間由第七磁場感應器7進行磁場量測,而測得一第七磁場感應器第一軸量測值序列[BZ7](向量的序列);步驟A72:將人造物結構掃瞄裝置10沿著第七磁場感應器7之第二軸(X7軸)旋轉至少180°,並於旋轉期間由第七磁場感應器7進行磁場量測,而測得一第七磁場感應器第二軸量測值序列[BX7](向量的序列),其中第七磁場感應器7之第二軸係與第七磁場感應器7之第一軸正交;以及步驟A73:由第七磁場感應器第一軸量測值序列[BZ7]以及第七磁場感應器第二軸量測值序列[BX7]計算出第七儀器磁場量測值BInst7。在步驟A0中,由第八磁場感應器8量測人造物結構掃瞄裝置10所產生之儀器磁場BInst,包括以下步驟:步驟A81:將人造物結構掃瞄裝置10沿著第八磁場感應器8之第一軸(Z8軸)旋轉至少180°,並於旋轉期間由第八磁場感應器8進行磁場量測,而測得一第八磁場感應器第一軸量測值序列[BZ8](向量的序列);步驟A82:將人造物結構掃瞄裝置10沿著第八磁場感
應器8之第二軸(X8軸)旋轉至少180°,並於旋轉期間由第八磁場感應器8進行磁場量測,而測得一第八磁場感應器第二軸量測值序列[BX8](向量的序列),其中第八磁場感應器8之第二軸係與第八磁場感應器8之第一軸正交;以及步驟A83:由第八磁場感應器第一軸量測值序列[BZ8]以及第八磁場感應器第二軸量測值序列[BX8]計算出第八儀器磁場量測值BInst8。
In step A0, the first
在一些實施例中,步驟B包括以下步驟:由位置序列[PS]以及將第一磁場量測值序列[BUC1]減去第一儀器磁場量測值BInst1計算出一第一磁場量測值分佈BCD1(亦即,第一磁場量測值與其量測位置之分佈);由位置序列[PS]以及將第二磁場量測值序列[BUC2]減去第二儀器磁場量測值BInst2計算出一第二磁場量測值分佈BCD2;由位置序列[PS]以及將第三磁場量測值序列[BUC3]減去第三儀器磁場量測值BInst3計算出一第三磁場量測值分佈BCD3;由位置序列[PS]以及將第四磁場量測值序列[BUC4]減去第四儀器磁場量測值BInst4計算出一第四磁場量測值分佈BCD4;由位置序列[PS]以及將第五磁場量測值序列[BUC5]減去第五儀器磁場量測值BInst5計算出一第五磁場量測值分佈BCD5;由位置序列[PS]以及將第六磁場量測值序列[BUC6]減去第六儀器磁場量測值BInst6計算出一第六磁場量測值分佈BCD6;由位置序列[PS]以及將第七磁場量測值序列[BUC7]減去第七儀器磁場量測值BInst7計算出一第七磁場量測值分佈BCD7;由位置序列[PS]以及將第八磁場量測值序列[BUC8]減去第八儀器磁場量測值BInst8計算出一第八磁場量測值分佈BCD8;以及由第一磁場量測值分佈BCD1、第二磁場量測值分佈BCD2、第三磁場量測值分佈BCD3、第四磁場量測值分佈BCD4、第五磁場量測值分佈BCD5、第六磁場量測值分佈BCD6、第七磁場量測值分佈 BCD7以及第八磁場量測值分佈BCD8計算出磁場變異分佈BVarD。 In some embodiments, step B includes the following steps: calculate a first magnetic field measurement value distribution from the position sequence [PS] and the first magnetic field measurement value sequence [BUC1] minus the first instrument magnetic field measurement value BInst1 BCD1 (that is, the distribution of the first magnetic field measurement value and its measurement position); calculate one from the position sequence [PS] and the second magnetic field measurement value sequence [BUC2] minus the second instrument magnetic field measurement value BInst2 second magnetic field distribution measured values BCD2; the position in the sequence [the PS] and the third magnetic field measurement value sequence [BUC3] subtracting the third measurement field instrument BInst3 value calculating a third magnetic field distribution measuring value BCD3; a Position sequence [PS] and the fourth magnetic field measurement value sequence [BUC4] minus the fourth instrument magnetic field measurement value BInst4 to calculate a fourth magnetic field measurement value distribution BCD4 ; from the position sequence [PS] and the fifth magnetic field The measurement value sequence [BUC5] subtracts the fifth instrument magnetic field measurement value BInst5 to calculate a fifth magnetic field measurement value distribution BCD5 ; from the position sequence [PS] and the sixth magnetic field measurement value sequence [BUC6] minus the first Sixth instrument magnetic field measurement value BInst6 calculates a sixth magnetic field measurement value distribution BCD6 ; from the position sequence [PS] and the seventh magnetic field measurement value sequence [BUC7] minus the seventh instrument magnetic field measurement value BInst7 to calculate a a seventh field distribution of measured values BCD7; the position in the sequence [the PS] and the eighth magnetic field measurement value sequence [BUC8] measured by subtracting the eighth field instrument calculating a value BInst8 eighth field distribution BCD8, measuring value; and a first magnetic field distribution of the measured values BCD1, the second magnetic field measurement value distribution BCD2, third magnetic field distribution measured value BCD3, fourth magnetic field measured value distribution BCD4, a fifth magnetic field distribution measured value BCD5, the amount of the sixth field measured value distribution BCD6, the seventh magnetic field distribution measuring value and an eighth field BCD7 measured magnetic field value distribution variation calculated distribution BCD8 BVarD.
在一些實施例中,第一磁場感應器1之第一軸係可為Z1軸或與Z1軸幾乎重合之軸,且第一磁場感應器1之第二軸係與第一磁場感應器1之第一軸正交之任一軸。在一些實施例中,第二磁場感應器2之第一軸係可為Z2軸或與Z2軸幾乎重合之軸,且第二磁場感應器2之第二軸係與第二磁場感應器2之第一軸正交之任一軸。在一些實施例中,第三磁場感應器3之第一軸係可為Z3軸或與Z3軸幾乎重合之軸,且第三磁場感應器3之第二軸係與第三磁場感應器3之第一軸正交之任一軸。在一些實施例中,第四磁場感應器4之第一軸係可為Z4軸或與Z4軸幾乎重合之軸,且第四磁場感應器4之第二軸係與第四磁場感應器4之第一軸正交之任一軸。
In some embodiments, the first axis of the first
在一些實施例中,第一磁場感應器1之第一軸係可為任一軸,且第一磁場感應器1之第二軸係為任一與第一磁場感應器1之第一軸正交之軸。在一些實施例中,第二磁場感應器2之第一軸係可為任一軸,且第二磁場感應器2之第二軸係為任一與第二磁場感應器2之第一軸正交之軸。在一些實施例中,第三磁場感應器3之第一軸係可為任一軸,且第三磁場感應器3之第二軸係為任一與第三磁場感應器3之第一軸正交之軸。在一些實施例中,第四磁場感應器4之第一軸係可為任一軸,且第四磁場感應器4之第二軸係為任一與第四磁場感應器4之第一軸正交之軸。
In some embodiments, the first axis of the first
在一些實施例中,第五磁場感應器5之第一軸係可為Z5軸或與Z5軸幾乎重合之軸,且第五磁場感應器5之第二軸係與第五磁場感應器5之第一軸正交之任一軸。在一些實施例中,第六磁場感應器6之第一軸係可為Z6軸或與Z6軸幾乎重合之軸,且第六磁場感應器6之第二軸係與第六磁場
感應器6之第一軸正交之任一軸。在一些實施例中,第七磁場感應器7之第一軸係可為Z7軸或與Z7軸幾乎重合之軸,且第七磁場感應器7之第二軸係與第七磁場感應器7之第一軸正交之任一軸。在一些實施例中,第八磁場感應器8之第一軸係可為Z8軸或與Z8軸幾乎重合之軸,且第八磁場感應器8之第二軸係與第八磁場感應器8之第一軸正交之任一軸。
In some embodiments, the first axis of the fifth
在一些實施例中,第五磁場感應器5之第一軸係可為任一軸,且第五磁場感應器5之第二軸係為任一與第五磁場感應器5之第一軸正交之軸。在一些實施例中,第六磁場感應器6之第一軸係可為任一軸,且第六磁場感應器6之第二軸係為任一與第六磁場感應器6之第一軸正交之軸。在一些實施例中,第七磁場感應器7之第一軸係可為任一軸,且第七磁場感應器7之第二軸係為任一與第七磁場感應器7之第一軸正交之軸。在一些實施例中,第八磁場感應器8之第一軸係可為任一軸,且第八磁場感應器8之第二軸係為任一與第八磁場感應器8之第一軸正交之軸。
In some embodiments, the first axis of the fifth
在一些實施例中,資料處理部60係分別與第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8以無線之方式相連接。在一些實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係分別位於一平行六面體之八個頂點。在另一些實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係分別位於一長方體之八個頂點。在又一
些實施例中,第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係分別位於一正六面體之八個頂點。
In some embodiments, the
因此,本發明之一種人造物結構掃瞄方法確實可掃瞄出待測區域70內之下方相對應之人造物結構分佈,以利於施工挖掘時能避開這些人造物結構。且本發明之特點在於,本發明之第一磁場感應器1、第二磁場感應器2、第三磁場感應器3、第四磁場感應器4、第五磁場感應器5、第六磁場感應器6、第七磁場感應器7以及第八磁場感應器8係可使用半導體晶片型的磁場感應器,其售價非常之便宜,但卻足以勝任本發明之一種人造物結構掃瞄方法之所需。
Therefore, the man-made structure scanning method of the present invention can indeed scan the corresponding man-made structure distribution below the area to be measured 70, so as to avoid these man-made structures during construction and excavation. And the feature of the present invention is that the first
以上所述乃是本發明之具體實施例及所運用之技術手段,根據本文的揭露或教導可衍生推導出許多的變更與修正,仍可視為本發明之構想所作之等效改變,其所產生之作用仍未超出說明書及圖式所涵蓋之實質精神,均應視為在本發明之技術範疇之內,合先陳明。 The above are the specific embodiments of the present invention and the technical means used. Many changes and corrections can be derived from the disclosure or teaching of this article. They can still be regarded as equivalent changes made to the concept of the present invention. The function of the invention does not exceed the essential spirit covered by the specification and the drawings, and it should be regarded as within the technical scope of the present invention, and shall be explained first.
綜上所述,依上文所揭示之內容,本發明確可達到發明之預期目的,提供一種人造物結構掃瞄裝置及其掃瞄方法,極具產業上利用之價植,爰依法提出發明專利申請。 In summary, based on the content disclosed above, this invention clearly achieves the intended purpose of the invention. It provides a scanning device for man-made structures and a scanning method thereof, which is extremely valuable for industrial use. The invention is proposed in accordance with the law. patent application.
1‧‧‧第一磁場感應器 1‧‧‧The first magnetic field sensor
2‧‧‧第二磁場感應器 2‧‧‧Second magnetic field sensor
3‧‧‧第三磁場感應器 3‧‧‧The third magnetic field sensor
4‧‧‧第四磁場感應器 4‧‧‧The fourth magnetic field sensor
10‧‧‧人造物結構掃瞄裝置 10‧‧‧Man-made object structure scanning device
30‧‧‧承載部 30‧‧‧Carrier Department
50‧‧‧磁場感應部 50‧‧‧Magnetic field sensor
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19198020.0A EP3633398A1 (en) | 2018-10-05 | 2019-09-18 | Apparatus and method for scanning an artificial structure |
US16/593,018 US11175354B2 (en) | 2018-10-05 | 2019-10-04 | Apparatus and method for scanning artificial structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107135296 | 2018-10-05 | ||
TW107135296 | 2018-10-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202014702A TW202014702A (en) | 2020-04-16 |
TWI719631B true TWI719631B (en) | 2021-02-21 |
Family
ID=71130740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132837A TWI719631B (en) | 2018-10-05 | 2019-09-11 | Apparatus and method for scanning artificial structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI719631B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6865455B1 (en) * | 2003-02-19 | 2005-03-08 | The United States Of America As Represented By The Secretary Of The Navy | Magnetic anomaly guidance system and method |
US6888353B1 (en) * | 2004-08-30 | 2005-05-03 | The United States Of America As Represented By The Secretary Of The Navy | Magnetic anomaly homing system and method using magnetic total field scalars |
US7688072B1 (en) * | 2007-09-18 | 2010-03-30 | The United States Of America As Represented By The Secretary Of The Navy | Portable magnetic sensing system for real-time, point-by-point detection, localization and classification of magnetic objects |
WO2015031072A1 (en) * | 2013-08-27 | 2015-03-05 | Andrew Llc | Alignment determination for antennas and such |
TW201624439A (en) * | 2014-12-30 | 2016-07-01 | 富智康(香港)有限公司 | Road information acquiring method and system, road managing method and platform |
CN106324687A (en) * | 2016-10-29 | 2017-01-11 | 西南石油大学 | Buried iron pipeline detection and accurate positioning method and device |
US20170315094A1 (en) * | 2015-06-29 | 2017-11-02 | The Charles Stark Draper Laboratory, Inc. | System and Method for Characterizing Ferromagnetic Material |
-
2019
- 2019-09-11 TW TW108132837A patent/TWI719631B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6865455B1 (en) * | 2003-02-19 | 2005-03-08 | The United States Of America As Represented By The Secretary Of The Navy | Magnetic anomaly guidance system and method |
US6888353B1 (en) * | 2004-08-30 | 2005-05-03 | The United States Of America As Represented By The Secretary Of The Navy | Magnetic anomaly homing system and method using magnetic total field scalars |
US7688072B1 (en) * | 2007-09-18 | 2010-03-30 | The United States Of America As Represented By The Secretary Of The Navy | Portable magnetic sensing system for real-time, point-by-point detection, localization and classification of magnetic objects |
WO2015031072A1 (en) * | 2013-08-27 | 2015-03-05 | Andrew Llc | Alignment determination for antennas and such |
TW201624439A (en) * | 2014-12-30 | 2016-07-01 | 富智康(香港)有限公司 | Road information acquiring method and system, road managing method and platform |
US20170315094A1 (en) * | 2015-06-29 | 2017-11-02 | The Charles Stark Draper Laboratory, Inc. | System and Method for Characterizing Ferromagnetic Material |
CN106324687A (en) * | 2016-10-29 | 2017-01-11 | 西南石油大学 | Buried iron pipeline detection and accurate positioning method and device |
Also Published As
Publication number | Publication date |
---|---|
TW202014702A (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7932718B1 (en) | System and method using magnetic anomaly field magnitudes for detection, localization, classification and tracking of magnetic objects | |
CN109883415B (en) | Rotating magnetic field positioning method based on trigonometric function fitting | |
CN106979780B (en) | A real-time attitude measurement method for unmanned vehicles | |
CN107544042B (en) | A magnetometer array calibration method | |
CN110108300B (en) | A method of IMU regular hexahedron calibration based on horizontal three-axis turntable | |
CN103527620A (en) | Spherical hinge capable of realizing rotation angle measurement and measurement method of rotation angle | |
CN107272069A (en) | Magnetic target method for tracing based on magnetic anomaly gradient | |
US7038458B1 (en) | Magnetic anomaly homing system and method using rotationally invariant scalar contractions of magnetic gradient tensors | |
CN110308490A (en) | Device and method for detecting rotating magnetic anomaly target based on magnetic sensor array | |
CN103941309A (en) | Geomagnetic sensor calibration apparatus and method thereof | |
JP5086225B2 (en) | Calibration apparatus, method and program for magnetic direction sensor | |
CN104391260B (en) | Spacecraft and magnetic moment self-adaptive dynamic test method of product of spacecraft | |
CN103175502A (en) | Attitude angle detecting method based on low-speed movement of data glove | |
CN106546235A (en) | A kind of locating magnetic objects method compensated based on carrier | |
CN105547326B (en) | Gyro and Magnetic Sensor combined calibrating method | |
CN109725360A (en) | Single-point localization method based on magnetic gradient tensor invariant | |
CN109444774A (en) | Method based on small-signal method measurement submarine navigation device magnetic noise coefficient | |
US20240168109A1 (en) | Device and method for determining an orientation of a magnet, and a joystick | |
TWI719631B (en) | Apparatus and method for scanning artificial structure | |
Pang et al. | Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method | |
CN112577518A (en) | Inertial measurement unit calibration method and device | |
CN109633541B (en) | A magnetic source positioning device and a magnetic source positioning method | |
EP3633398A1 (en) | Apparatus and method for scanning an artificial structure | |
CN110440796A (en) | Pipe robot positioning device and method based on rotating excitation field and inertial navigation fusion | |
Cui et al. | Three-axis magnetometer calibration based on optimal ellipsoidal fitting under constraint condition for pedestrian positioning system using foot-mounted inertial sensor/magnetometer |