TWI715445B - Device capable of compensating for amplitude-modulation to phase-modulation distortion - Google Patents
Device capable of compensating for amplitude-modulation to phase-modulation distortion Download PDFInfo
- Publication number
- TWI715445B TWI715445B TW109105526A TW109105526A TWI715445B TW I715445 B TWI715445 B TW I715445B TW 109105526 A TW109105526 A TW 109105526A TW 109105526 A TW109105526 A TW 109105526A TW I715445 B TWI715445 B TW I715445B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- circuit
- output
- control
- control signal
- Prior art date
Links
Images
Landscapes
- Amplifiers (AREA)
Abstract
Description
本發明是關於失真補償裝置,尤其是關於調幅調相失真之補償裝置。The present invention relates to a distortion compensation device, especially to a compensation device for amplitude and phase modulation distortion.
無線傳收器之功率放大器的輸出會有調幅調相失真(amplitude-modulation to phase-modulation distortion, AM-PM distortion),這會導致頻譜增生(spectral regrowth)的問題。頻譜增生的問題使得本領域人士難以將功率放大器整合至無線傳收器,也會降低無線傳收器之傳送電路的效能。The output of the power amplifier of the wireless transmitter will have amplitude-modulation to phase-modulation distortion (AM-PM distortion), which will cause the problem of spectral regrowth. The problem of spectrum proliferation makes it difficult for those skilled in the art to integrate the power amplifier into the wireless transceiver, and also reduces the performance of the transmission circuit of the wireless transceiver.
解決調幅調相失真之問題的目前技術包括採用笛卡爾回授(Cartesian feedback)技術以及適應性數位預失真技術。笛卡爾回授技術需要額外的回授解調變器以及誤差放大器,會增加電路複雜度與成本;笛卡爾回授可見於坊間之教科書(例如:Behzad Razavi, “Fundamentals of Microelectronics, 2nd Edition”, ISBN-10: 9781118156322/ ISBN-13: 978-1118156322)。適應性數位預失真技術可能需要基頻訊號之頻寬的增加,而導致較高的功耗,且該技術之升頻路徑與降頻路徑之間的耦合效應也可能降低預失真的效果;適應性數位預失真技術可見於專利號5524286之美國專利。Current technologies to solve the problem of AM and phase distortion include the use of Cartesian feedback technology and adaptive digital predistortion technology. Cartesian feedback technology requires additional feedback demodulators and error amplifiers, which will increase circuit complexity and cost; Cartesian feedback can be found in textbooks (for example: Behzad Razavi, "Fundamentals of Microelectronics, 2 nd Edition" , ISBN-10: 9781118156322/ ISBN-13: 978-1118156322). The adaptive digital predistortion technology may require an increase in the bandwidth of the baseband signal, resulting in higher power consumption, and the coupling effect between the up-frequency path and the down-frequency path of this technology may also reduce the effect of the pre-distortion; The sexual digital predistortion technology can be found in the US Patent No. 5524286.
本發明之一目的在於提供一種調幅調相失真之補償裝置,以避免先前技術的問題。An object of the present invention is to provide a compensation device for AM and phase distortion to avoid the problems of the prior art.
依據本發明之一實施例,本發明之調幅調相失真之補償裝置包含一傳送電路、一控制電路以及一校正電路。該傳送電路包含一放大電路、一相移調整電路以及一輸出電路;該放大電路用來依據一輸入訊號輸出一放大訊號;該相移調整電路包含一可調電容與一可調電感的至少其中之一,設於該放大電路與該輸出電路之間,用來依據一控制訊號調整該放大訊號的相移;該輸出電路用來依據該放大訊號輸出一輸出訊號。該控制電路用來依據該輸入訊號產生該控制訊號,其中該控制訊號隨著該輸入訊號而變。該校正電路用來依據該控制訊號之變化與該輸出訊號之變化之間的關係來輸出一校正訊號至該控制電路。本實施例適用於用於通訊裝置之傳送電路或音訊傳送電路。According to an embodiment of the present invention, the compensation device for AM and phase distortion of the present invention includes a transmission circuit, a control circuit and a correction circuit. The transmission circuit includes an amplifying circuit, a phase shift adjusting circuit, and an output circuit; the amplifying circuit is used to output an amplified signal according to an input signal; the phase shift adjusting circuit includes at least one of an adjustable capacitor and an adjustable inductor One is arranged between the amplifying circuit and the output circuit to adjust the phase shift of the amplified signal according to a control signal; the output circuit is used to output an output signal according to the amplified signal. The control circuit is used for generating the control signal according to the input signal, wherein the control signal changes with the input signal. The correction circuit is used to output a correction signal to the control circuit according to the relationship between the change of the control signal and the change of the output signal. This embodiment is suitable for transmission circuits or audio transmission circuits used in communication devices.
有關本發明的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。With regard to the features, implementation and effects of the present invention, preferred embodiments are described in detail as follows in conjunction with the drawings.
本發明揭露一種調幅調相失真(amplitude-modulation to phase-modulation distortion, AM-PM distortion)之補償裝置,能夠應用於通訊裝置之傳送或接收電路以及應用於音訊傳送電路,但不以此為限。該補償裝置具有易於實施、成本經濟以及低功耗等優點。The present invention discloses a compensation device for amplitude-modulation to phase-modulation distortion (AM-PM distortion), which can be applied to transmission or receiving circuits of communication devices and to audio transmission circuits, but is not limited to this . The compensation device has the advantages of easy implementation, economic cost and low power consumption.
圖1顯示本發明之調幅調相失真之補償裝置的一實施例。圖1之調幅調相失真之補償裝置100包含一傳送電路110以及一控制電路120。傳送電路110包含一放大電路112、一相移調整電路114以及一輸出電路116。放大電路112依據一輸入訊號SIN
輸出一放大訊號SAMP
,該輸入訊號SIN
視實施需求可為差動或單端訊號,其可為單一個訊號或由複數個訊號(例如:同相(in-phase)訊號與正交相(quadrature-phase)訊號)組成。相移調整電路114依不同應用包含一可調電容與一可調電感的至少其中之一,設於放大電路114與輸出電路116之間,依據一控制訊號SCTRL
調整該放大訊號SAMP
的相移(phase shift);舉例而言,該控制訊號SCTRL
包含一控制電壓,該可調電容包含一變容器(varactor),該變容器之電容值隨著該控制電壓而變;另舉例而言,該控制訊號SCTRL
是由數位碼轉換而得的複數個準位的組成,該可調電容包含複數個並聯的電容路徑,每該電容路徑包含一電容元件與一開關,每該開關依據該控制訊號SCTRL
而打開或關閉以決定該電容的電容值。輸出電路116依據該放大訊號SAMP
輸出一輸出訊號SOUT
。控制電路120依據該輸入訊號SIN
產生該控制訊號SCTRL
,該控制訊號SCTRL
隨著該輸入訊號SIN
而變;換言之,不同的輸入訊號SIN
可能分別對應不同的控制訊號SCTRL
,其中該輸入訊號SIN
與該控制訊號SCTRL
的初始關係可選擇性地預存於該控制電路120中,也可選擇性地定期地/不定期地被更新。Fig. 1 shows an embodiment of the compensation device for AM and phase distortion of the present invention. The
圖2顯示圖1之傳送電路110的一實施例。本實施例中,傳送電路110為一無線傳送電路(例如:符合802.11a/b/g/n/ac規範之無線傳送電路、藍牙傳送電路、窄頻物聯網(Narrow Band Internet of Things, NBIOT)傳送電路等等),該輸入訊號SIN
(例如:基頻訊號)包含一同相訊號SIN_I
與一正交相訊號SIN_Q
,該放大訊號SAMP
包含一第一放大訊號SAMP_1
與一第二放大訊號SAMP_2
,該控制訊號SCTRL
包含一第一控制訊號SCTRL_1
與一第二控制訊號SCTRL_2
。FIG. 2 shows an embodiment of the
如圖2所示,放大電路112包含一振盪源210(例如:頻率合成器(frequency synthesizer))、一第一數位至射頻振幅轉換器(digital-to-RF-amplitude converter, DRAC)220以及一第二DRAC 230。振盪源210提供至少一第一振盪訊號LO1
(例如:頻率為f LO
且相位分別為0度與180度的二振盪訊號)與至少一第二振盪訊號LO2
(例如:頻率為f LO
且相位分別為90度與270度的二振盪訊號)。第一DRAC 220依據該至少一第一振盪訊號LO1
將該同相訊號SIN_I
轉換為該第一放大訊號SAMP_1
。第二DRAC 230依據該至少一第二振盪訊號LO2
將該正交相訊號SIN_Q
轉換為該第二放大訊號SAMP_2
。放大電路112的進一步說明可見於下列文獻:Morteza S. Alavi, Student Member, IEEE, Robert Bogdan Staszewski, Fellow, IEEE, Leo C. N. de Vreede, Senior Member, IEEE, and John R. Long, Member, IEEE, “A Wideband 2 13-bit All-Digital I/Q RF-DAC”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 62, NO. 4, APRIL 2014。As shown in FIG. 2, the amplifying
如圖2所示,相移調整電路114包含一第一諧振電路(resonant circuit)240以及一第二諧振電路250。第一諧振電路240依據該第一控制訊號SCTRL_1
調整該第一放大訊號SAMP_1
的相移。第二諧振電路250依據該第二控制訊號SCTRL_2
調整該第二放大訊號SAMP_2
的相移。第一諧振電路240與第二諧振電路250的每一個包含並聯的一電容與一電感,該電容之值及/或該電感之值可依據該控制訊號SCTRL
而被調整。As shown in FIG. 2, the phase
如圖2所示,輸出電路116包含一訊號合成器260將該第一放大訊號SAMP_1
與該第二放大訊號SAMP_2
相加以產生該輸出訊號SOUT
。訊號合成器260單獨而言可為一已知或自行開發的電路,其細節在此省略。As shown in FIG. 2, the
圖3顯示圖1之傳送電路110的另一實施例,可應用於音訊傳送裝置。圖3之實作中,該輸入訊號SIN
為一數位音訊訊號SIN_D
;放大電路112包含一數位至類比轉換器(DAC)310以及一音訊放大器320,其中DAC 310依據該數位音訊訊號SIN_D
產生一類比音訊訊號SIN_A
,音訊放大器320依據該類比音訊訊號SIN_A
產生該放大訊號SAMP
;相移調整電路114包含一可調電容330;輸出電路116包含一輸出接腳340依據該放大訊號SAMP
輸出該輸出訊號SOUT
。FIG. 3 shows another embodiment of the
圖4顯示圖1之控制電路120的一實施例。圖4之控制電路120包含一計算電路410以及一控制訊號產生電路420。計算電路410依據該輸入訊號SIN
(例如:前述同相訊號SIN_I
與正交相訊號SIN_Q
)提供與該輸入訊號SIN
的振幅相關的一計算值SIN_AMP
(例如:)給控制訊號產生電路420。控制訊號產生電路420依據該計算值SIN_AMP
決定該控制訊號SCTRL
之強度(例如:控制電壓的電壓大小)或準位組成(例如:由該計算值SIN_AMP
轉換而得的複數個準位的組成,其中每個準位控制一個開關的啟閉狀態),並輸出該控制訊號SCTRL
至相移調整電路114。值得注意的是,若輸入訊號為單一訊號(例如:圖3之數位音訊訊號SIN_D
)且其振幅可直接地被確定,計算電路410可選擇性地被省略,此時控制訊號產生電路420直接依據該輸入訊號SIN
的振幅決定該控制訊號SCTRL
之強度或準位組成。FIG. 4 shows an embodiment of the
圖5顯示圖4之控制訊號產生電路420的一實施例。圖5之控制訊號產生電路420包含一查表電路510、一數位至類比轉換器(DAC)520以及一濾波電路530。查表電路510依據該輸入訊號SIN
的振幅輸出一數位控制訊號SCTRL_D
。DAC 520依據該數位控制訊號SCTRL_D
產生一類比訊號SA
。濾波電路530(例如:低通濾波器)依據該類比訊號SA
產生一濾波訊號作為該控制訊號SCTRL
。值得注意的是,若沒有必要對該類比訊號SA
執行濾波,濾波電路530可選擇性地被省略,此時該類比訊號SA
作為該控制訊號SCTRL
。FIG. 5 shows an embodiment of the control
圖6顯示本發明之調幅調相失真之補償裝置的另一實施例。相較於圖1,圖6之調幅調相失真之補償裝置600進一步包含一校正電路610。校正電路610依據該控制訊號SCTRL
之變化與該輸出訊號SOUT
之變化之間的關係來輸出一校正訊號SCAL
至控制電路120,以使控制電路120依據該校正訊號SCAL
決定該輸入訊號SIN
與該控制訊號SCTRL
之間的關係。於一實作範例中,在該輸入訊號SIN
為一特定值的情形下(例如:該輸入訊號SIN
之振幅為一特定振幅時),校正電路610依序執行至少下列步驟(如圖7所示)以判斷該控制訊號SCTRL
之變化與該輸出訊號SIN
之變化之間的關係:
步驟S710:令該控制訊號SCTRL
往一目前方向來變化。舉例而言,該控制訊號SCTRL
是一控制電壓,本步驟令該控制訊號SCTRL
增加/減少一單位的預設電壓;另舉例而言,該控制訊號SCTRL
是複數個準位的組成(例如:00011分別用來控制前述電容路徑中的五個開關,其中準位0用來使開關不導通,準位1用來使開關導通),本步驟改變該控制訊號SCTRL
的一個準位(例如:00011à00111或00111à00011)。
步驟S720:執行一比較作業,以比較源自該輸出訊號SOUT
之一當前值(例如:後述之數位回授訊號SFEEDBACK
)與源自該輸出訊號SOUT
之一先前值(例如:後述之在前數位回授訊號)。該當前值產生於該控制訊號SCTRL
之最近一次的變化後,該先前值產生於該控制訊號SCTRL
之最近一次的變化前。
步驟S730:若該當前值小於該先前值(其意味著增生的訊號變小,亦即AM-PM失真減輕),保持該目前方向不變;若該當前值大於該先前值(其意味著增生的訊號變大,亦即AM-PM失真變嚴重),令該目前方向更新為該目前方向的反相。
步驟S740:依序重複步驟S710至S740直到該目前方向改變達至少N次,接著輸出該校正訊號SCAL
以指出在該輸入訊號SIN
為該特定值的情形下該控制訊號SCTRL
的最佳強度或最佳準位組成,其中該N為正整數。舉例來說,若執行第一次比較作業時,該當前值小於該先前值,代表一開始選擇的控制訊號的變化方向是正確的,則該N為正整數;若執行第一次比較作業時,該當前值大於該先前值,代表一開始選擇的控制訊號的變化方向是錯誤的,則該N為不小於2的正整數。
藉由上述步驟,校正電路610可以找出該輸入訊號SIN
之各個值所對應的該控制訊號SCTRL
的最佳強度或最佳準位組成。Fig. 6 shows another embodiment of the compensation device for AM and phase distortion of the present invention. Compared with FIG. 1, the
圖8顯示圖6之校正電路610的一實施例。如圖8所示,校正電路610包含一自混頻混頻器(self-mixing mixer)810以及一適應性校準電路820。自混頻混頻器810依據該輸出訊號SOUT
或其衍生訊號產生一混頻訊號SMIX
,其中該輸出訊號SOUT
或其衍生訊號是同時作為一混頻輸入訊號SMIX_IN
以及一混頻器振盪訊號SMIX_LO
,以供該自混頻混頻器810據以產生該混頻訊號SMIX
,該混頻訊號SMIX
包含增生之訊號(例如:頻率為2f BB
之訊號,其中f BB
為該輸入訊號SIN
的頻率)。適應性校準電路820依據該控制訊號SCTRL
之變化與該混頻訊號SMIX
之變化之間的關係來輸出該校正訊號SCAL
至控制電路120。舉例而言,當該控制訊號SCTRL
增加達一個預設單位,若源自該混頻訊號SMIX
之一當前值小於儲存在適應性校準電路820中源自該混頻訊號SMIX
的一先前值(其產生於該控制訊號SCTRL
改變之前),適應性校準電路820輸出該校正訊號SCAL
以使控制電路120所輸出的該控制訊號SCTRL
再增加達一個預設單位;若該當前值大於該先前值,適應性校準電路820輸出該校正訊號SCAL
以使控制電路120所輸出的該控制訊號SCTRL
減少達一個預設單位。值得注意的是,為使該輸出訊號SOUT
的大小適合給校正電路610來處理,校正電路610可選擇性地包含一電阻(例如:可調電阻)(未顯示於圖),該電阻依據該輸出訊號SOUT
輸出一降壓訊號作為該輸出訊號SOUT
之衍生訊號,以供該自混頻混頻器810依據該降壓訊號產生該混頻訊號SMIX
。FIG. 8 shows an embodiment of the
圖9a顯示圖8之自混頻混頻器810的一實施例,其中虛線代表寄生電容。由於圖9a所示之各元件為本領域之習知元件,本領域具有通常知識者能依圖9a來瞭解自混頻混頻器810的運作,其細節在此省略。FIG. 9a shows an embodiment of the self-mixing
圖9b顯示圖8之適應性校準電路820的一實施例。如圖9b所示,適應性校準電路820包含一增益控制器910、一類比至數位轉換器(ADC)920以及一比較暨校準電路930。增益控制器(例如:可變增益放大器(variable gain amplifier, VGA)依據該混頻訊號SMIX
產生一增益控制訊號SGAIN
。ADC 920依據該增益控制訊號SGAIN
產生一數位回授訊號SFEEDBACK
。比較暨校準電路930比較該數位回授訊號SFEEDBACK
以及一在前數位回授訊號(即先前產生的數位回授訊號SFEEDBACK
)以決定並輸出該校正訊號SCAL
;於完成比較該數位回授訊號SFEEDBACK
以及該在前數位回授訊號後,比較暨校準電路930將該數位回授訊號SFEEDBACK
作為該在前數位回授訊號以用於下一輪比較;於一實作範例中,比較暨校準電路930用來執行與圖7之步驟。FIG. 9b shows an embodiment of the
圖10顯示本發明之調幅調相失真之補償裝置的另一實施例。圖10之調幅調相失真之補償裝置1000包含一接收電路1010(例如:符合802.11a/b/g/n/ac規範之無線接收電路、藍牙接收電路、窄頻物聯網(Narrow Band Internet of Things, NBIOT)接收電路等等)以及一控制電路1020(例如:圖4之控制電路120)。接收電路1010包含一輸入電路1012、一相移調整電路1014(例如:可調電容)以及一射頻至基頻接收電路1016。輸入電路1012(例如:一可調電阻或一接腳)依據一射頻訊號SRF
產生一類比接收訊號SRF_A
。相移調整電路1014耦接輸入電路1012,依據一控制訊號SCTRL
調整類比接收訊號SRF_A
的相移。射頻至基頻接收電路1016依據該類比接收訊號SRF_A
產生一數位接收訊號SBB
。控制電路1020依據該數位接收訊號SBB
產生該控制訊號SCTRL
,該控制訊號SCTRL
隨著該數位接收訊號SBB
而變。Fig. 10 shows another embodiment of the compensation device for AM and phase distortion of the present invention. The
圖11顯示圖10之射頻至基頻接收電路1016的一實施例。圖11之射頻至基頻接收電路1016包含:一混頻器1110依據該類比接收訊號SRF_A
產生一中頻訊號SIF
。一增益控制器1120(例如:可變增益放大器)依據該中頻訊號SIF
產生一增益控制訊號SGAIN
;以及一類比至數位轉換器(ADC)1130依據該增益控制訊號SGAIN
產生該數位接收訊號SBB
。FIG. 11 shows an embodiment of the RF-to-
圖12顯示本發明之調幅調相失真之補償裝置的另一實施例。相較於圖10,圖12之調幅調相失真之補償裝置1200進一步包含一校正電路1210(例如:圖9b之比較暨校準電路930)。校正電路1210依據該數位接收訊號SBB
之變化與該控制訊號SCTRL
之變化之間的關係來輸出一校正訊號SCAL
至控制電路1020,以使控制電路1020依據該校正訊號SCAL
決定該數位接收訊號SBB
與該控制訊號SCTRL
之間的關係。於一實作範例中,校正電路1210執行圖7之步驟,除了該輸入訊號SIN
由該射頻訊號SRF
取代、該輸入訊號SIN
的特定值由該射頻訊號SRF
的特定振幅取代、以及該輸出訊號SOUT
由該數位接收訊號SBB
取代。FIG. 12 shows another embodiment of the compensation device for AM and phase distortion of the present invention. Compared with FIG. 10, the
由於本領域具有通常知識者能夠參酌圖1~9b之實施例的揭露來瞭解圖10~12之實施例的實施細節與變化,因此,重複及冗餘之說明在此節略。Since those with ordinary knowledge in the art can refer to the disclosure of the embodiments of FIGS. 1 to 9b to understand the implementation details and changes of the embodiments of FIGS. 10 to 12, repetitive and redundant descriptions are omitted here.
綜上所述,相較於先前技術,本發明之調幅調相失真之補償裝置具有易於實施、成本經濟以及低功耗等優點。In summary, compared with the prior art, the compensation device for AM and phase distortion of the present invention has the advantages of easy implementation, economical cost, and low power consumption.
雖然本發明之實施例如上所述,然而該些實施例並非用來限定本發明,本技術領域具有通常知識者可依據本發明之明示或隱含之內容對本發明之技術特徵施以變化,凡此種種變化均可能屬於本發明所尋求之專利保護範疇,換言之,本發明之專利保護範圍須視本說明書之申請專利範圍所界定者為準。Although the embodiments of the present invention are as described above, these embodiments are not used to limit the present invention. Those skilled in the art can make changes to the technical features of the present invention based on the explicit or implicit content of the present invention. All such changes may belong to the scope of patent protection sought by the present invention. In other words, the scope of patent protection of the present invention shall be subject to the scope of the patent application in this specification.
100:調幅調相失真之補償裝置 110:傳送電路 120:控制電路 112:放大電路 114:相移調整電路 116:輸出電路 SIN:輸入訊號 SAMP:放大訊號 SCTRL:控制訊號 SOUT:輸出訊號 SIN_I:同相訊號 SIN_Q:正交相訊號 SAMP_1:第一放大訊號 SAMP_2:第二放大訊號 SCTRL_1:第一控制訊號 SCTRL_2:第二控制訊號 210:振盪源 220:第一DRAC(第一數位至射頻振幅轉換器) 230:第二DRAC(第二數位至射頻振幅轉換器) LO1:至少一第一振盪訊號 LO2:至少一第二振盪訊號 240:第一諧振電路 250:第二諧振電路 260:訊號合成器 SIN_D:數位音訊訊號 SIN_A:類比音訊訊號 310:DAC(數位至類比轉換器) 320:音訊放大器 330:可調電容 340:輸出接腳 410:計算電路 420:控制訊號產生電路 SIN_AMP:計算值 510:查表電路 520:DAC(數位至類比轉換器) 530:濾波電路 SCTRL_D:數位控制訊號 SA:類比訊號 600:調幅調相失真之補償裝置 610:校正電路 SCAL:校正訊號 S710~S740:步驟 810:自混頻混頻器 820:適應性校準電路 SMIX:混頻訊號 SMIX_IN:混頻輸入訊號 SMIX_LO:混頻器振盪訊號 910:增益控制器 920:ADC(類比至數位轉換器) 930:比較暨校準電路 SGAIN:增益控制訊號 SFEEDBACK:數位回授訊號 1000:調幅調相失真之補償裝置 1010:接收電路 1020:控制電路 1012:輸入電路 1014:相移調整電路 1016:射頻至基頻接收電路 SRF:射頻訊號 SRF_A:類比接收訊號 SBB:數位接收訊號 1110:混頻器 1120:增益控制器 1130:ADC(類比至數位轉換器) SIF:中頻訊號 SGAIN:增益控制訊號 1200:調幅調相失真之補償裝置 1210:校正電路100: Compensation device for amplitude modulation and phase modulation distortion 110: Transmission circuit 120: Control circuit 112: Amplification circuit 114: Phase shift adjustment circuit 116: Output circuit S IN : Input signal S AMP : Amplified signal S CTRL : Control signal S OUT : Output Signal S IN_I : In-phase signal S IN_Q : Quadrature-phase signal S AMP_1 : First amplified signal S AMP_2 : Second amplified signal S CTRL_1 : First control signal S CTRL_2 : Second control signal 210: Oscillation source 220: First DRAC (First Digital to RF Amplitude Converter) 230: Second DRAC (Second Digital to RF Amplitude Converter) LO 1 : at least one first oscillation signal LO 2 : at least one second oscillation signal 240: first resonance circuit 250 : Second resonance circuit 260: signal synthesizer S IN_D : digital audio signal S IN_A : analog audio signal 310: DAC (digital to analog converter) 320: audio amplifier 330: adjustable capacitor 340: output pin 410: calculation circuit 420: control signal generation circuit S IN_AMP: Calcd 510: look-up table circuit 520: DAC (digital to analog converter) 530: filter circuit S CTRL_D: digital control signal S A: the analog signal 600: amplitude and phase distortion of the compensating apparatus 610: Calibration circuit S CAL : Calibration signal S710~S740: Step 810: Self-mixing mixer 820: Adaptive calibration circuit S MIX : Mixing signal S MIX_IN : Mixing input signal S MIX_LO : Mixer oscillation signal 910 : Gain controller 920: ADC (analog to digital converter) 930: Comparison and calibration circuit S GAIN : Gain control signal S FEEDBACK : Digital feedback signal 1000: Amplitude and phase modulation distortion compensation device 1010: Receiving circuit 1020: Control circuit 1012: Input circuit 1014: Phase shift adjustment circuit 1016: RF to baseband receiving circuit S RF : RF signal S RF_A : Analog receiving signal S BB : Digital receiving signal 1110: Mixer 1120: Gain controller 1130: ADC (analog To digital converter) S IF : Intermediate frequency signal S GAIN : Gain control signal 1200: Amplitude and phase modulation distortion compensation device 1210: Correction circuit
[圖1]顯示本發明之調幅調相失真之補償裝置的一實施例; [圖2]顯示圖1之傳送電路的一實施例; [圖3]顯示圖1之傳送電路的另一實施例; [圖4]顯示圖1之控制電路的一實施例; [圖5]顯示圖4之控制訊號產生電路的一實施例; [圖6]顯示本發明之調幅調相失真之補償裝置的另一實施例; [圖7]顯示圖6之校正電路所執行的步驟; [圖8]顯示圖6之校正電路的一實施例; [圖9a]顯示圖8之自混頻混頻器的一實施例; [圖9b]顯示圖8之適應性校準電路的一實施例; [圖10]顯示本發明之調幅調相失真之補償裝置的另一實施例; [圖11]顯示圖10之射頻至基頻接收電路的一實施例;以及 [圖12]顯示本發明之調幅調相失真之補償裝置的另一實施例。[Figure 1] shows an embodiment of the compensation device for amplitude and phase modulation of the present invention; [Figure 2] shows an embodiment of the transmission circuit of Figure 1; [Figure 3] shows another embodiment of the transmission circuit of Figure 1; [Figure 4] shows an embodiment of the control circuit of Figure 1; [Figure 5] shows an embodiment of the control signal generating circuit of Figure 4; [Figure 6] shows another embodiment of the compensation device for amplitude and phase modulation of the present invention; [Figure 7] shows the steps performed by the calibration circuit in Figure 6; [Figure 8] shows an embodiment of the correction circuit of Figure 6; [Figure 9a] shows an embodiment of the self-mixing mixer of Figure 8; [Figure 9b] shows an embodiment of the adaptive calibration circuit of Figure 8; [Figure 10] shows another embodiment of the compensation device for AM and phase distortion of the present invention; [Figure 11] shows an embodiment of the RF to baseband receiving circuit of Figure 10; and [Figure 12] shows another embodiment of the compensation device for AM and phase distortion of the present invention.
100:調幅調相失真之補償裝置 100: Compensation device for AM and phase distortion
110:傳送電路 110: Transmission circuit
120:控制電路 120: control circuit
112:放大電路 112: Amplifying circuit
114:相移調整電路 114: Phase shift adjustment circuit
116:輸出電路 116: output circuit
SIN:輸入訊號 S IN : Input signal
SAMP:放大訊號 S AMP : Amplify the signal
SCTRL:控制訊號 S CTRL : Control signal
SOUT:輸出訊號 S OUT : output signal
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105526A TWI715445B (en) | 2018-12-17 | 2018-12-17 | Device capable of compensating for amplitude-modulation to phase-modulation distortion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105526A TWI715445B (en) | 2018-12-17 | 2018-12-17 | Device capable of compensating for amplitude-modulation to phase-modulation distortion |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202027409A TW202027409A (en) | 2020-07-16 |
TWI715445B true TWI715445B (en) | 2021-01-01 |
Family
ID=73004915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109105526A TWI715445B (en) | 2018-12-17 | 2018-12-17 | Device capable of compensating for amplitude-modulation to phase-modulation distortion |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI715445B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6349216B1 (en) * | 1999-07-22 | 2002-02-19 | Motorola, Inc. | Load envelope following amplifier system |
US6741128B2 (en) * | 2001-04-27 | 2004-05-25 | Hitachi Kokusai Electric Inc. | Distortion canceling circuit |
US7593491B1 (en) * | 2006-10-03 | 2009-09-22 | Rf Micro Devices, Inc. | Quadrature single-mixer multi-mode radio frequency receiver |
US8185066B2 (en) * | 2009-10-23 | 2012-05-22 | Sony Mobile Communications Ab | Multimode power amplifier with predistortion |
TWI446730B (en) * | 2011-09-06 | 2014-07-21 | Ralink Technology Corp | Receiver |
US20140295776A1 (en) * | 2008-03-31 | 2014-10-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Compensating for non-linear capacitance effects in a power amplifier |
-
2018
- 2018-12-17 TW TW109105526A patent/TWI715445B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6349216B1 (en) * | 1999-07-22 | 2002-02-19 | Motorola, Inc. | Load envelope following amplifier system |
US6741128B2 (en) * | 2001-04-27 | 2004-05-25 | Hitachi Kokusai Electric Inc. | Distortion canceling circuit |
US7593491B1 (en) * | 2006-10-03 | 2009-09-22 | Rf Micro Devices, Inc. | Quadrature single-mixer multi-mode radio frequency receiver |
US20140295776A1 (en) * | 2008-03-31 | 2014-10-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Compensating for non-linear capacitance effects in a power amplifier |
US8185066B2 (en) * | 2009-10-23 | 2012-05-22 | Sony Mobile Communications Ab | Multimode power amplifier with predistortion |
TWI446730B (en) * | 2011-09-06 | 2014-07-21 | Ralink Technology Corp | Receiver |
Also Published As
Publication number | Publication date |
---|---|
TW202027409A (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8150343B2 (en) | Dynamic stability, gain, efficiency and impedance control in a linear/non-linear CMOS power amplifier | |
CN105322958B (en) | The compensation of the pulling of oscilaltor | |
US9088320B2 (en) | Transmitter with pre-distortion module, a method thereof | |
TWI692936B (en) | Device capable of compensating for amplitude-modulation to phase-modulation distortion | |
US7343138B2 (en) | Compensating for load pull in electromagentic signal propagation using adaptive impedance matching | |
US7904045B2 (en) | Phase detector comprising a switch configured to select a phase offset closest to a phase of an amplifier | |
JP5273056B2 (en) | Power amplifier | |
US20060234668A1 (en) | Communication semiconductor integrated circuit | |
JP4970449B2 (en) | Center frequency control of bandpass filter of integrated phase rotator using VCO coarse adjustment bit | |
US7570188B2 (en) | Common mode management between a current-steering DAC and transconductance filter in a transmission system | |
JP2007221773A (en) | Pll modulation circuit, radio transmitting apparatus, and radio communication apparatus | |
TW202007103A (en) | Calibration apparatus and calibration method | |
US20060160499A1 (en) | Polar modulator and method for modulation of a signal | |
US8457567B2 (en) | Amplitude modulation controller for polar transmitter | |
US20080298495A1 (en) | Method and apparatus for generating corrected quadrature phase signal pairs in a communication device | |
US20070146082A1 (en) | Frequency synthesizer, wireless communications device, and control method | |
US7729671B2 (en) | Method and system for enhancing efficiency by modulating power amplifier gain | |
US8208872B2 (en) | Distortion correction device and method for power amplifier | |
JP2007020192A (en) | Transmission structure, transceiver having transmission structure, and signal processing method | |
TWI715445B (en) | Device capable of compensating for amplitude-modulation to phase-modulation distortion | |
CN111355503B (en) | Compensating device for amplitude modulation and phase modulation distortion | |
TWI707567B (en) | Device capable of compensating for amplitude-modulation to phase-modulation distortion | |
TW202042496A (en) | Envelope tracking supply and associated method and system | |
JP3953969B2 (en) | Digital modulation transmission apparatus and method | |
US20050195541A1 (en) | Load and matching circuit having electrically controllable frequency range |