TWI709054B - Building device and building method of prediction model and monitoring system for product quality - Google Patents
Building device and building method of prediction model and monitoring system for product quality Download PDFInfo
- Publication number
- TWI709054B TWI709054B TW108144495A TW108144495A TWI709054B TW I709054 B TWI709054 B TW I709054B TW 108144495 A TW108144495 A TW 108144495A TW 108144495 A TW108144495 A TW 108144495A TW I709054 B TWI709054 B TW I709054B
- Authority
- TW
- Taiwan
- Prior art keywords
- classifier
- candidate
- strong
- product
- data set
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06395—Quality analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Educational Administration (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Health & Medical Sciences (AREA)
- General Factory Administration (AREA)
Abstract
Description
本發明是有關於一種預測模型的建立裝置、建立方法與產品品質監控系統,且特別是有關於一種無須實際進行品質檢測,即可預測產品品質之預測模型的建立裝置、建立方法與產品品質監控系統。 The present invention relates to a predictive model establishment device, establishment method, and product quality monitoring system, and in particular to a predictive model establishment device, establishment method, and product quality monitoring that can predict product quality without actual quality inspection system.
製造業是工業化社會中不可或缺的一環。儘管不同類型的製造業生產的產品不同,但其本質均是對生產材料進行加工後,生產產品。固然,製造商希望所生產的產品品質均合格。然而,生產流程中存在諸多變因,使產品的品質呈現不穩定的情況。只要有任何產品的品質可能具有瑕疵時,製造商便須考慮以下問題。例如,如何判斷產品具有瑕疵、是否須對全部的產品進行品質檢測,以及,究竟生產環節何處出現問題,導致產品品質出現瑕疵等。為能確保產品的品質符合規定,品質檢測對製造業相當必要。 Manufacturing is an indispensable part of an industrialized society. Although different types of manufacturing produce different products, their essence is to produce products after processing production materials. Of course, the manufacturer hopes that the quality of the products produced are qualified. However, there are many variables in the production process that make the quality of the product unstable. As long as the quality of any product may have defects, the manufacturer must consider the following issues. For example, how to determine whether a product is defective, whether it is necessary to conduct quality inspections on all products, and where the problem occurs in the production process, which leads to product quality defects. In order to ensure that the quality of products meets regulations, quality testing is quite necessary for the manufacturing industry.
請參見第1圖,其係習用技術透過品質檢測裝置對產品進行檢測之示意圖。生產材料11經過生產設備13的加工後,產生產品19。產品19經由品質檢測裝置17進行品質檢測後,產生品質檢測資料15。品質檢測資料15顯示產品19的品質為合格或是具有瑕疵。
Please refer to Figure 1, which is a schematic diagram of conventional technology testing products through quality testing devices. After the
但是,利用品質檢測裝置17檢測產品品質的做法,不但需耗費相當多時間金錢,亦無法協助製造商釐清是生產流程中的哪裡出現異常,才導致產品19的品質出現問題。換言之,產品生產流程涉及相當多的環節,何者才是真正使產品19產生瑕疵的實際原因,對製造商而言,並不是一個容易判斷的問題。
However, the method of using the
本發明係有關於一種預測模型的建立裝置、建立方法與產品品質監控系統。本發明的預測模型的建立裝置、建立方法與產品品質監控系統建立預測模型,讓產品的製造商僅依據由預測模型產出的品質預測結果與瑕疵源追蹤資訊等。預測模型的使用,可讓製造商快速地掌握產品的品質,不但可節省進行品質檢測所需花費的大量時間與成本,亦可對生產流程的異常提供相關的分析資訊。 The invention relates to a predictive model establishment device, establishment method and product quality monitoring system. The predictive model establishing device, the establishing method and the product quality monitoring system of the present invention establish the predictive model so that the manufacturer of the product can only rely on the quality prediction results and defect source tracking information produced by the predictive model. The use of predictive models allows manufacturers to quickly grasp the quality of products, which not only saves a lot of time and cost for quality inspection, but also provides relevant analysis information for abnormal production processes.
根據本發明之第一方面,提出一種預測模型的建立裝置。預測模型的建立裝置根據檢測複數個產品所產生之品質檢測資料集,以及與該等產品的生產相關的加工特徵資料集進行解析。建立裝置包含:強分類器產生模組。強分類器產生模組包含: 第一產生器、第二產生器、第三產生器,以及初選模組。第一產生器根據第一分類器策略、該加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。第二產生器根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。第三產生器根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。初選模組電連接於第一產生器、第二產生器與第三產生器。初選模組根據品質檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。 According to the first aspect of the present invention, a device for establishing a prediction model is provided. The predictive model establishment device performs analysis based on the quality inspection data set generated by inspecting multiple products and the processing feature data set related to the production of these products. The establishment device includes: a strong classifier generation module. The strong classifier generation module includes: The first generator, the second generator, the third generator, and the primary selection module. The first generator generates a first candidate strong classifier group including K first candidate strong classifiers according to the first classifier strategy, the processing feature data set and the quality inspection data set, where K is a positive integer. The second generator generates a second candidate strong classifier group including K second candidate strong classifiers according to the second classifier strategy, the processing feature data set, and the quality inspection data set. The third generator generates a third candidate strong classifier group including K third candidate strong classifiers according to the third classifier strategy, processing feature data set, and quality inspection data set. The primary selection module is electrically connected to the first generator, the second generator and the third generator. The preliminary selection module determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group meet the preliminary selection conditions according to the quality detection data set.
根據本發明之第二方面,提出一種預測模型的建立方法。預測模型的建立方法根據對複數個產品進行檢測所產生之品質檢測資料集,以及與該等產品的生產相關的加工特徵資料集進行解析。建立方法包含以下步驟。首先,根據第一分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。其次,根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。接著,根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。此外,根據該品質 檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。 According to the second aspect of the present invention, a method for establishing a prediction model is proposed. The method of establishing the predictive model is analyzed based on the quality inspection data set generated by the inspection of multiple products and the processing feature data set related to the production of these products. The establishment method includes the following steps. First, according to the first classifier strategy, the processing feature data set, and the quality detection data set, a first candidate strong classifier group including K first candidate strong classifiers is generated, where K is a positive integer. Secondly, according to the second classifier strategy, the processing feature data set and the quality detection data set, a second candidate strong classifier group including K second candidate strong classifiers is generated. Then, according to the third classifier strategy, the processing feature data set, and the quality detection data set, a third candidate strong classifier group including K third candidate strong classifiers is generated. In addition, according to the quality The detection data set determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group satisfy the primary selection condition.
根據本發明之第三方面,提出一種產品品質監控系統。產品品質監控系統包含:品質檢測裝置、資料前處理裝置以及模型建立裝置。品質檢測裝置檢測複數個產品並產生品質檢測資料集。資料前處理裝置接收與該等產品之生產相關的複數個生產參數,並據以產生加工特徵資料集。模型建立裝置包含:強分類器產生模組。強分類器產生模組包含:第一產生器、第二產生器、第三產生器,以及初選模組。第一產生器根據第一分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。第二產生器根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。第三產生器根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。一初選模組電連接於第一產生器、第二產生器與第三產生器。初選模組根據品質檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。 According to the third aspect of the present invention, a product quality monitoring system is provided. The product quality monitoring system includes: quality inspection device, data pre-processing device and model building device. The quality inspection device inspects multiple products and generates a quality inspection data set. The data pre-processing device receives multiple production parameters related to the production of these products, and generates processing feature data sets based on them. The model building device includes: a strong classifier generation module. The strong classifier generation module includes: a first generator, a second generator, a third generator, and a primary selection module. The first generator generates a first candidate strong classifier group including K first candidate strong classifiers according to the first classifier strategy, the processing feature data set, and the quality detection data set, where K is a positive integer. The second generator generates a second candidate strong classifier group including K second candidate strong classifiers according to the second classifier strategy, the processing feature data set, and the quality inspection data set. The third generator generates a third candidate strong classifier group including K third candidate strong classifiers according to the third classifier strategy, processing feature data set, and quality inspection data set. A primary selection module is electrically connected to the first generator, the second generator and the third generator. The preliminary selection module determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group meet the preliminary selection conditions according to the quality detection data set.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows:
11、31、21:生產材料 11, 31, 21: production materials
13、23:生產設備 13, 23: production equipment
19、29、P1、P100、bMP、uMP、eMP:產品 19, 29, P1, P100, bMP, uMP, eMP: products
17、248:品質檢測裝置 17, 248: Quality inspection device
15:品質檢測資料 15: Quality inspection data
331:胚料加熱爐 331: Blank material heating furnace
31a、31b:半成品 31a, 31b: semi-finished products
333:溫鍛沖壓機台 333: Warm forging press machine
335:靜置冷卻區 335: static cooling zone
231、232、241:感測器 231, 232, 241: sensors
20:廠房 20: Factory
24:產品品質監控系統 24: Product quality monitoring system
243:資料前處理裝置 243: Data pre-processing device
245:模型建立裝置 245: Model Building Device
247:模型使用裝置 247: Model Use Device
249:模型評估裝置 249: Model Evaluation Device
PP:生產參數 PP: production parameters
2430:接收模組 2430: receiving module
2431:預處理模組 2431: preprocessing module
2435:關鍵資料選取模組 2435: Key data selection module
2433:資料庫 2433: database
2437:特徵轉換模組 2437: Feature Conversion Module
2439:生產條件選取模組 2439: Production condition selection module
corePP1、corePP2、corePP3、corePP4、corePP5、corePP6、corePP7、corePP8、corePP9、corePP10:關鍵生產參數 corePP1, corePP2, corePP3, corePP4, corePP5, corePP6, corePP7, corePP8, corePP9, corePP10: key production parameters
corePF1、corePF2、corePF3:關鍵生產因子 corePF1, corePF2, corePF3: key production factors
PMF1、PMF2、PMF3、PMF4、PMF5、P1MF1、P1MF2、P1MF3、P1MF4、P1MF5、P100MF1、P100MF2、P100MF3、P100MF4、P100MF5:加工特徵 PMF1, PMF2, PMF3, PMF4, PMF5, P1MF1, P1MF2, P1MF3, P1MF4, P1MF5, P100MF1, P100MF2, P100MF3, P100MF4, P100MF5: Processing features
P1MFG、P100MFG:加工特徵資料 P1MFG, P100MFG: Processing feature data
PMFGall:加工特徵資料集 PMFGall: Processing feature data set
bM:模型建立模式 bM: model building mode
reSClf1、reSClf2:複選強分類器 reSClf1, reSClf2: check strong classifier
uM:模型使用模式 uM: model usage mode
eM:模型評估模式 eM: model evaluation mode
C1:節點路徑 C1: Node path
1、2-1、2-2、3-1、3-2、3-3、3-4:節點 1, 2-1, 2-2, 3-1, 3-2, 3-3, 3-4: Node
411a、411b、411c、431a、431b、431c:產品bMP的加工特徵 411a, 411b, 411c, 431a, 431b, 431c: processing characteristics of product bMP
413a:N1個分類條件 413a: N1 classification conditions
413b:N2個分類條件 413b: N2 classification conditions
413c:N3個分類條件 413c: N3 classification conditions
415a、415b、415c、433a、433b、433c:弱分類器 415a, 415b, 415c, 433a, 433b, 433c: weak classifier
435a、435b:調整權重 435a, 435b: Adjust the weight
bMP_origPP、uMP_origPP、eMP_origPP:原始生產參數 bMP_origPP, uMP_origPP, eMP_origPP: original production parameters
245a:強分類器產生模組 245a: strong classifier generation module
2451a、2451b、2451c、2451d、2451e:強分類器產生器 2451a, 2451b, 2451c, 2451d, 2451e: strong classifier generator
2453:初選模組 2453: Primary Selection Module
2453a:準確率計算模組 2453a: Accuracy calculation module
2453b:策略選擇模組 2453b: Strategy Selection Module
2455:複選模組 2455: Check Module
2455a:驗證序列計算模組 2455a: Verification sequence calculation module
2455c:相關性計算模組 2455c: correlation calculation module
2455e:強分類器選擇模組 2455e: strong classifier selection module
245b:強分類器解析模組 245b: strong classifier parsing module
2457:規則比較模組 2457: Rule Comparison Module
2457a:支持度計算模組 2457a: Support calculation module
2457c:覆蓋率計算模組 2457c: Coverage calculation module
2457b:權重計算模組 2457b: Weight calculation module
2458:節點分析模組 2458: Node Analysis Module
2458a:規則項集轉換模組 2458a: Rule Item Set Conversion Module
2458b:規則讀取模組 2458b: Rule reading module
S41、S43、S45、S43a、S43c、S43e、S43g、S43h、S45、S47、S501、S503、S506、S505、S507、S509、S511、S513、S5031、S5033、S5035、S5037、S31、S33、S35、S37、S331、S333、S335、S337、S801、S802、S803、S804、S805、S807、S811、S813、S815、S817:步驟 S41, S43, S45, S43a, S43c, S43e, S43g, S43h, S45, S47, S501, S503, S506, S505, S507, S509, S511, S513, S5031, S5033, S5035, S5037, S31, S33, S35, S37, S331, S333, S335, S337, S801, S802, S803, S804, S805, S807, S811, S813, S815, S817: steps
preTstDAT_1、preTstDAT_10:初選測試資料 preTstDAT_1, preTstDAT_10: preliminary test data
canSClfGp_A:候選強分類器群組 canSClfGp_A: Candidate strong classifier group
canSClf_A1、canSClf_A10:候選強分類器 canSClf_A1, canSClf_A10: Candidate strong classifier
pdtA1、pdtA10:個別準確率 pdtA1, pdtA10: individual accuracy rate
reTrnDAT:複選訓練資料 reTrnDAT: Check training data
reTstDAT:複選測試資料 reTstDAT: Check test data
reTst_QC:複選驗證產品的品質檢測資料 reTst_QC: Check the quality inspection data of the verification product
QpdtA、QpdtB、QpdtD:複選驗證產品的品質預測結果 QpdtA, QpdtB, QpdtD: check the quality prediction result of the verification product
preSClf_A、preSClf_B、preSClf_D:初選強分類器 preSClf_A, preSClf_B, preSClf_D: primary selection of strong classifiers
seqA、seqB、seqD:驗證序列 seqA, seqB, seqD: verification sequence
2471:產品特徵接收模組 2471: product feature receiving module
2473:分類規則接收模組 2473: Classification rule receiving module
2475:產品特徵與分類規則比較模組 2475: Comparison module of product features and classification rules
2477:相似度計算模組 2477: Similarity calculation module
2479:品質預測模組 2479: Quality Prediction Module
2470:瑕疵源追蹤模組 2470: Defect Source Tracking Module
第1圖,其係習用技術透過品質檢測裝置對產品進行品質檢測之示意圖。 Figure 1 is a schematic diagram of the quality inspection of products through quality inspection devices using conventional technology.
第2圖,其係於自行車肩胛的生產流程中,搭配根據本案構想之產品品質監控系統的實施例之示意圖。 Figure 2 is a schematic diagram of an embodiment of the product quality monitoring system conceived in this case in the production process of bicycle shoulder blades.
第3圖,其係資料前處理裝置的方塊圖。 Figure 3 is a block diagram of the data pre-processing device.
第4圖,其係預處理模組產生預測模型輸入之加工特徵之示意圖。 Figure 4 is a schematic diagram of the processing features of the predictive model input generated by the preprocessing module.
第5圖,其係說明與產品對應的加工特徵資料集PMFGall之示意圖。 Figure 5 is a schematic diagram illustrating the processing feature data set PMFGall corresponding to the product.
第6A圖,其係產品品質監控系統處於模型建立模式bM時,資料前處理裝置提供產品bMP的加工特徵資料集bMPMFGall作為模型建立用途之示意圖。 Figure 6A is a schematic diagram of the product quality monitoring system in the model building mode bM, and the data pre-processing device provides the product bMP processing feature data set bMPMFGall as a model building purpose.
第6B圖,其係產品品質監控系統處於模型使用模式uM時,資料前處理裝置提供產品uMP的加工特徵資料集作為模型使用用途之示意圖。 Figure 6B is a schematic diagram of the uMP processing feature data set provided by the data pre-processing device when the product quality monitoring system is in the model use mode uM.
第6C圖,其係產品品質監控系統處於模型評估模式eM時,資料前處理裝置提供產品eMP的加工特徵資料集作為模型評估用途之示意圖。 Figure 6C is a schematic diagram showing that the product quality monitoring system is in the model evaluation mode eM, and the data preprocessing device provides the processing feature data set of the product eMP as a model evaluation purpose.
第7圖,其係預測模型使用二元樹架構,對加工特徵與品質檢測資料進行分類之示意圖。 Figure 7 is a schematic diagram of the prediction model using a binary tree structure to classify processing features and quality inspection data.
第8A圖,其係使用隨機森林作為分類器策略之示意圖。 Figure 8A is a schematic diagram of using random forest as a classifier strategy.
第8B圖,其係使用自適應增強作為分類器策略之示意圖。 Figure 8B is a schematic diagram of using adaptive enhancement as a classifier strategy.
第9圖,其係產品品質監控系統處於模型建立模式(bM)時,利用加工特徵建立預測模型之示意圖。 Figure 9 is a schematic diagram of using processing features to build a predictive model when the product quality monitoring system is in model building mode (bM).
第10圖,其係模型建立裝置的方塊圖。 Figure 10 is a block diagram of the model building device.
第11圖,其係強分類器產生器產生候選強分類器群組canSClfGp的流程圖。 Figure 11 is a flowchart of the strong classifier generator generating the candidate strong classifier group canSClfGp.
第12圖,其係以候選強分類器群組canSClfGp_A所產生的分類結果為例,說明初選模組如何判斷將分類器策略選為初選策略之示意圖。 Figure 12 is a schematic diagram illustrating how the primary selection module determines how to select the classifier strategy as the primary selection strategy by taking the classification result generated by the candidate strong classifier group canSClfGp_A as an example.
第13圖,其係初選模組根據候選強分類器群組canSClfGp所產生的品質預測結果,判斷分類器策略是否可作為初選策略的流程圖。 Figure 13 is a flow chart for the primary selection module to determine whether the classifier strategy can be used as the primary selection strategy based on the quality prediction results generated by the candidate strong classifier group canSClfGp.
第14圖,其係強分類器產生器建立初選強分類器preSClf後,驗證序列計算模組搭配初選強分類器preSClf產生驗證序列,進而由相關性計算模組計算驗證序列相關係數之示意圖。 Figure 14 is a schematic diagram of the strong classifier generator establishing the preliminary strong classifier preSClf, the verification sequence calculation module and the preliminary strong classifier preSClf generate the verification sequence, and the correlation calculation module calculates the correlation coefficient of the verification sequence .
第15圖,其係強分類器產生模組的流程圖。 Figure 15 is a flowchart of the strong classifier generation module.
第16圖,其係產品品質監控系統處於模型使用模式(uM)時,依據預測模型與產品加工特徵而預測產品uMP的品質之示意圖。 Figure 16 is a schematic diagram of predicting the quality of the product uMP based on the prediction model and product processing characteristics when the product quality monitoring system is in the model use mode (uM).
第17圖,其係模型使用裝置的方塊圖。 Figure 17 is a block diagram of the model using device.
第18圖,其係產品品質監控系統處於模型評估模式(eM)時,檢視預測模型是否需更新之示意圖。 Figure 18 is a schematic diagram of checking whether the prediction model needs to be updated when the product quality monitoring system is in the model evaluation mode (eM).
第19圖,其係產品品質監控系統處於模型評估模式(eM)的流程圖。 Figure 19 shows the flow chart of the product quality monitoring system in model evaluation mode (eM).
如前所述,產品的製造商須能掌握產品的品質,但使用品質檢測裝置進行品質檢測的做法成本過高,亦無法有效的針對生產流程中的瑕疵源進行有效的分析。為此,本案提出一種搭配生產設備的產品品質監控系統。為便於說明此種產品品質監控系統的用法,本文將搭配自行車肩胛的生產流程為例,說明如何應用本案的產品品質監控系統。 As mentioned earlier, the product manufacturer must be able to grasp the quality of the product, but the cost of using quality inspection devices for quality inspection is too high, and it cannot effectively analyze the source of defects in the production process. For this reason, this case proposes a product quality monitoring system with production equipment. In order to explain the use of this kind of product quality monitoring system, this article will use the production process of bicycle shoulder blades as an example to illustrate how to apply the product quality monitoring system of this case.
請參見第2圖,其係於自行車肩胛的生產流程中,搭配根據本案構想之產品品質監控系統的實施例之示意圖。在第2圖中,假設產品品質監控系統24與生產自行車肩胛的生產設備23均設置於廠房20內。實際應用時,產品品質監控系統24亦可設置在廠房20外,再經由網路等方式與感測器231、232和生產設備23連線。
Please refer to Figure 2, which is a schematic diagram of an embodiment of the product quality monitoring system conceived in this case in the production process of the bicycle shoulder blade. In Figure 2, it is assumed that the product quality monitoring system 24 and the
簡言之,自行車肩胛的生產流程大致分為三個步驟。首先,胚料加熱爐331對生產材料(鋁塊)31進行加熱產生半成品(鋁塊)31a。其次,溫鍛沖壓機台333對半成品(鋁塊)31a加壓與加熱,使其被塑形後,產生肩胛形狀的半成品(鋁塊)31b。接著,將半成品(鋁塊)31b放置在靜置冷卻區335一段時間後,完成產品29的生產。自行車肩胛的品質瑕疵,可能指產品35的尺寸發生變形、碰傷、產生裂痕等現象。 In short, the production process of bicycle shoulder blades is roughly divided into three steps. First, the billet heating furnace 331 heats the production material (aluminum block) 31 to produce a semi-finished product (aluminum block) 31a. Next, the warm forging press table 333 pressurizes and heats the semi-finished product (aluminum block) 31a to be shaped to produce a shoulder-shaped semi-finished product (aluminum block) 31b. Next, after placing the semi-finished product (aluminum block) 31b in the standing cooling zone 335 for a period of time, the production of the product 29 is completed. The quality defects of the bicycle shoulder blades may refer to the phenomenon that the size of the product 35 is deformed, bruised, or cracked.
在生產設備23對生產材料21進行加工製造,使生產材料31轉變成為產品29的生產過程中,生產設備23本身可能有些機台設定參數需要加以設定。或者,生產設備23內部或周邊可安裝多個感測器
232。這些感測器232可能用來感測生產設備23的機台狀態(例如,機台的溫度、壓力),或者用於感測工件(生產材料31或半成品31a、31b)的溫度等特性。此外,在廠房20內,也可能設置溫度計或溼度計等感測器231。為便於說明,此處將不同來源的感測參數或設定參數統一稱為生產參數PP。
When the
在第2圖中,假設胚料加熱爐331分四個階段對生產材料31加熱,包含:以470℃進行第一段加熱;以480℃進行第二段加熱;以490℃進行第三段加熱;以及,以500℃進行第四段加熱。當半成品31a自胚料加熱爐331取出後,可先利用紅外線感測器對半成品31a感測其入料溫度(例如,介於440℃~460℃之間)。再者,在溫鍛沖壓機台333中,可設置溫度感測器與壓力感測器。通常,溫鍛沖壓機台333的上模具溫度介於120℃~150℃之間;下模具溫度介於150℃~190℃之間;而鍛壓壓力的壓力最大值為6噸。據此,生產參數PP可搭配與生產設備23相關之感測器232的感測結果。
In Figure 2, it is assumed that the billet heating furnace 331 heats the production material 31 in four stages, including: heating at 470°C for the first stage; heating at 480°C for the second stage; heating at 490°C for the third stage ; And, the fourth stage heating at 500 ℃. After the semi-finished product 31a is taken out from the billet heating furnace 331, an infrared sensor can be used to sense the feeding temperature of the semi-finished product 31a (for example, between 440°C and 460°C). Furthermore, in the warm forging press table 333, a temperature sensor and a pressure sensor can be provided. Generally, the temperature of the upper die of the warm forging press station 333 is between 120°C and 150°C; the temperature of the lower die is between 150°C and 190°C; and the maximum forging pressure is 6 tons. Accordingly, the production parameter PP can be matched with the sensing result of the
產品品質監控系統24包含資料前處理裝置243、模型建立裝置245、模型使用裝置247、模型評估裝置249,以及品質檢測裝置248。其中,資料前處理裝置243電連接於感測器231、232、生產設備23、模型建立裝置245與模型使用裝置247;模型使用裝置247電連接於模型建立裝置245與模型評估裝置249;且品質檢測裝置248電連接於模型建立裝置245與模型評估裝置249。
The product quality monitoring system 24 includes a
產品品質監控系統24的核心為一針對產品品質與製造商所需分析之目的而建立的預測模型。隨著預測模型的建立、使用與維護等目的的不同,產品品質監控系統24可能輪流處於模型建立模式bM、模型使用模式uM或模型評估模式eM。 The core of the product quality monitoring system 24 is a predictive model established for the purpose of product quality and analysis required by the manufacturer. With different purposes such as the establishment, use, and maintenance of the predictive model, the product quality monitoring system 24 may alternately be in the model establishment mode bM, the model usage mode uM, or the model evaluation mode eM.
為便於說明,本文將產品品質監控系統24處於模型建立模式bM時,生產設備23所生產的產品以符號bMP表示;將產品品質監控系統24處於模型使用模式uM時,生產設備23所生產的產品以uMP表示;以及,將產品品質監控系統24處於模型評估模式eM時,生產設備23所生產的產品以eMP表示。
For the convenience of explanation, this article puts the product produced by the
實際應用時,產品品質監控系統24在各個模式下,由生產設備23所生產的產品bMP、uMP、eMP的個數並不需要被限定,而可由製造商視其生產流程或產品特性等考量而選擇。或者,可搭配抽樣方式選擇產品bMP、uMP、eMP。關於實際應用時,產品bMP、uMP、eMP如何選用與其數量,以及產品品質監控系統24何時切換操作模式等細節,可視製造商的需求而調整,此處不予詳述。
In actual application, in each mode of the product quality monitoring system 24, the number of products bMP, uMP, and eMP produced by the
由於產品品質監控系統24在各個模式下,均須使用資料前處理裝置243。此處先以第3、4、5圖說明資料前處理裝置243如何處理生產參數PP。接著,後續將以第6A、6B、6C圖說明如何在模型建立模式(bM)、模型使用模式(uM),或模型評估模式(eM)下建立或使用預測模型;以第7、8A、8B圖說明預測模型的基本架構;以第9~15圖說明模型建立模式(bM);以第16、17圖說明模型使用模式(uM);以第18、19圖說明模型評估模式(eM)。
Since the product quality monitoring system 24 must use the
請參見第3圖,其係資料前處理裝置的方塊圖。資料前處理裝置243包含接收模組2430、預處理模組2431、關鍵資料選取模組2435、資料庫2433、特徵轉換模組2437,以及生產條件選取模組2439。其中,預處理模組2431電連接於接收模組2430與資料庫2433;關鍵資料選取模組2435電連接於資料庫2433與特徵轉換模組2437;且生產條件選取模組2439電連接於特徵轉換模組2437。此外,接收模組
2430可透過電連接或信號連接等方式,自感測器231、232接收生產參數PP;以及,生產條件選取模組2439可透過電連接或信號連接等方式,將產品bMP、uMP、eMP的加工特徵資料集傳送至模型使用裝置247。
Please refer to Figure 3, which is a block diagram of the data pre-processing device. The
首先,基於減少資料量的考量,由感測器231、232感測的生產參數PP需先進行取樣。例如,每小時僅取一筆生產參數作為取樣生產參數smpPP。此外,由於生產流程中所使用感測器231、232的個數可能相當多。因此,製造商可根據對產線的掌握度與理解而選擇性提供選取策略。關鍵資料選取模組2435依據選取策略選出哪些感測器231、232感測到的生產參數PP相對重要,並將其定義為關鍵生產參數corePP。或者,也可省略關鍵資料選取模組2435,直接將全部的取樣生產參數smpPP直接視為關鍵生產參數corePP。在第4圖中,假設關鍵資料選取模組2435共選取10個關鍵生產參數corePP1~corePP10。
First, based on the consideration of reducing the amount of data, the production parameters PP sensed by the
由於部分的關鍵生產參數corePP1~corePP10彼此間可能互有關連。例如,可能是在同一個機台內部的不同位置所感測到的溫度。因此,可由製造商根據對生產流程的理解與掌握度而提供特徵轉換公式,透過性質歸納等方式,將這些彼此相關的關鍵生產參數corePP共同整合為一個關鍵生產因子PF。例如,假設特徵轉換模組2437將關鍵生產參數corePP3、corePP4、corePP5整合為關鍵生產因子corePF1;將關鍵生產參數corePP6、corePP7整合為關鍵生產因子corePF2;以及,將關鍵生產參數corePP9、corePP10整合為關鍵生產因子corePF3。關於特徵轉換模組2437產生關鍵生產因子corePF的這個步驟,亦可於實際應用時省略。
Because some of the key production parameters corePP1~corePP10 may be related to each other. For example, it may be the temperature sensed at different locations inside the same machine. Therefore, the manufacturer can provide a feature conversion formula based on the understanding and mastery of the production process, and integrate these mutually related key production parameters corePP into a key production factor PF through methods such as property induction. For example, assume that the
其後,生產條件選取模組2439可根據預測模型的用途不同而自關鍵生產參數corePP及/或關鍵生產因子corePF中,選取較符合預測模型之用途者,作為加工特徵使用。第4圖假設生產條件選取模組2439共選取關鍵生產參數corePP1、corePP5、corePP8,以及關鍵生產因子corePF1、corePF3作為加工特徵PMF1~PMF5。 Thereafter, the production condition selection module 2439 can select the key production parameter corePP and/or the key production factor corePF according to different uses of the prediction model, and select those that are more suitable for the use of the prediction model as processing features. Figure 4 assumes that the production condition selection module 2439 selects key production parameters corePP1, corePP5, corePP8, and key production factors corePF1 and corePF3 as processing features PMF1~PMF5.
須留意的是,隨著預測模型的建立目的不同(例如,分析良率、或是分析影響瑕疵的根本原因),生產條件選取模組2439選擇加工特徵的考量也可能不同。因此,儘管關鍵生產參數corePP2~corePP4、corePP6、corePP7、corePP9、corePP10與關鍵生產因子corePF2在第4圖並未被選為加工特徵,但仍可能在建立其他用途的預測模型時被選用。在第4圖所說明之,資料前處理裝置243對生產參數PP的轉換,僅以單一個產品為例。實際應用時,關於該些參數的轉換還需應用於產線所生產的其他產品。為便於說明,第5圖將說明產品與其對應之加工特徵的對應關係。
It should be noted that as the purpose of establishing the prediction model is different (for example, to analyze the yield rate, or to analyze the root cause of the defect), the production condition selection module 2439 may have different considerations for selecting processing features. Therefore, although the key production parameters corePP2~corePP4, corePP6, corePP7, corePP9, corePP10, and the key production factor corePF2 are not selected as processing features in Figure 4, they may still be used when building predictive models for other purposes. As illustrated in Figure 4, the conversion of the production parameter PP by the
請參見第5圖,其係說明與產品對應的加工特徵資料集之示意圖。在第5圖中,假設以1~100代表產品的編號,其中每個產品P1~P100均對應於五個加工特徵PMF1~PMF5。例如,產品P1對應於加工特徵P1MF1~P1MF5;產品P100對應於加工特徵P100MF1~P100MF5。 Please refer to Figure 5, which is a schematic diagram illustrating the processing feature data set corresponding to the product. In Figure 5, it is assumed that the product number is represented by 1~100, and each product P1~P100 corresponds to the five processing features PMF1~PMF5. For example, product P1 corresponds to processing features P1MF1 to P1MF5; product P100 corresponds to processing features P100MF1 to P100MF5.
為區隔不同產品P1~P100所對應的加工特徵,此處針對不同的產品P1~P100定義與其對應的加工特徵。例如,將與產品P1對應的加工特徵P1MF1~P1MF5共同定義為,與產品P1對應的加工特徵 資料P1MFG。又如,將與產品P100對應的加工特徵P100MF1~P100MF5共同定義為,與產品P100對應的加工特徵資料P100MFG。另,將多個產品P1~P100的加工特徵所形成的集合可定義為加工特徵資料集PMFGall。 In order to distinguish the processing features corresponding to different products P1~P100, the processing features corresponding to different products P1~P100 are defined here. For example, the processing features P1MF1~P1MF5 corresponding to product P1 are jointly defined as the processing features corresponding to product P1 Information P1MFG. For another example, the processing features P100MF1 to P100MF5 corresponding to the product P100 are collectively defined as the processing feature data P100MFG corresponding to the product P100. In addition, the collection formed by the processing features of multiple products P1~P100 can be defined as the processing feature data set PMFGall.
於第4、5圖中,關於產品數量、產品編號、參數的個數等,均僅作為舉例使用。第6A、6B、6C圖將說明資料前處理裝置243如何在模型建立模式bM、於模型使用模式uM與模型評估模式eM下,產生與產品bMP、uMP、eMP分別對應的加工特徵資料集,進而將其提供予模型建立裝置245、模型使用裝置247與模型評估裝置249使用。
In Figures 4 and 5, the product quantity, product number, number of parameters, etc., are used as examples only. Figures 6A, 6B, and 6C illustrate how the
請參見第6A圖,其係產品品質監控系統處於模型建立模式bM時,資料前處理裝置提供產品bMP的加工特徵資料集作為模型建立用途之示意圖。於模型建立模式bM下,模型建立裝置245依據產品bMP的加工特徵資料集與產品bMP的品質檢測資料集而建立預測模型。關於此處所繪式之預測模型的內容(複選強分類器reSClf1、reSClf2、規則項集與權重等),將於後續說明。
Please refer to Figure 6A, which is a schematic diagram of the product quality monitoring system in the model building mode bM, and the data pre-processing device provides the product bMP processing feature data set as a model building purpose. In the model establishment mode bM, the
請參見第6B圖,其係產品品質監控系統處於模型使用模式uM時,資料前處理裝置提供產品uMP的加工特徵資料集作為模型使用用途之示意圖。於模型使用模式uM下,模型使用裝置247使用根據產品bMP而建立的預測模型,以產品uMP的加工特徵資料集為輸入,對產品uMP進行分類,並以分類的結果作為產品uMP的品質預測結果。此外,模型使用裝置247還可根據產品uMP的品質預測結果,針對被歸類為瑕疵的產品uMP產生相關的瑕疵源分析資訊。
Please refer to Figure 6B, which is a schematic diagram of the uMP processing feature data set provided by the data preprocessing device when the product quality monitoring system is in the model use mode uM. In the model usage mode uM, the
請參見第6C圖,其係產品品質監控系統處於模型評估模式eM時,資料前處理裝置提供產品eMP的加工特徵資料集作為模型評
估用途之示意圖。於模型評估模式eM下,模型使用裝置247使用根據產品bMP而建立的預測模型,對產品eMP的加工特徵資料集進行分類後,以分類結果做為產品eMP的品質預測結果。另一方面,品質檢測裝置248將針對產品eMP進行品質檢測並產生產品eMP的品質檢測資料集。其後,模型評估裝置249再比較產品eMP的品質預測結果與品質檢測資料集,進而判斷可否續用先前建立的預測模型。
Please refer to Figure 6C. When the product quality monitoring system is in the model evaluation mode eM, the data pre-processing device provides the product eMP processing feature data set as the model evaluation
Schematic diagram of estimated use. In the model evaluation mode eM, the
在第6A、6B、6C圖中,根據產品bMP而建立的預測模型包含複選強分類器reSClf1、reSClf2,以及規則項集與規則權重的關係列表。其中,假設複選強分類器reSClf1包含T1個弱分類器;以及假設複選強分類器reSClf2包含T2個弱分類器。實際應用時,預測模型所包含之複選強分類器的數量不須限定。另,基於簡化的考量,可假設T1=T2。 In Figures 6A, 6B, and 6C, the prediction model established based on the product bMP includes multiple strong classifiers reSClf1 and reSClf2, and a list of the relationship between the rule item set and the rule weight. Among them, it is assumed that the re-selected strong classifier reSClf1 contains T1 weak classifiers; and it is assumed that the re-selected strong classifier reSClf2 contains T2 weak classifiers. In practical applications, the number of strong multiple classifiers included in the prediction model does not need to be limited. In addition, based on simplified considerations, it can be assumed that T1=T2.
接著說明本案的預測模型的基本架構。簡言之,本發明的實施例可透過機器學習的方式,建立將多個採用二元樹(binary tree)架構的弱分類器(weak classifier)集結後產生的複選強分類器reSClf1、reSClf2。關於如何產生預測模型中的複選強分類器reSClf1、reSClf2,將於第11~15圖說明,此處先說明弱分類器的組成。 Next, the basic structure of the prediction model of this case is explained. In short, the embodiment of the present invention can build multiple strong classifiers reSClf1 and reSClf2 that are generated after aggregating multiple weak classifiers using a binary tree architecture through machine learning. How to generate the reSClf1 and reSClf2 multiple-selection strong classifiers in the prediction model will be explained in Figures 11-15. Here, we will first explain the composition of the weak classifier.
請參見第7圖,其係預測模型使用二元樹架構,對產品的加工特徵與品質檢測資料進行分類之示意圖。在預設情況下,假設強分類器由100個弱分類器(T=100)組成,且每個弱分類器的深度為三層(D=3)。 Please refer to Figure 7, which is a schematic diagram of the prediction model using a binary tree structure to classify the processing characteristics and quality inspection data of the product. In the default situation, it is assumed that the strong classifier is composed of 100 weak classifiers (T=100), and the depth of each weak classifier is three layers (D=3).
根據本發明的構想,無論產品品質監控系統所處的操作模式為何者,複選強分類器reSClf中的弱分類器均採用二元樹架構對產品bMP、uMP、eMP的加工特徵資料集進行分類。在模型建立模式 bM下,複選強分類器reSClf的輸入為產品bMP的加工特徵資料集;在模型使用模式uM下,複選強分類器reSClf的輸入為產品uMP的加工特徵資料集;以及,在模型評估模式eM下,複選強分類器reSClf的輸入為產品eMP的加工特徵資料集。其中,弱分類器的每個節點相當於,對加工特徵進行分類用的分類條件clfCOND(classification condition of prediction model)。 According to the concept of the present invention, regardless of the operating mode of the product quality monitoring system, the weak classifiers in the reSClf check strong classifier all use a binary tree structure to classify the processing feature data sets of the products bMP, uMP, and eMP . Model building Under bM, the input of the strong classifier reSClf is the processing feature data set of the product bMP; under the model usage mode uM, the input of the strong classifier reSClf is the processing feature data set of the product uMP; and, in the model evaluation mode Under eM, the input of the strong classifier reSClf is selected as the processing feature data set of the product eMP. Among them, each node of the weak classifier is equivalent to clfCOND (classification condition of prediction model) for classifying processing features.
於模型建立模式bM下,弱分類器的節點是根據所選的分類器策略而產生。弱分類器的節點所代表的分類條件,在模型建立模式bM下,會被反覆的修改,直到產生複選強分類器reSClf為止。另一方面,一旦複選強分類器reSClf產生後,其所包含之弱分類器的節點,將作為在模型使用模式uM與模型評估模式eM下,針對產品uMP、eMP的分類使用。也因此,在模型建立模式bM時所選定之複選強分類器reSClf中的弱分類器的設定(數量T、深度D、節點所代表的分類條件等),並不會在模型使用模式uM與模型評估模式eM下修改。 In the model building mode bM, the nodes of the weak classifier are generated according to the selected classifier strategy. The classification conditions represented by the nodes of the weak classifier will be repeatedly modified in the model building mode bM until the reSClf is generated. On the other hand, once the strong classifier reSClf is generated, the nodes of the weak classifiers contained in it will be used as the classification of products uMP and eMP under the model use mode uM and the model evaluation mode eM. Therefore, the weak classifier settings (number T, depth D, classification conditions represented by nodes, etc.) in the check strong classifier reSClf selected when the model was built in the model bM will not be used in the model. Modified under eM model evaluation mode.
以第7圖為例,節點1為第一層節點;節點2-1、2-2為第二層節點;節點3-1、3-2、3-3、3-4為第三層節點(終端節點)。此外,在節點3-1、3-2、3-3、3-4下方再延伸的圓圈用於表示符合該些節點路徑的產品的數量;在第7圖最下方的方框則表示符合該些節點路徑的產品的數量中,經品質檢測後確認為合格(以白色網底表示)與瑕疵(以點狀網底表示)的個數。 Taking Figure 7 as an example, node 1 is the first-level node; nodes 2-1 and 2-2 are the second-level nodes; nodes 3-1, 3-2, 3-3, and 3-4 are the third-level nodes (Terminal node). In addition, the circles extending below nodes 3-1, 3-2, 3-3, and 3-4 are used to indicate the number of products that conform to the path of these nodes; the bottom box in Figure 7 indicates that the Among the number of products of these node paths, the number of products confirmed to be qualified (indicated by the white mesh bottom) and defective (indicated by the dotted mesh bottom) after quality inspection.
為便於說明,以下以一個例子說明弱分類器的架構與如何搭配產品bMP的加工特徵資料集進行判斷。此處假設在模型建立模式bM下,共有80個產品bMP需要進行分類。此外,此處所假設之各個節點所對應的分類條件整理如表1。 For ease of explanation, the following uses an example to illustrate the structure of the weak classifier and how to use the processing feature data set of the product bMP to judge. It is assumed here that under the model building mode bM, there are a total of 80 product bMPs that need to be classified. In addition, the classification conditions corresponding to each node assumed here are summarized in Table 1.
此處另假設產品bMP的加工特徵包含:半成品31a的入料溫度、胚料加熱爐331的第一段~第四段加熱溫度、溫鍛沖壓機台333的壓力最大值,以及溫鍛沖壓機台333的上模具與下模具溫度。在弱分類器中,根據這些產品bMP的加工特徵與表1所列的分類條件,對產品bMP進行分類。為簡化說明,此處僅以節點路徑C1為例,說明如何利用弱分類器對產品bMP進行分類。 It is also assumed here that the processing characteristics of the product bMP include: the feeding temperature of the semi-finished product 31a, the heating temperature of the first to fourth stages of the blank heating furnace 331, the maximum pressure of the warm forging press 333, and the warm forging press The temperature of the upper mold and the lower mold of the table 333. In the weak classifier, the product bMP is classified according to the processing characteristics of these products and the classification conditions listed in Table 1. To simplify the description, here only the node path C1 is taken as an example to illustrate how to use the weak classifier to classify the product bMP.
首先,讀取這80個產品bMP的入料溫度是否大於450℃(節點1)。其中,假設入料溫度大於450℃的產品bMP為35個、入料溫度小於或等於450℃的產品bMP為45個。接著,入料溫度大於450℃的35個產品bMP中,那些產品bMP的第一段加熱溫度高於470℃。此處假設入料溫度大於450℃的35個產品bMP中,共有25個產品bMP的第一段加熱溫度高於470℃,其餘的10個bMP的第一段加熱溫度小於或等於470℃。其後,在節點3-1判斷入料溫度大於450℃且第一段加熱溫度高於470℃的25個產品,其所對應的下模具溫度是否 高於150℃。此處假設入料溫度大於450℃且第一段加熱溫度高於470℃的25個產品bMP中,共有23個產品bMP的下模具溫度高於150℃,其餘的兩個產品bMP的下模具溫度小於或等於150℃。再者,在入料溫度大於450℃、第一段加熱溫度高於470℃且下模具溫度高於150℃的23個產品bMP中,共有15個被品質檢測裝置248判斷為合格,以及有8個被品質檢測裝置248判斷為瑕疵。 First, read whether the feed temperature of the 80 bMP products is greater than 450°C (node 1). Among them, suppose that there are 35 bMPs of products with a feed temperature greater than 450°C, and 45 bMPs of products with a feed temperature less than or equal to 450°C. Next, among the 35 bMP products with a feed temperature greater than 450°C, the first stage heating temperature of those products bMP is higher than 470°C. It is assumed here that among 35 bMP products with a feed temperature greater than 450°C, there are 25 bMP products whose first stage heating temperature is higher than 470°C, and the remaining 10 bMP first stage heating temperatures are less than or equal to 470°C. After that, at node 3-1, it is judged whether the corresponding lower mold temperature is for 25 products whose feed temperature is greater than 450°C and the first stage heating temperature is greater than 470°C Above 150°C. It is assumed here that among the 25 product bMPs with the feed temperature greater than 450°C and the first stage heating temperature higher than 470°C, a total of 23 products have bMP lower mold temperatures higher than 150°C, and the remaining two products bMP lower mold temperatures Less than or equal to 150°C. Furthermore, among the 23 bMP products with the feed temperature greater than 450°C, the first stage heating temperature greater than 470°C, and the lower mold temperature greater than 150°C, a total of 15 products were judged as qualified by the quality inspection device 248, and 8 One is judged as a defect by the quality inspection device 248.
附帶一提的是,符合節點1但不符合節點2-1(即,入料溫度高於450℃,且第一段加熱溫度小於或等於470℃)的產品bMP假設有10個。若這10個產品bMP的品檢結果均為合格時,則不須在節點3-2再以其他的分類條件進行判斷。 Incidentally, it is assumed that there are 10 bMP products that meet node 1 but do not meet node 2-1 (that is, the input temperature is higher than 450°C and the first stage heating temperature is less than or equal to 470°C). If the quality inspection results of the 10 bMP products are all qualified, there is no need to judge by other classification conditions at node 3-2.
接著,以第8A、8B圖為例,說明如何產生第7圖所示之弱分類器。在第7、8A、8B圖中,均以垂直網底代表第一層節點;以水平網底代表第二層節點;以右上-左下方向的網底代表第三層節點。此外,當節點為終端節點時,以較粗的框線標示。 Next, take Figures 8A and 8B as an example to illustrate how to generate the weak classifier shown in Figure 7. In Figures 7, 8A, and 8B, the vertical grid bottom represents the first-tier nodes; the horizontal grid bottom represents the second-tier nodes; and the top-right-bottom-left grid bottom represents the third-tier nodes. In addition, when the node is a terminal node, it is marked with a thicker frame.
為便於說明,本文假設模型建立裝置245提供五個分類器策略(candidate strategies)作為建立強分類器使用。實際應用時,分類器策略的數量與種類並不以本文的舉例為限。第8A、8B圖為其中兩種可作為分類器策略的舉例。
For ease of description, this article assumes that the
請參見第8A圖,其係使用隨機森林(random forest)作為分類器策略之示意圖。此圖式僅以弱分類器415a、415b、415c為例。採用隨機森林策略時,弱分類器415a、415b、415c分別自產品bMP的加工特徵中,選取一部分的產品bMP,並使用與該些被選
取的產品bMP的加工特徵。此外,弱分類器415a、415b、415c是從相同的N個生產條件中,獨立選取產生。
Please refer to Figure 8A, which is a schematic diagram of using random forest as a classifier strategy. This diagram only takes
例如,假設共有M個產品bMP,且隨機森林策略共提供N個分類條件。則,弱分類器415a的輸入為,從M個產品bMP中,隨機選取M1個產品bMP的加工特徵411a,且其節點係為,自N個分類條件隨機選取的N1個分類條件413a。接著,弱分類器415a再根據所選取的N1個分類條件413a,對輸入的M1個產品bMP的加工特徵411a進行如第7圖所示的分類。再者,弱分類器415b的輸入為,從M個產品bMP,隨機選取M2個產品bMP的加工特徵411b,且其節點係為,自N個分類條件隨機選取的N2個分類條件413b。接著,弱分類器415b再根據所選取的N2個分類條件413b,對輸入的M2個產品bMP的加工特徵411b進行如第7圖所示的分類。同樣的,弱分類器415c的輸入為,從M個產品bMP中,隨機選取M3個產品bMP的加工特徵411c,且其節點係為,自N個分類條件隨機選取的N3個分類條件413c。接著,弱分類器415c再根據所選取的N3個分類條件413c,對輸入的M3個產品bMP的加工特徵411c進行如第7圖所示的分類。
For example, suppose there are a total of M product bMPs, and the random forest strategy provides a total of N classification conditions. Then, the input of the
請參見第8B圖,其係使用自適應增強(Adaptive Boosting)作為分類器策略之示意圖。此圖式僅繪示其中的三個弱分類器433a、433b、433c。採用自適應增強策略時,弱分類器433a、433b、433c的輸入不完全相同。
Please refer to Figure 8B, which is a schematic diagram of using Adaptive Boosting as a classifier strategy. This diagram only shows three
同樣假設有M個產品bMP,且自適應增強策略共提供N個分類條件。則,弱分類器433a雖是自M個產品bMP中,分別且隨
機選取所使用的M1個產品bMP的加工特徵431a作為輸入,但弱分類器433b會根據弱分類器433a的分類結果而產生產品bMP的調整權重435a,以及,依據調整權重435a與產品bMP的加工特徵431a,共同產生經第一次權重調整之產品bMP的加工特徵431b。經第一次權重調整之產品bMP的加工特徵431b被視為弱分類器433b的輸入。此處對弱分類器433b的輸入預先進行權重調整的原因是,避免弱分類器433b將弱分類器433a分類錯誤的樣本再次將產品bMP分類錯誤。此處所述之分類錯誤指的是,將產品bMP的加工特徵加以分類後所產生的分類結果,與實際對產品bMP進行檢測後所產生之品質檢測結果進行比較後,確認兩者不符合者。
It is also assumed that there are M product bMPs, and the adaptive enhancement strategy provides a total of N classification conditions. Then, although the
同理,弱分類器433c根據弱分類器433b的分類結果而再次調整產品bMP的調整權重435b,以及,依據調整權重435b與經第一次權重調整之產品bMP的加工特徵431b,共同產生經第二次權重調整之產品bMP的加工特徵431c。經第二次權重調整之產品bMP的加工特徵431c將作為弱分類器433c的輸入。同樣的,對弱分類器433c的輸入再次進行權重調整的原因是,避免弱分類器433c將弱分類器433b分類錯誤的樣本再次將產品bMP分類錯誤。即,依據自適應增強策略產生的弱分類器,具有修正前一級弱分類器之誤判結果的能力,故可達到疊代修正的效果。
In the same way, the
根據第8A、8B圖的說明可以得知,採用不同的分類器策略時,可以針對相同的加工特徵與分類條件,產生不同的分類結果。根據本發明的構想,弱分類器的節點所代表的分類條件係於模 型建立模式bM決定。在模型使用模式uM與模型評估模式eM下,弱分類器的節點所代表的分類條件,將直接用於對產品uMP、eMP的加工特徵進行分類。其後,將進一步比較使用這些分類器策略所建立的弱分類器,針對加工特徵進行分類的效果,何者較為符合實際狀況。 According to the description of Figures 8A and 8B, it can be known that when different classifier strategies are used, different classification results can be generated for the same processing features and classification conditions. According to the concept of the present invention, the classification condition represented by the node of the weak classifier is based on the model The type establishment mode bM decides. In the model use mode uM and the model evaluation mode eM, the classification conditions represented by the nodes of the weak classifier will be directly used to classify the processing features of the products uMP and eMP. After that, we will further compare the weak classifiers established using these classifier strategies to classify the processing features, which one is more in line with the actual situation.
接著,本文將以第9圖至第15圖說明產品品質監控系統24的模型建立模式bM;以第16、17圖說明產品品質監控系統24的模型使用模式uM;以及,以第18、19圖說明產品品質監控系統24的模型評估模式eM。 Next, this article will use Figures 9 to 15 to illustrate the model building mode bM of the product quality monitoring system 24; use Figures 16 and 17 to illustrate the model usage mode uM of the product quality monitoring system 24; and, use Figures 18 and 19 The model evaluation mode eM of the product quality monitoring system 24 is explained.
請參見第9圖,其係產品品質監控系統處於模型建立模式(bM)時,依據產品bMP的原始生產參數bMP_origPP建立預測模型的過程之示意圖。請同時參見第6A圖。在模型建立模式bM下,生產設備23對生產材料21進行加工產生產品(bMP)29a。在生產產品bMP的同時,感測器241(可為第2圖的感測器231、232)產生原始參數bMP_origPP至資料前處理裝置243。接著,資料前處理裝置243將轉換得出的產品bMP的加工特徵資料集傳送至模型建立裝置245。另一方面,品質檢測裝置248會對產品bMP進行品質檢測。品質檢測裝置248對產品bMP進行品質檢測後產生的品質檢測資料,將進一步傳送至模型建立裝置245,提供給模型建立裝置245作為參考。因此,模型建立裝置245將從資料前處理裝置243接收產品bMP的加工特徵資料集,以及從品質檢測裝置248接收產品bMP的品質檢測資料集。
Please refer to Figure 9, which is a schematic diagram of the process of establishing a predictive model based on the original production parameter bMP_origPP of the product bMP when the product quality monitoring system is in the model establishment mode (bM). Please also refer to Figure 6A. In the model building mode bM, the
請參見第10圖,其係模型建立裝置的方塊圖。模型建立裝置245包含強分類器產生模組245a與強分類器解析模組245b。此處僅
簡要介紹這些模組的內部架構與彼此的連接關係,關於這些模組的操作細節將於後續說明。
Please refer to Figure 10, which is a block diagram of the model building device. The
強分類器產生模組245a包含:強分類器產生器2451a~2451e、初選模組2453,以及複選模組2455。其中,初選模組2453包含:準確率計算模組2453a,以及策略選擇模組2453b。其中,準確率計算模組2453a電連接於強分類器產生器2451a~2451e、策略選擇模組2453b,以及複選模組2455。複選模組2455則進一步包含:驗證序列計算模組2455a、相關性計算模組2455c,以及強分類器選擇模組2455e。相關性計算模組2455c電連接於驗證序列計算模組2455a與選擇模組2455e,而複選模組2455電連接於強分類器解析模組245b。複選模組2455電連接於強分類器產生器2451a~2451e與強分類器解析模組245b。
The strong classifier generation module 245a includes:
強分類器解析模組245b包含:規則比較模組2457與節點分析模組2458。其中,規則比較模組2457包含:支持度計算模組2457a、覆蓋率計算模組2457c,以及權重計算模組2457b。其中,支持度計算模組2457a與覆蓋率計算模組2457c均同時電連接於節點分析模組2458與權重計算模組2457b。
The strong classifier analysis module 245b includes a rule comparison module 2457 and a node analysis module 2458. Among them, the rule comparison module 2457 includes: a support calculation module 2457a, a coverage calculation module 2457c, and a
為便於說明,此處將模型建立裝置245建立預測模型的過程分為三個階段(初選階段STG1、複選階段STG2,以及解析階段STG3)。其中,強分類器產生模組245a與初選階段STG1、複選階段STG2相關;強分類器解析模組245b與解析階段STG3相關。
For ease of description, the process of establishing a prediction model by the
在初選階段STG1中,強分類器產生器2451a~2451e根據分類器策略A~E分別建立候選強分類器群組
canSClfGp_A~canSClfGp_E,且初選模組2453根據候選強分類器群組canSClfGp_A~canSClfGp_E選擇初選策略。在複選階段STG2中,強分類器產生器2451a~2451e依據初選策略建立初選強分類器preSClf1~preSClf3,且複選模組2455自初選強分類器preSClf1~preSClf3中選擇複選強分類器reSClf1、reSClf2。在解析階段STG3中,強分類器解析模組245b讀取複選強分類器reSClf1、reSClf2所包含之,各個弱分類器的節點所代表的生產條件,並進一步在比較複選強分類器reSClf1、reSClf2所包含之弱分類器的規則項集後,計算與規則項集對應的規則權重。
In the primary selection stage STG1,
接著說明初選階段STG1的操作。在本發明的實施例中,假設提供五種不同的分類器策略A~E。首先,使用不同的強分類器產生器2451a~2451e產生五個各自包含K個強分類器的候選強分類器群組canSClfGp_A~canSClfGp_E。根據本發明的構想,強分類器產生器2451a~2451e所產生的候選強分類器群組canSClfGp_A~canSClfGp_E各自均包含K個候選強分類器(如表2所示)。
Next, the operation of STG1 in the preliminary selection stage will be described. In the embodiment of the present invention, it is assumed that five different classifier strategies A to E are provided. First, use different
為便於說明,假設共有100個產品bMP,並將其分為K個部分(此處假設K=10)。基於此種假設,每個部份包含10個產品bMP。其中,每個產品bMP均有其對應的加工特徵與品質檢測資料。此外,將全部產品bMP所對應之加工特徵所形成的組合,定義為產品bMP的加工特徵資料集bMPMFGall。接著,將加工特徵資料集bMPMFGall分為K個等分。且,將該些等分定義為與K個候選強分類器分別對應的K個加工特徵子資料集DATdiv(1)~DATdiv(K)。則,根據k的數值不同,而自加工特徵子資料集DATdiv(1)~DATdiv(K)中選擇其中的(K-1)個作為初選訓練資料preTrnDAT_k;以及,自加工特徵子資料集DATdiv(1)~DATdiv(K)中選擇其中的一個作為初選測試資料preTstDAT_k。 For ease of illustration, suppose there are 100 product bMPs in total and divide them into K parts (here, suppose K=10). Based on this assumption, each part contains 10 product bMPs. Among them, each product bMP has its corresponding processing characteristics and quality inspection data. In addition, the combination of processing features corresponding to all product bMP is defined as the processing feature data set bMPMFGall of product bMP. Then, the processing feature data set bMPMFGall is divided into K equal parts. And, these equal divisions are defined as K processing feature sub-data sets DATdiv(1)~DATdiv(K) corresponding to K candidate strong classifiers respectively. Then, according to the different value of k, select (K-1) among the self-processing feature subset data sets DATdiv(1)~DATdiv(K) as the primary training data preTrnDAT_k; and, the self-processing feature subset data set DATdiv (1) Choose one of ~DATdiv(K) as the preliminary test data preTstDAT_k.
表3以候選強分類器群組canSClfGp_A的K個(假設K=10)候選強分類器canSClf_A1~canSClf_A10為例,說明第k個候選強分類器(k=1~K)所對應之初選訓練資料preTrnDAT_k與初選測試資料preTstDAT_k。基於共有100個產品bMP與K=10的假設可以得知,每個初選訓練資料preTrnDAT_k包含的加工特徵子資 料集,共對應於其中90個產品bMP所對應的加工特徵;且,每個初選測試資料preTstDAT_k所包含的加工特徵子資料集,共包含其中10個產品bMP所對應的加工特徵。 Table 3 takes K (assuming K=10) candidate strong classifiers canSClf_A1~canSClf_A10 of the candidate strong classifier group canSClfGp_A as an example to illustrate the initial training corresponding to the kth strong candidate classifier (k=1~K) Data preTrnDAT_k and preliminary test data preTstDAT_k. Based on the assumption that there are 100 products bMP and K=10, it can be known that the processing feature sub-data contained in each preliminary training data preTrnDAT_k The material set corresponds to the processing features corresponding to 90 product bMPs; and the processing feature sub-data set contained in each preliminary test data preTstDAT_k contains the processing features corresponding to 10 product bMPs.
接著,強分類器產生器2451b~2451e將以類似表4的關係,搭配不同的分類器策略B~E與初選訓練資料preTrnDAT_B~preTrnDAT_E而分別產生的候選強分類器群組canSClfGp_B~canSClfGp_E。根據前述說明可以得知,與k=1對應之初選訓練資料preTrnDAT_1與分類器策略A~E分別搭配後,將分別產生候選強分類器canSClf_A1、canSClf_B1、canSClf_C1、canSClf_D1、canSClf_E1。同理,其餘的初選訓練資料preTrnDAT_2~preTrnDAT_10與分類器策略A~E分別搭配後,亦對應其對應的候選強分類器。
Then, the
請參見第11圖,其係強分類器產生器產生候選強分類器群組的流程圖。各個強分類器產生器2451a~2451e會分別執行此流程。首先,初始化強分類器計數器(k=1)(步驟S41)。其次,形成候選強分類器群組中的第k個候選強分類器(步驟S43)。接著,判斷是否已經形成候選強分類器群組中全部(K個)的候選強分類器(步驟S45)。若K個候選強分類器均已形成,則流程結束。若步驟S45的判斷結果為否定,則將強分類器計數器累加(k++)(步驟S47)後,重新執行步驟S43。
Please refer to Figure 11, which is a flowchart of the strong classifier generator generating the candidate strong classifier group. Each
步驟S43進一步包含以下步驟:首先,初始化弱分類器計數器(t=1)(步驟S43a)。其次,使用初選訓練資料preTrnDAT以及與強分類器產生器對應的分類器策略,形成與分類器策略的第k個候選強分類器中的第t個弱分類器(步驟S43c)。其後,判斷是否已經形成第k個候選強分類器中全部的弱分類器(假設每個強分類器包含T個弱分類器)(步驟S43g)。 Step S43 further includes the following steps: First, initialize the weak classifier counter (t=1) (step S43a). Secondly, using the preliminary training data preTrnDAT and the classifier strategy corresponding to the strong classifier generator to form the t-th weak classifier among the k-th candidate strong classifiers of the classifier strategy (step S43c). After that, it is judged whether all the weak classifiers in the k-th candidate strong classifier have been formed (assuming that each strong classifier includes T weak classifiers) (step S43g).
若步驟S43g的判斷結果為否定,則在累加弱分類器計數器(t)(步驟S43e)後,重新執行步驟S43c。若步驟S43g的判斷結果為肯 定,便可在將候選強分類器群組中的第k個候選強分類器所包含的T個弱分類器,共同集結為候選強分類器群組中的第k個候選強分類器(步驟S43h)後,結束步驟S43。 If the judgment result of step S43g is negative, after the weak classifier counter (t) is accumulated (step S43e), step S43c is executed again. If the judgment result of step S43g is yes Therefore, the T weak classifiers included in the k-th candidate strong classifier in the candidate strong classifier group can be collectively aggregated into the k-th candidate strong classifier in the candidate strong classifier group (step After S43h), step S43 is ended.
請參見第12圖,其係以候選強分類器群組canSClfGp_A所產生的分類結果為例,說明初選模組如何判斷將分類器策略選為初選策略之示意圖。如前所述,候選強分類器群組canSClfGp_A包含候選強分類器canSClf_A1~canSClf_AK。針對候選強分類器群組canSClfGp_A中的每個候選強分類器canSClf_A1~canSClf_AK,分別以初選測試資料preTstDAT_1~preTstDAT_K進行測試,得出與候選強分類器canSClf_A1~canSClf_AK對應的個別準確率pdtA1~pdtAK。 Please refer to Fig. 12, which takes the classification result generated by the candidate strong classifier group canSClfGp_A as an example to illustrate how the primary selection module determines how to select the classifier strategy as the primary selection strategy. As mentioned above, the candidate strong classifier group canSClfGp_A includes candidate strong classifiers canSClf_A1~canSClf_AK. For each candidate strong classifier canSClf_A1~canSClf_AK in the candidate strong classifier group canSClfGp_A, test with the preliminary test data preTstDAT_1~preTstDAT_K respectively, and obtain the individual accuracy pdtA1~pdtAK corresponding to the candidate strong classifier canSClf_A1~canSClf_AK .
以候選強分類器canSClf_A1為例,與其對應之個別準確率pdtA1的計算方式如下。延續前面的假設與表3的舉例,假設共有100個產品bMP1~bMP100作為建立預測模型使用。則,其中以產品bMP1~bMP90的加工特徵,作為訓練候選強分類器canSClf_A1使用的初選訓練資料preTrnDAT_1;以及,以產品bMP91~bMP100的加工特徵,作為測試候選強分類器canSClf_A1之個別準確率pdtA1的初選測試資料preTstDAT_1。 Taking the candidate strong classifier canSClf_A1 as an example, the calculation method of its corresponding individual accuracy pdtA1 is as follows. Continuing the previous assumptions and the examples in Table 3, suppose there are a total of 100 products bMP1~bMP100 used as a predictive model. Then, the processing features of the products bMP1~bMP90 are used as the preliminary training data preTrnDAT_1 used in the training candidate strong classifier canSClf_A1; and the processing features of the products bMP91~bMP100 are used as the individual accuracy pdtA1 of the test candidate strong classifier canSClf_A1 The preliminary test data preTstDAT_1.
將產品bMP91~bMP100的加工特徵輸入候選強分類器canSClf_A1後,可依據候選強分類器canSClf_A1的節點路徑而產生多個分類結果。這些分類結果相當於對產品bMP91~bMP100的品質預測結果。之後,再將產品bMP91~bMP100的分類結果,用來和產品bMP91~bMP100的品質檢測結果進行比對。進行比對後,可以得知,由候選強分類器 canSClf_A1所產生之,與產品bMP91~bMP100對應的分類結果中,正確預測產品bMP品質的個數(例如:5個)。接著,再將可正確預測品質之產品bMP的個數除以產品bMP91~bMP100個數(10個),進而得出與候選強分類器canSClf_A1對應的個別準確率(例如:5/10*100%=50%)。同理,與候選強分類器canSClf_A2~AK對應的個別準確率pdtA2~pdtAK可用類似方式計算。 After inputting the processed features of the products bMP91~bMP100 into the candidate strong classifier canSClf_A1, multiple classification results can be generated according to the node path of the candidate strong classifier canSClf_A1. These classification results are equivalent to the quality prediction results of the products bMP91~bMP100. After that, the classification results of the products bMP91~bMP100 are compared with the quality inspection results of the products bMP91~bMP100. After the comparison, it can be known that the strong candidate classifier Among the classification results generated by canSClf_A1 corresponding to the products bMP91~bMP100, the number of correctly predicted product bMP quality (for example: 5). Then, divide the number of bMP products that can predict the quality correctly by the number of products bMP91~bMP100 (10) to obtain the individual accuracy corresponding to the candidate strong classifier canSClf_A1 (for example: 5/10*100% =50%). Similarly, the individual accuracy pdtA2~pdtAK corresponding to the candidate strong classifier canSClf_A2~AK can be calculated in a similar way.
將候選強分類器canSClf_A1~canSClf_AK對應的個別準確率pdtA1~pdtAK加總後的結果,除以在候選強分類器群組canSClfGp_A中的候選強分類器canSClf的個數(K),即可得出與候選強分類器群組canSClfGp_A對應的群組平均準確率pdtGA。同樣的,針對候選強分類器群組canSClfGp_B~canSClfGp_E,亦可以類似的方式計算得出群組平均準確率pdtGB~pdtGE。其後,各個群組平均準確率pdtGA~pdtGE將分別與平均準確率門檻比較。 The result of summing up the individual accuracy pdtA1~pdtAK corresponding to the candidate strong classifiers canSClf_A1~canSClf_AK is divided by the number (K) of the candidate strong classifiers canSClf in the candidate strong classifier group canSClfGp_A, you can get The group average accuracy rate pdtGA corresponding to the candidate strong classifier group canSClfGp_A. Similarly, for the candidate strong classifier group canSClfGp_B~canSClfGp_E, the group average accuracy rate pdtGB~pdtGE can also be calculated in a similar way. After that, the average accuracy of each group, pdtGA~pdtGE, will be compared with the average accuracy threshold.
請參見第13圖,其係初選模組根據候選強分類器群組所產生的品質預測結果,判斷分類器策略是否可作為初選策略的流程圖。初始化強分類器計數器(k=1)(步驟S501)。針對第k個候選強分類器計算與其對應的個別準確率pdtk(S503)。 Please refer to Figure 13, which is a flow chart for the primary selection module to determine whether the classifier strategy can be used as the primary selection strategy based on the quality prediction results generated by the candidate strong classifier group. The strong classifier counter (k=1) is initialized (step S501). Calculate the individual accuracy pdtk corresponding to the k-th candidate strong classifier (S503).
接著,判斷是否已經產生候選強分類器群組canSClfGp內全部的強分類器(強分類器計數器k==K?)(步驟S505)。若否,則在累加強分類器計數器k(步驟S506)後,重新執行步驟S503。 Next, it is determined whether all strong classifiers in the candidate strong classifier group canSClfGp have been generated (strong classifier counter k==K?) (step S505). If not, after accumulating the classifier counter k (step S506), step S503 is executed again.
若步驟S505的判斷結果為肯定,策略選擇模組2453b將候選強分類器群組canSClfGp內的K個強分類器的個別準確率pdt1~pdtK加總並平均後,得出與候選強分類器群組canSClfGp對應
的群組平均準確率pdtG(步驟S507)。在本文中,依據的群組平均準確率pdtG與平均準確率門檻的比較,判斷候選強分類器群組canSClfGp是否滿足初選條件。
If the judgment result of step S505 is affirmative, the
即,初選條件相當於,判斷候選強分類器群組canSClfGp的群組平均準確率pdtG是否高於平均準確率門檻(步驟S509)。若候選強分類器群組canSClfGp的群組平均準確率pdtG確實高於或等於平均準確率門檻,則策略選擇模組2453b確認該分類器策略可列入初選策略(步驟S511)。此時,確認候選強分類器群組canSClfGp滿足初選條件。
That is, the primary selection condition is equivalent to judging whether the group average accuracy pdtG of the candidate strong classifier group canSClfGp is higher than the average accuracy threshold (step S509). If the group average accuracy pdtG of the candidate strong classifier group canSClfGp is indeed higher than or equal to the average accuracy threshold, the
反之,若候選強分類器群組canSClfGp的群組平均準確率pdtG低於平均準確率門檻,則策略選擇模組2453b確認該分類器策略不應列入初選策略(步驟S513)。此時,確認候選強分類器群組canSClfGp不滿足初選條件。
Conversely, if the group average accuracy pdtG of the candidate strong classifier group canSClfGp is lower than the average accuracy threshold, the
請參見表4,其係延續前述舉例之候選強分類器群組所對應的群組平均準確率pdtG與平均準確率門檻之比較的列表。在表4中,假設平均準確率門檻為80%,並以Y代表被選為初選策略的分類器策略;以及以N代表未被選為初選策略的分類器策略。 Please refer to Table 4, which is a continuation of the comparison of the group average accuracy pdtG and the average accuracy threshold corresponding to the candidate strong classifier group in the foregoing example. In Table 4, assume that the average accuracy threshold is 80%, and Y represents the classifier strategy selected as the primary strategy; and N represents the classifier strategy that is not selected as the primary strategy.
候選強分類器群組canSClfGp_A的群組平均準確率pdtGA為80%,等於平均準確率門檻。因此,分類器策略A可被視為 初選策略。候選強分類器群組canSClfGp_B的群組平均準確率pdtGB為90%,高於平均準確率門檻。因此,分類器策略B可被視為初選策略。候選強分類器群組canSClfGp_C的群組平均準確率pdtGC為70%,低於平均準確率門檻。因此,分類器策略C未被選為初選策略。候選強分類器群組canSClfGp_D的群組平均準確率pdtGD為80%,等於平均準確率門檻。因此,分類器策略D可被視為初選策略。候選強分類器群組canSClfGp_E的群組平均準確率pdtGE為60%,低於平均準確率門檻。因此,分類器策略E不應被視為初選策略。 The group average accuracy pdtGA of the candidate strong classifier group canSClfGp_A is 80%, which is equal to the average accuracy threshold. Therefore, the classifier strategy A can be regarded as Primary selection strategy. The group average accuracy pdtGB of the candidate strong classifier group canSClfGp_B is 90%, which is higher than the average accuracy threshold. Therefore, the classifier strategy B can be regarded as the primary selection strategy. The group average accuracy pdtGC of the candidate strong classifier group canSClfGp_C is 70%, which is lower than the average accuracy threshold. Therefore, the classifier strategy C is not selected as the primary strategy. The group average accuracy pdtGD of the candidate strong classifier group canSClfGp_D is 80%, which is equal to the average accuracy threshold. Therefore, the classifier strategy D can be regarded as a primary selection strategy. The group average accuracy pdtGE of the candidate strong classifier group canSClfGp_E is 60%, which is lower than the average accuracy threshold. Therefore, the classifier strategy E should not be regarded as a primary selection strategy.
承上,分類器策略A、B、D將被視為初選策略,而分類器策略C、E不被視為初選策略。根據本案的構想,被選為初選策略者,將再度以與其對應的強分類器產生器產生初選強分類器。例如,在此例子中,針對被視為初選策略的分類器策略A、B、D,以強分類器產生器2451a、2451b、2451d產生與其對應的初選強分類器preSClf_A、preSClf_B、preSClf_D。
In summary, classifier strategies A, B, and D will be regarded as primary selection strategies, while classifier strategies C and E will not be regarded as primary selection strategies. According to the concept of this case, those who are selected as the primary selection strategy will once again use the corresponding strong classifier generator to generate the primary strong classifier. For example, in this example, the
根據本發明的構想,在初選階段STG1與複選階段STG2中,均採用相同的產品bMP的加工特徵資料集bMPMFGall。惟,在初選階段STG1與複選階段STG2中,根據加工特徵資料集bMPMFGall而定義的訓練資料和測試資料的方式並不相同。 According to the concept of the present invention, in the primary selection stage STG1 and the multiple selection stage STG2, the same product bMP processing feature data set bMPMFGall is used. However, in the primary selection stage STG1 and the multiple selection stage STG2, the training data and test data defined according to the processing feature data set bMPMFGall are not the same.
在初選階段STG1中,強分類器產生器2451a~2451e利用初選訓練資料preTrnDAT與初選測試資料preTstDAT產生候選強分類器群組canSClfGp。在初選階段STG1段中,用於產生候
選強分類器canSClf的初選訓練資料preTrnDAT與初選測試資料preTstDAT,會隨著在候選強分類器群組canSClfGp中,代表個別之候選強分類器canSClf之強分類器計數器(k)而改變。
In the preliminary selection stage STG1, the
另一方面,在複選階段STG2中。強分類器產生器2451a~2451e根據初選策略,以隨機選取的複選訓練資料reTrnDAT作為輸入,產生初選強分類器preSClf。之後,再由複選模組2455使用複選測試資料reTstDAT與複選驗證產品的品質檢測資料reTst_QC進行測試。因此,在複選階段STG2中,用於產生初選強分類器preSClf的複選訓練資料reTrnDAT,以及用於評估初選強分類器preSClf的複選測試資料reTstDAT均維持不變。
On the other hand, in the check stage STG2. The
請參見第14圖,其係強分類器產生器建立初選強分類器preSClf後,驗證序列計算模組搭配初選強分類器preSClf產生驗證序列,進而由相關性計算模組計算驗證序列相關係數之示意圖。強分類器產生器2451a依據分類器策略A與複選訓練資料reTrnDAT產生初選強分類器preSClf_A。強分類器產生器2451b依據分類器策略B與複選訓練資料reTrnDAT產生初選強分類器preSClf_B。強分類器產生器2451d依據分類器策略D與複選訓練資料reTrnDAT產生初選強分類器preSClf_D。
Please refer to Figure 14. After the strong classifier generator establishes the preliminary strong classifier preSClf, the verification sequence calculation module works with the preliminary strong classifier preSClf to generate the verification sequence, and the correlation calculation module calculates the correlation coefficient of the verification sequence The schematic diagram. The
在複選階段STG2中,以複選測試資料reTstDAT,以及與複選測試資料reTstDAT所對應的多個(例如:從100個產品bMP中抽樣選出其中的10個)複選驗證產品的品質檢測資料reTst_QC作為輸入。初選強分類器preSClf_A、preSClf_B、preSClf_D分別依據複選測試資料reTstDAT對複選驗證產品的品質進行預測後,產生與
初選強分類器preSClf_A對應的多筆複選驗證產品的品質預測結果QpdtA、與初選強分類器preSClf_B對應的多筆複選驗證產品的品質預測結果QpdtB、與初選強分類器preSClf_D對應的多筆複選驗證產品的品質預測結果QpdtD。接著,驗證序列計算模組2455a將複選驗證產品的品質預測結果QpdtA、QpdtB、QpdtD,搭配複選驗證產品的品質檢測資料reTst_QC分別進行比較後,產生多筆與複選驗證產品對應的驗證結果。並且,將該些驗證結果逐一列出後,形成如表5所示的驗證序列seqA、seqB、seqD。
In the reselection stage STG2, check the quality test data of the verification product by reselecting the test data reTstDAT and the multiple corresponding to the reTstDAT (for example: selecting 10 of the 100 products bMP) reTst_QC as input. The primary strong classifiers preSClf_A, preSClf_B, and preSClf_D respectively predict the quality of the multiple-selected verification product based on the multiple-selected test data reTstDAT, and then generate and
The quality prediction result QpdtA of multiple check verification products corresponding to the preliminary strong classifier preSClf_A, the quality prediction result QpdtB of multiple check verification products corresponding to the preliminary strong classifier preSClf_B, and the quality prediction result QpdtB corresponding to the preliminary strong classifier preSClf_D Multiple checks verify the product quality prediction result QpdtD. Then, the verification
在表5中,以”1”和”0”分別代表驗證序列計算模組2455a確認複選驗證產品的品質檢測資料reTst_QC與初選強分類器preSClf產生的複選驗證產品的品質預測結果QpdtA、QpdtB、QpdtD是否符合的驗證結果。以”1”代表驗證結果為符合,以”0”代表驗證結果為不符合。進一步的,將驗證結果集結為與各個初選強分類器preSClf對應的驗證序列seq。在表5中,與初選強分類器preSClf_A對應的驗證序列seqA為{1,0,1,1,1,0,1,1,1,1};與初選強分類器preSClf_B對應的驗證序列seqB為{1,0,1,1,1,1,1,1,1,1};與初選強分類器preSClf_D對應的驗證序列seqD為{1,1,0,1,1,1,0,1,1,1}。
In Table 5, "1" and "0" respectively represent the verification
當驗證結果為符合(“1”)時,代表初選強分類器preSClf根據複選測試資料reTstDAT所預測之複選驗證產品的品質預測結 果(例如,QpdtA、QpdtB、QpdtD),與複選驗證產品的品質檢測資料reTst_QC一致。即,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為合格,且複選驗證產品的品質檢測資料reTst_QC也顯示該複選驗證產品為合格;或者,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,且複選驗證產品的品質檢測資料reTst_QC也顯示該複選驗證產品為瑕疵。 When the verification result is in line ("1"), it represents the quality prediction result of the re-selected verification product predicted by the preSClf strong classifier based on the re-selected test data reTstDAT Results (for example, QpdtA, QpdtB, QpdtD) are consistent with the quality inspection data reTst_QC of the check-checked product. That is, the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D predict that the check-validated product is qualified, and the quality inspection data of the check-checked product reTst_QC also shows that the check-checked product is qualified; or, the preliminary strong classifier preSClf_A, preSClf_B and preSClf_D predict that the check-checked product is defective, and the quality inspection data reTst_QC of the check-checked product also shows that the check-checked product is defective.
當驗證結果為不符合(“0”)時,代表初選強分類器preSClf根據複選測試資料reTstDAT所預測之複選驗證產品的品質預測結果(例如,QpdtA、QpdtB、QpdtD),與複選驗證產品的品質檢測資料reTst_QC不一致。即,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,但複選驗證產品的品質檢測資料reTst_QC顯示該複選驗證產品為瑕疵;或者,經初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,但複選驗證產品的品質檢測資料reTst_QC顯示該複選驗證產品的品質良好。 When the verification result is non-conformance ("0"), it represents the quality prediction result of the re-selected verification product (for example, QpdtA, QpdtB, QpdtD) predicted by the preSClf strong classifier preSClf according to the re-selected test data reTstDAT, and the re-selected Verify that the product quality inspection data reTst_QC is inconsistent. That is, the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D predict that the check-checked product is defective, but the quality inspection data reTst_QC of the check-checked product shows that the check-checked product is defective; or, after the preliminary strong classifier preSClf_A, preSClf_B and preSClf_D predict that the check-checked product is defective, but the quality inspection data reTst_QC of the check-checked product shows that the check-checked product is of good quality.
驗證序列計算模組2455a產生與初選強分類器preSClf_A、preSClf_B、preSClf_D分別對應的驗證序列seqA、seqB、seqD後,相關性計算模組2455c藉由關聯性計算公式而計算驗證序列seqA、seqB、seqD彼此之間的驗證序列相關係數(驗證序列相關係數A-B/B-A、驗證序列相關係數A-D/D-A,以及驗證序列相關係數B-D/D-B)。表6為驗證序列相關係數與驗證序列的列表。
After the verification
請同時參見第14圖與表6。驗證序列相關係數A-B/B-A代表驗證序列seqA、seqB彼此間的關聯性。驗證序列相關係數A-D/D-A代表驗證序列seqA、seqD彼此間的關聯性。驗證序列相關係數B-D/D-B代表驗證序列seqB、seqD彼此間的關聯性。根據表5所示的驗證序列seqA、seqB、seqD,可搭配相關性計算公式計算得出驗證序列相關係數A-B/B-A為0.666667;驗證序列相關係數A-D/D-A為2.5;以及,驗證序列相關係數B-D/D-B為0.16667。 Please refer to Figure 14 and Table 6 at the same time. The verification sequence correlation coefficient A-B/B-A represents the correlation between the verification sequences seqA and seqB. The verification sequence correlation coefficient A-D/D-A represents the correlation between the verification sequences seqA and seqD. The verification sequence correlation coefficient B-D/D-B represents the correlation between the verification sequences seqB and seqD. According to the verification sequences seqA, seqB, and seqD shown in Table 5, the correlation coefficient AB/BA of the verification sequence can be calculated with the correlation calculation formula to be 0.666667; the correlation coefficient AD/DA of the verification sequence is 2.5; and the correlation coefficient BD of the verification sequence /DB is 0.16667.
強分類器選擇模組2455e將進一步比較驗證序列相關係數A-B/B-A、A-D/D-A、B-D/D-B後,可以確認根據初選策略preStg1(分類器策略A)、初選策略preStg3(分類器策略D)所產生的初選強分類器preSClf彼此的相關性最低(驗證序列相關係數A-D/D-A的數值與1相差最大)。因此,強分類器選擇模組2455e將從初選強分類器preSClf_A、preSClf_B、preSClf_D中,選擇以候選強分類器canSClf_A、canSClf_D作為複選強分類器reSClf1、reSClf2。接著,將前述如何 根據多個分類器策略選擇初選策略preSelStg,進而產生初選強分類器preSClf的過程整理於第15圖。 The strong classifier selection module 2455e will further compare the correlation coefficients of the verification sequence AB/BA, AD/DA, BD/DB, and confirm that according to the primary selection strategy preStg1 (classifier strategy A), the primary selection strategy preStg3 (classifier strategy D ) The generated primary strong classifier preSClf has the lowest correlation with each other (the value of the correlation coefficient AD/DA of the verification sequence differs the most from 1). Therefore, the strong classifier selection module 2455e will select candidate strong classifiers canSClf_A and canSClf_D from the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D as the reSClf1 and reSClf2 candidates. Next, how to The primary selection strategy preSelStg is selected according to multiple classifier strategies, and the process of generating the primary strong classifier preSClf is summarized in Figure 15.
請參見第15圖,其係強分類器產生模組的流程圖。初選強分類器的產生,主要包含四個步驟。首先,強分類器產生器2451a~2451e依據分類器策略而產生多個候選強分類器群組(例如,候選強分類器群組canSClfGpA~canSClfGpE)(步驟S31)。其次,初選模組2453根據候選強分類器群組而決定初選策略(步驟S33)。接著,強分類器產生器2451a~2451e依據初選策略而建立初選強分類器(例如,初選強分類preSClf_A、preSClf_B、preSClf_D)(步驟S35);以及,複選模組2455自初選強分類器中,選擇兩個做為複選強分類器reSClf1、reSClf2。
Please refer to Figure 15, which is a flowchart of the strong classifier generation module. The generation of the primary strong classifier mainly includes four steps. First, the
步驟S33進一步包含以下步驟。首先,準確率計算模組2453a分別針對每個候選強分類器群組canSClfGp計算群組平均準確率pdtG,並根據群組平均準確率pdtG判斷分類器策略是否應被選為初選策略(步驟S331)。接著,判斷初選策略的個數是否足夠(例如,是否大於或等於3個)(步驟S333)。
Step S33 further includes the following steps. First, the
若步驟S333的判斷結果為肯定,則執行步驟S35。反之,策略選擇模組2453b需針對未被獲選為初選策略的分類器策略,控制與其對應的強分類器產生器2451a~2451e修改模型結構參數,並由該些強分類器產生器2451a~2451e再度產生候選強分類器群組canSClfGp(步驟S335)。此處的模型結構參數例如,強分類器所包含之弱分類器的個數(T),弱分類器所包含之節點的深度(D)等。步驟S335
的細節與步驟S331,差別在於強分類器產生器2451a~2451e用於產生強分類器的模型結構參數被改變。
If the judgment result of step S333 is affirmative, step S35 is executed. On the contrary, the
接著,當模型結構參數經過修改並重新產生候選強分類器群組canSClfGp後,準確率計算模組2453a針對重新產生的候選強分類器群組canSClfGp再度計算群組平均準確率pdtG後,判斷原本未被選取的分類器策略是否可被選為初選策略(步驟S337)。
Then, when the model structure parameters are modified and the candidate strong classifier group canSClfGp is regenerated, the
在強分類器選擇模組2455e選出複選強分類器reSClf後,節點分析模組2458將進一步讀取各複選強分類器reSClf所包含的多個弱分類器中,由根節點(root node)至終端節點(end node)的節點路徑。若延續前述舉例,規則讀取模組2458b相當於需讀取在候選強分類器canSClf_A、canSClf_D中,各自包含的T個(例如,T=100)弱分類器的根節點至多個終端節點間的多種節點路徑。 After the strong classifier selection module 2455e selects the check strong classifier reSClf, the node analysis module 2458 will further read the multiple weak classifiers contained in each check strong classifier reSClf. The root node The node path to the end node. If the previous example is continued, the rule reading module 2458b is equivalent to reading the T (for example, T=100) weak classifiers in the candidate strong classifiers canSClf_A and canSClf_D from the root node to multiple terminal nodes. Multiple node paths.
弱分類器的根節點至各個終端節點的節點路徑由多個節點所組成。如第7圖所述,每個節點代表一個分類條件。因此,弱分類器的根節點至各個終端節點的節點路徑代表須滿足節點路徑上的各個節點所代表的分類條件。為便於說明,此處將弱分類器的根節點至各個終端節點的節點路徑定義為分類規則。 The node path from the root node to each terminal node of the weak classifier is composed of multiple nodes. As described in Figure 7, each node represents a classification condition. Therefore, the node path from the root node to each terminal node of the weak classifier must satisfy the classification condition represented by each node on the node path. For ease of description, the node path from the root node of the weak classifier to each terminal node is defined as a classification rule.
如第10圖所示,強分類器解析模組245b包含節點分析模組2458與規則比較模組2457。其中,節點分析模組2458進一步包含規則讀取模組2458b與規則項集轉換模組2458a;規則比較模組2457進一步包含支持度計算模組2457a、覆蓋率計算模組2457c,以及權重計算模組2457b。
As shown in FIG. 10, the strong classifier analysis module 245b includes a node analysis module 2458 and a rule comparison module 2457. Among them, the node analysis module 2458 further includes a rule reading module 2458b and a rule item set conversion module 2458a; the rule comparison module 2457 further includes a support calculation module 2457a, a coverage calculation module 2457c, and a
規則讀取模組2458b讀取複選強分類器reSClf1、reSClf2的各個弱分類器,自根節點至終端節點的各個節點路徑所代表的分類規則。由於每個弱分類器的節點均為分類條件,且各節點路徑係包括個數不等的節點,因此,節點路徑上的多個節點所代表的分類條件可共同組合而成一組分類規則。此外,規則項集轉換模組2458a將分類規則中的各個生產條件,以頻繁項集(A-priori)的方式加以轉換。因而得出如表7的關係。 The rule reading module 2458b reads the classification rules represented by the respective weak classifiers of the check strong classifiers reSClf1 and reSClf2, and each node path from the root node to the terminal node. Since the nodes of each weak classifier are classified conditions, and each node path includes an unequal number of nodes, the classification conditions represented by multiple nodes on the node path can be combined to form a set of classification rules. In addition, the rule item set conversion module 2458a converts each production condition in the classification rule in a frequent item set (A-priori) manner. Therefore, the relationship shown in Table 7 is obtained.
由於候選強分類器canSClf_A、canSClf_D所包含之弱分類器的數量甚多(例如,100個),且對每個弱分類器的節點路徑進行解析後還可得出多個規則項集,此處不予詳列。於表7中,列出幾個舉例用的弱分類器1~3所包含之規則項集,以及規則項集所包含之生產條件的例子。 Since the candidate strong classifiers canSClf_A and canSClf_D contain a large number of weak classifiers (for example, 100), and the node path of each weak classifier can be parsed, multiple rule item sets can be obtained, here Not to be detailed. In Table 7, several examples of the rule item sets included in the weak classifiers 1~3 and the production conditions included in the rule item sets are listed.
請參見表8,其係支持度計算模組2457a根據規則項集而計算支持度的舉例。 Please refer to Table 8, which is an example of the support calculation module 2457a calculating the support based on the rule item set.
此處假設共有五個規則項集。與規則項集1-1對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a。與規則項集2-1對應之項集分類範圍為,入料溫度介於臨界溫度pdtTmpTh_a、pdtTmpTh_b之間,且壓力最大值小於臨界壓力Pth_a。與規則項集2-2對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a,且上模具溫度小於臨界溫度mlduTmpTh_a。與規則項集3-1對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a,且下模具溫度小於臨界溫度mldlTmpTh_a。與規則項集3-2對應之項集分類範圍為壓力最大值介於臨界壓力Pth_a、Pth_b之間。 It is assumed here that there are five rule item sets. The classification range of the item set corresponding to the rule item set 1-1 is that the feed temperature is less than the critical temperature pdtTmpTh_a. The item set classification range corresponding to the rule item set 2-1 is that the feed temperature is between the critical temperatures pdtTmpTh_a and pdtTmpTh_b, and the maximum pressure is less than the critical pressure Pth_a. The item set classification range corresponding to the rule item set 2-2 is that the feed temperature is less than the critical temperature pdtTmpTh_a, and the upper mold temperature is less than the critical temperature mlduTmpTh_a. The item set classification range corresponding to the rule item set 3-1 is that the feed temperature is less than the critical temperature pdtTmpTh_a, and the lower mold temperature is less than the critical temperature mldlTmpTh_a. The classification range of the item set corresponding to the rule item set 3-2 is that the maximum pressure is between the critical pressures Pth_a and Pth_b.
表8中的支持度相當於,與規則項集對應之項集分類範圍,占全部的規則項集所對應之項集分類範圍中的比例。例如,在表8中,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a),亦重複出現在規則項集2-2與規則項集3-1裡。因此,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a),在全部的規則項集的總數量(5個)中共出現三次。因此,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a)的支持度為3/5。 The support in Table 8 is equivalent to the proportion of the item set classification range corresponding to the rule item set in the item set classification range corresponding to all the rule item sets. For example, in Table 8, the classification range of the item set corresponding to the rule item set 1-1 (ie, the feed temperature is less than the critical temperature pdtTmpTh_a) is also repeated in the rule item set 2-2 and the rule item set 3-1 . Therefore, the item set classification range corresponding to the rule item set 1-1 (that is, the feed temperature is less than the critical temperature pdtTmpTh_a) appears three times in the total number of all rule item sets (5). Therefore, the support of the item set classification range corresponding to the rule item set 1-1 (that is, the feed temperature is less than the critical temperature pdtTmpTh_a) is 3/5.
另一方面,與規則項集2-1、2-2、3-1、3-2對應之項集分類範圍,均未與其他的規則項集的項集分類範圍重複。也就是說,與規則項集2-1對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a,b),壓力最大值-(Pth_a))僅出現在規則項集2-1,未見於其他四個規則項集的項集分類範圍中;與規則項集2-2對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a),上模具溫度-(mlduTmpTh_a))僅出現在規則項集2-2,未見於其他四個規則項集的項集分類範圍中;與規則項集3-1對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a),且下模具溫度-(mldlTmpTh_a)),壓力最大值-(Pth_a))僅出現在規則項集3-1,未見於其他四個規則項集的項集分類範圍中;以及,與規則項集3-2對應之項集分類範圍(即,壓力最大值-(Pth_a,Pth_b))僅出現在規則項集3-2,未見於其他四個規則項集的項集分類範圍中。也因此,規則項集2-1、2-2、3-1、3-2的支持度均為1/5。 On the other hand, the item set classification ranges corresponding to the rule item sets 2-1, 2-2, 3-1, 3-2 do not overlap with the item set classification ranges of other rule item sets. That is to say, the item set classification range corresponding to the rule item set 2-1 (ie, the feed temperature-(pdtTmpTh_a, b), the maximum pressure-(Pth_a)) only appears in the rule item set 2-1, not seen in In the item set classification range of the other four rule item sets; the item set classification range corresponding to the rule item set 2-2 (ie, feed temperature-(pdtTmpTh_a), upper mold temperature-(mlduTmpTh_a)) only appears in the rule item Set 2-2, not found in the item set classification range of the other four rule item sets; the item set classification range corresponding to the rule item set 3-1 (ie, feed temperature-(pdtTmpTh_a), and lower mold temperature-( mldlTmpTh_a)), the maximum pressure-(Pth_a)) only appears in the rule item set 3-1, not in the item set classification scope of the other four rule item sets; and, the item set corresponding to the rule item set 3-2 The classification range (ie, the maximum pressure-(Pth_a, Pth_b)) only appears in the rule item set 3-2, and is not found in the item set classification range of the other four rule item sets. Therefore, the support of rule item sets 2-1, 2-2, 3-1, and 3-2 are all 1/5.
請參見表9,其係覆蓋率計算模組2457c根據規則項集而計算覆蓋率的舉例。覆蓋率的含意為,在被判斷為瑕疵的產品bMP中,符合規則項集所對應之項集分類範圍者,佔瑕疵的產品bMP的總數量中的比率。 Please refer to Table 9, which is an example of the coverage calculation module 2457c calculating the coverage based on the rule item set. The coverage rate means that among the bMP products judged to be defective, the ratio of those that meet the classification range of the item set corresponding to the rule item set to the total number of defective products bMP.
覆蓋率計算模組2457c自規則項集轉換模組2458a接收規則項集,以及,自品質檢測模組接收關於產品bMP的品質檢測資料(例如,共有多少產品bMP被判斷為瑕疵,以及與被判斷為瑕疵的產品bMP所對應的加工特徵等)。覆蓋率計算模組2457c將產品bMP的品質檢測資料和與規則項集對應的項集分類範圍進行比較,判斷在品質檢測資料被判斷為瑕疵的產品bMP,其加工特徵是否符合各個規則項集(例如,規則項集1-1、2-1、2-2、3-1、3-2)的項集分類範圍;以及,在品質檢測資料被判斷為瑕疵的產品bMP中,符合規則項集的項集分類範圍的數量。 The coverage calculation module 2457c receives the rule-item set from the rule-item set conversion module 2458a, and receives the quality inspection data about the product bMP from the quality inspection module (for example, how many product bMPs are judged to be defective, and how many are judged The processing characteristics corresponding to the defective product bMP, etc.). The coverage calculation module 2457c compares the quality inspection data of the product bMP with the classification range of the item set corresponding to the rule item set, and determines whether the product bMP whose quality inspection data is judged to be defective and whether its processing characteristics conform to each rule item set ( For example, the classification range of the rule item set 1-1, 2-1, 2-2, 3-1, 3-2); and, in the product bMP whose quality inspection data is judged to be defective, the rule item set The number of itemset classification ranges.
依據規則項集1-1、2-1、2-2、3-1、3-2的不同,覆蓋率計算模組2457c將分別以品質檢測資料被判斷為瑕疵的產品bMP中符合規則項集的個數,除以品質檢測資料被判斷為瑕疵的產品bMP的總個數後,得出與規則項集1-1、2-1、2-2、3-1、3-2分別對應的覆蓋率。 如表9所示,與規則項集1-1對應的覆蓋率為0.1;與規則項集2-1對應的覆蓋率為0.32;與規則項集2-2對應的覆蓋率為0.98;與規則項集3-1對應的覆蓋率為0.36;以及,與規則項集3-2對應的覆蓋率為0.08。 According to the different rule item sets 1-1, 2-1, 2-2, 3-1, 3-2, the coverage calculation module 2457c will use the quality inspection data to determine the products that meet the rule set in bMP. Divide the number of bMPs by the total number of bMP products that are judged to be defective by the quality inspection data, and get the corresponding rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 Coverage. As shown in Table 9, the coverage rate corresponding to rule item set 1-1 is 0.1; the coverage rate corresponding to rule item set 2-1 is 0.32; the coverage rate corresponding to rule item set 2-2 is 0.98; The coverage rate corresponding to item set 3-1 is 0.36; and the coverage rate corresponding to rule item set 3-2 is 0.08.
權重計算模組2457b自支持度計算模組2457a接收與規則項集1-1、2-1、2-2、3-1、3-2對應的支持度,以及自覆蓋率計算模組2457c接收與規則項集1-1、2-1、2-2、3-1、3-2對應的覆蓋率後,將分別計算與規則項集1-1、2-1、2-2、3-1、3-2對應的規則權重。
The
請參見表10,其係權重計算模組2457b根據支持度與覆蓋率,而因應規則項集的不同而計算與規則項集對應之規則權重的舉例。
Please refer to Table 10, which is an example of calculating the rule weight corresponding to the rule item set by the
權重計算模組2457b將與規則項集1-1對應的支持度(0.6)與覆蓋率(0.1)直接相乘後,得出原始規則權重(0.6*0.1=0.06);將與規則項集2-1對應的支持度(0.2)與覆蓋率(0.32)直接相乘後,得出原始規則權重(0.2*0.32=0.064);將與規則項集2-2對應的支持度(0.2)與覆蓋率(0.98)直接相乘後,得出原始規則權重(0.2*0.98=0.196);將與
規則項集3-1對應的支持度(0.2)與覆蓋率(0.36)直接相乘後,得出原始規則權重(0.2*0.36=0.072);以及,將與規則項集3-2對應的支持度(0.2)與覆蓋率(0.08)直接相乘後,得出原始規則權重(0.2*0.08=0.016)。之後,權重計算模組2457b將與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重加總後,得出原始規則權重總和;以及,以各個原始規則權重,分別除以原始規則權重總和,得出與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重的權重占比。
The
在表10中,支持度的範圍介於0~1之間,且覆蓋率的範圍亦介於0~1之間。據此,根據兩者的乘積得出的原始規則權重的範圍亦介於0~1之間。為避免當支持度或覆蓋率的其中一者的數值偏大,但另一者的數值剛好為0,導致原始規則權重的計算結果為0的情況,此處亦可搭配使用支持度平移量(例如:0.5),以及覆蓋率平移量(例如:0.5)。即,將支持度與支持度平移量加總後得出平移後的支持度,以及將覆蓋率與覆蓋率平移量加總後得出平移後的覆蓋率。接著,再將平移後的支持度與平移後的覆蓋率互乘,得出平移後規則權重。其後,可用類似表10的說明,計算平移後規則權重總和,以及與規則項集對應的平移後規則權重占比。 In Table 10, the range of support is between 0 and 1, and the range of coverage is between 0 and 1. Accordingly, the weight of the original rule based on the product of the two ranges from 0 to 1. In order to avoid the situation where the value of one of the support or coverage is too large, but the value of the other is just 0, resulting in the calculation result of the original rule weight being 0, the support shift amount ( For example: 0.5), and the amount of coverage shift (for example: 0.5). That is, the support degree after the translation is obtained by adding the support degree and the translation amount of the support degree, and the coverage ratio after the translation is obtained by adding the coverage ratio and the translation amount of the coverage ratio. Then, multiply the support degree after translation and the coverage ratio after translation to obtain the weight of the rule after translation. Thereafter, similar to the description in Table 10, the sum of the rule weights after translation and the proportion of the rule weights after translation corresponding to the rule item set can be calculated.
經過平移處理後,平移後的支持度的範圍介於0.5~1.5之間,且平移後的覆蓋率的範圍亦介於0.5~1.5之間。據此,將兩者相乘後的乘積所表示的平移後規則權重的範圍,將介於0.5*0.5=0.25與1.5*1.5=2.25的範圍內,故能避免原始規則權重為0的情況。 After translation processing, the range of support after translation is between 0.5 and 1.5, and the range of coverage after translation is also between 0.5 and 1.5. According to this, the range of the rule weight after translation represented by the product of the two multiplied together will be within the range of 0.5*0.5=0.25 and 1.5*1.5=2.25, so the situation where the original rule weight is 0 can be avoided.
根據本發明的構想,與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重的權重占比越高時,代表與規則項集1-1、2-1、2-2、3-1、3-2對應的項集分類範圍與瑕疵的相關性越高。例如,在表11中,與規則項集2-2對應的原始規則權重的權重占比(0.48)為最高。因此,搭配表8可以得知,若某一產品uMP的加工特徵符合入料溫度≦430℃,且上模具溫度≦155℃時,該產品uMP為瑕疵的機會也較高。 According to the concept of the present invention, the higher the weight ratio of the original rule weights corresponding to the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2, the higher the weight ratio of the original rule items set 1-1, 2-1, 2-2, 3-1, 3-2 , 2-1, 2-2, 3-1, 3-2 corresponding to the item set classification range and the higher the correlation with the defect. For example, in Table 11, the weight ratio (0.48) of the original rule weight corresponding to the rule item set 2-2 is the highest. Therefore, according to Table 8, if the processing characteristics of a certain product uMP meet the requirements of the feed temperature≦430°C and the upper mold temperature≦155°C, the chance of the product uMP being defective is also higher.
以上說明預測模型如何建立。接著繼續說明建立好的預測模型,如何被用於預測產品uMP是否需要進行品質檢測;以及,若產品uMP被確認為需要品質檢測時,預測模型還可用於分析在生產設備23中,提供瑕疵源分析的功能,協助製造商判斷哪個加工的環節較可能導致這個產品uMP的品質發生瑕疵。
The above explains how to build the prediction model. Then continue to explain how the established prediction model can be used to predict whether the product uMP needs quality inspection; and if the product uMP is confirmed to require quality inspection, the prediction model can also be used to analyze the
請參見第16圖,其係產品品質監控系統處於模型使用模式(uM)時,依據預測模型與產品加工特徵而預測產品的品質之示意圖。請同時參見第6B圖與第16圖。 Please refer to Figure 16, which is a schematic diagram of predicting product quality based on the prediction model and product processing characteristics when the product quality monitoring system is in model use mode (uM). Please refer to Figure 6B and Figure 16.
生產材料21經過生產設備23的加工成為產品uMP。在製造產品uMP的生產流程中,感測器241將感測到的原始生產參數uMP_origPP提供給資料前處理裝置243。由資料前處理裝置243轉換產生產品uMP的加工特徵資料集。在模型使用模式uM下,模型使用裝置247將使用根據產品bMP所建立的預測模型,對產品uMP的加工特徵資料集進行分析與比對。之後,模型使用裝置247將產生產品uMP的品質預測結果,以及產生產品uMP的瑕疵源分析資訊。
The
當產品uMP的品質預測結果顯示產品uMP不需進行品質檢測的抽樣時,產品uMP可直接出廠。當產品uMP的品質預測結果顯示產品uMP需品質檢測的抽樣時,品質檢測裝置248對產品uMP進行品質檢測。此外,瑕疵源分析資訊可作為使用者檢測生產設備23時的參考。
When the quality prediction result of the product uMP shows that the product uMP does not need to be sampled for quality testing, the product uMP can be shipped directly. When the quality prediction result of the product uMP shows that the product uMP needs to be sampled for quality inspection, the
請參見第17圖,其係模型使用裝置的方塊圖。模型使用裝置247包含產品特徵接收模組2471、分類規則接收模組2473、產品特徵與分類規則比較模組2475、相似度計算模組2477、品質預測模組2479與瑕疵源追蹤模組2470。其中,產品特徵與分類規則比較模組2475電連接於相似度計算模組2477、產品特徵接收模組2471與分類規則接收模組2473。品質預測模組2479電連接於相似度計算模組2477與瑕疵源追蹤模組2470。
Please refer to Figure 17, which is a block diagram of the device used in the model. The
產品特徵接收模組2471電連接於資料前處理裝置243,並從資料前處理裝置243接收產品uMP的加工特徵資料集。另一方面,分類規則接收模組2473電連接於模型建立裝置245,並從模型建立裝置245接收與規則項集對應的項集分類範圍,以及與規則項集對應的原始規則權重的權重占比。產品特徵接收模組2471所接收的產品uMP的加工特徵如表11所示。
The product feature receiving module 2471 is electrically connected to the
實際應用時,模型使用裝置247所需分析之產品uMP的數量相當多,此處為便於舉例,僅以產品uMP1~uMP6為例,並假設加工特徵包含入料溫度、壓力最大值、上模具溫度與下模具溫度。
In actual application, there are quite a lot of products uMP that the
產品特徵接收模組2471接收到如表11所列出之各個產品uMP1~uMP6的加工特徵(例如,入料溫度、壓力最大值、上模具溫度與下模具溫度)後,首先以頻繁項集的方式轉換產品uMP1~uMP6的加工特徵。接著,再以表7所列出的規則項集1-1、2-1、2-2、3-1、3-2的項集分類範圍與產品uMP1~uMP6的加工特徵進行比對。即,確認產品uMP1~uMP6的入料溫度、壓力最大值、上模具溫度與下模具溫度是否符合表8所列出之規則項集1-1、2-1、2-2、3-1、3-2的項集分類範圍。 After the product feature receiving module 2471 receives the processing features of each product uMP1~uMP6 listed in Table 11 (for example, the feed temperature, the maximum pressure, the upper mold temperature and the lower mold temperature), it first sets the frequent items The processing characteristics of the products uMP1~uMP6 are converted in a way. Then, compare the classification ranges of the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 listed in Table 7 with the processing characteristics of the products uMP1~uMP6. That is, confirm whether the input temperature, maximum pressure, upper mold temperature and lower mold temperature of the products uMP1~uMP6 comply with the rule set 1-1, 2-1, 2-2, 3-1, 3-2 item set classification range.
表12為確認產品是否符合規則項集1-1、2-1、2-2、3-1、3-2的加工規則的確認表。其中,Y代表產品uMP的加工特徵符合規則項集的項集分類範圍。產品特徵與分類規則比較模組2475用於執行表12所示的比較。
Table 12 is a confirmation table for confirming whether the product complies with the processing rules of rule item sets 1-1, 2-1, 2-2, 3-1, 3-2. Among them, Y represents the processing feature of the product uMP conforms to the item set classification range of the rule item set. The product feature and classification
在表12中,產品uMp1的加工特徵符合規則項集2-1、3-1的項集分類範圍;產品uMp2的加工特徵符合規則項集3-2的項集分類 範圍;產品uMp3的加工特徵符合規則項集1-1、2-1、2-2的項集分類範圍;產品uMp4的加工特徵符合規則項集3-1、3-2的項集分類範圍;產品uMp5的加工特徵符合規則項集1-1、3-2的項集分類範圍;以及,產品uMp6的加工特徵符合規則項集1-1、2-1的項集分類範圍。 In Table 12, the processing feature of product uMp1 meets the item set classification range of rule item set 2-1 and 3-1; the processing feature of product uMp2 meets the item set classification of rule item set 3-2 Scope; the processing feature of product uMp3 meets the item set classification scope of rule item set 1-1, 2-1, 2-2; the processing feature of product uMp4 meets the item set classification scope of rule item set 3-1, 3-2; The processing feature of product uMp5 meets the item set classification range of rule item sets 1-1 and 3-2; and the processing feature of product uMp6 meets the item set classification range of rule item sets 1-1 and 2-1.
產品特徵與分類規則比較模組2475產生如表12所示的比較結果後,將比較結果傳送至相似度計算模組2477。接著,相似度計算模組2477從權重計算模組2457b接收如表10最右側欄位所示之,與規則項集對應的原始規則權重的權重占比,以及從產品特徵與分類規則比較模組2475接收比較結果後,將用於計算產品uMP以及與規則項集對應的原始規則權重的權重占比之間的關係。
The product feature and classification
請參見表13,其係相似度計算模組根據產品uMP以及與規則項集對應的原始規則權重的權重占比,計算瑕疵相似度之列表。表13是根據表10與表12而產生,其產生方式為,針對表12中被列為Y的欄位,填入在表10所計算之與規則項集對應的原始規則權重的權重占比。接著,按照各個產品uMP1~uMP6的不同,分別計算與其對應的瑕疵相似度後,便可得出表13。瑕疵相似度可視為,生產設備23生產產品uMP的過程中,與產品uMP對應的加工特徵資料集中,符合規則項集所對應之項集分類範圍的多寡。
Please refer to Table 13. The similarity calculation module calculates the list of defect similarity based on the product uMP and the weight proportion of the original rule weight corresponding to the rule item set. Table 13 is generated according to Table 10 and Table 12. The method is to fill in the weight percentage of the original rule weight corresponding to the rule item set calculated in Table 10 for the column listed as Y in Table 12 . Then, according to the difference of each product uMP1~uMP6, after calculating the similarity of the corresponding flaws, Table 13 can be obtained. The defect similarity can be regarded as the amount of the processing feature data set corresponding to the product uMP in the process of the
當瑕疵相似度越高時,代表在產品uMp的生產過程中所產生的加工特徵中,較容易使產品uMp產生瑕疵之加工特徵越多,可因此預測產品uMp可能為瑕疵的機會越高。反之,當瑕疵相似度越高低,代表在生產產品uMp的過程中,伴隨產生的加工特徵中,並沒有太多容易使產品uMp產生瑕疵之加工特徵,可因此預測產品uMp可能為瑕疵的機會越低。 When the defect similarity is higher, it means that among the processing features generated in the production process of the product uMp, the more processing features that are easier to cause the product uMp to produce defects, the higher the chance that the product uMp may be a defect can be predicted. Conversely, when the defect similarity is higher and lower, it means that in the process of producing product uMp, there are not too many processing features that are likely to cause defects in the product uMp. Therefore, the better chance that the product uMp may be defective is predicted. low.
如表12所示,產品uMP1的加工特徵符合規則項集2-1、3-1的項集分類範圍。因此,在表13中,與產品uMP1對應的瑕疵相似度,是根據表11中,與與規則項集2-1對應的原始規則權重的權重占比(0.16),以及與規則項集3-1對應的原始規則權重的權重占比(0.18)的總和而得出((0.16+0.18)*100%=34%)。 As shown in Table 12, the processing characteristics of product uMP1 conform to the item set classification range of rule item sets 2-1 and 3-1. Therefore, in Table 13, the defect similarity corresponding to the product uMP1 is based on the weight ratio (0.16) of the original rule weight corresponding to the rule item set 2-1 and the rule item set 3- 1 corresponds to the sum of the weight proportions (0.18) of the original rule weights ((0.16+0.18)*100%=34%).
如表12所示,產品uMP2的加工特徵符合規則項集3-2的項集分類範圍。因此,在表13中,與產品uMP2對應的瑕疵相似度,是根據表11中,與規則項集2-1對應的原始規則權重的權重占比而得出(0.04*100%=4%)。 As shown in Table 12, the processing characteristics of product uMP2 conform to the item set classification range of rule item set 3-2. Therefore, in Table 13, the defect similarity corresponding to product uMP2 is derived from the weight ratio of the original rule weight corresponding to the rule item set 2-1 in Table 11 (0.04*100%=4%) .
如表12所示,產品uMP3的加工特徵符合規則項集1-1、2-1、2-2的項集分類範圍。因此,在表13中,與產品uMP3對應的瑕疵 相似度,是表11中,與規則項集1-1對應的原始規則權重的權重占比(0.15)、與規則項集2-1對應的原始規則權重的權重占比(0.16),以及與規則項集2-2對應的原始規則權重的權重占比(0.48)加總後得出((0.15+0.16+0.48)*100%=79%)。 As shown in Table 12, the processing characteristics of product uMP3 conform to the item set classification range of rule item sets 1-1, 2-1, and 2-2. Therefore, in Table 13, the defects corresponding to the product uMP3 The similarity is in Table 11, the weight ratio of the original rule weight corresponding to the rule item set 1-1 (0.15), the weight ratio of the original rule weight corresponding to the rule item set 2-1 (0.16), and The weight ratio (0.48) of the original rule weight corresponding to the rule item set 2-2 is added up to obtain ((0.15+0.16+0.48)*100%=79%).
如表12所示,產品uMP4的加工特徵符合規則項集3-1、3-2的項集分類範圍。因此,在表13中,與產品uMP4對應的瑕疵相似度,是根據與規則項集3-1對應的原始規則權重的權重占比(0.18),以及與規則項集3-2對應的原始規則權重的權重占比(0.04)的總和而得出((0.18+0.04)*100%=22%)。 As shown in Table 12, the processing characteristics of product uMP4 conform to the item set classification range of rule item sets 3-1 and 3-2. Therefore, in Table 13, the defect similarity corresponding to the product uMP4 is based on the weight ratio (0.18) of the original rule weight corresponding to the rule item set 3-1, and the original rule corresponding to the rule item set 3-2 The weight of the weight ratio (0.04) is the sum of ((0.18+0.04)*100%=22%).
如表12所示,產品uMP5的加工特徵符合規則項集1-1、3-2的項集分類範圍。因此,在表13中,與產品uMP5對應的瑕疵相似度,是根據與規則項集1-1對應的原始規則權重的權重占比(0.15),以及與規則項集3-2對應的原始規則權重的權重占比(0.04)的總和而得出((0.15+0.04)*100%=19%)。 As shown in Table 12, the processing characteristics of the product uMP5 meet the classification scope of the rule item sets 1-1 and 3-2. Therefore, in Table 13, the defect similarity corresponding to product uMP5 is based on the weight ratio (0.15) of the original rule weight corresponding to the rule item set 1-1, and the original rule corresponding to the rule item set 3-2 The weight ratio (0.04) is the sum of the weight ratio ((0.15+0.04)*100%=19%).
如表12所示,產品uMP6的加工特徵符合規則項集1-1、2-1的項集分類範圍。因此,在表13中,與產品uMP6對應的瑕疵相似度,是根據與規則項集1-1對應的原始規則權重的權重占比(0.15),以及與規則項集2-1對應的原始規則權重的權重占比(0.16)的總和而得出((0.15+0.16)*100%=31%)。 As shown in Table 12, the processing characteristics of the product uMP6 conform to the item set classification range of rule item sets 1-1 and 2-1. Therefore, in Table 13, the defect similarity corresponding to the product uMP6 is based on the weight ratio (0.15) of the original rule weight corresponding to the rule item set 1-1, and the original rule corresponding to the rule item set 2-1 The weight of the weight ratio (0.16) is the sum of ((0.15+0.16)*100%=31%).
待相似度計算模組2477分別針對產品uMP1~uMP6計算與其對應的瑕疵相似度後,品質預測模組2479再用於將該些瑕疵相似
度與瑕疵相似度門檻進行比較,並根據比較結果判斷產品是否需要進行品質檢測。
After the similarity calculation module 2477 respectively calculates the similarity of the defects corresponding to the products uMP1~uMP6, the
請參見表14,其係品質預測模組2479執行表13所示之瑕疵相似度與瑕疵相似度門檻比較後,判斷是否須對產品進行品質檢測的列表。品質預測模組2479將產品uMP1~uMP6的瑕疵相似度分別與瑕疵相似度門檻(例如,30%)進行比較。實際應用時,瑕疵相似度門檻的數值可視產品類型、良率等考量而改變。
Please refer to Table 14, which is a list for the
如表14所示,產品uMP1的瑕疵相似度為34%、產品uMP3的瑕疵相似度為79%,且產品uMP6的瑕疵相似度為31%,均高於瑕疵相似度門檻(30%)。因此,品質預測模組2479判斷產品uMP1、uMP3、uMP6應進行品質檢測。另一方面,產品uMP2的瑕疵相似度為4%、產品uMP4的瑕疵相似度為22%、產品uMP5的瑕疵相似度為19%,均低於瑕疵相似度門檻(30%)。因此,品質預測模組2479判斷產品uMP2、uMP4、uMP5均不需要進行品質檢測。
As shown in Table 14, the flaw similarity of product uMP1 is 34%, the flaw similarity of product uMP3 is 79%, and the flaw similarity of product uMP6 is 31%, which is higher than the flaw similarity threshold (30%). Therefore, the
除了針對產品本身是否需進行品質檢測而產生品質預測結果外,模型使用裝置247還可利用預測模型提供瑕疵源追蹤的功能。根據本發明的實施例,製造商可提供一根因對照表予瑕疵源追蹤
模組2470。根因對照表代表規則項集1-1、2-1、2-2、3-1、3-2與影響該些生規則的相關生產設備之間的關係。實際應用時,根因對照表可由製造商根據經驗或統計數值所提供。表15為根因對照表的舉例。
In addition to generating quality prediction results based on whether the product itself needs to be quality tested, the
在表15中,規則項集1-1的根因僅與胚料加熱爐331相關。因此,當某個產品uMP因加工特徵符合規則項集1-1的特徵範圍而使預測模型預測其品質為瑕疵時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為100%。 In Table 15, the root cause of the rule item set 1-1 is only related to the billet heating furnace 331. Therefore, when the quality of a product uMP is predicted by the prediction model to be defective because the processing characteristics meet the feature range of the rule item set 1-1, it means that the risk of the product uMP caused by the blank heating furnace 331 is 100%.
在表15中,規則項集2-1的根因為胚料加熱爐331與溫鍛沖壓機台333壓力。其中,由胚料加熱爐331引起的機會為70%,由溫鍛沖壓機台333壓力引起的機會為30%。因此,當某個產品uMP因加工特徵符合規則項集2-1的特徵範圍而使預測模型預測其品質為瑕疵時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為70%,因溫鍛沖壓機台333壓力引起此產品uMP的瑕疵風險為30%。 In Table 15, the root of the rule set 2-1 is due to the pressure of the billet heating furnace 331 and the warm forging press 333. Among them, the chance caused by the billet heating furnace 331 is 70%, and the chance caused by the pressure of the warm forging press 333 is 30%. Therefore, when the quality of a product uMP is predicted by the predictive model to be defective due to its processing characteristics conforming to the feature range of the rule item set 2-1, it means that the risk of defects in the uMP of this product caused by the billet heating furnace 331 is 70%. The risk of defects in the uMP of this product caused by the pressure of the warm forging press 333 is 30%.
在表15中,規則項集2-2的根因為胚料加熱爐331與溫鍛沖壓機台333加熱。其中,由胚料加熱爐331引起的機會為50%,由溫鍛沖壓機台333加熱引起的機會為50%。因此,當某個產品uMP因加工特徵符合規則項集2-2的特徵範圍而使預測模型預測其品質為瑕疵 時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為50%,因溫鍛沖壓機台333加熱引起此產品uMP的瑕疵風險為50%。 In Table 15, the root of the rule set 2-2 is heated by the billet heating furnace 331 and the warm forging press 333. Among them, the chance caused by the billet heating furnace 331 is 50%, and the chance caused by the heating of the warm forging press table 333 is 50%. Therefore, when a product's uMP processing feature meets the feature range of the rule item set 2-2, the prediction model predicts its quality as a defect At the time, it means that the uMP defect risk of this product caused by the blank heating furnace 331 is 50%, and the uMP defect risk of this product caused by the warm forging press 333 heating is 50%.
在表15中,規則項集3-1的根因僅與溫鍛沖壓機台333加熱相關。因此,當某個產品uMP因加工特徵符合規則項集3-1的特徵範圍而使預測模型將其品質被預測為瑕疵時,代表因溫鍛沖壓機台333加熱引起此產品uMP的瑕疵風險為100%。 In Table 15, the root cause of the rule set 3-1 is only related to the heating of the warm forging stamping machine 333. Therefore, when the quality of a product uMP is predicted to be a defect due to its processing characteristics conforming to the feature range of the rule item set 3-1, it means that the risk of defects in the uMP of this product caused by the heating of the warm forging stamping machine 333 is 100%.
在表15中,規則項集3-2的根因僅與溫鍛沖壓機台333壓力相關。因此,當某個產品uMP因加工特徵符合規則項集3-2的特徵範圍而使預測模型將其品質被預測為瑕疵時,代表因溫鍛沖壓機台333壓力引起此產品uMP的瑕疵風險為100%。 In Table 15, the root cause of the rule set 3-2 is only related to the pressure of the warm forging press 333. Therefore, when the quality of a product uMP is predicted to be a defect due to its processing features meeting the feature range of the rule item set 3-2, it means that the risk of defects for this product uMP caused by the pressure of the warm forging stamping machine 333 is 100%.
由於在表14中,產品uMP3的瑕疵相似度(79%)最高。因此,此處以產品uMP3為例,說明瑕疵源追蹤模組2470如何搭配表15所示的根因對照表,進一步分析使產品uMP3的生產流程中,何者為較可能造成產品uMP3為瑕疵的瑕疵源。 As in Table 14, the product uMP3 has the highest defect similarity (79%). Therefore, taking the product uMP3 as an example, we will explain how the defect source tracking module 2470 is matched with the root cause comparison table shown in Table 15 to further analyze the product uMP3 production process, which is more likely to cause the product uMP3 as the defect source .
如表12所示,產品uMP3與規則項集1-1、2-1、2-2、相關。因此,為便於說明,此處引用表11所示之規則權重以及與規則項集對應的原始規則權重的權重占比,以及表15所示關於規則項集與根因的對照關係整理於表16。 As shown in Table 12, product uMP3 is related to rule item sets 1-1, 2-1, 2-2. Therefore, for ease of explanation, the rule weights shown in Table 11 and the weight proportions of the original rule weights corresponding to the rule item sets are quoted here, and the comparison relationship between the rule item sets and root causes shown in Table 15 is summarized in Table 16. .
根據表16可以計算與規則項集對應的原始規則權重的權重占比的總和為0.15+0.16+0.48=0.79。此外,由表15可以看出,導致產品uMP3被預測為瑕疵的根因包含胚料加熱爐331、溫鍛沖壓機台333壓力與溫鍛沖壓機台333加熱。因此,瑕疵源追蹤模組2470將判斷由胚料加熱爐331、溫鍛沖壓機台333壓力與溫鍛沖壓機台333加熱造成產品uMP3可能被預測為瑕疵的比率。 According to Table 16, the total weight proportion of the original rule weight corresponding to the rule item set can be calculated as 0.15+0.16+0.48=0.79. In addition, it can be seen from Table 15 that the root causes that cause the product uMP3 to be predicted to be defective include the blank heating furnace 331, the pressure of the warm forging press 333, and the heating of the warm forging press 333. Therefore, the defect source tracking module 2470 will determine the rate at which the product uMP3 may be predicted to be defective due to the pressure of the blank heating furnace 331, the warm forging press table 333 and the heating of the warm forging press table 333.
請參見表17,其係可能引起產品uMP3需要進行品質檢測的根因與其比率列表。此表格針對能使產品uMP3為瑕疵的根因,分別計算其影響產品uMP3可能為瑕疵的機會。 Please refer to Table 17, which is a list of the root causes and their ratios that may cause the uMP3 product to undergo quality testing. This table is aimed at the root causes that can make the product uMP3 defective, and calculates the chances of the product uMP3 being defective.
根據表17,產品uMP3可能因胚料加熱爐331故障,導致基於規則項集1-1而將產品uMP3預測(歸類)為瑕疵的機會為0.15*1;基於規則項集2-1而將產品uMP3預測(歸類)為瑕疵的機會為0.16*0.7;以及,基於規則項集2-2而將產品uMP3預測(歸類)為瑕疵的機會為0.48*0.5。將這三者加總的結果,除以與規則項集對應的原始 規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因胚料加熱爐331故障而被歸類為瑕疵的機率為0.63。 According to Table 17, the product uMP3 may be due to the failure of the billet heating furnace 331, resulting in the probability that the product uMP3 is predicted (classified) as a defect based on the rule item set 1-1 is 0.15*1; The chance that the product uMP3 is predicted (classified) as a defect is 0.16*0.7; and, the chance that the product uMP3 is predicted (classified) as a defect based on the rule item set 2-2 is 0.48*0.5. The result of adding up these three is divided by the original After the sum of the weights of the rule weights (0.79), the probability that the product uMP3 is classified as a defect due to the failure of the billet heating furnace 331 is 0.63.
根據表17,產品uMP3可能因溫鍛沖壓機台333壓力異常,導致基於規則項集2-1而對產品uMP3分類時,將產品uMP3歸類為瑕疵的機會為0.16*0.3。將產品uMP3歸類為瑕疵的機會(0.16*0.3),除以與規則項集對應的原始規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因溫鍛沖壓機台333壓力異常而被歸類為瑕疵的機率為0.63。 According to Table 17, the product uMP3 may be classified as a defect based on the rule item set 2-1 due to abnormal pressure of the warm forging press 333, and the chance of classifying the product uMP3 as a defect is 0.16*0.3. The chance of classifying product uMP3 as a defect (0.16*0.3) is divided by the sum of the weight proportions of the original rule weight corresponding to the rule item set (0.79), and the product uMP3 can be obtained by warm forging stamping machine 333 The probability of abnormal pressure being classified as a defect is 0.63.
根據表17,產品uMP3可能因溫鍛沖壓機台333加熱異常,導致基於規則項集2-2而對產品uMP3分類時,將產品uMP3歸類為瑕疵的機會為0.48*0.5。也就是說,將產品uMP3歸類為瑕疵的機會(0.48*0.5),除以與規則項集對應的原始規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因溫鍛沖壓機台333加熱異常而被歸類為瑕疵的機率為0.31。 According to Table 17, the product uMP3 may be abnormally heated by the warm forging stamping machine 333, resulting in the classification of the product uMP3 based on the rule set 2-2, the chance of classifying the product uMP3 as defective is 0.48*0.5. In other words, the chance of classifying the product uMP3 as a defect (0.48*0.5) is divided by the sum of the weight proportions of the original rule weight corresponding to the rule item set (0.79), and then the product uMP3 can be obtained due to warm forging. The probability that the press table 333 is abnormally heated and classified as a defect is 0.31.
為便於比較,此處將表17的計算結果整理於表18。根據本發明的構想,瑕疵源追蹤模組2470可將此結果以圓餅圖等方式,呈現給使用者參考。因此,製造商無須經過複雜的分析,即可掌握應就生產設備23的哪個環節進行檢修。
For the sake of comparison, the calculation results in Table 17 are summarized in Table 18. According to the concept of the present invention, the defect source tracking module 2470 can present the result to the user for reference in the form of a pie chart or the like. Therefore, the manufacturer can grasp which link of the
預測模型建立後,還可進一步對其預測的效果進行評估,進而確認其預測結果是否仍符合生產流程的特性。評估預測模型 之適用與否的確切時點,可視製造商的需求、產品特性等考量而調整,無須加以限定。例如,每間隔一段固定的期間,或是生產一定數量的產品之後等。 After the prediction model is established, it can further evaluate its prediction effect, and then confirm whether its prediction result still meets the characteristics of the production process. Evaluate the predictive model The exact timing of whether it is applicable or not can be adjusted according to the manufacturer's needs, product characteristics and other considerations, and does not need to be limited. For example, every interval is a fixed period, or after a certain number of products are produced.
請參見第18圖,其係產品品質監控系統處於模型評估模式(eM)時,檢視預測模型是否需更新之示意圖。請同時參見第6C圖與第18圖。生產設備23生產產品eMP的同時,感測器241亦對應產生與產品eMP對應的原始生產參數eMP_origPP。資料前處理裝置243接收原始生產參數eMP_origPP後,將其轉換為產品eMP的產品加工特徵。模型使用裝置247根據產品加工特徵與預測模型,產生與產品eMP對應的品質預測結果。另一方面,品質檢測裝置248針對產品eMP進行品質檢測後產生品質檢測資料集。
Please refer to Figure 18, which is a schematic diagram of checking whether the prediction model needs to be updated when the product quality monitoring system is in the model evaluation mode (eM). Please refer to Figure 6C and Figure 18. While the
模型評估裝置249分別從模型使用裝置247接收產品eMP的品質預測結果,以及從品質檢測裝置248接收產品eMP的品質檢測資料集後,將兩者進行比較後,產生模型評估結果。之後,依據模型評估結果決定是否需要通知模型建立裝置245需重新建立預測模型,或通知模型使用裝置247可繼續使用預測模型。
The
請參見第19圖,其係產品品質監控系統處於模型評估模式(eM)的流程圖。首先,初始化預測模型的更新計數器(步驟S801)。接著,感測器對產品eMP的生產流程進行感測後,產生原始生產參數eMP_origPP(步驟S802);資料前處理裝置243對原始生產參數eMP_origPP進行資料前處理後,產生產品eMP的加工特徵資料集(步驟S803);且模型使用裝置247以產品eMP的加工特徵資料集作為預測模型的輸入後,搭配預測模型產生與產品eMP對應的品質預測結果(步驟
S804)。另一方面,品質檢測裝置248對產品eMP進行檢測,產生與其對應的品質檢測資料(步驟S805)。
Please refer to Figure 19, which is the flow chart of the product quality monitoring system in model evaluation mode (eM). First, the update counter of the prediction model is initialized (step S801). Then, after the sensor detects the production process of the product eMP, it generates the original production parameter eMP_origPP (step S802); the
待品質預測結果與品質檢測資料集分別產生後,模型評估裝置249將比較產品eMP的品質預測結果與品質檢測資料是否分歧(步驟S807)。若步驟S807的比較結果顯示,品質預測結果仍符合品質檢測的結果,則模型評估裝置249通知模型使用裝置247b仍可繼續使用預測模型(步驟S817)。
After the quality prediction result and the quality detection data set are generated separately, the
若步驟S807的比較結果卻認為分歧,則先判斷預測模型更新計數器是否已經達到預設的更新次數門檻(例如,兩次)(步驟S811)。若步驟S811的判斷結果為否定,模型評估裝置249將通知模型建立裝置245需重新建立預測模型,並累加預測模型更新計數器(步驟S813)。待模型建立裝置245重新建立預測模型後,重複自步驟S804開始執行。反之,若步驟S811的判斷結果為肯定,則在重新選擇用於評估預測模型用的產品eMP(步驟S815)後,重新執行第19圖的流程。
If the comparison result of step S807 is considered to be divergent, it is first judged whether the prediction model update counter has reached the preset update threshold (for example, twice) (step S811). If the judgment result of step S811 is negative, the
承上,本案的產品品質監控系統24首先在模型建立模式(bM)下,取得產品bMP生產過程的加工特徵,以及針對產品的品質檢測資料集。藉由分析產品bMP的品質優劣與其加工特徵之間的關聯性而建立預測模型。其次,在模型使用模式(uM)下,取得生產產品uMP時伴隨產生的加工特徵,並在預測模型預測產品uMP可能有一部分具有瑕疵時,針對瑕疵風險較高的產品uMP進行進一步的品質檢測,以及提供瑕疵源分析資訊讓製造商可以對生產設備23進行維護或檢修。此外,產品品質監控系統24還提
供模型評估模式(eM)維持預測模型的預測品質。
In conclusion, the product quality monitoring system 24 of this case first obtains the processing characteristics of the product bMP production process and the product quality inspection data set under the model building mode (bM). Establish a predictive model by analyzing the correlation between the quality of the product bMP and its processing characteristics. Secondly, under the model use mode (uM), the processing characteristics that accompany the production of the product uMP are obtained, and when the prediction model predicts that a part of the product uMP may have defects, further quality inspections are carried out for the product uMP with a higher risk of defects. And provide defect source analysis information so that the manufacturer can maintain or overhaul the
另請留意,以上的說明雖以自行車零件的生產為例,但本案的產品品質監控系統24可應用於各種不同類型的製造業的生產工廠。對產品品質監控系統24而言,不同類型的生產工廠的生產設備23可能取得的生產參數雖然不同,所以由資料前處理裝置243進行之產生加工特徵的步驟需針對生產工廠的特性與產品種類修改。但,經轉換為加工特徵後,後續的模型建立裝置245、模型使用裝置247與模型評估裝置249的操作方式仍類似。因此,本發明的產品品質監控系統24可應用於各種製造業。
Please also note that although the above description takes the production of bicycle parts as an example, the product quality monitoring system 24 of this case can be applied to various types of manufacturing factories. For the product quality monitoring system 24, although the production parameters that may be obtained by the
綜上,本發明的產品品質監控系統24所提供的模型建立模式(bM)、模型使用模式(uM),以及模型評估模式(eM),可以使預測模型保持其預測產品品質的準確度。由於預測模型可用於穩定地預測產品的品質,製造商將可大幅節省對產品品質進行品質檢測所需的成本與時間。 In summary, the model establishment mode (bM), model usage mode (uM), and model evaluation mode (eM) provided by the product quality monitoring system 24 of the present invention can enable the prediction model to maintain its accuracy in predicting product quality. Since the predictive model can be used to predict the quality of the product steadily, manufacturers will be able to significantly save the cost and time required for quality inspection of product quality.
在本領域中的通常知識者均可瞭解:在上述的說明中,作為舉例之各種邏輯方塊、模組、電路及方法步驟皆可利用電子硬體、電腦軟體,或二者之組合來實現,且該些實現方式間的連線方式,無論上述說明所採用的是信號連結、連接、耦接、電連接或其他類型之替代作法等用語,其目的僅為了說明在實現邏輯方塊、模組、電路及方法步驟時,可以透過不同的手段,例如有線電子信號、無線電磁信號以及光信號等,以直接、間接的方式來進行信號交換,進而達到信號、資料、控制資訊的交換與傳遞之目的。因此說明書所採的用語並 不會形成本案在實現連線關係時的限制,更不會因其連線方式的不同而脫離本案之範疇。 Those of ordinary knowledge in the field can understand that in the above description, the various logic blocks, modules, circuits and method steps as examples can be implemented by electronic hardware, computer software, or a combination of the two. In addition, the connection between these implementations, regardless of whether the above description adopts terms such as signal connection, connection, coupling, electrical connection or other types of alternatives, the purpose is only to illustrate the implementation of logic blocks, modules, In the circuit and method steps, different means, such as wired electronic signals, wireless electromagnetic signals, and optical signals, can be used to exchange signals in direct and indirect ways to achieve the purpose of exchange and transmission of signals, data, and control information. . Therefore, the language used in the manual does not There will be no restrictions on the realization of the connection relationship in this case, and it will not deviate from the scope of this case due to the difference in connection methods.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those who have ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.
20:廠房 20: Factory
231、232:感測器 231, 232: Sensor
23:生產設備 23: Production equipment
24:產品品質監控系統 24: Product quality monitoring system
29:產品 29: Products
245:模型建立裝置 245: Model Building Device
243:資料前處理裝置 243: Data pre-processing device
249:模型評估裝置 249: Model Evaluation Device
247:模型使用裝置 247: Model Use Device
31:生產材料 31: Production materials
248:品質檢測裝置 248: Quality Inspection Device
31a、31b:半成品 31a, 31b: semi-finished products
331:胚料加熱爐 331: Blank material heating furnace
335:靜置冷卻區 335: static cooling zone
333:溫鍛沖壓機台 333: Warm forging press machine
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144495A TWI709054B (en) | 2019-12-05 | 2019-12-05 | Building device and building method of prediction model and monitoring system for product quality |
CN202010058246.XA CN112926760B (en) | 2019-12-05 | 2020-01-19 | Device and method for establishing prediction model and product quality monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144495A TWI709054B (en) | 2019-12-05 | 2019-12-05 | Building device and building method of prediction model and monitoring system for product quality |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI709054B true TWI709054B (en) | 2020-11-01 |
TW202123054A TW202123054A (en) | 2021-06-16 |
Family
ID=74202245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144495A TWI709054B (en) | 2019-12-05 | 2019-12-05 | Building device and building method of prediction model and monitoring system for product quality |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112926760B (en) |
TW (1) | TWI709054B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI734641B (en) * | 2020-11-06 | 2021-07-21 | 財團法人金屬工業研究發展中心 | Method for predicting forging stage and system for designing forging using thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113421264B (en) * | 2021-08-24 | 2021-11-30 | 深圳市信润富联数字科技有限公司 | Wheel hub quality detection method, device, medium, and computer program product |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104615122A (en) * | 2014-12-11 | 2015-05-13 | 深圳市永达电子股份有限公司 | Industrial control signal detection system and detection method |
TW201812646A (en) * | 2016-07-18 | 2018-04-01 | 美商南坦奧美克公司 | Decentralized machine learning system, decentralized machine learning method, and method of generating substitute data |
US10430719B2 (en) * | 2014-11-25 | 2019-10-01 | Stream Mosaic, Inc. | Process control techniques for semiconductor manufacturing processes |
TW201945860A (en) * | 2018-04-27 | 2019-12-01 | 荷蘭商Asml荷蘭公司 | Method to label substrates based on process parameters |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014318499B2 (en) * | 2013-09-16 | 2019-05-16 | Biodesix, Inc | Classifier generation method using combination of mini-classifiers with regularization and uses thereof |
TWI580145B (en) * | 2015-10-27 | 2017-04-21 | 財團法人資訊工業策進會 | Electricity consumption predicting system and electricity consumption predicting method applied for processing machine |
US10878360B2 (en) * | 2015-12-29 | 2020-12-29 | Workfusion, Inc. | Candidate answer fraud for worker assessment |
CN109635830B (en) * | 2018-10-24 | 2020-11-06 | 吉林大学 | Screening method for effective data for estimating automobile quality |
-
2019
- 2019-12-05 TW TW108144495A patent/TWI709054B/en active
-
2020
- 2020-01-19 CN CN202010058246.XA patent/CN112926760B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10430719B2 (en) * | 2014-11-25 | 2019-10-01 | Stream Mosaic, Inc. | Process control techniques for semiconductor manufacturing processes |
CN104615122A (en) * | 2014-12-11 | 2015-05-13 | 深圳市永达电子股份有限公司 | Industrial control signal detection system and detection method |
TW201812646A (en) * | 2016-07-18 | 2018-04-01 | 美商南坦奧美克公司 | Decentralized machine learning system, decentralized machine learning method, and method of generating substitute data |
TW201945860A (en) * | 2018-04-27 | 2019-12-01 | 荷蘭商Asml荷蘭公司 | Method to label substrates based on process parameters |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI734641B (en) * | 2020-11-06 | 2021-07-21 | 財團法人金屬工業研究發展中心 | Method for predicting forging stage and system for designing forging using thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112926760B (en) | 2022-08-09 |
CN112926760A (en) | 2021-06-08 |
TW202123054A (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7102941B2 (en) | Information processing methods, information processing devices, and programs | |
He et al. | A fuzzy TOPSIS and rough set based approach for mechanism analysis of product infant failure | |
CN106202665B (en) | Initial failure root primordium recognition methods based on domain mapping and weighted association rules | |
TWI709054B (en) | Building device and building method of prediction model and monitoring system for product quality | |
CN117726240B (en) | A quality evaluation classification method and system based on convolutional neural network | |
CN111105082A (en) | Workpiece quality prediction model construction method and prediction method based on machine learning | |
Sukthomya et al. | The training of neural networks to model manufacturing processes | |
CN110910021A (en) | Method for monitoring online defects based on support vector machine | |
CN117494584B (en) | High-dimensional reliability design optimization method based on neural network adversarial transfer learning | |
CN111382546A (en) | Method for predicting service life of generator insulation system based on support vector machine modeling | |
CN117852116B (en) | Method for constructing digital twin model | |
CN114580934A (en) | Early warning method for food detection data risk based on unsupervised anomaly detection | |
CN115358281A (en) | Machine learning-based cold and hot all-in-one machine monitoring control method and system | |
KR101105790B1 (en) | Failure recognition system | |
CN115660398B (en) | Full-flow supervision and assessment method based on environment test | |
KR102494420B1 (en) | Machine learning-based clean room management system and method | |
CN114004142A (en) | Matching method for coping strategy of abnormal conditions of transformer material supply chain | |
US11507961B2 (en) | Fabricated data detection method | |
CN118152757A (en) | A visual fault diagnosis method for vibrating screen based on sound sensor | |
Fallah Nezhad et al. | Economic design of acceptance sampling plans based on conforming run lengths using loss functions | |
CN114742289B (en) | A Gaussian process robust optimization method for production process parameters | |
CN117782580A (en) | Defect detection method and system for automobile parts | |
CN111160419B (en) | Deep learning-based electronic transformer data classification prediction method and device | |
CN115081514A (en) | Industrial equipment fault identification method under data imbalance condition | |
JP7345006B1 (en) | Learning model generation method and testing device |