TWI708470B - 一種電源轉換器 - Google Patents
一種電源轉換器 Download PDFInfo
- Publication number
- TWI708470B TWI708470B TW109105585A TW109105585A TWI708470B TW I708470 B TWI708470 B TW I708470B TW 109105585 A TW109105585 A TW 109105585A TW 109105585 A TW109105585 A TW 109105585A TW I708470 B TWI708470 B TW I708470B
- Authority
- TW
- Taiwan
- Prior art keywords
- particle
- value
- parameter
- power converter
- term parameter
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
一種電源轉換器,其具有一電源轉換電路及一控制單元,該控制單元係用以對該電源轉換電路執行一PWM操作以將一直流輸入電壓轉成一直流輸出電壓,其中,該控制單元係藉由執行一PID演算法產生該PWM操作之一責任週期,且其特徵在於:該PID演算法之一比例項參數的第一設定數值、一積分項參數的第二設定數值及一微分項參數的第三設定數值係由一外部裝置利用與該電源轉換電路對應之一電路模型執行一粒子群演算法而得,且該粒子群演算法係以(該比例項參數、該積分項參數,該微分項參數)為粒子參數組合,並在以使該電路模型之輸出電壓的步階響應的超越量及安定時間的加權值最佳化為目標的情況下,更新該粒子參數組合的數值一預定次數以獲得一最終的粒子參數組合,從而產生該第一設定數值、該第二設定數值及該第三設定數值。
Description
本發明係關於電源轉換器,特別是涉及具有比例積分微分(Proportion Integration Differentiation,PID)控制器之電源轉換器。
近年來交換式電源供應器已被廣泛應用於工業及消費性電子產品,交換式電源主要目的為提供穩定輸出電壓至後端電子設備,通常係利用電壓控制模式來穩定輸出之電壓,其方法將輸出電壓之誤差與參考電壓進行比較並做為控制器輸入,經過控制器計算後輸出脈波寬度調變(Pulse Width Modulation,PWM)訊號至開關驅動電路,以控制主開關的責任週期進而調控輸出電壓。
交換式電源性能之優劣取決於控制器之演算法及其控制參數設計,因此也衍生出許多線性及非線性之控制方法,但硬體上之限制使一些較為複雜控制方法難以實現。
相較之下,比例積分微分(Proportion Integration Differentiation,PID)控制器容易實現且具強健性,因此被廣泛利用在各領域上。然而比例積分微分控制器若參數設定不當,可能導致使整體系統不穩定,因此比例積分微分參數值之設定顯得格外重要。
由於比例積分微分控制器具有構造簡單及穩定控制之特性,但是在調整參數時卻存在有不易調整及準確性不佳之問題,決定參數之方法以往都是靠工程師以試誤法找出最適合之參數值,該方法相當耗時又耗力,不具經濟效益。
針對比例積分微分控制器參數值之調整法,已有許多專家提出,大致可區分為經驗調整方法和最佳化參數調整法,其中經驗調整法常見為齊格勒(Ziegler-Nichols)法,該方法係藉由系統振盪週期及振盪增益套用調整公式計算出比例積分微分控制器參數,雖然簡單卻具有精確性不佳及容易有過大
的超越量產生之問題;最佳化參數調整法則有相當多人工智慧之演算法可選擇,如基因演算法(Genetic Algorithm,GA)、粒子群演算法(Particle Swarm OptimizationPSO)等,以提高控制器性能表現。
有文獻提出頻域調整法,其係藉由系統數學模型建立波德圖,經補償設計後實現比例積分微分控制器,該方法之參數設計較為準確,但補償較為麻煩且必須先建立精確的數學模型,否則結果將與實際電路產生相當之落差;亦有文獻提出蟻群演算法(Ant Colony Optimization,ACO)進行參數最佳化,其係透過生物界中螞蟻留下之費洛蒙路徑當作參數組合,但每個路徑點上所代表之參數存在著解析度問題,無法確定在更高解析度之情形下是否有更好之路徑,因此不適用於需要高精度之場合;另有文獻提出基因演算法(Genetic Algorithm,GA),其係運用生物基因中之選擇、交叉及變異行為來演化參數使其達到最佳化,該方法必須將最佳化目標進行編碼,因此有運算複雜度高而不易實現之缺點,且在過程中容易發生過早收斂造成陷入局部最佳解之情形;更有文獻提出杜鵑鳥演算法(Cuckoo Search,CS),其係運用杜鵑鳥寄生與繁殖之生物行為進行最佳化搜尋,並透過列維飛行模式(Levy flight pattern)對區域及全域解進行搜索;再有文獻提出粒子群演算法(Particle Swarm Optimization,PSO),其係模仿群體動物之捕食行為來最佳化目標參數,該演算過程較簡單,容易實現且能跳脫局部最佳解至全域解進行搜索,使其搜尋到最佳解的機率提高。
然而上述文獻在轉換效率及超越量過大之改善均有所不足,因此本領域亟需一新穎的電源轉換器。
比例積分微分(PID)控制器已被廣泛應用於交換式電源供應器控制,而控制器的參數對控制器的性能表現有很大的影響,儘管已經有簡單且被廣泛應用的控制器參數調整法,但有效的參數調整方法一直是業界應用時的重要議題。
本案呈現粒子群最佳化(PSO)調整比例積分微分控制器參數之技術,粒子群演算法用來取得電壓控制模式同步整流返馳式轉換器之最佳比
例積分微分控制器參數。
本發明之一目的在於揭露一種電源轉換器,其選用具同步整流之數位控制返馳式轉換器之架構,相較習知技術之二極體整流轉換器功耗更低,亦能提升整體轉換效率。
本發明之另一目的在於揭露一種電源轉換器,其藉由執行一粒子群演算法調整比例積分微分控制器之參數,在粒子移動過程加入隨機變數使其有機會跳脫區域最佳解(Local optimal solution),以及粒子個體與粒子群體均具有記憶功能,俾於達到運算簡單、容易實現、成本低廉等目的。
本發明之又一目的在於揭露一種電源轉換器,其模擬結果中,安定時間部分比習知技術之頻域補償調整法減少65.11%;最大超越量部分(0.15V)亦優於習知技術之頻域補償調整法(2.27V)及習知技術之Ziegler-Nichols調整法(36.58V)。
本發明之再一目的在於揭露一種電源轉換器,其實測結果中,安定時間部分本發明比習知技術之頻域補償調整法減少71.83%、比習知技術之Ziegler-Nichols調整法減少61.8%;最大超越量部分(1.78V)優於習知技術之頻域補償調整法(5.74V)及習知技術之Ziegler-Nichols調整法(14.39V)。
為達前述目的,一種電源轉換器乃被提出,其具有:一電源轉換電路及一控制單元,該控制單元係用以對該電源轉換電路執行一PWM操作以將一直流輸入電壓轉成一直流輸出電壓,其中,該控制單元係藉由執行一PID演算法產生該PWM操作之一責任週期,且其特徵在於:該PID演算法之一比例項參數的第一設定數值、一積分項參數的第二設定數值及一微分項參數的第三設定數值係由一外部裝置利用與該電源轉換電路對應之一電路模型執行一粒子群演算法而得,且該粒子群演算法係以(該比例項參數、該積分項參數,該微分項參數)為粒子參數組合,並在以使該電路模型之輸出電壓的步階響應的超越量及安定時間的加權值最佳化為目標的情況下,更新該粒子參數組合的數值一預定次數以獲得一最終的粒子參數組合,從而產生該第一設定數值、該第二設定數值及該第三設定數值。
在一實施例中,該粒子群演算法包括以下步驟:隨機初始化複數個粒子之速度及位置;以及依所述加權值更新各所述粒子的所述位置及所述速度達所述預定次數。
其中,F為該加權值,M p 為所述超越量、M pmax 為一最大超越量,T s 為所述安定時間、T smax 為一最高安定時間、α為一第一權重係數且β為一第二權重係數。
在一實施例中,該第一權重係數α及該第二權重係數β均為10。
在一實施例中,該粒子個數及所述預定次數均為50。
在一實施例中,該電路模型的運算係以Simulink實現。
在一實施例中,該粒子群演算法係以Matlab實現。
為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如後。
100:電源轉換器
110:電源轉換電路
120:控制單元
200:外部裝置
步驟a:隨機初始化複數個粒子之速度及位置
步驟b:依所述加權值更新各所述粒子的所述位置及所述速度達所述預定次數
圖1a繪示本發明之電源轉換器一實施例方塊圖。
圖1b繪示本發明之粒子群演算法之一步驟實施例方塊圖。
圖2繪示比例積分微分控制系統之一實施例方塊圖。
圖3a繪示返馳式轉換器於開關Q p 導通期間之電路動作示意圖。
圖3b繪示返馳式轉換器於開關Q p 截止期間之電路動作示意圖。
圖3c繪示返馳式轉換器於連續電流導通模式下之電壓電流波形圖。
圖4a繪示同步整流返馳式轉換器之架構示意圖。
圖4b繪示同步整流返馳式轉換器於連續導通模式下操作之波形圖。
圖5繪示粒子群演算法中粒子在空間中移動之概念。
圖6a繪示系統控制方塊示意圖。
圖6b繪示補償前之系統波德圖。
圖6c繪示補償後之系統波德圖。
圖6d繪示習知技術之頻域補償調整法模擬之系統步階響應圖。
圖6e繪示習知技術之Ziegler-Nichols調整法模擬之系統步階響應圖。
圖6f繪示本發明模擬之系統步階響應圖。
圖7a繪示習知技術之頻域補償調整法實測在安定時間的性能表現。
圖7b繪示習知技術之Ziegler-Nichols調整法實測在安定時間的性能表現。
圖7c繪示本發明實測在安定時間的性能表現。
圖7d繪示習知技術之頻域補償調整法實測之最大超越量量測。
圖7e繪示習知技術之Ziegler-Nichols調整法實測之最大超越量量測。
圖7f繪示本發明實測之最大超越量量測。
圖8繪示本發明在三種不同輸入電壓(90V、110V、130V)之實測效率比較圖。
請一併參照圖1a至圖1b,其中圖1a其繪示本發明之電源轉換器一實施例方塊圖,圖1b其繪示本發明之粒子群演算法之一步驟實施例方塊圖。
如圖1a所示,電源轉換器100具有一電源轉換電路110以及一控制單元120。
該控制單元120係用以對該電源轉換電路110執行一PWM操作以將一直流輸入電壓轉成一直流輸出電壓,其中,該控制單元120係藉由執行一PID演算法產生該PWM操作之一責任週期。
該PID演算法之一比例項參數的第一設定數值、一積分項參數的第二設定數值及一微分項參數的第三設定數值係由一外部裝置200利用與該電源轉換電路對應之一電路模型執行一粒子群演算法而得,且該粒子群演算法係以(該比例項參數、該積分項參數,該微分項參數)為粒子參數組合,並在以使該電源轉換電路110之輸出電壓的步階響應的超越量及安定時間的加權值
最佳化為目標的情況下,更新該粒子參數組合的數值一預定次數以獲得一最終的粒子參數組合,從而產生該第一設定數值、該第二設定數值及該第三設定數值。
如圖1b所示,該粒子群演算法包括以下步驟:隨機初始化複數個粒子之速度及位置;步驟a;以及依所述加權值更新各所述粒子的所述位置及所述速度達所述預定次數;步驟b。
其中,F為該加權值,M p 為所述超越量、M pmax 為一最大超越量,T s 為所述安定時間、T smax 為一最高安定時間、α為一第一權重係數且β為一第二權重係數。
該第一權重係數α及該第二權重係數β例如但不限於均為10;該粒子個數及所述預定次數例如但不限於均為50;該電路模型的運算例如但不限於係以Simulink實現;該粒子群演算法例如但不限於係以Matlab實現。
以下將針對本發明的原理進行說明:
請參照圖2,其繪示比例積分微分控制系統之一實施例方塊圖。
在控制系統中,最常用之控制法是比例積分微分控制法,如圖所示,比例積分微分控制器係由比例單元(P)、積分單元(I)及微分單元(D)所組成,能透過調整上述個單元之增益來決定其特性。
比例積分微分控制器為線性控制方法,係根據給定的輸入r(t)值與實際輸出值y(t)可得控制誤差e(t),如方程式(1)所示。
e(t)=r(t)-y(t) (1)
對誤差e(t)進行比例、積分及微分運算,將三種運算之結果相加,即可得控制輸出u(t)。在連續時間域中,該運算式如方程式(2)所示。
其中,k p 為比例係數,T i 為積分時間常數,T d 為微分時間常數。各參數作用如下:
1.比例項:成比例的反應控制系統之誤差信號e(t),一旦產生誤差,控制器立即產生控制作用,以減少誤差。
2.積分項:主要用於消除穩態誤差,以提高系統精確度,積分作用之強弱取決於積分時間T i ,T i 越大,積分作用越弱,反之則越強。
3.微分項:反應誤差信號之變化速率,調節誤差之微分輸出,能在誤差信號變得太大之前在系統中引入一個有效早期修正訊號,從而加快系統之動作速度。
在數位控制系統中進行的是取樣控制,只能根據取樣時刻之誤差值計算控制量,因此方程式(2)中之積分和微分項不能直接使用,需進行離散化處理,先以一系列之取樣時間點kT代表方程式(2)之連續時間t,以累加代替積分,以增量代替微分,則可進行近似轉換,如方程式(3)所示。
為求計算方便,將方程式(3)中e(kT)簡化表示成e(k),即省去T,如方程式(4)所示。
其中,k p 為比例係數,k i 為積分係數,k d 為微分係數,且,k d =k p T d ,u(k)為第k次取樣時控制器的輸出值,e(k)為第k次取樣時輸入控制系統的誤差值,e(k-1)為第(k-1)次取樣時輸入控制系統的誤差值,
T為取樣週期。
由於每次輸出均與所有過去狀態有關,計算時要對e(k)進行累加。如此不僅計算繁瑣,亦會占用許多記憶體空間。為改善該現象,有文獻提出增量式比例積分微分控制之算法。該算法係指控制器之輸出採用控制量的增量△u(k)。
由方程式(4)推導出增量式比例積分微分控制之算法,如方程式(5)所示。
將方程式(4)減去方程式(5)可得方程式(6)。
△u(k)=k p [e(k)-e(k-1)]+k i e(k)+k d [e(k)-2e(k-1)+e(k-2)]=(k p +k i +k d )e(k)-(k p +2k d )e(k-1)+k d e(k-2) (6)
由於一般數位控制系統採用恆定的取樣週期T,一旦確定了k p 、k i 、k d ,只要使用前後3次測量值之誤差,即可由方程式(6)求出控制增量。而增量式控制雖然只是在算法作了些改進,但也增加以下優點:
1.由於處理器僅需處理輸出增量,所以有誤差時影響較小,必要時可用邏輯判斷方式處理。
2.算式中不需要累加,控制增量△u(k)的值僅與最近三次之取樣值有關,所以較容易通過加權處理得到較好之控制效果。
請一併參照圖3a至3c,其中圖3a其繪示返馳式轉換器於開關Q p 導通期間之電路動作示意圖,圖3b其繪示返馳式轉換器於開關Q p 截止期間之電路動作示意圖,圖3c其繪示返馳式轉換器於連續電流導通模式下之電壓電流波形圖。
如圖3a所示,當功率開關Q p 導通時,變壓器一次側激磁電感L m 上有電流通過,此時能量儲存在變壓器之激磁電感L m ,因為變壓器一次側和二次側之極性相反,使得功率二極體D為逆向偏壓,負載所需能量將由輸
出電容C供應。
如圖3b所示,當功率開關Q p 截止時,變壓器一次側繞組上之跨壓極性反轉,此時功率二極體D導通,激磁電流映射至二次側,原本儲存在變壓器之激磁電感L m 之能量經由功率二極體D傳送至輸出電容C以及負載端。
如圖3c所示,在連續導通模式下,當功率開關Q p 導通,從電源端來看,輸入電流i p 流過一次側繞組之儲能電感,並把能量儲存於儲能電感中,電感上有壓降存在,輸入電流i p 線性上升,功率二極體D逆向偏壓,因此二次側視同開路,這時負載能量完全由輸出電容C進行供應,此時的輸出電容C之電壓會降低。其中,△i p 為變壓器一次側輸入電流之變化率,△i s 則為二次側之電流變化率,V D 為功率二極體之順向偏壓。
在功率開關Q p 導通之情況下,返馳式轉換器一次側儲能電感L m 之電壓如方程式(7)所示。
輸入電流之變化率△i Lm 如方程式(8)所示。
功率開關Q p 在導通期間,輸入電流變化斜率可用來決定;當功率開關Q p 截止時,電感上之電流必須連續,使得功率二極體D順向偏壓,且感應電流出現在二次側。跨在變壓器二次側繞組上之壓降為V s =V o +V D 。功率開關Q p 截止時二次側儲能電感L S 之電壓如方程式(9)所示。
在開關截止期間,輸入電流i in 降至零,△i s 如方程式(10)所示。
由電感伏秒平衡可知其一週期電流淨變化量為零,如方程式(11)所示。
將t on =DT s 及t off =(1-D)T s 代入,可得方程式(12)所示。
請一併參照圖4a至4b,其中圖4a其繪示同步整流返馳式轉換器之架構示意圖,圖4b其繪示同步整流返馳式轉換器於連續導通模式下操作之波形圖。
如圖4a所示,返馳式轉換器之輸出側整流通常使用二極體,而同步整流返馳式轉換器則係利用導通電阻極低的MOSFET取代整流二極體以降低二極體導通損耗及提高整體轉換器效率。由於MOSFET屬於電壓控制型元件,使用MOSFET作為整流器時必須要求閘極電壓與原整流二極體電壓相位保持同步才能進行整流功能。然而需考慮所使用之MOSFET的閘極電荷Q g 以決定適用的閘極電阻,如果閘極電阻值過小,在主開關Q p 尚未完全斷開之情況下同步整流之MOSFET可能會先導通使得輸入產生短路,造成過大電流通過。上述情形如果發生將使得損耗變大,也失去選用同步整流的效益。
同步整流的損耗可分為開關閘極損耗P g 以及導通損耗P c 兩個部分,分別如方程式(13)、(14)所示。
P g =Q g .V g .f s (13)
P c =R DS(on).I rms .D (14)
其中,Q g 為MOSFET之C gs 電荷、V g 為閘極電壓、f s 是開關
頻率、R DS(on)是MOSFET的導通電阻、I是汲極電流、D是責任週期。
如圖4b所示,在延遲時間和部分,二次側電流i s 流過同步整流MOSFET本體二極體,且當一次側開關為導通狀態時同步整流MOSFET本體二極體將有反向恢復Q PR 之功率損失產生,二次側同步整流之總消耗功率為+。
其中,R DS(on)為同步整流MOSFET之導通電阻、I O 為輸出電流、△i s 為二次側峰對峰濾波電流,V D 、I D 分別為同步整流MOSFET本體二極體之反向電壓、電流,D為一次側開關責任週期。
而同步整流MOSFET之本體二極體反向電壓V D 為V o +(V i /n)。
本發明使用之同步整流返馳式轉換器之電路設計規格如表1所示。
本發明係以美商Mathwork公司所開發的數學軟體MATLAB與模擬軟體Simulink來實現演算法的部分,但不以此為限。其中,係先利用Simulink進行硬體之動作模擬以建立模擬電路模型,再透過MATLAB來實現粒子群演算法來決定模型之比例積分微分控制器參數最佳化的部分。
粒子群演算法部分:
粒子群演算法(Particle Swarm Optimization,PSO)係Eberhart博
士和Kennedy博士於1995年提出的最佳化演算法,其起源於對鳥群捕食之行為研究,利用生物本能會在社會分享資訊的概念,使族群得到較佳之結果,這種生物特性使得粒子更快且更有效率的尋找最佳解,該演算法為基於群體智慧之演算法,具有如適應性評估等生物演化之特性。
粒子群演算法之粒子的移動係參考個體與群體目前之最佳解,與基因演算法(Genetic Algorithms,GA)之演算方式類似,其最大的差別在於粒子群演算法在粒子移動過程加入隨機變數,使得粒子有機會跳脫出區域最佳解(Local optimal solution),且粒子個體與粒子群體皆具有記憶功能,數學運算較為簡單容易實現,運算成本較為低廉。
在解空間中每一個粒子都有對應的適應值,且每個粒子都知道自己至目前為止的最佳適應值以及最佳位置,上述特點稱為粒子的個體最佳值(Particle best value,pBest),每個粒子除了擁有自己的最佳經驗外,同時也知道所有粒子的最佳適應值及最佳位置,此特點稱之為粒子的群體最佳值(Globle best value,gBest)。經過每世代的更新,粒子會以粒子個體的經驗以及粒子群體的經驗作為參考數值,用以更新粒子個體的速度與位置。
粒子群演算法在一開始會將粒子隨機散佈在區域解內,若有粒子接近區域最佳解,則該區域之粒子將會在區域最佳解附近進行搜尋。但區域最佳解只限於局部區域,並不代表其也是全域最佳解的位置。此時需透過隨機亂數之擾動,使區域內的粒子有機會跳脫至全域並搜尋全域最佳解,粒子群演算法中粒子在空間中移動之概念如圖5所示,粒子群演算法係根據方程式(17)及(18)以找出最佳解。
v ij (t+1)=w.v ij (t)+C 1.rand 1.[pBest ij (t)-x ij (t)]+C 2.rand 2.[gBest ij (t)-x ij (t)] (17)
x ij (t+1)=x ij (t)+v ij (t+1) (18)
其中,x ij 為粒子的位置,i為第幾個粒子,j為粒子維度;v ij 為粒子的速度,i為第幾個粒子,j為粒子維度;個體學習因子C 1為粒子之本身學習參數,介於1~4之間,通常設定值為2;群體學習因子C 2為粒子之互相學習參數,介於1~4之間,通常設定值為2;rand 1為介於0~1的隨機亂數;rand 2
為介於0~1的隨機亂數;pBest為代表粒子個體的最佳位置;gBest為代表群體的最佳位置;權重值w代表粒子速度的慣性,介於0~1之間。
電路模擬部分:
本發明係利用Simulink來模擬返馳式轉換器各種輸出動態行為,Simulink係建構在Matlab環境下之模擬工具,用以分析與模擬系統動態特性。Simulink採用視窗方式並藉由圖形化功能方塊之連結形成一個完整模擬系統,目的為用簡單的設計流程完成模擬分析。最重要的是,Simulink所模擬出來之參數值能夠以矩陣的方式回傳至Matlab,以達到電路模擬與演算法結合之目的。
模擬動作開始時,電路輸出端會回傳輸出電壓值並與參考電位進行比較,其誤差電位經過比例積分微分控制器後送入輸出脈波寬度調變(Pulse Width Modulation,PWM)模塊便可輸出PWM波形至功率開關作切換。
另外,在模擬中利用To Workspace模塊可將每次的電路輸出電壓以矩陣的方式傳送至MATLAB程式中,矩陣中的資訊包含時間及即時電路電壓值等,演算法每次計算均進行一次電路模擬,待模擬結果產生後,即可用矩陣方式回傳給程式,有如在程式與電路模擬之間建構一座溝通橋梁,以確保每一次演算法算出之值都能夠作為電路模擬之參數。
使用任何最佳化演算法之前,需先對欲解決之最佳化問題做正確描述,本發明係以輸出電壓之步階響應表現最佳化為目標,其中關係到步階響應之主要性能參數如下:
1.最大超越量(Maximum percent overshoot):指系統單位階梯響應之最大(首次)尖峰值(Peak value)和系統期望值之差值與穩態輸出響應數值之比值。
2.尖峰時間(Peak time):指系統單位階梯響應發生最大(首次)尖峰值所需的時間。
3.上昇時間(Rise time):系統單位階梯響應從穩態值從0到100%,或從10%到90%所需的時間。
4.安定時間(Settling time):系統單位階梯響應進入穩態值的±5%或±2%範圍內且不再離開此範圍所需時間,本發明使用進入穩態值的±2%當作安定時間的結果。
而比例積分微分控制器的三個參數皆會對系統步階響應造成影響,比例項K p 可使響應速度變快,並稍微改善穩態誤差;積分項K i 可改善穩態誤差,但過大會造成響應峰值變大,過小會使系統之響應速度變慢;微分項K d 可以改善暫態響應的部分,在加入微分控制器後,對步階響應而言,系統之響應在起始瞬間會有一個很大的峰值,且隨著時間增加,系統響應將遞減到零。
綜上所述,比例積分微分控制器對步階響應之影響如表2所示。
而本發明係以超越量及安定時間作為演算法之評分項目,將其加總後之值越小代表步階響應越好(最小化),由於兩個評分項之單位不同,直接加總會造成權重問題。適應值評分方程式正規化後(即本發明之加權值)如方程式(19)所示。
其中,M p 為最大超越量、M pmax 為其餘兩種比較的調整法中最高的最大超越量,T s 為安定時間、T smax 為其餘兩種調整法中最高的安定時間、α為最大超越量之權重係數設定為10、β為安定時間之權重係數設定為10。
本實驗之環境設置如下:輸入源係使用Chroma公司之交流可程式電源供應器,型號為61602,功率級為同步整流返馳式轉換器,負載端係使用Chroma公司推出之63108A電子式負載並操作在定電壓模式穩壓至19V,
控制級係選用Texas Instrument公司所推出之數位訊號處理器TMS320F28335,實測波形之量測係選用Tektronix公司所推出之DPO4054示波器。
以下將本發明使用之粒子群演算調整法和習知技術之Ziegler-Nichols參數調整法及頻域補償調整法所獲得之步階響應性能表現進行比較。
頻域補償方法係以波德圖來表現原始系統的相位裕度(Phase Margin,PM)、增益裕度(Gain Margin,GM)、頻寬(BandWidth,BW)及交越頻率(Crossover Frequency,f c )等頻域之性能指標,根據欲達到之條件再利用迴路控制實現使系統性能更穩定且較不受外界因素影響,一般而言系統迴路設計條件如下:
增益之交越頻率f c 必須夠大才能使電源之輸出於暫態時快速回到穩定,但f c 若太大亦可能造成高頻雜訊干擾。因此在應用上大致將f c 設定在小於f S /4~f S /20之範圍,其中,f S 為主開關切換頻率。
一般而言相位裕度越大表示系統穩定度越好,較不受元件參數變化影響,理想上相位裕度需在45°以上且增益裕度需介於6~20dB。
模擬結果:
請一併參照圖6a至6f,其中圖6a其繪示系統控制方塊示意圖,圖6b其繪示補償前之系統波德圖,圖6c其繪示補償後之系統波德圖,圖6d其繪示習知技術之頻域補償調整法模擬之系統步階響應圖,圖6e其繪示習知技術之Ziegler-Nichols調整法模擬之系統步階響應圖,圖6f其繪示本發明模擬之系統步階響應圖。
如圖6a所示,其原理為取得輸出電壓之回授訊號與取樣衰減頻率相乘,和參考電壓命令比較後再經過補償器C產生適當之電壓命令,H則表示分壓電阻之衰減倍率。
將表1同步整流返馳式轉換器之電路設計規格代入硬體架構之開關責任週期對輸出電壓轉移函數G vd (s)即可得到圖6b補償前之系統波德圖,波德圖之參數如表3所示。
由表3可知,在補償前G vd (s)之頻寬、相位邊限、增益邊限均不滿足系統穩定條件,因此頻域補償須外加比例積分微分控制器來滿足所述之穩定條件,參數如表4所示。
並對轉移函數G vd (s)進行補償,即可得到圖6c補償後之系統波德圖,補償後之系統波德圖參數如表5所示,可看出增益邊限、相位邊限及頻寬均符合設計之考量。
將表4之參數組合代入Simulink模擬即可得到圖6d之頻域補償調整法之系統步階響應圖。
接著利用Ziegler-Nichols調整法進行比例積分微分之參數調整,首先在電路模擬中調整K p 參數至系統發生振盪,將使系統振盪的K p 值紀錄為K c ,而系統振盪週期則為T c ,可得Ziegler-Nichols調整法之比例積分微分參數組合如表6所示,其Ziegler-Nichols調整法之系統步階響應圖如圖6e所示。
本發明使用之粒子群演算法,世代數設定為50、粒子個數為50、學習因子C 1 、C 2 各設定為2、權重係數w設定為0.9。將上述參數代入並對模擬電路進行比例積分微分參數最佳化,MATLAB記錄每次對目標函數疊代得出之結果,並以表現最好之一組比例積分微分參數作為粒子群演算法之最佳化結果,可得本發明之比例積分微分參數組合如表7所示,本發明之系統步階響應圖如圖6f所示。
上述三種調整方法之評分標準項安定時間、最大超越量及代入目標函數之得分如表8所示。
由表8三種調整法之模擬表現可看出:
在安定時間方面,Ziegler-Nichols調整法為最快,頻域補償調整法表現則最慢;Ziegler-Nichols調整法則有較大之最大超越量,本發明在三者間最大超越量為最小;代入目標函數後之得分越小代表表現越佳,因此可得知本發明在模擬表現方面為最佳。
上述三種調整方法之比例積分微分參數值如表9所示。
實測結果:
請一併參照圖7a至7f,其中圖7a其繪示習知技術之頻域補償調整法實測在安定時間的性能表現,圖7b其繪示習知技術之Ziegler-Nichols調整法實測在安定時間的性能表現,圖7c其繪示本發明實測在安定時間的性能表現,圖7d其繪示習知技術之頻域補償調整法實測之最大超越量量測,圖7e其繪示習知技術之Ziegler-Nichols調整法實測之最大超越量量測,圖7f其繪示本發明實測之最大超越量量測。
上述三種調整方法之實測規格設定均相同,電路規格輸入為110 V AC 、輸出電壓19 V DC 、輸出電流3.5A、切換頻率為100kHz,操作於連續導
通模式。上述三種調整方法之評分標準項安定時間、最大超越量及代入目標函數之得分如表10所示。
由表10三種調整法之實測表現可看出,本發明在三者間最大超越量為最小且代入目標函數後之得分最小,因此實測表現方面為最佳。
接著針對本發明之硬體架構進行效率測試,輸出負載由輕載(1A)遞增至重載(3.5A),量測數據包含輸入電壓V in 及輸入功率P in 、輸出電流I out 及輸出電壓V out 、輸出功率P out 及效率η如表11所示。
請參照圖8,其繪示本發明在三種不同輸入電壓(90V、110V、130V)之實測效率比較圖。
如圖所示,本發明之硬體架構在輸入電壓規格效率皆在87%
以上,且在輸入電壓為110V時效率皆達到90%以上。
綜上所述,由本發明與習知技術之Ziegler-Nichols調整法及頻域補償調整法進行模擬和實測性能表現之評估,可得知本發明不論在模擬或實測均有良好表現。
藉由前述所揭露的設計,本發明乃具有以下的優點:
1.本發明揭露一種電源轉換器,其選用具同步整流之數位控制返馳式轉換器之架構,相較習知技術之二極體整流轉換器功耗更低,亦能提升整體轉換效率。
2.本發明揭露一種電源轉換器,其藉由執行一粒子群演算法調整比例積分微分控制器之參數,在粒子移動過程加入隨機變數使其有機會跳脫區域最佳解(Local optimal solution),以及粒子個體與粒子群體均具有記憶功能,俾於達到運算簡單、容易實現、成本低廉等目的。
3.本發明揭露一種電源轉換器,其模擬結果中,安定時間部分比習知技術之頻域補償調整法減少65.11%;最大超越量部分(0.15V)亦優於習知技術之頻域補償調整法(2.27V)及習知技術之Ziegler-Nichols調整法(36.58V)。
4.本發明揭露一種電源轉換器,其實測結果中,安定時間部分本發明比習知技術之比頻域補償調整法減少71.83%、比習知技術之Ziegler-Nichols調整法減少61.8%;最大超越量部分(1.78V)優於習知技術之頻域補償調整法(5.74V)及習知技術之Ziegler-Nichols調整法(14.39V)。
本發明所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本發明之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本發明之專利權範疇。
綜上所陳,本發明無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。
100:電源轉換器
110:電源轉換電路
120:控制單元
200:外部裝置
Claims (7)
- 一種電源轉換器,其具有一電源轉換電路及一控制單元,該控制單元係用以對該電源轉換電路執行一PWM操作以將一直流輸入電壓轉成一直流輸出電壓,其中,該控制單元係藉由執行一PID演算法產生該PWM操作之一責任週期,且其特徵在於: 該PID演算法之一比例項參數的第一設定數值、一積分項參數的第二設定數值及一微分項參數的第三設定數值係由一外部裝置利用與該電源轉換電路對應之一電路模型執行一粒子群演算法而得,且該粒子群演算法係以(該比例項參數、該積分項參數,該微分項參數)為粒子參數組合,並在以使該電路模型之輸出電壓的步階響應的超越量及安定時間的加權值最佳化為目標的情況下,更新該粒子參數組合的數值一預定次數以獲得一最終的粒子參數組合,從而產生該第一設定數值、該第二設定數值及該第三設定數值。
- 如申請專利範圍第1項所述之電源轉換器,其中該粒子群演算法包括以下步驟: 隨機初始化複數個粒子之速度及位置;以及 依所述加權值更新各所述粒子的所述位置及所述速度達所述預定次數。
- 如申請專利範圍第3項所述之電源轉換器,其中該第一權重係數α及該第二權重係數β均為10。
- 如申請專利範圍第2項所述之電源轉換器,其中該粒子個數及所述預定次數均為50。
- 如申請專利範圍第1項所述之電源轉換器,其中該電路模型的運算係以Simulink實現。
- 如申請專利範圍第1項所述之電源轉換器,其中該粒子群演算法係以Matlab實現。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105585A TWI708470B (zh) | 2020-02-21 | 2020-02-21 | 一種電源轉換器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105585A TWI708470B (zh) | 2020-02-21 | 2020-02-21 | 一種電源轉換器 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI708470B true TWI708470B (zh) | 2020-10-21 |
TW202133539A TW202133539A (zh) | 2021-09-01 |
Family
ID=74103704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109105585A TWI708470B (zh) | 2020-02-21 | 2020-02-21 | 一種電源轉換器 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI708470B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114696571A (zh) * | 2020-12-31 | 2022-07-01 | 致茂电子(苏州)有限公司 | 电压控制方法 |
TWI777531B (zh) * | 2021-04-28 | 2022-09-11 | 力林科技股份有限公司 | Llc轉換器電路 |
TWI783340B (zh) * | 2020-12-31 | 2022-11-11 | 致茂電子股份有限公司 | 電壓控制方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI805160B (zh) * | 2021-12-29 | 2023-06-11 | 中原大學 | 使用田口法於電源供應器之電磁干擾改善方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102073274A (zh) * | 2011-01-21 | 2011-05-25 | 北京工业大学 | 专家模糊增量式自适应的参数在线整定优化系统及方法 |
US8275488B2 (en) * | 2008-01-31 | 2012-09-25 | Basler Electric Co. | Digital excitation control system utilizing swarm intelligence and an associated method of use |
TW201715318A (zh) * | 2015-10-21 | 2017-05-01 | 財團法人工業技術研究院 | 未知pid控制器之參數調諧方法 |
TW201723696A (zh) * | 2015-12-21 | 2017-07-01 | 國立中央大學 | 具智能調節之控制系統 |
CN108089433A (zh) * | 2017-12-07 | 2018-05-29 | 陕西科技大学 | 一种用于直流电机的独立数字分数阶pid控制器及控制方法 |
TW201907163A (zh) * | 2015-05-20 | 2019-02-16 | 美商路梅戴尼科技公司 | 用於決定慣性參數之方法及系統 |
US10234495B2 (en) * | 2016-09-07 | 2019-03-19 | Jiangnan University | Decision tree SVM fault diagnosis method of photovoltaic diode-clamped three-level inverter |
-
2020
- 2020-02-21 TW TW109105585A patent/TWI708470B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8275488B2 (en) * | 2008-01-31 | 2012-09-25 | Basler Electric Co. | Digital excitation control system utilizing swarm intelligence and an associated method of use |
CN102073274A (zh) * | 2011-01-21 | 2011-05-25 | 北京工业大学 | 专家模糊增量式自适应的参数在线整定优化系统及方法 |
TW201907163A (zh) * | 2015-05-20 | 2019-02-16 | 美商路梅戴尼科技公司 | 用於決定慣性參數之方法及系統 |
TW201715318A (zh) * | 2015-10-21 | 2017-05-01 | 財團法人工業技術研究院 | 未知pid控制器之參數調諧方法 |
TW201723696A (zh) * | 2015-12-21 | 2017-07-01 | 國立中央大學 | 具智能調節之控制系統 |
US10234495B2 (en) * | 2016-09-07 | 2019-03-19 | Jiangnan University | Decision tree SVM fault diagnosis method of photovoltaic diode-clamped three-level inverter |
CN108089433A (zh) * | 2017-12-07 | 2018-05-29 | 陕西科技大学 | 一种用于直流电机的独立数字分数阶pid控制器及控制方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114696571A (zh) * | 2020-12-31 | 2022-07-01 | 致茂电子(苏州)有限公司 | 电压控制方法 |
TWI783340B (zh) * | 2020-12-31 | 2022-11-11 | 致茂電子股份有限公司 | 電壓控制方法 |
TWI777531B (zh) * | 2021-04-28 | 2022-09-11 | 力林科技股份有限公司 | Llc轉換器電路 |
Also Published As
Publication number | Publication date |
---|---|
TW202133539A (zh) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI708470B (zh) | 一種電源轉換器 | |
CN104426349B (zh) | 功率因数校正电路及方法 | |
Mahabir | Linear averaged and sampled data models for large signal control of high power factor AC-DC converters | |
Ismail et al. | Fuzzy logic controller on DC/DC boost converter | |
CN106998136B (zh) | 基于相轨迹规划和跟踪的Buck变换器控制系统和方法 | |
Vadi et al. | Optimization of pi based buck-boost converter by particle swarm optimization algorithm | |
Yang et al. | Investigation on the small signal characteristic based on the LLC hybrid hysteretic charge control | |
Meena | Simulation study of boost converter with various control techniques | |
CN109358498A (zh) | 基于非齐次马尔科夫模型的有限时间滤波系统及方法 | |
Xiao et al. | A universal power flow model for dual active bridge-based converters with phase shift modulation | |
CN108566087A (zh) | 一种Boost型DC-DC变换器的自适应控制方法 | |
Shi et al. | A reinforcement learning-based online-training AI controller for DC-DC switching converters | |
Saravanan et al. | Fuzzy controller for dynamic performance improvement of a half-bridge isolated DC–DC converter | |
Kamarposhti et al. | The Control of Buck Boost DC-DC Converters for DC Motor Drives on variable DC Voltage by Using Neural Network | |
Arjun et al. | Steady state and averaged state space modelling of non-ideal boost converter | |
Yusubov et al. | A moth-flame optimized robust PID controller for a SEPIC in photovoltaic applications | |
Li et al. | Research on variable universe fuzzy control of double-loop mode buck-boost converter based on MATLAB | |
CN110768234A (zh) | 一种具有不确定性馈电恒功率负载直流微电网系统的峰值滤波方法 | |
CN118889851B (zh) | 电压稳定控制方法、装置及电子设备 | |
CN115372680B (zh) | 一种充电电流采样方法 | |
Zhang et al. | Deep Deterministic Policy Gradient-based intelligent control scheme design for DC-DC circuit | |
Ibrahim et al. | Design of fuzzy-ACO based controller for Cuk converter in electric vehicles | |
Sharma et al. | Comparison of PID Tuning Methods For Buck Converter System | |
Venkatanarayanan et al. | Control of sepic converter using neural network tuned pi controller | |
CN118868617A (zh) | 基于自适应动态规划和数据驱动的dc-dc变换器最优控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |