TWI706390B - Display panel and display device - Google Patents
Display panel and display device Download PDFInfo
- Publication number
- TWI706390B TWI706390B TW108105789A TW108105789A TWI706390B TW I706390 B TWI706390 B TW I706390B TW 108105789 A TW108105789 A TW 108105789A TW 108105789 A TW108105789 A TW 108105789A TW I706390 B TWI706390 B TW I706390B
- Authority
- TW
- Taiwan
- Prior art keywords
- pixel
- pixels
- common
- isolated
- pixel pairs
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 51
- 239000004973 liquid crystal related substance Substances 0.000 claims description 18
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 50
- 238000010586 diagram Methods 0.000 description 35
- 238000000034 method Methods 0.000 description 29
- 230000008859 change Effects 0.000 description 17
- 230000002457 bidirectional effect Effects 0.000 description 10
- 239000000872 buffer Substances 0.000 description 8
- 230000007704 transition Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 101100006548 Mus musculus Clcn2 gene Proteins 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
Images
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
本發明是有關於一種顯示面板與顯示裝置,且特別是有關於一種應用於超高解析度與窄邊寬設計之顯示面板與顯示裝置。 The present invention relates to a display panel and a display device, and more particularly to a display panel and a display device applied to ultra-high resolution and narrow width design.
行動裝置日益普及,為便於使用者操作,許多電子產品均配有螢幕。因此,高解析度、窄邊框等需求亦逐漸浮現。其中,高解析度代表對螢幕的驅動能力要求更高,而窄邊框代表驅動電路所占寬度需更小。顯示裝置通常包含顯示面板、源極驅動電路與閘極驅動電路。其中,源極驅動器提供顯示面板上的像素所需的資料電壓,而閘極驅動電路用於控制像素的開啟/關閉期間。 Mobile devices are becoming more and more popular, and many electronic products are equipped with screens for the convenience of users. Therefore, demands for high resolution and narrow bezels are gradually emerging. Among them, high resolution means higher requirements for the drive capability of the screen, and narrow frame means that the width of the drive circuit needs to be smaller. The display device usually includes a display panel, a source driving circuit, and a gate driving circuit. Wherein, the source driver provides the data voltage required by the pixels on the display panel, and the gate driver circuit is used to control the on/off period of the pixels.
當像素內的電晶體因為與移位暫存器(shift register,簡稱為SR)相連之閘極線(Gate line,簡稱為GL)的電壓而導通時,電晶體所接收之由源極驅動器傳出的資料電壓,將對像素內的儲存電容(storage capacitor)Cs充電。儲存電容Cs經資料電壓充電後,所累積的電荷再用於驅動液晶電容Clc。 When the transistor in the pixel is turned on due to the voltage of the gate line (GL) connected to the shift register (SR), what the transistor receives is transmitted by the source driver The output data voltage will charge the storage capacitor Cs in the pixel. After the storage capacitor Cs is charged by the data voltage, the accumulated charge is used to drive the liquid crystal capacitor Clc.
承上,像素內的電晶體必須由閘極控制信號GL導通後,像素內的儲存電容Cs才能被資料電壓充電。當像素內的儲存電容Cs可以用較快的速度完成充電時,代表顯示裝置的驅動能力較佳。通常,閘極驅動 電路產生閘極控制信號GL的作法可分為雙向方式驅動和單向方式驅動兩種。以下簡要說明這兩類做法。此外,為便於說明,本文以縱向的紋理代表紅色(R)像素、以橫向的紋理代表綠色(G)像素、以右上左下的對角方向紋理代表(B)像素。 In conclusion, the transistor in the pixel must be turned on by the gate control signal GL before the storage capacitor Cs in the pixel can be charged by the data voltage. When the storage capacitor Cs in the pixel can be charged at a faster speed, it means that the driving capability of the display device is better. Generally, gate drive The way the circuit generates the gate control signal GL can be divided into two-way driving and unidirectional driving. The following briefly describes these two types of practices. In addition, for ease of description, this article uses a vertical texture to represent red (R) pixels, a horizontal texture to represent green (G) pixels, and a diagonal texture at the top right and bottom left to represent (B) pixels.
請參見第1圖,其係採用習用技術之雙向方式驅動面板的示意圖。閘極驅動電路包含緩衝器13a、13b,以及移位暫存器11a、11b。顯示面板15包含排列為陣列的多個像素15a、15b、15c。在此圖式中,位於同一列的移位暫存器11a、11b產生相同的閘極控制信號(GL)17a、17b。閘極控制信號(GL)17a、17b經由緩衝器13a、13b傳送至同一列的像素15a、15b、15c。
Please refer to Figure 1, which is a schematic diagram of a bidirectional driving panel using conventional technology. The gate driving circuit includes
採用雙向驅動的做法時,位於同一列的像素15a、15b、15c分別由顯示面板15兩側的移位暫存器11a、11b控制。因此,移位暫存器11a相當於僅需驅動位於顯示面板15左半側的像素,而移位暫存器11b相當於僅需驅動位於顯示面板15右半側的像素。據此,每個移位暫存器11a、11b需驅動的像素的數量較少,故能有較佳的驅動效果。但是,採用雙向驅動做法時,移位暫存器11a、11b需佔用較大面積。
When the bidirectional driving method is adopted, the
請參見第2圖,其係採用習用技術之單向方式驅動面板的示意圖。閘極驅動電路包含緩衝器23a、23b,以及移位暫存器21a、21b。顯示面板25包含排列為陣列的多個像素25a、25b、25c。在此圖式中,位於顯示面板25左側的移位暫存器21a產生閘極控制信號GL至位在奇數列的像素25a、25b、25c;位於顯示面板25右側的移位暫存器21b產生閘極控制信號GL至位在偶數列的像素25a、25b、25c。
Please refer to Figure 2, which is a schematic diagram of a unidirectional driving panel using conventional technology. The gate driving circuit includes
採用單向驅動的做法時,位於同一列的像素25a、25b、25c僅由其中一側的移位暫存器21a、21b控制。因此,移位暫存器21a、21b在縱向方向上可分配之間距(pitch)長度較長,所以可以縮減在橫向方向的寬度。然而,採用單向驅動作法時,各個移位暫存器21a、21b需經由緩衝器13a、13b驅動整列的像素25a、25b、25c。與雙向驅動方式相較,單向驅動作法的移位暫存器21a、21b的驅動能力較差。
When the unidirectional driving method is adopted, the
綜上所述,採用雙向驅動與單向驅動做法各有其優劣處。這兩種驅動方式的比較可如表1所示。 In summary, the two-way drive and one-way drive have their own advantages and disadvantages. The comparison of these two drive modes can be shown in Table 1.
本發明係有關於一種顯示面板與顯示裝置。本發明的顯示面板與顯示裝置可應用於超高解析度與窄邊寬設計。 The invention relates to a display panel and a display device. The display panel and display device of the present invention can be applied to ultra-high resolution and narrow side width designs.
根據本發明之第一方面,提出一種電連接於閘極驅動電路的顯示面板。顯示面板電連接於閘極驅動電路。閘極驅動電路包含第一移位暫存器以及第二移位暫存器。第一移位暫存器產生第n閘極控制信號,且第二移位暫存器產生第(n+1)閘極控制信號。顯示面板包 含:(M+1)條資料線、第n條閘極線、第(n+1)條閘極線、電連接於該等資料線的M個共接像素對,以及M個孤立像素對。(M+1)條資料線電連接於源極驅動電路並平行於行方向,其中各資料線分別接收各資料電壓。第n條閘極線電連接於第一移位暫存器並平行於列方向,其係接收第n閘極控制信號。第(n+1)條閘極線電連接於第二移位暫存器並平行於列方向,其係接收第(n+1)閘極控制信號。M個共接像素對包含:M/2個第一共接像素對,電連接於該第n條閘極線;以及,M/2個第二共接像素對,電連接於該第(n+1)條閘極線。M個孤立像素對包含:M/2個第一孤立像素對與M/2個孤立像素對。M/2個第一孤立像素對電連接於第n條閘極線,其係沿列方向與該等第一共接像素對交錯排列。M/2個孤立像素對電連接於第(n+1)條閘極線,其係沿該列方向與該等第二共接像素對交錯排列。其中,各第一孤立像素對沿該列方向的位置對應於各第二共接像素對沿該列方向的位置,且各第一孤立像素對分別電連接於各第二共接像素對。 According to the first aspect of the present invention, a display panel electrically connected to a gate driving circuit is provided. The display panel is electrically connected to the gate drive circuit. The gate driving circuit includes a first shift register and a second shift register. The first shift register generates the nth gate control signal, and the second shift register generates the (n+1)th gate control signal. Display panel package Including: (M+1) data lines, nth gate line, (n+1)th gate line, M common pixel pairs electrically connected to these data lines, and M isolated pixel pairs . (M+1) data lines are electrically connected to the source driving circuit and parallel to the row direction, wherein each data line receives each data voltage. The nth gate line is electrically connected to the first shift register and parallel to the column direction, and it receives the nth gate control signal. The (n+1)th gate line is electrically connected to the second shift register and parallel to the column direction, which receives the (n+1)th gate control signal. The M commonly connected pixel pairs include: M/2 first commonly connected pixel pairs electrically connected to the nth gate line; and M/2 second commonly connected pixel pairs electrically connected to the (nth +1) Gate lines. The M isolated pixel pairs include: M/2 first isolated pixel pairs and M/2 isolated pixel pairs. The M/2 first isolated pixel pairs are electrically connected to the nth gate line, and they are alternately arranged with the first common pixel pairs along the column direction. The M/2 isolated pixel pairs are electrically connected to the (n+1)th gate line, which are alternately arranged with the second common pixel pairs along the column direction. The position of each first isolated pixel pair along the column direction corresponds to the position of each second common pixel pair along the column direction, and each first isolated pixel pair is electrically connected to each second common pixel pair.
根據本發明之第二方面,提出一種顯示裝置。顯示裝置包含:源極驅動電路、閘極驅動電路,以及顯示面板。源極驅動電路輸出(M+1)個資料電壓。閘極驅動電路包含:第一移位暫存器與第二移位暫存器。第一移位暫存器產生第n閘極控制信號;第二移位暫存器產生第(n+1)閘極控制信號。顯示面板電連接於源極驅動電路與閘極驅動電路。顯示面板包含:(M+1)條資料線、第n條閘極線、第(n+1)條閘極線、電連接於該等資料線的M個共接像素對,以及M個孤立像素對。(M+1)條資料線電連接於源極驅動電路並平行於行方向,其中各資料線分別接收各資料電壓。第n條閘極線電連接於第一移位暫存 器並平行於列方向,其係接收第n閘極控制信號。第(n+1)條閘極線電連接於第二移位暫存器並平行於列方向,其係接收第(n+1)閘極控制信號。M個共接像素對包含:M/2個第一共接像素對,電連接於該第n條閘極線;以及,M/2個第二共接像素對,電連接於該第(n+1)條閘極線。M個孤立像素對包含:M/2個第一孤立像素對與M/2個孤立像素對。M/2個第一孤立像素對電連接於第n條閘極線,其係沿列方向與該等第一共接像素對交錯排列。M/2個孤立像素對電連接於第(n+1)條閘極線,其係沿該列方向與該等第二共接像素對交錯排列。其中,各第一孤立像素對沿該列方向的位置對應於各第二共接像素對沿該列方向的位置,且各第一孤立像素對分別電連接於各第二共接像素對。 According to the second aspect of the present invention, a display device is provided. The display device includes: a source drive circuit, a gate drive circuit, and a display panel. The source drive circuit outputs (M+1) data voltages. The gate driving circuit includes: a first shift register and a second shift register. The first shift register generates the nth gate control signal; the second shift register generates the (n+1)th gate control signal. The display panel is electrically connected to the source driving circuit and the gate driving circuit. The display panel includes: (M+1) data lines, nth gate line, (n+1)th gate line, M common pixel pairs electrically connected to the data lines, and M isolated Pixel pairs. (M+1) data lines are electrically connected to the source driving circuit and parallel to the row direction, wherein each data line receives each data voltage. The nth gate line is electrically connected to the first shift register The device is parallel to the column direction, and it receives the nth gate control signal. The (n+1)th gate line is electrically connected to the second shift register and parallel to the column direction, which receives the (n+1)th gate control signal. The M commonly connected pixel pairs include: M/2 first commonly connected pixel pairs electrically connected to the nth gate line; and M/2 second commonly connected pixel pairs electrically connected to the (nth +1) Gate lines. The M isolated pixel pairs include: M/2 first isolated pixel pairs and M/2 isolated pixel pairs. The M/2 first isolated pixel pairs are electrically connected to the nth gate line, and they are alternately arranged with the first common pixel pairs along the column direction. The M/2 isolated pixel pairs are electrically connected to the (n+1)th gate line, which are alternately arranged with the second common pixel pairs along the column direction. The position of each first isolated pixel pair along the column direction corresponds to the position of each second common pixel pair along the column direction, and each first isolated pixel pair is electrically connected to each second common pixel pair.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows:
11a、11b、21a、21b、SR[1]、SR[2]、SR[N-1]、SR[N]、SR[1’]、SR[2’]、SR[(N-1)’]、SR[N’]:移位暫存器 11a, 11b, 21a, 21b, SR[1], SR[2], SR[N-1], SR[N], SR[1'], SR[2'], SR[(N-1)' ], SR[N']: shift register
13a、13b、23a、23b、33a、33b:緩衝器 13a, 13b, 23a, 23b, 33a, 33b: buffer
17a、17b、27a、27b、GL[1]、GL[2]、GL[N-1]、GL[N]、GL[3]、GL[4]、GL、GL[5]:閘極控制信號(閘極線) 17a, 17b, 27a, 27b, GL[1], GL[2], GL[N-1], GL[N], GL[3], GL[4], GL, GL[5]: Gate control Signal (gate line)
15、25、35:顯示面板 15, 25, 35: display panel
15a、15b、15c、25a、25b、25c、35a、35b、P(1,1)~P(6,8):像素 15a, 15b, 15c, 25a, 25b, 25c, 35a, 35b, P(1,1)~P(6,8): pixels
3:顯示裝置 3: display device
30:時序控制器 30: timing controller
32、50:源極驅動電路 32, 50: Source drive circuit
33:閘極驅動電路 33: Gate drive circuit
351、41:主動區域 351, 41: Active area
353、43:非主動區域 353, 43: Inactive area
DL[1]、DL[2]、DL[3]、DL[4]、DL[5]、DL[6]、DL[7]、DL、DL[8]、DL[9]、DL[10]、DL[11]、DL[12]、DL[13]:資料線 DL[1], DL[2], DL[3], DL[4], DL[5], DL[6], DL[7], DL, DL[8], DL[9], DL[10 ], DL[11], DL[12], DL[13]: data line
IL13a、IL13b、IL13c、IL24a、IL24b、IL24c、IL57a、IL57b、IL57c、IL68a、IL68b、IL68c、ILx1a、ILx1b、ILx1c、 ILx2a、ILx2b、ILx2c、IL35a、IL35b、IL35c、IL46a、IL46b、IL46c、IL7xa、IL7xb、IL7xc、IL8xa、IL8xb、IL8xc、IL:互連接線 IL13a, IL13b, IL13c, IL24a, IL24b, IL24c, IL57a, IL57b, IL57c, IL68a, IL68b, IL68c, ILx1a, ILx1b, ILx1c, ILx2a, ILx2b, ILx2c, IL35a, IL35b, IL35c, IL46a, IL46b, IL46c, IL7xa, IL7xb, IL7xc, IL8xa, IL8xb, IL8xc, IL: Interconnect wiring
Cs1、Cs2、Cs:儲存電容 Cs1, Cs2, Cs: storage capacitor
M1、M2:電晶體 M1, M2: Transistor
Clc1、Clc2、Clc:液晶電容 Clc1, Clc2, Clc: liquid crystal capacitors
IP:孤立像素 IP: Isolated pixel
JP:共接像素 JP: Commonly connected pixels
PP(1,1)、PP(2,1)、PP(3,1)、PP(4,1)、PP(1,2)、PP(2,2)、PP(3,2)、PP(4,2):像素對 PP(1,1), PP(2,1), PP(3,1), PP(4,1), PP(1,2), PP(2,2), PP(3,2), PP (4,2): pixel pair
IPP:孤立像素對 IPP: Isolated pixel pair
JPP:共接像素對 JPP: Shared pixel pair
A、B、C、D:狀態 A, B, C, D: status
t1~t13:時點 t1~t13: time point
T1~T13、TM1、TM2、TM3、TM4、TM5、TM6、:單位期間 T1~T13, TM1, TM2, TM3, TM4, TM5, TM6,: unit period
Tpc:預充電期間 Tpc: during precharge
Twt:等待期間 Twt: waiting period
Tup1:第一資料更新期間 Tup1: During the first update
Tup2:第二資料更新期間 Tup2: The second data update period
H、L:位準 H, L: level
51、52:源極驅動器 51, 52: source driver
SWa、SWb、SWc:開關控制信號 SWa, SWb, SWc: switch control signal
IC[1]、IC[2]、IC[3]、IC[4]、:動態資料線 IC[1], IC[2], IC[3], IC[4],: dynamic data line
a1、a2、a3、a4、b1、b2、b3、b4、c1、c2、c3、c4:開關 a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4: switch
TM3a、TM3b、TM3c、TM4a、TM4b、TM4c、TM5a、TM5b、TM5c、TM6a、TM6b、TM6c:子單位期間 TM3a, TM3b, TM3c, TM4a, TM4b, TM4c, TM5a, TM5b, TM5c, TM6a, TM6b, TM6c: sub-unit period
PU(1,1)、PU(1,2):像素單元 PU(1,1), PU(1,2): pixel unit
第1圖,其係採用習用技術之雙向方式驅動面板的示意圖。 Figure 1 is a schematic diagram of a bidirectional driving panel using conventional technology.
第2圖,其係採用習用技術之單向方式驅動面板的示意圖。 Figure 2 is a schematic diagram of driving the panel in a unidirectional manner using conventional technology.
第3圖,其係根據本發明構想,以雙向方式驅動面板的示意圖。 Figure 3 is a schematic diagram of driving the panel in a bidirectional manner according to the concept of the present invention.
第4圖,其係根據本發明實施例的顯示面板上的像素排列與連接方式之示意圖。 FIG. 4 is a schematic diagram of the arrangement and connection of pixels on a display panel according to an embodiment of the present invention.
第5A圖,其係本發明構想之實施例的共接像素的內部元件之示意圖。 FIG. 5A is a schematic diagram of the internal components of a common pixel according to an embodiment of the invention.
第5B圖,其係本發明構想之實施例的孤立像素的內部元件之示意圖。 Figure 5B is a schematic diagram of the internal components of an isolated pixel according to an embodiment of the invention.
第5C圖,其係本發明以雙向方式驅動面板上的像素電晶體的連接方式之示意圖。 FIG. 5C is a schematic diagram of the connection mode of driving the pixel transistors on the panel in a bidirectional manner according to the present invention.
第6A圖,其係歸納根據本發明實施例的顯示面板中,像素連接方式之示意圖。 FIG. 6A is a schematic diagram summarizing the connection methods of pixels in a display panel according to an embodiment of the present invention.
第6B圖,其係根據本發明另一種實施例的顯示面板上的像素排列與連接方式之示意圖。 FIG. 6B is a schematic diagram of the arrangement and connection of pixels on a display panel according to another embodiment of the present invention.
第7圖,其係依據顯示面板上的像素的特性,將其歸類為兩種類型的像素對之示意圖。 FIG. 7 is a schematic diagram of two types of pixel pairs according to the characteristics of pixels on the display panel.
第8圖,其係根據本發明實施例的顯示面板,像素對的狀態變化之示意圖。 FIG. 8 is a schematic diagram of the state change of the pixel pair in the display panel according to the embodiment of the present invention.
第9A、9B圖,其係與第8圖所示的顯示面板控制相關之信號的波形圖。 Figures 9A and 9B are waveform diagrams of signals related to the display panel control shown in Figure 8.
第10A~10N圖,其係以第8圖的顯示面板搭配第9A圖之信號波形時,顯示面板上的像素對的狀態之示意圖。 Figures 10A to 10N are schematic diagrams of the state of pixel pairs on the display panel when the display panel of Figure 8 is combined with the signal waveform of Figure 9A.
第11圖,其係基於第10A~10H圖,彙整閘極控制信號GL[1]、GL[2]、GL[3]的位準變化相對於像素對狀態之示意圖。 Figure 11 is a schematic diagram of the level changes of the integrated gate control signals GL[1], GL[2], and GL[3] relative to the state of the pixel pair based on Figures 10A to 10H.
第12圖,其係根據本發明實施例的顯示面板,進一步搭配解多工器控制之示意圖。 FIG. 12 is a schematic diagram of a display panel according to an embodiment of the present invention, which is further controlled by a demultiplexer.
第13圖,其係與第12圖所示的顯示面板中的源極驅動器51控制相關之信號的波形圖。 FIG. 13 is a waveform diagram of signals related to the control of the source driver 51 in the display panel shown in FIG. 12.
第14A、14B、14C圖,其係顯示面板中,與源極驅動器51相關的像素在單位期間TM3的變化。 Figures 14A, 14B, and 14C show the changes in the unit period TM3 of pixels related to the source driver 51 in the display panel.
第15A、15B、15C圖,其係顯示面板中,與源極驅動器51相關的像素在單位期間TM4的變化。 Figures 15A, 15B, and 15C show the changes of the pixels associated with the source driver 51 in the unit period TM4 in the display panel.
第16A、16B、16C圖,其係顯示面板中,與源極驅動器51相關的像素在單位期間TM5的變化。 Figures 16A, 16B, and 16C show changes in the unit period TM5 of the pixels related to the source driver 51 in the display panel.
第17A、17B、17C圖,其係顯示面板中,與源極驅動器51相關的像素在單位期間TM6的變化。 Figures 17A, 17B, and 17C show the changes in the unit period TM6 of pixels related to the source driver 51 in the display panel.
第18圖,其係像素單元所採用之一種色彩排列方式的示意圖。 Fig. 18 is a schematic diagram of a color arrangement method adopted by the pixel unit.
第19圖,其係像素單元所採用之另一種色彩排列方式的示意圖。 FIG. 19 is a schematic diagram of another color arrangement method adopted by the pixel unit.
如前所述,針對顯示面板的驅動能力與實現驅動電路所需佔用寬度的兩種需求,習用技術尚未有解決之道。為此,本發明提出能提升驅動能力並縮減閘極驅動電路所需寬度的顯示面板。因本案著眼於驅動能力,此處針對閘極驅動電路產生閘極控制信號GL的操作進行討論。實際應用時,時序控制器(timing controller)將因應閘極驅動電路產生的閘極控制信號GL控制源極驅動電路,進而使源極驅動電路對應產生各個像素P所需的資料電壓。關於資料電壓的產生,還涉及各個像素P的顏色與亮度設定,此處不特別說明。 As mentioned above, the conventional technology has not yet solved the two requirements for the driving capability of the display panel and the occupied width required to realize the driving circuit. To this end, the present invention proposes a display panel that can improve the driving capability and reduce the width required by the gate driving circuit. Since this case focuses on the driving capability, the operation of the gate driving circuit to generate the gate control signal GL is discussed here. In actual application, the timing controller will control the source drive circuit in response to the gate control signal GL generated by the gate drive circuit, so that the source drive circuit generates the data voltage required by each pixel P correspondingly. Regarding the generation of the data voltage, the color and brightness settings of each pixel P are also involved, which is not specifically described here.
請參見第3圖,其係根據本發明構想,以雙向方式驅動顯示面板上的像素之示意圖。顯示裝置3包含時序控制器30、閘極驅動電路33、源極驅動電路32與顯示面板35。閘極驅動電路33包含緩衝器33a、33b,以及移位暫存器SR[1]、SR[2]、SR[N-1]、SR[N]、SR[1’]、SR[2’]、SR[(N-1)’]、
SR[N’]。顯示面板35包含排列為陣列的多個像素35a、35b。此處假設像素35a、35b排列為M行與Q列(其中Q=N*2)。像素35a、35b接收源極驅動電路32傳送的(M+1)個資料電壓,並透過緩衝器33a、33b接收由移位暫存器SR[1]、SR[2]、SR[N-1]、SR[N]、SR[1’]、SR[2’]、SR[(N-1)’]、SR[N’]發出的閘極控制信號GL[1]~GL[N]。這些資料電壓可根據其用途的不同,區分為共接資料電壓與孤立資料電壓。
Please refer to FIG. 3, which is a schematic diagram of driving pixels on a display panel in a bidirectional manner according to the concept of the present invention. The
根據本發明的構想,顯示面板35可進一步區分為主動區域(active area)351與非主動區域353。其中,假設位於主動區域351的像素為(N-1)*2列,且位於非主動區域353的像素P為2列。實際應用時,非主動區域353可能包含更多列的像素P。換言之,在第3圖中,顯示面板共包含M*N*2個像素P。其中,位於主動區域351的像素P,同時對應於左側的(N-1)個移位暫存器SR[1]、SR[2]、SR[N-1],以及右側的(N-1)個移位暫存器SR[1']、SR[2']、SR[(N-1)']。位於非主動區域353的像素P,同時對應於位在顯示面板左側的移位暫存器SR[N],以及位在顯示面板右側的移位暫存器SR[N']。
According to the concept of the present invention, the
根據本發明的構想,可以將顯示面板上的像素P區分為兩類。此處以具有點狀網底的方框代表第一類像素35a(孤立像素IP),以及以不具網底的方框代表第二類像素35b(共接像素JP)。由第3圖可以看出,每兩個第一類像素35a與每兩個第二類像素35b間,以棋盤方式交錯排列在顯示面板上。例如,第一列與第二列上的像素P的連接方式相似,且第三列與第四列上的像素P的連接方式相似。在第一列與第二列上,位於奇數行的像素P為第一類像素35a(孤立像素IP);位於偶數行的像素P為第二類像素35b(共接像素JP)。在第三列與第四列上,位於奇數行的像素P為第二類像素35b(共接像素JP);位於偶數行的像素P為第一類像素35a(孤立像素IP)。其中,位於
第一列與第二列的像素P共同電連接於閘極線GL[1];位於第三列與第四列的像素P共同電連接於閘極線GL[2]。
According to the concept of the present invention, the pixels P on the display panel can be divided into two types. Here, a box with a dot-shaped mesh bottom represents the first-
根據本發明的構想,每一個移位暫存器SR同時對應於兩列的像素P,且位於同一列的像素P,同時收到兩側的移位暫存器SR同步發出的閘極控制信號GL。例如,移位暫存器SR[1]、SR[1']同時對應於位在第一列與第二列的像素35a、35b,且移位暫存器SR[1]、SR[1']同步產生相同的閘極控制信號GL[1]至位於第一列與第二列的像素35a、35b。同理,移位暫存器SR[2]、SR[2']同時對應於位在第三列與第四列的像素35a、35b,且移位暫存器SR[2]、SR[2']同步產生閘極控制信號GL[2]至位於第三列與第四列的像素35a、35b。
According to the concept of the present invention, each shift register SR corresponds to two columns of pixels P at the same time, and the pixels P located in the same column simultaneously receive gate control signals synchronously issued by the shift registers SR on both sides GL. For example, the shift registers SR[1] and SR[1'] correspond to the
在第3圖中,每一列的M個像素同時接收到由左右兩側的移位暫存器SR共同產生的閘極控制信號GL,能有具有較佳的驅動能力。另一方面,因為每一個移位暫存器SR對應於兩列像素P的緣故,所以移位暫存器SR在縱向方向(行方向)的可用長度較長,進而節省橫向方向(列方向)上的寬度,達到窄邊框的效果。關於本發明的詳細作法,請參見以下說明。 In Figure 3, the M pixels in each column simultaneously receive the gate control signal GL jointly generated by the shift registers SR on the left and right sides, which can have a better driving capability. On the other hand, because each shift register SR corresponds to two columns of pixels P, the available length of the shift register SR in the vertical direction (row direction) is longer, thereby saving the horizontal direction (column direction). The width of the upper part can achieve the effect of narrow border. For the detailed method of the present invention, please refer to the following description.
請參見第4圖,其係根據本發明其中一種實施例的顯示面板上的像素P排列與連接方式之示意圖。為便於說明,本文以M代表像素P的總行數、以Q代表像素P的總列數,並以N代表移位暫存器SR的列數與閘極控制信號GL的數量。此處假設M=6,N=3、Q=N*2。顯示面板上有(M+1)條平行於行方向的資料線DL,以及N條平行於列方向的閘極線GL。其中,每條閘極線GL各自包含彼此平行的第一部分(上)與第二部分(下)。 Please refer to FIG. 4, which is a schematic diagram of the arrangement and connection of pixels P on the display panel according to one embodiment of the present invention. For ease of description, this article uses M to represent the total number of rows of pixels P, Q to represent the total number of columns of pixels P, and N to represent the number of columns of the shift register SR and the number of gate control signals GL. Suppose here that M=6, N=3, Q=N*2. The display panel has (M+1) data lines DL parallel to the row direction, and N gate lines GL parallel to the column direction. Wherein, each gate line GL includes a first portion (upper) and a second portion (lower) that are parallel to each other.
根據本發明的構想,顯示面板可區分為主動區域41與非主動區域43。其中,非主動區域43須包含至少兩列像素P。位於主動區域41的像素P與位於非主動區域43內的像素P,與資料線DL和閘極線GL之間的連接方
式均類似,故不特別區分。此處假設主動區域41對應於位在第一列至第六列的像素P,非主動區域43對應於位在第七列至第八列的像素P。
According to the concept of the present invention, the display panel can be divided into an
為便於說明,此處另以變數m、q代表像素P所在的行與列,以及以變數n代表閘極線GL的順序。其中,因為每一條閘極線GL連接至兩列像素P的緣故,q=2*n-1或q=2*n。M為正偶數,N、m、n、q均為正整數,且m≦M、n≦N、q≦Q、Q=N*2。 For ease of description, the variables m and q are used to represent the row and column of the pixel P, and the variable n is used to represent the order of the gate line GL. Among them, because each gate line GL is connected to two columns of pixels P, q=2*n-1 or q=2*n. M is a positive even number, N, m, n, and q are all positive integers, and m≦M, n≦N, q≦Q, Q=N*2.
在此圖式中,繪出排列為六行(其中,M=6行)與八列(其中,Q=4*2=8列)共48個像素P。為便於說明,此處以座標方式表示各個像素P的位置,例如,像素P(1,1)位於第一行與第一列、像素P(1,2)位於第一行與第二列,其餘可類推得出。為具體說明各個像素P與資料線DL、閘極線GL之間的連接關係,以下分別以橫向(列)和縱向(行)說明。 In this drawing, a total of 48 pixels P arranged in six rows (where M=6 rows) and eight columns (where Q=4*2=8 columns) are drawn. For ease of description, the position of each pixel P is represented here in a coordinate manner. For example, the pixel P(1,1) is located in the first row and the first column, the pixel P(1,2) is located in the first row and the second column, and the rest It can be deduced by analogy. In order to specifically describe the connection relationship between each pixel P and the data line DL and the gate line GL, the following description is made in the horizontal direction (column) and vertical direction (row) respectively.
首先,就列方向說明像素的連接關係。位於第一列(其中,q=1)與第二列(其中,q=2)的像素P均共同電連接於閘極線GL[1](其中,n=1)。在這兩列像素P中,位於奇數行(其中,m=1,3或5)的像素P並未電連接至任何資料線DL;位於偶數行(其中,m=2、4或6)的像素P則根據所在列數的不同而電連接至不同的資料線DL。更進一步來說,位於第一列(q=1)像素P(1,1)~P(M,1)中,位於偶數行(其中,m=2、4或6)的像素P電連接至位在其左側的資料線DL[m];位於第二列(q=2)像素P(1,2)~P(M,2)中,位於偶數行(其中,m=2、4或6)的像素P則電連接至位在其右側的資料線DL[m+1]。 First, the connection relationship of pixels will be explained in terms of the column direction. The pixels P located in the first column (where q=1) and the second column (where q=2) are electrically connected to the gate line GL[1] (where n=1). In the two columns of pixels P, the pixels P located in odd rows (where m=1, 3, or 5) are not electrically connected to any data line DL; those located in even rows (where m=2, 4, or 6) The pixels P are electrically connected to different data lines DL according to the number of rows. Furthermore, among the pixels P(1,1)~P(M,1) located in the first column (q=1), the pixels P located in the even rows (where m=2, 4, or 6) are electrically connected to The data line DL[m] located on the left side of it; located in the second column (q=2) pixels P(1,2)~P(M,2), located in the even-numbered row (where m=2, 4 or 6 The pixel P of) is electrically connected to the data line DL[m+1] on its right side.
再者,位於第三列(q=3)與第四列(q=4)的像素均共同電連接於閘極線GL[2](其中,n=2)。在這兩列像素P中,位於奇數行(其中,m=1、3或5)的像素P將根據所在列數的不同而電連接至不同的資料線DL;位於偶數行(其中,m=2、4或6)的像素P則未電連接至任何資料線DL。更進一步來說,在第三列(q=3)的M個像素P(1,3)~P(M,3)中,位於奇數行(其中,m=1、 3或5)的M/2個像素P電連接於位其左側的資料線DL[m];以及,在第四列(q=4)的M個像素P(1,4)~P(M,4)中,位於奇數行(其中,m=1、3或5)的M/2個像素P則電連接於位於其右側的資料線DL[m+1]。 Furthermore, the pixels located in the third column (q=3) and the fourth column (q=4) are electrically connected to the gate line GL[2] (where n=2). In the two columns of pixels P, pixels P located in odd rows (where m=1, 3, or 5) will be electrically connected to different data lines DL according to the number of columns; located in even rows (where m= The pixel P of 2, 4 or 6) is not electrically connected to any data line DL. Furthermore, among the M pixels P(1,3)~P(M,3) in the third column (q=3), they are located in odd rows (where m=1, 3 or 5) M/2 pixels P are electrically connected to the data line DL[m] on the left; and, in the fourth column (q=4), M pixels P(1,4)~P(M In 4), M/2 pixels P located in odd rows (where m=1, 3, or 5) are electrically connected to the data line DL[m+1] located on the right side thereof.
在非主動區域43中的孤立像素P(2,7)、P(2,8)、P(4,7)、P(4,8)、P(6,7)、P(6,8)並不需要特別控制。另一方面,在非主動區域43中的共接像素P(1,7)、P(1,8)、P(3,7)、P(3,8)、P(5,7)、P(5,8),因其控制與位於第五列與第六列中的孤立像素P(1,5)、P(1,6)、P(3,5)、P(3,6)、P(5,5)、P(5,6)相關,閘極控制電路與源極驅動電路仍須提供與非主動區域43中的共接像素JP相對應的閘極線GL與資料線DL。
Isolated pixels P(2,7), P(2,8), P(4,7), P(4,8), P(6,7), P(6,8) in the
例如,位於第一行的非主動區域43的共接像素P(1,7)的控制與同樣位於第一行的主動區域的孤立像素P(1,5)相關,且位於第一行的非主動區域43的共接像素P(1,8)的控制與同樣位於第一行的主動區域的孤立像素P(1,6)相關。其餘像素之間的關聯性亦可類推,故不贅述。
For example, the control of the common pixel P(1,7) located in the
其次,就行方向說明像素P的連接關係。位於第一行(其中,m=1)的像素P(1,1)、P(1,2)、P(1,3)、P(1,4)、P(1,5)、P(1,6)、P(1,7)、P(1,8)中,像素P(1,3)、P(1,7)連接至資料線DL[1];像素P(1,4)、P(1,8)連接至資料線DL[2];像素P(1,1)、P(1,2)、P(1,5)、P(1,6)未連接至任何資料線DL。其他位於奇數行(即,m=3,5)的像素P與資料線DL之間的連接方式,與位於第一行的像素P的連接方式類似。由第4圖可以推知,對位在各奇數行(其中,m=1、3、5,q=1~Q)的像素P(m,q)中,與偶數閘極線GL[n](其中,n=2,4)相連的Q/2個像素而言,其中位於第q=n*2-1列者與第m行的資料線DL[m]相連;位於第q=n*2列者與第(m+1)行的資料線DL[m+1]相連。另一方面,位在奇數行(其中,m=1,3,5)並與奇數閘極線GL[n](其中,n=1,3)相連的Q/2個像素為孤立像素IP,並未連接至任何資料線DL。 Next, the connection relationship of the pixels P will be explained in terms of the row direction. The pixels P(1,1), P(1,2), P(1,3), P(1,4), P(1,5), P( 1,6), P(1,7), P(1,8), pixels P(1,3), P(1,7) are connected to the data line DL[1]; pixel P(1,4) , P(1,8) is connected to data line DL[2]; pixel P(1,1), P(1,2), P(1,5), P(1,6) are not connected to any data line DL. The connection mode between the other pixels P located in odd rows (ie, m=3, 5) and the data line DL is similar to the connection mode of the pixels P located in the first row. It can be inferred from Figure 4 that the alignment is in each odd-numbered row (where m=1, 3, 5, q=1~Q) in the pixel P(m,q), and the even-numbered gate line GL[n]( Among them, n=2, 4) connected Q/2 pixels, among them, those located in the q=n*2-1th column are connected to the data line DL[m] in the mth row; in the q=n*2th column The column is connected to the data line DL[m+1] of the (m+1)th row. On the other hand, Q/2 pixels located in odd rows (where m=1, 3, 5) and connected to odd gate lines GL[n] (where n=1, 3) are isolated pixels IP, It is not connected to any data line DL.
同樣的,在位於第二行(其中,m=2,q=1~Q)的像素P(m,q)中,像素P(2,1)、P(2,5)連接至資料線DL[2];像素P(2,2)、P(2,6)連接至資料線DL[3];像素P(2,3)、P(2,4)、P(2,7)、P(2,8)未連接至任何資料線DL。其他位於偶數行(其中,m=4、6)的像素P(m,q)與資料線DL之間的連接方式,與位於第二行的像素P的連接方式類似。由第4圖可以推知,對位在各偶數行(其中,m=2、4、6,q=1~Q)的Q個像素P(m,q)中,與奇數閘控制極線GL[n](其中,n=1,3)相連的Q/2個像素P(m,q)而言,位於第q=n*2-1列者與資料線DL[m]相連;位於第q=n*2列者與資料線DL[m+1]相連。另一方面,位在偶數行(其中,m=2、4、6)並與偶數閘極線GL[n](其中,n=2、4)相連的Q/2個像素P(m,q)為孤立像素IP,孤立像素IP並未連接至任何資料線DL。 Similarly, in the pixel P(m,q) located in the second row (where m=2, q=1~Q), the pixels P(2,1) and P(2,5) are connected to the data line DL [2]; Pixels P(2,2), P(2,6) are connected to the data line DL[3]; Pixels P(2,3), P(2,4), P(2,7), P (2,8) Not connected to any data line DL. The connection between the other pixels P(m, q) located in the even rows (where m=4, 6) and the data line DL is similar to the connection between the pixels P located in the second row. It can be inferred from Figure 4 that the alignment is in the Q pixels P(m,q) of each even-numbered row (where m=2, 4, 6, q=1~Q), and the odd-numbered gate gate line GL[ n] (where n=1,3) connected to Q/2 pixels P(m,q), those located in the q=n*2-1th column are connected to the data line DL[m]; located in the qth =n*2 rows are connected to the data line DL[m+1]. On the other hand, Q/2 pixels P(m, q) located in even rows (where m=2, 4, 6) and connected to even-numbered gate lines GL[n] (where n=2, 4) ) Is an isolated pixel IP, and the isolated pixel IP is not connected to any data line DL.
更進一步觀察未與資料線DL連接的像素P(m,q),可以根據該些像素P(m,q)所在的行數不同而歸納出以下關係。即,位於奇數行(其中,m=1,3,5)的像素P(m,q)中,與奇數閘極線GL[n](其中,n=1、3)相連的像素P(m,q),並未直接電連接至任何資料線DL;以及,位於偶數行(其中,m=2,4,6)的像素P(m,q)中,與偶數閘極線GL[n](其中,n=2、4)相連的像素P(m,q),亦未直接電連接至任何資料線DL。 Further observing the pixels P(m,q) not connected to the data line DL, the following relationship can be summarized according to the number of rows where the pixels P(m,q) are located. That is, among the pixels P(m, q) located in odd rows (where m=1, 3, 5), the pixels P(m) connected to the odd gate line GL[n] (where n=1, 3) ,q), which is not directly electrically connected to any data line DL; and, in pixels P(m,q) in even rows (where m=2,4,6), and even gate lines GL[n] (Where n=2, 4) the connected pixels P(m, q) are not directly electrically connected to any data line DL.
根據本發明的構想,這些未與任何資料線DL相連的孤立像素IP,無法直接從資料線DL[m]、DL[m+1]接收與其對應的孤立資料電壓。更明確說來,當像素P(m,q)位於奇數行(其中,m=1,3,5),並與奇數閘極線GL[n](其中,n=1、3)相連時,像素P(m,q)為孤立像素IP,且像素P(m,q)顯示的孤立資料電壓需透過位於同樣位於第m行,但是與次一條閘極線GL[n+1]相連的像素P(m,q+2)傳送。當像素P(m,q)位於偶數行(其中,m=2,4,6),並與偶數閘極線GL[n](其中,n=2,4)相連時,像素P(m,q)為孤立像素IP, 且像素P(m,q)顯示的孤立資料電壓需透過位於同樣位於第m行,但是與次一條閘極線GL[n+1]相連的像素P(m,q+2)傳送。 According to the concept of the present invention, these isolated pixels IP that are not connected to any data line DL cannot directly receive their corresponding isolated data voltages from the data lines DL[m] and DL[m+1]. More specifically, when the pixel P(m, q) is located in an odd row (where m=1, 3, 5) and is connected to an odd gate line GL[n] (where n=1, 3), The pixel P(m,q) is an isolated pixel IP, and the isolated data voltage displayed by the pixel P(m,q) needs to pass through the pixel located in the same m-th row but connected to the next gate line GL[n+1] P(m,q+2) transmission. When the pixel P(m,q) is located in an even-numbered row (where m=2,4,6) and is connected to the even-numbered gate line GL[n] (where n=2,4), the pixel P(m, q) is the isolated pixel IP, And the isolated data voltage displayed by the pixel P(m,q) needs to be transmitted through the pixel P(m,q+2) which is also located in the mth row but connected to the next gate line GL[n+1].
為實現此種由位於他列的共接像素JP間接傳送資料電壓的做法,本發明在跨列的孤立像素IP與共接像素JP之間設置互連接線IL。以下說明互連接線IL的設置方式。以下分別就位於奇數行(其中,m=1,3,5)與偶數行(其中,m=2,4,6)的像素P,說明互連接線IL的連接方式。 In order to realize this method of indirectly transmitting the data voltage from the co-connected pixels JP located in other columns, the present invention provides an interconnection line IL between the isolated pixels IP and the co-connected pixels JP across the column. The following describes how to set the interconnection wiring IL. The following are the pixels P located in odd-numbered rows (where m=1, 3, 5) and even-numbered rows (where m=2, 4, 6) respectively to illustrate the connection mode of the interconnection line IL.
在第4圖中,位於奇數行(其中,m=1,3,5)且位於第一列(q=1)的像素P(1,1)、P(3,1)、P(5,1)透過互連接線IL13a、IL13b、IL13c而分別與位於同一行且位於第三列(其中,q=3)的像素P(1,3)、P(3,3)、P(5,3)相連。位於奇數行(其中,m=1,3,5)且位於第二列(其中,q=2)的像素P(1,2)、P(3,2)、P(5,2)透過互連接線IL24a、IL24b、IL24c而分別與位於同一行且位於第四列(其中,q=4)的像素P(1,4)、P(3,4)、P(5,4)相連。位於奇數行(其中,m=1,3,5)且位於第五列(其中,q=5)的像素P(1,5)、P(3,5)、P(5,5)透過互連接線IL57a、IL57b、IL57c而分別與位於同一行且位於第七列(其中,q=7)的像素P(1,7)、P(3,7)、P(5,7)相連。位於奇數行(其中,m=1,3,5)且位於第六列(其中,q=6)的像素P(1,6)、P(3,6)、P(5,6)透過互連接線IL68a、IL68b、IL68c而分別與位於同一行且位於第八列(其中,q=8)的像素P(1,8)、P(3,8)、P(5,8)相連。 In Figure 4, the pixels P(1,1), P(3,1), P(5, 1) Through the interconnection lines IL13a, IL13b, and IL13c, they are respectively connected to the pixels P(1,3), P(3,3), P(5,3) in the same row and in the third column (where q=3). ) Connected. The pixels P(1,2), P(3,2), P(5,2) located in odd rows (where m=1,3,5) and located in the second column (where q=2) pass through each other The connecting lines IL24a, IL24b, and IL24c are respectively connected to the pixels P(1,4), P(3,4), P(5,4) located in the same row and located in the fourth column (where q=4). Pixels P(1,5), P(3,5), P(5,5) located in odd rows (where m=1,3,5) and located in the fifth column (where q=5) pass through each other The connecting lines IL57a, IL57b, and IL57c are respectively connected to the pixels P(1,7), P(3,7), P(5,7) located in the same row and located in the seventh column (where q=7). Pixels P(1,6), P(3,6), P(5,6) located in odd rows (where m=1,3,5) and located in the sixth column (where q=6) pass through each other The connecting lines IL68a, IL68b, and IL68c are respectively connected to the pixels P(1,8), P(3,8), P(5,8) located in the same row and located in the eighth column (where q=8).
進一步歸納前述與位於奇數行(其中,m=1,3,5)的像素P相關的互連接線IL的關係可以看出以下關係。位於奇數行(其中,m=1,3,5)的像素P中,與奇數閘極線GL[n](其中,n=1,3)相連的像素P,與位於同一行但是和閘極線GL[n+1]相連的像素P之間設有互連接線ILn(n+1)。換言之,位於各奇數行(其中,m=1,3,5)的Q個像素中,與偶數閘極線GL[n](其中,n=2, 4)相連的像素P(m,n),與位於同一行但是和閘極線GL[n-1]相連的像素P之間設有互連接線IL(n-1)n。 Further summarizing the foregoing relationship between the interconnection line IL related to the pixel P located in odd rows (where m=1, 3, 5), the following relationship can be seen. Among the pixels P located in odd rows (where m=1, 3, 5), the pixels P connected to odd gate lines GL[n] (where n=1, 3) are in the same row but with the gate An interconnection line ILn(n+1) is provided between the pixels P connected to the line GL[n+1]. In other words, among the Q pixels located in each odd-numbered row (where m=1, 3, 5), and the even-numbered gate line GL[n] (where n=2, 4) The connected pixels P(m,n) have interconnection lines IL(n-1)n between the pixels P located in the same row but connected to the gate line GL[n-1].
在第4圖中,位於偶數行(其中,m=2,4,6)且位於第一列(q=1)的像素P(2,1)、P(4,1)、P(6,1)的互連接線ILx1a、ILx1b、ILx1c為浮接;位於偶數行(其中,m=2,4,6)且位於第二列(q=2)的像素P(2,2)、P(4,2)、P(6,2)的互連接線ILx2a、ILx2b、ILx2c為浮接。位於偶數行(其中,m=2,4,6)且位於第三列(其中,q=3)的像素P(2,3)、P(4,3)、P(6,3)透過互連接線IL35a、IL35b、IL35c而分別與位於同一行且位於第五列(其中,q=5)的像素P(2,5)、P(4,5)、P(6,5)相連。位於偶數行(其中,m=2,4,6)且位於第七列(q=7)的像素P(2,7)、P(4,7)、P(6,7)的互連接線IL7xa、IL7xb、IL7xc為浮接;位於偶數行(其中,m=2,4,6)且位於第八列(其中,q=8)的像素P(2,8)、P(4,8)、P(6,8)的互連接線IL8xa、IL8xb、IL8xc為浮接。 In Fig. 4, the pixels P(2,1), P(4,1), P(6, 1) The interconnection wires ILx1a, ILx1b, and ILx1c are floating; the pixels P(2,2), P( located in the even rows (where m=2,4,6) and located in the second column (q=2) 4, 2), P(6, 2) interconnection wiring ILx2a, ILx2b, ILx2c is floating. The pixels P(2,3), P(4,3), P(6,3) located in the even rows (where m=2,4,6) and located in the third column (where q=3) pass through each other The connecting lines IL35a, IL35b, and IL35c are respectively connected to the pixels P(2,5), P(4,5), P(6,5) located in the same row and located in the fifth column (where q=5). The interconnection wiring of pixels P(2,7), P(4,7), P(6,7) located in even rows (where m=2,4,6) and located in the seventh column (q=7) IL7xa, IL7xb, IL7xc are floating; pixels P(2,8), P(4,8) located in even rows (where m=2,4,6) and located in the eighth column (where q=8) , P(6,8) interconnection wiring IL8xa, IL8xb, IL8xc is floating.
進一步歸納前述與位於偶數行(其中,m=2,4,6)的像素P相關的互連接線IL的關係可以看出以下關係。位於偶數行(其中,m=2,4,6)的像素P中,與偶數閘極線GL[n](其中,n=2,4)相連的像素P,與位於同一行但是和閘極線GL[n+1]相連的像素P之間設有互連接線ILn(n+1)。換言之,位於奇數行(其中,m=1,3,5)的Q個像素P中,在與奇數閘極線GL[n](其中,n=1,3)相連的像素P,與位於同一行但是和閘極線GL[n-1]相連的像素P之間設有互連接線IL(n-1)n。其中,當n=1或是n=N時,與位於偶數行(其中,m=2,4,6)的像素相連的互連接線ILx1、ILNx為浮接。 Further summarizing the foregoing relationship between the interconnection line IL related to the pixel P located in the even-numbered row (where m=2, 4, 6), the following relationship can be seen. Among the pixels P located in the even rows (where m=2,4,6), the pixels P connected to the even-numbered gate line GL[n] (where n=2,4) are located in the same row but with the gate An interconnection line ILn(n+1) is provided between the pixels P connected to the line GL[n+1]. In other words, among the Q pixels P located in odd rows (where m=1, 3, 5), the pixels P connected to odd gate lines GL[n] (where n=1, 3) are located at the same An interconnection line IL(n-1)n is provided between the pixels P connected to the gate line GL[n-1]. Wherein, when n=1 or n=N, the interconnection wires ILx1 and ILNx connected to the pixels located in the even-numbered rows (where m=2, 4, 6) are floating.
請參見第5A圖,其係本發明構想之實施例的共接像素JP的內部元件之示意圖。共接像素JP包含彼此電連接的電晶體M1、儲存電容Cs1與液晶電容Clc1。其中,電晶體M1電連接至資料線DL與閘極線GL,並根據閘極控制信號GL的位準決定是否將資料線DL傳送的共接資料電壓導通 至儲存電容Cs1,進而利用共接資料電壓對儲存電容Cs1充電。此外,若電晶體M1根據閘極控制信號GL的位準而導通時,互連接線IL還可將資料電壓傳至共接像素JP的外部。此種經由共接像素JP而接收並傳送至外部的資料電壓,將作為與孤立像素IP對應的孤立資料電壓使用。 Please refer to FIG. 5A, which is a schematic diagram of the internal components of the shared pixel JP according to an embodiment of the invention. The common pixel JP includes a transistor M1, a storage capacitor Cs1, and a liquid crystal capacitor Clc1 that are electrically connected to each other. Among them, the transistor M1 is electrically connected to the data line DL and the gate line GL, and determines whether to turn on the common data voltage transmitted by the data line DL according to the level of the gate control signal GL To the storage capacitor Cs1, the common data voltage is used to charge the storage capacitor Cs1. In addition, if the transistor M1 is turned on according to the level of the gate control signal GL, the interconnection line IL can also transmit the data voltage to the outside of the common pixel JP. The data voltage received through the shared pixel JP and transmitted to the outside will be used as the isolated data voltage corresponding to the isolated pixel IP.
請參見第5B圖,其係本發明構想之實施例的孤立像素IP的內部元件之示意圖。孤立像素IP同樣包含彼此電連接的電晶體M2、儲存電容Cs2與液晶電容Clc2。其中,電晶體M2電連接至互連接線IL與閘極線GL,並根據閘極控制信號GL的位準決定是否導通。若電晶體M2導通時,經由互連接線IL將孤立資料電壓導通至儲存電容Cs2,進而利用孤立資料電壓對儲存電容Cs2充電。又,液晶電容Clc1的亮度根據儲存電容Cs1所儲存的電荷而異。 Please refer to FIG. 5B, which is a schematic diagram of the internal components of the isolated pixel IP according to the embodiment of the invention. The isolated pixel IP also includes a transistor M2, a storage capacitor Cs2, and a liquid crystal capacitor Clc2 electrically connected to each other. Wherein, the transistor M2 is electrically connected to the interconnection line IL and the gate line GL, and determines whether to conduct according to the level of the gate control signal GL. If the transistor M2 is turned on, the isolated data voltage is conducted to the storage capacitor Cs2 through the interconnection line IL, and then the storage capacitor Cs2 is charged by the isolated data voltage. In addition, the brightness of the liquid crystal capacitor Clc1 varies according to the charge stored in the storage capacitor Cs1.
比較第5A圖的共接像素JP與第5B圖的孤立像素IP可以看出,共接像素JP可經由資料線DL傳送的共接資料電壓而對儲存電容Cs1充電;孤立像素IP經由互連接線IL傳送的孤立資料電壓而對儲存電容Cs2充電。另,液晶電容Clc1、Clc2的種類與其在彩色濾光片(color filter)上對應的顏色均不受限制。 Comparing the co-connected pixel JP in Figure 5A with the isolated pixel IP in Figure 5B, it can be seen that the co-connected pixel JP can charge the storage capacitor Cs1 via the common data voltage transmitted by the data line DL; the isolated pixel IP is connected via interconnection The isolated data voltage transmitted by IL charges the storage capacitor Cs2. In addition, the types of the liquid crystal capacitors Clc1 and Clc2 and their corresponding colors on the color filter are not limited.
請參見第5C圖,其係本發明以雙向方式驅動面板上的像素電晶體的連接方式之示意圖。此圖式進一步以第4圖中,位於左上角的幾個像素P為例(其中,m=1~2,n=1~2,q=1~4),說明像素P內的液晶電容Clc、電晶體與儲存電容Cs的連接方式。 Please refer to FIG. 5C, which is a schematic diagram of the connection mode of driving the pixel transistors on the panel in a bidirectional manner according to the present invention. This diagram further takes several pixels P located in the upper left corner in Figure 4 as an example (where m=1~2, n=1~2, q=1~4) to illustrate the liquid crystal capacitor Clc in the pixel P , The connection between the transistor and the storage capacitor Cs.
在此圖式中,每個像素P(m,q)(其中,m=1~M,q=1~Q)均包含彼此互連的液晶電容Clc、電晶體與儲存電容Cs。其中,儲存電容Cs的另一端連接至共用位準(COM),且電晶體的閘極連接至與像素P(m,q)所在位置相對應的閘極線GL[n]。根據像素位置P(m,q)的位置不同,一部份電晶體 (例如,像素P(2,1)、P(1,3)內的電晶體)的另一端可能連接至位於像素P(m,q)左側的資料線DL[m];一部份電晶體(例如,像素P(2,2)、P(1,4)內的電晶體)的另一端可能連接至位於像素P(m,q)右側的資料線DL[m+1];還有另一部份的電晶體(例如,像素P(1,1)、P(1,2)、P(2,3)、P(2,4)內的電晶體)的另一端並未連接至任何資料線DL。 In this figure, each pixel P(m, q) (where m=1~M, q=1~Q) includes a liquid crystal capacitor Clc, a transistor, and a storage capacitor Cs that are interconnected with each other. Wherein, the other end of the storage capacitor Cs is connected to the common level (COM), and the gate of the transistor is connected to the gate line GL[n] corresponding to the position of the pixel P(m,q). According to the position of the pixel position P(m,q), a part of the transistor (For example, the transistors in pixels P(2,1) and P(1,3)) The other end may be connected to the data line DL[m] on the left side of the pixel P(m,q); a part of the transistor (For example, the transistors in pixels P(2,2), P(1,4)) may be connected to the data line DL[m+1] on the right side of the pixel P(m,q); there are other Some transistors (for example, the transistors in pixels P(1,1), P(1,2), P(2,3), P(2,4)) are not connected to any Data line DL.
這些未與任何資料線DL相連的像素P(1,1)、P(1,2)、P(2,3)、P(2,4)內的電晶體,將連接至位於同一行但是間隔一列的像素P。例如,像素P(1,1)內的電晶體透過互連接線IL13a而電連接至像素(1,3)內的電晶體與儲存電容Cs;像素P(1,2)內的電晶體透過互連接線IL24a而電連接至像素(1,4)內的電晶體與儲存電容Cs;像素P(2,3)內的電晶體透過互連接線IL35a而電連接至像素P(2,5)內的電晶體(未繪式)與儲存電容Cs(未繪式);以及,像素P(2,4)內的電晶體透過互連接線IL46a而電連接至像素P(2,6)內的電晶體(未繪式)與儲存電容Cs(未繪式)。 The transistors in the pixels P(1,1), P(1,2), P(2,3), P(2,4) that are not connected to any data line DL will be connected to the same row but spaced apart One column of pixels P. For example, the transistor in the pixel P(1,1) is electrically connected to the transistor and the storage capacitor Cs in the pixel (1,3) through the interconnection line IL13a; The connecting line IL24a is electrically connected to the transistor and the storage capacitor Cs in the pixel (1,4); the transistor in the pixel P(2,3) is electrically connected to the pixel P(2,5) through the interconnection line IL35a The transistor (not shown) and the storage capacitor Cs (not shown); and, the transistor in the pixel P(2,4) is electrically connected to the capacitor in the pixel P(2,6) through the interconnection line IL46a Crystal (not shown) and storage capacitor Cs (not shown).
請參見第6A圖,其係根據本發明另一種實施例的顯示面板上的像素P排列與連接方式之示意圖。在此圖式中,像素P(m,q)的配置與第4圖類似但稍有不同。即,第6A圖中位於奇數行(其中,m=1,3,5)的像素P(m,q)的連接方式,類似第4圖中位於偶數行(其中,m=2,4,6)的像素P的連接方式;第6圖中位於偶數行(其中,m=2,4,6)的像素P(m,q)的連接方式,類似第4圖中位於奇數行(其中,m=1,3,5)的像素P(m,q)的連接方式。此外,第6A圖也可套用第5A圖的共接像素JP的結構、第5B圖的孤立像素IP的結構。 Please refer to FIG. 6A, which is a schematic diagram of the arrangement and connection of pixels P on a display panel according to another embodiment of the present invention. In this figure, the configuration of the pixel P(m,q) is similar to that of Figure 4 but slightly different. That is, the connection method of pixels P(m,q) located in odd rows (where m=1,3,5) in Figure 6A is similar to that in even rows in Figure 4 (where m=2,4,6 ) The connection mode of the pixel P; the connection mode of the pixel P(m,q) in the even row (where m=2,4,6) in Figure 6 is similar to the connection mode in the odd row in Figure 4 (where m =1,3,5) the connection mode of the pixel P(m,q). In addition, in FIG. 6A, the structure of the common pixel JP in FIG. 5A and the structure of the isolated pixel IP in FIG. 5B can also be applied.
基於此種連接關係的相似性,此處不特別說明第6A圖的連接方式。惟,前述關於各個像素P與各個閘極線GL、資料線DL之間的連線,以及各列像素P之間設置互連接線IL的連接方式等,將因為像素P(m,q)位於 奇數行或與偶數行而不同。此部分關於像素P的連接關係,均可類推前述對第4圖的說明,此處不再詳述。 Based on the similarity of this connection relationship, the connection method of Figure 6A is not specifically described here. However, the aforementioned connection between each pixel P and each gate line GL and data line DL, as well as the connection method of the interconnection line IL between each column of pixels P, will be because the pixel P(m,q) is located Odd-numbered rows may be different from even-numbered rows. The connection relationship of the pixels P in this part can be analogized to the description of Figure 4 above, and will not be detailed here.
根據本發明的構想,孤立像素IP與位於他列的共接像素JP透過互連接線IL而相連的方式也可能不同。第6B圖為另一種說明孤立像素IP與共接像素JP之連接方式的實施例。 According to the concept of the present invention, the way in which the isolated pixel IP and the common pixel JP located in another column are connected through the interconnection line IL may also be different. FIG. 6B is another embodiment illustrating the connection method of the isolated pixel IP and the common pixel JP.
請參見第6B圖,其係根據本發明另一種實施例的顯示面板上的像素排列與連接方式之示意圖。儘管在此實施例中,孤立像素IP透過互連接線IL而與共接像素JP相連的方式,與第4圖稍有不同,但孤立像素IP經由共接像素JP接收資料電壓的控制方式大致類似。 Please refer to FIG. 6B, which is a schematic diagram of the arrangement and connection of pixels on a display panel according to another embodiment of the present invention. Although in this embodiment, the way in which the isolated pixel IP is connected to the common pixel JP through the interconnection line IL is slightly different from that in Figure 4, the control method of the isolated pixel IP receiving the data voltage through the common pixel JP is roughly similar. .
在第6B圖中,位於奇數行(其中,m=1,3,5)且位於第一列(q=1)的像素P(1,1)、P(3,1)、P(5,1)透過互連接線IL而分別與位於同一行且位於第四列(其中,q=4)的像素P(1,4)、P(3,4)、P(5,4)相連。位於奇數行(其中,m=1,3,5)且位於第二列(其中,q=2)的像素P(1,2)、P(3,2)、P(5,2)透過互連接線IL而分別與位於同一行且位於第三列(其中,q=3)的像素P(1,3)、P(3,3)、P(5,3)相連。換言之,位於奇數行(其中,m=1,3,5)的Q個像素P中,與偶數閘極線GL[n](其中,n=2,4)相連的共接像素JP,與位於同一行但是和閘極線GL[n-1]相連的孤立像素IP之間設有互連接線IL。 In Figure 6B, the pixels P(1,1), P(3,1), P(5, 1) Connected to the pixels P(1,4), P(3,4), P(5,4) located in the same row and located in the fourth column (where q=4) through the interconnection line IL. The pixels P(1,2), P(3,2), P(5,2) located in odd rows (where m=1,3,5) and located in the second column (where q=2) pass through each other The connecting lines IL are respectively connected to the pixels P(1,3), P(3,3), P(5,3) located in the same row and located in the third column (where q=3). In other words, among Q pixels P located in odd-numbered rows (where m=1, 3, 5), the common pixel JP connected to even-numbered gate line GL[n] (where n=2, 4) is An interconnection line IL is provided between the isolated pixels IP in the same row but connected to the gate line GL[n-1].
在第6B圖中,位於偶數行(其中,m=2,4,6)且位於第一列(q=1)的像素P(2,1)、P(4,1)、P(6,1)的互連接線IL為浮接;位於偶數行(其中,m=2,4,6)且位於第二列(q=2)的像素P(2,2)、P(4,2)、P(6,2)的互連接線IL為浮接。位於偶數行(其中,m=2,4,6)且位於第三列(其中,q=3)的像素P(2,3)、P(4,3)、P(6,3)透過互連接線IL而分別與位於同一行且位於第六列(其中,q=6)的像素P(2,6)、P(4,6)、P(6,6)相連。位於偶數行(其中,m=2,4,6)且位於第四列(q=4)的像素P(2,4)、P(4,4)、P(6,4)透過互連接線IL而分別與位於同一 行且位於第五列(其中,q=5)的像素P(2,5)、P(4,5)、P(6,5)相連。換言之,位於奇數行(其中,m=1,3,5)的Q個像素P中,在與奇數閘極線GL[n](其中,n=1,3)相連的共接像素JP,與位於同一行但是和閘極線GL[n-1]相連的孤立像素IP之間設有互連接線IL。 In Figure 6B, the pixels P(2,1), P(4,1), P(6, 1) The interconnection line IL is floating; the pixels P(2,2) and P(4,2) located in the even rows (where m=2,4,6) and located in the second column (q=2) The interconnection IL of P(6,2) is floating. The pixels P(2,3), P(4,3), P(6,3) located in the even rows (where m=2,4,6) and located in the third column (where q=3) pass through each other The connecting lines IL are respectively connected to pixels P(2,6), P(4,6), and P(6,6) located in the same row and located in the sixth column (where q=6). Pixels P(2,4), P(4,4), P(6,4) located in even rows (where m=2,4,6) and located in the fourth column (q=4) are interconnected IL and are located at the same The pixels P(2,5), P(4,5), and P(6,5) in the fifth column (where q=5) are connected. In other words, among the Q pixels P located in odd rows (where m=1, 3, 5), the common pixel JP connected to the odd gate line GL[n] (where n=1, 3) and An interconnection line IL is provided between isolated pixels IP located in the same row but connected to the gate line GL[n-1].
位於第一行(其中,m=1)的像素P中,像素P(1,3)、P(1,7)連接至資料線DL[1];像素P(1,4)、P(1,8)連接至資料線DL[2];還有一部份位的像素P(1,1)、P(1,2)、P(1,5)、P(1,6)未連接至任何資料線DL。其他位於奇數行(即,m=3,5)的像素P與資料線DL之間的連接方式,與位於第一行的像素P的連接方式類似。由第4圖可以推知,對位在各奇數行(其中,m=1,3,5)的像素P中,與偶數閘極線GL[n](其中,n=2,4)相連的Q/2個像素P而言,其中位於第q=n*2-1列者與第m行的資料線DL[m]相連;位於第q=n*2列者與第(m+1)行的資料線DL[m+1]相連。另一方面,位在奇數行(其中,m=1,3,5)並與奇數閘極線GL[n](其中,n=1,3)相連的Q/2個像素為孤立像素IP,並未連接至資料線DL。 In the pixel P located in the first row (where m=1), the pixels P(1,3), P(1,7) are connected to the data line DL[1]; the pixels P(1,4), P(1 ,8) is connected to the data line DL[2]; there are some pixels P(1,1), P(1,2), P(1,5), P(1,6) that are not connected to any Data line DL. The connection mode between the other pixels P located in odd rows (ie, m=3, 5) and the data line DL is similar to the connection mode of the pixels P located in the first row. It can be inferred from Fig. 4 that in the pixel P of each odd-numbered row (where m=1, 3, 5), the Q connected to the even-numbered gate line GL[n] (where n=2, 4) /2 pixels P, among them, those in the q=n*2-1th column are connected to the data line DL[m] in the mth row; those in the q=n*2th column are connected to the (m+1)th row The data line DL[m+1] is connected. On the other hand, Q/2 pixels located in odd rows (where m=1, 3, 5) and connected to odd gate lines GL[n] (where n=1, 3) are isolated pixels IP, Not connected to data line DL.
同樣的,在位於第二行(其中,m=2)的像素P中,像素P(2,1)、P(2,5)連接至資料線DL[2];像素P(2,2)、P(2,6)連接至資料線DL[3];像素P(2,3)、P(2,4)、P(2,7)、P(2,8)未連接至任何資料線DL。其他位於偶數行(其中,m=4,6)的像素P與資料線DL之間的連接方式,與位於第二行的像素P的連接方式類似。由第4圖可以推知,對位在各偶數行(其中,m=2,4,6)的Q個像素中,與奇數閘控制極線GL[n](其中,n=1,3)相連的Q/2個像素P而言,位於第q=n*2-1列者與資料線DL[m]相連;位於第q=n*2列者與資料線DL[m+1]相連。另一方面,位在偶數行(其中,m=2,4,6)並與偶數閘極線GL[n](其中,n=2,4)相連的Q/2個像素P為孤立像素IP,並未連接至任何資料線DL。 Similarly, in the pixel P located in the second row (where m=2), the pixels P(2,1) and P(2,5) are connected to the data line DL[2]; the pixel P(2,2) , P(2,6) is connected to data line DL[3]; pixel P(2,3), P(2,4), P(2,7), P(2,8) are not connected to any data line DL. The connection between the other pixels P located in the even rows (where m=4, 6) and the data line DL is similar to the connection between the pixels P located in the second row. It can be inferred from Figure 4 that the alignment is in Q pixels in each even-numbered row (where m=2,4,6), and is connected to odd-numbered gate control line GL[n] (where n=1,3) For Q/2 pixels P, those in the q=n*2-1th row are connected to the data line DL[m]; those in the q=n*2th row are connected to the data line DL[m+1]. On the other hand, Q/2 pixels P located in the even-numbered rows (where m=2,4,6) and connected to the even-numbered gate line GL[n] (where n=2,4) are isolated pixels IP , Is not connected to any data line DL.
更進一步觀察未與資料線DL連接的像素P,可以根據該些像素P所在的行數不同而歸納出以下關係。即,位於奇數行(其中,m=1,3,5)的像素P中,與奇數閘極線GL[n](其中,n=1、3)相連的像素P,並未直接電連接至任何資料線DL;以及,位於偶數行(其中,m=2,4,6)的像素P中,與偶數閘極線GL[n](其中,n=2、4)相連的像素P,亦未直接電連接至任何資料線DL。 Further observing the pixels P that are not connected to the data line DL, the following relationship can be summarized according to the number of rows where the pixels P are located. That is, in pixels P located in odd rows (where m=1, 3, 5), pixels P connected to odd gate lines GL[n] (where n=1, 3) are not directly electrically connected to Any data line DL; and, in pixels P located in even-numbered rows (where m=2, 4, 6), pixels P connected to even-numbered gate lines GL[n] (where n=2, 4) are also It is not directly electrically connected to any data line DL.
請參見第7圖,其係依據顯示面板上的像素P的特性,將其歸類為兩種類型的像素對PP之示意圖。為進一步說明閘極線GL的波形變化對於像素的影響,此處進一步將兩兩相鄰的像素P定義為一像素對(pixel pair,簡稱為PP)。第7圖係基於第4圖的像素排列方式,關於第6A、6B圖的像素P排列方式與像素對PP之對應關係,此處不再詳述。 Please refer to FIG. 7, which is a schematic diagram of two types of pixel pairs PP according to the characteristics of pixels P on the display panel. In order to further illustrate the influence of the waveform change of the gate line GL on the pixels, two adjacent pixels P are further defined as a pixel pair (PP for short). Fig. 7 is based on the pixel arrangement of Fig. 4, and the correspondence between the arrangement of pixels P in Figs. 6A and 6B and the pixel pair PP will not be described in detail here.
為便於說明,第7圖所示的顯示面板並未繪出資料線DL,此處並假設M=4、Q=10、N=5。其中,像素對PP指的是,位於同一行上,彼此相臨,並與同一條閘極線GL相連的兩個像素P。例如,第7圖將像素P(1,1)與像素P(1,2)對應為像素對PP(1,1)。其餘各個像素對PP與像素P之間的對應關係可類推得出,此處不予詳述。 For ease of description, the display panel shown in FIG. 7 does not draw the data line DL, and it is assumed here that M=4, Q=10, and N=5. Among them, the pixel pair PP refers to two pixels P located on the same row, adjacent to each other, and connected to the same gate line GL. For example, in Figure 7, the pixel P(1,1) and the pixel P(1,2) correspond to the pixel pair PP(1,1). The correspondence between the remaining pixel pairs PP and the pixel P can be derived by analogy, and will not be described in detail here.
第7圖左側繪式顯示面板上的各個像素P;這些像素P可對應為第7圖中間所繪式的像素對PP。進一步的,可將第7圖中間的顯示面板簡化為第7圖右側的畫法。即,以像素對PP(1,1)、PP(2,1)、PP(3,1)、PP(4,1)、PP(1,2)、PP(2,2)、PP(3,2)、PP(4,2)呈現顯示面板上的連接關係。 The pixels P on the left side of FIG. 7 are drawn on the display panel; these pixels P can correspond to the pixel pairs PP drawn in the middle of FIG. 7. Further, the display panel in the middle of FIG. 7 can be simplified to the drawing on the right side of FIG. 7. That is, the pixel pair PP(1,1), PP(2,1), PP(3,1), PP(4,1), PP(1,2), PP(2,2), PP(3 ,2), PP(4,2) present the connection relationship on the display panel.
基於前述關於像素P的連接方式,像素對PP同樣可根據其所包含的像素P的連接方式區分為兩類,其一為未與任何資料線DL相連的孤立像素對(isolated pixel pair,簡稱為IPP),其二為與資料線DL相連的共接像素對(jointly connected pixel pair,簡稱為JPP)。此處以點狀網底表示孤立像素 對IPP,以無網底的方框代表共接像素對JPP。由圖中可以看出,這兩類像素對PP交錯排列於顯示面板上。 Based on the aforementioned connection mode of the pixel P, the pixel pair PP can also be divided into two types according to the connection mode of the pixel P contained therein. One is an isolated pixel pair that is not connected to any data line DL (isolated pixel pair, referred to as IPP), and the other is a jointly connected pixel pair (JPP) connected to the data line DL. Here, the dotted mesh bottom represents isolated pixels For IPP, a box without the bottom of the screen represents the shared pixel pair JPP. It can be seen from the figure that the two types of pixel pairs PP are staggered and arranged on the display panel.
此種關於孤立像素對IPP與共接像素對JPP的定義,同樣可套用於第6A、6B圖的顯示面板。據此,可以將第4圖與第6A圖的顯示面板上的像素P,以像素對PP表示。表2整理出第4圖與第6A、6B圖的顯示面板上的像素對PP隨著位置不同而決定其所屬之像素對PP的類型。 This definition of the isolated pixel pair IPP and the shared pixel pair JPP can also be applied to the display panels shown in Figures 6A and 6B. Accordingly, the pixels P on the display panel of FIG. 4 and FIG. 6A can be represented by pixel pairs PP. Table 2 sorts out the pixel pair PP on the display panel of Fig. 4 and Fig. 6A and Fig. 6B depending on the position and determines the type of the pixel pair PP to which they belong.
對第4圖的顯示面板而言,當n為奇數(即,n=1,3)時,位於奇數行(即,m=1,3)的像素對為孤立像素對IPP;位於偶數行即,m=2,4,6)的像素對為共接像素對JPP。另一方面,當n為偶數(即,n=2,4)時,位於奇數行(即,m=1,3)的像素對PP為共接像素對JPP;位於偶數行(即,m=2,4,6)的像素對為孤立像素對IPP。對第6圖的顯示面板而言,當n為奇數(即,n=1,3)時,位於奇數行(即,m=1,3)的像素對PP為共接像素對JPP;位於偶數行(即,m=2,4,6)的像素對PP為孤立像素對IPP。另一方面,當n為偶數(即, n=2,4)時,位於奇數行(即,m=1,3)的像素對PP為孤立像素對IPP;位於偶數行(即,m=2,4,6)的像素對PP為共接像素對JPP。 For the display panel in Figure 4, when n is an odd number (ie, n=1,3), the pixel pair located in odd rows (ie, m=1,3) is an isolated pixel pair IPP; , M=2,4,6) the pixel pair JPP. On the other hand, when n is an even number (i.e., n=2,4), the pixel pair PP located in odd-numbered rows (i.e., m=1,3) is the common pixel pair JPP; located in even-numbered rows (i.e., m= The pixel pairs of 2,4,6) are isolated pixel pairs IPP. For the display panel in Figure 6, when n is an odd number (ie, n=1,3), the pixel pair PP located in odd rows (ie, m=1,3) is the common pixel pair JPP; The pixel pair PP of the row (ie, m=2, 4, 6) is an isolated pixel pair IPP. On the other hand, when n is even (ie, When n=2,4), the pixel pair PP located in odd-numbered rows (ie, m=1,3) is an isolated pixel pair IPP; pixel pairs PP located in even-numbered rows (ie, m=2,4,6) are common Connect the pixel pair JPP.
若將位於第m行與第n列的像素對PP表示為PP(m,n),則像素對PP(m,n)包含兩個像素P,且這兩個像素P在面板上的位置可以表示為P(m,2*n-1)、P(m,2*n)。當像素對PP(m,n)為孤立像素對IPP時,像素P(m,2*n-1)、P(m,2*n)無法從資料線DL[m]、DL[m+1]直接接收資料電壓。從資料線DL[m]、DL[m+1]傳送的資料電壓,將先傳送至P(m,2*n+1)、P(m,2*(n+1))。其後,再藉由P(m,2*n+1)、P(m,2*(n+1))內的電晶體導通而傳送至像素P(m,2*n-1)、P(m,2*n)。當像素對PP(m,n)為共接像素對JPP時,像素對PP(m,n)電連接於資料線DL[m]、DL[m+1],以及閘極線GL[n]。此時,像素P(m,2*n-1)、P(m,2*n)可以分別透過資料線DL[m]、DL[m+1],直接接收資料線DL傳送的資料電壓。此外,像素P(m,2*n-1)、P(m,2*n)除了從資料線DL[m]、DL[m+1]接收資料電壓外,亦藉由內部的電晶體導通而傳送至像素P(m,2*(n-1)-1)、P(m,2*(n-1))。 If the pixel pair PP located in the mth row and the nth column is represented as PP(m,n), the pixel pair PP(m,n) includes two pixels P, and the positions of the two pixels P on the panel can be Expressed as P(m,2*n-1), P(m,2*n). When the pixel pair PP(m,n) is an isolated pixel pair IPP, the pixels P(m,2*n-1), P(m,2*n) cannot be separated from the data lines DL[m], DL[m+1 ] Directly receive data voltage. The data voltages transmitted from the data lines DL[m] and DL[m+1] will first be transmitted to P(m,2*n+1), P(m,2*(n+1)). After that, the transistors in P(m,2*n+1) and P(m,2*(n+1)) are turned on and transmitted to the pixels P(m,2*n-1), P (m,2*n). When the pixel pair PP(m,n) is the shared pixel pair JPP, the pixel pair PP(m,n) is electrically connected to the data lines DL[m], DL[m+1], and the gate line GL[n] . At this time, the pixels P(m, 2*n-1) and P(m, 2*n) can directly receive the data voltage transmitted by the data line DL through the data lines DL[m] and DL[m+1], respectively. In addition, the pixels P(m,2*n-1) and P(m,2*n) not only receive the data voltage from the data lines DL[m], DL[m+1], they are also turned on by the internal transistors And transfer to the pixels P(m,2*(n-1)-1), P(m,2*(n-1)).
為進一步說明對第4圖與第6A、6B圖所示之顯示面板的控制方式,以下將像素對PP內的像素P的狀態定義為如表3所示的四種狀態。其中,屬於同一個像素對PP內的兩個像素P,其狀態的轉換一致。 In order to further explain the control method of the display panel shown in FIGS. 4 and 6A and 6B, the state of the pixel P in the pixel pair PP is defined as the four states shown in Table 3 below. Among them, two pixels P belonging to the same pixel pair PP have the same state transition.
狀態A代表像素對PP在該單位期間並未充電也未接收資料電壓;狀態B代表像素對PP在該單位期間被充電,但資料線DL所提供的資料電壓並不是針對該像素對PP(此種資料電壓並未與像素對PP對應但像素對PP的儲存電容Cs仍被充電的情況,可視為預先對該像素對PP的儲存電容Cs充電);狀態C代表像素對PP在該單位期間被充電,且資料線DL所提供的資料電壓的確對應於該像素對PP;以及,狀態D代表像素對PP已經被寫入正確的資料電壓,且像素對PP的儲存電容Cs先前已經完成充電,故該像素對PP的儲存電容Cs在該單位期間不需要再被充電。在本文中,將狀態A定義為第一預備狀態;將狀態B定義為第二預備狀態;將狀態C定義為更新狀態;以及,將狀態D定義為顯示狀態。其中,當像素對PP處於狀態D時,代表像素對PP已經能夠正常顯示像素資料。據此,當顯示面板上的每個像素對PP都處於狀態D時,顯示面板可正常顯示一個完整的畫面。 State A means that the pixel pair PP has not been charged or received the data voltage during the unit period; State B means the pixel pair PP is charged during the unit period, but the data voltage provided by the data line DL is not for the pixel pair PP (this A situation where the data voltage does not correspond to the pixel pair PP but the storage capacitor Cs of the pixel pair PP is still charged, which can be regarded as pre-charging the storage capacitor Cs of the pixel pair PP); state C represents that the pixel pair PP is charged during the unit period Charging, and the data voltage provided by the data line DL indeed corresponds to the pixel pair PP; and, the state D represents that the pixel pair PP has been written with the correct data voltage, and the storage capacitor Cs of the pixel pair PP has been previously charged, so The storage capacitor Cs of the pixel pair PP does not need to be charged during the unit period. In this article, state A is defined as the first preliminary state; state B is defined as the second preliminary state; state C is defined as the update state; and state D is defined as the display state. Among them, when the pixel pair PP is in the state D, it means that the pixel pair PP can display the pixel data normally. Accordingly, when each pixel pair PP on the display panel is in the state D, the display panel can display a complete picture normally.
為便於說明,以下僅就第4圖的例子,說明顯示面板如何因應閘極線GL的變化而改變像素對PP的狀態。關於第6A、6B圖的控制方式,本案所屬技術領域的習知技藝者可稍加修改而加以應用,此處不再詳述。 For the convenience of description, the following only uses the example in FIG. 4 to explain how the display panel changes the state of the pixel pair PP in response to the change of the gate line GL. Regarding the control methods of Figures 6A and 6B, those skilled in the technical field to which this case belongs can make slight modifications and apply them, which will not be detailed here.
請參見第8圖,其係根據本發明實施例的顯示面板,像素對的狀態變化之示意圖。無論是第4、6A、6B圖的顯示面板,當像素對PP屬於共接像素對JPP時,具有五個階段的狀態變化;當像素對PP屬於孤立像素對IPP時,具有兩個階段的狀態變化。 Please refer to FIG. 8, which is a schematic diagram of the state change of the pixel pair in the display panel according to the embodiment of the present invention. Regardless of the display panels in Figures 4, 6A, and 6B, when the pixel pair PP belongs to the common pixel pair JPP, there are five stages of state changes; when the pixel pair PP belongs to the isolated pixel pair IPP, there are two stages of state changes Variety.
根據本發明的構想,屬於共接像素對JPP者,其狀態變化依序為狀態B、狀態A、狀態B、狀態C、狀態D;屬於孤立像素對IPP者,其狀態變化依序為狀態C、狀態D。其中,位於同一列的共接像素對JPP,其狀態變化的過程與期間彼此一致,位於同一列的孤立像素對IPP,其狀態變化的 過程與期間彼此一致。為便於說明,以下的說明,將延續第7圖的標示。關於像素對PP如何根據所屬的類型不同(IPP或JPP)而有不同的狀態變化過程,將進一步在第9A、9B、10A~10N圖說明。 According to the concept of the present invention, those belonging to the shared pixel pair JPP have their state changes in order of state B, state A, state B, state C, and state D; those belonging to the isolated pixel pair IPP have their state changes in order of state C , State D. Among them, the state change process and period of the shared pixel pair JPP located in the same column are consistent with each other, and the isolated pixel pair IPP located in the same column, the state change The process and period are consistent with each other. For ease of description, the following description will continue the labeling in Figure 7. How the pixel pair PP has different state changes according to the type (IPP or JPP) to which it belongs, will be further explained in Figures 9A, 9B, and 10A~10N.
請參見第9A圖,其係與第8圖所示的顯示面板控制相關之信號的波形圖。為便於說明,此處沿著時間軸方向定義時點t1~t13,以及根據時點t1~t13而劃分的多個單位期間T1~T13。每個單位期間T1~T13的長度彼此相等。沿著縱軸方向由上而下分別為閘極控制信號GL[1]~GL[5]。 Please refer to Figure 9A, which is a waveform diagram of the signals related to the display panel control shown in Figure 8. For ease of description, here are defined time points t1 to t13 along the time axis, and multiple unit periods T1 to T13 divided according to time points t1 to t13. The length of each unit period T1~T13 is equal to each other. From top to bottom along the vertical axis are gate control signals GL[1]~GL[5].
由第9A圖中可以看出,每個閘極控制信號GL[n](其中,n=1~5)的波形變化具有以下第9B圖的模式。顯示面板用於顯示一個畫面資料時,顯示面板上的閘極控制信號GL[1]~GL[5]將輪續產生如第9B圖所示的波形。待顯示面板顯示下一個畫面資料時,顯示面板上的閘極控制信號GL[1]~GL[5],將再度輪續產生如第9B圖的波形。即,對閘極控制信號GL[1]~GL[5]而言,第9B圖之波形的產生頻率相當於顯示畫面的更新頻率。 It can be seen from Fig. 9A that the waveform change of each gate control signal GL[n] (where n=1~5) has the following pattern in Fig. 9B. When the display panel is used to display a screen data, the gate control signals GL[1]~GL[5] on the display panel will generate the waveform shown in Figure 9B in turn. When the display panel displays the next screen data, the gate control signals GL[1]~GL[5] on the display panel will again generate the waveform as shown in Figure 9B. That is, for the gate control signals GL[1] to GL[5], the generation frequency of the waveform in Figure 9B corresponds to the update frequency of the display screen.
首先,閘極控制信號GL[n]先處於低位準(L),其次,閘極控制信號GL[n]在預充電期間Tpc提升至高位準(H)。在預充電期間Tpc過後為等待期間Twt,此時閘極控制信號GL[n]回到低位準(L)。等待期間Twt結束後,為一第一資料更新期間Tup1與一第二資料更新期間Tup2,此時閘極控制信號GL[n]為高位準(L)。待第二資料更新期間Tup2結束後,閘極控制信號GL[n]將再降至低位準(L),並持續維持在低位準(L)。 First, the gate control signal GL[n] is at the low level (L) first, and secondly, the gate control signal GL[n] is raised to the high level (H) during the precharge period Tpc. After the pre-charge period Tpc is the waiting period Twt, the gate control signal GL[n] returns to the low level (L) at this time. After the waiting period Twt ends, there is a first data update period Tup1 and a second data update period Tup2. At this time, the gate control signal GL[n] is at a high level (L). After the second data update period Tup2 ends, the gate control signal GL[n] will drop to the low level (L) again, and continue to be maintained at the low level (L).
其中,預充電期間Tpc、等待期間Twt、第一資料更新期間Tup1與第二資料更新期間Tup2均對應於一個單位期間。此外,相鄰的閘極線GL[n]、GL[n+1]之間,存在兩個單位期間的時間差。例如,閘極控制信號GL[1]的預充電期間Tpc為單位期間T1;閘極控制信號GL[2]的預充電期間Tpc為單位期間T3。也因此,閘極控制信號GL[2]的預充電期間Tpc對應於閘 極控制信號GL[1]的第一資料更新期間Tup1,且閘極控制信號GL[2]的等待期間Twt對應於閘極控制信號GL[1]的第二資料更新期間Tup2。 Among them, the precharge period Tpc, the waiting period Twt, the first data update period Tup1 and the second data update period Tup2 all correspond to a unit period. In addition, there is a time difference of two unit periods between adjacent gate lines GL[n] and GL[n+1]. For example, the precharge period Tpc of the gate control signal GL[1] is the unit period T1; the precharge period Tpc of the gate control signal GL[2] is the unit period T3. Therefore, the precharge period Tpc of the gate control signal GL[2] corresponds to the gate The first data update period Tup1 of the gate control signal GL[1], and the waiting period Twt of the gate control signal GL[2] corresponds to the second data update period Tup2 of the gate control signal GL[1].
請參見第10A~10N圖,其係以第8圖的顯示面板搭配第9A圖之信號波形時,顯示面板上的像素對PP的狀態之示意圖。以下,沿著第9A圖的時間軸順序,逐一說明閘極控制信號GL[1]~GL[5]的位準變化對像素對影響。另,因應此種控制方式的改變,時序控制器將對應調整資料電壓的傳送順序。關於時序控制器產生的資料電壓切換,可由本案所屬技術領域的習知技藝者基於像素P的連接方式、像素P的顏色與閘極線GL變化等參數而修改,故此處不特別說明。 Please refer to Figures 10A to 10N, which are schematic diagrams of the state of the pixel pair PP on the display panel when the display panel of Figure 8 is combined with the signal waveform of Figure 9A. Hereinafter, along the time axis of FIG. 9A, the influence of the changes in the levels of the gate control signals GL[1] to GL[5] on the pixels will be explained one by one. In addition, in response to this change in the control method, the timing controller will adjust the data voltage transmission sequence accordingly. Regarding the data voltage switching generated by the timing controller, it can be modified by those skilled in the art to which this case belongs based on the connection method of the pixel P, the color of the pixel P, the change of the gate line GL, and other parameters, so there is no special description here.
為便於說明,在第10A~10N圖中,以粗體框線標示的像素對PP,代表該像素對PP內的像素P在該單位期間產生狀態變化。以及,利用虛線曲線的圈選,代表在該單位期間內,該些像素對PP內的像素P根據資料電壓進行直接/間接充電。其中,並以較粗的線條代表閘極控制信號GL為高位準;以較細的線條代表閘極控制信號GL為低位準。以下所提到關於像素對PP的行為,同指在該像素對PP內的兩個像素P的行為。 For ease of description, in the figures 10A to 10N, the pixel pair PP marked with a bold frame line represents that the state of the pixel P in the pixel pair PP changes during the unit period. And, using the circled selection of the dashed curve, it means that the pixels P in the PP are directly/indirectly charged according to the data voltage during the unit period. Among them, the thicker line represents that the gate control signal GL is at a high level; the thinner line represents that the gate control signal GL is at a low level. The behavior of the pixel pair PP mentioned below also refers to the behavior of the two pixels P in the pixel pair PP.
例如,若提到對像素對PP充電,代表像素對PP內的兩個像素P所包含的電晶體導通,且像素對PP內的兩個像素P所包含的儲存電容Cs透過電晶體的導通而接收資料電壓並進行充電。又,進一步區分像素對PP的充電方式,則可依據像素對PP的類型而異。若為共接像素對JPP,則其充電方式是從資料線DL直接接收資料電壓並直接充電(以下簡稱為直接充電);若為孤立像素對IPP,則其充電方式是透過與次一條閘極線GL相連接的共接像素對JPP,以及與共接像素對JPP之間的互接連線IL而間接接收資料電壓(以下簡稱為間接充電)。 For example, if it is mentioned that the pixel pair PP is charged, it means that the transistors included in the two pixels P in the pixel pair PP are turned on, and the storage capacitors Cs included in the two pixels P in the pixel pair PP are turned on through the transistors. Receive data voltage and charge. In addition, to further distinguish the charging method of the pixel pair PP, it can be different according to the type of the pixel pair PP. If it is a shared pixel pair JPP, the charging method is to directly receive the data voltage from the data line DL and charge directly (hereinafter referred to as direct charging); if it is an isolated pixel pair IPP, the charging method is through the next gate The common-connected pixel pair JPP connected to the line GL and the interconnection line IL between the common-connected pixel pair JPP indirectly receive the data voltage (hereinafter referred to as indirect charging).
第10A圖所示為顯示面板在時點t1的情況。此時,顯示面板尚未開始運作。因此,閘極線GL[1]~GL[5]均為低位準(L)。 Figure 10A shows the display panel at time t1. At this time, the display panel has not yet started to operate. Therefore, the gate lines GL[1]~GL[5] are all low level (L).
第10B圖所示為搭配閘極控制信號GL1~GL[5]控制的顯示面板,各個像素對PP在單位期間T1的狀態。請同時參看第9A圖的單位期間T1與第10B圖。此時,閘極控制信號的位準為GL[1]=H,且GL[2]=GL[3]=GL[4]=GL[5]=L。由第9A圖可以看出,單位期間T1對應於閘極線GL[1]的預充電期間Tpc。在此同時,與閘極線GL[1]相連的共接像素對JPP(即,像素對PP(2,1)、PP(4,1))直接自資料線DL接收資料電壓並充電。根據本發明的構想,此時資料線DL所傳送的資料電壓並非與像素對PP(2,1)、PP(4,1)顯示對應的資料電壓。因此,在第10B圖中,像素對PP(2,1)、PP(4,1)處於狀態B。 Figure 10B shows the state of each pixel pair PP in the unit period T1 of the display panel controlled by the gate control signals GL1~GL[5]. Please refer to the unit period T1 in Figure 9A and Figure 10B at the same time. At this time, the level of the gate control signal is GL[1]=H, and GL[2]=GL[3]=GL[4]=GL[5]=L. It can be seen from FIG. 9A that the unit period T1 corresponds to the precharge period Tpc of the gate line GL[1]. At the same time, the shared pixel pair JPP (ie, the pixel pair PP(2,1), PP(4,1)) connected to the gate line GL[1] directly receives the data voltage from the data line DL and charges it. According to the concept of the present invention, the data voltage transmitted by the data line DL at this time is not the data voltage corresponding to the display of the pixel pair PP(2,1), PP(4,1). Therefore, in Figure 10B, the pixel pair PP(2,1) and PP(4,1) are in the state B.
另一方面,與閘極線GL[1]相連的孤立像素對IPP(即,像素對PP(1,1)、PP(3,1))並未接收到資料電壓,故維持為未動作狀態。由虛線曲線的圈選處可以看出,此時僅像素對PP(2,1)、PP(4,1)進行直接充電。 On the other hand, the isolated pixel pair IPP (ie, the pixel pair PP(1,1), PP(3,1)) connected to the gate line GL[1] does not receive the data voltage, so it remains in the non-acting state . It can be seen from the circled location of the dashed curve that only the pixels charge PP(2,1) and PP(4,1) directly.
第10C圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T2的像素對PP的狀態。請同時參看第9A圖的單位期間T2與第10C圖。此時,閘極控制信號的位準為GL[1]=GL[2]=GL[3]=GL[4]=GL[5]=L。由第9A圖可以看出,單位期間T2對應於閘極線GL[1]的等待期間Twt。在單位期間T2,並無任何像素對PP被充電。因此,與閘極線GL[1]相連的共接像素對JPP由原本的狀態B轉換至狀態A,而與閘極線GL[1]相連的孤立像素對IPP,以及其他列的像素對PP仍然維持未動作。 Figure 10C shows the state of the pixel pair PP during the unit period T2 of the display panel controlled by the gate lines GL1~GL[5]. Please refer to the unit period T2 in Figure 9A and Figure 10C at the same time. At this time, the level of the gate control signal is GL[1]=GL[2]=GL[3]=GL[4]=GL[5]=L. It can be seen from FIG. 9A that the unit period T2 corresponds to the waiting period Twt of the gate line GL[1]. During the unit period T2, no pixel is charged to PP. Therefore, the common pixel pair JPP connected to the gate line GL[1] transitions from the original state B to the state A, while the isolated pixel pair IPP connected to the gate line GL[1] and the pixel pairs PP in other columns Still remained inactive.
第10D圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T3的像素對PP的狀態。請同時參看第9A圖的單位期間T3與第10D圖。此時,閘極控制信號的位準為GL[1]=GL[2]=H,且 GL[3]=GL[4]=GL[5]=L。由第9A圖可以看出,單位期間T3同時對應於閘極線GL[1]的第一資料更新期間Tup1,以及閘極線GL[2]的預充電期間Tpc。 FIG. 10D shows the state of the pixel pair PP during the unit period T3 of the display panel controlled by the gate lines GL1~GL[5]. Please refer to the unit period T3 and 10D in Figure 9A at the same time. At this time, the level of the gate control signal is GL[1]=GL[2]=H, and GL[3]=GL[4]=GL[5]=L. It can be seen from FIG. 9A that the unit period T3 simultaneously corresponds to the first data update period Tup1 of the gate line GL[1] and the precharge period Tpc of the gate line GL[2].
在此同時,與閘極線GL[1]相連的共接像素對JPP(即,像素對PP(2,1)、PP(4,1))被直接充電。另一方面,與閘極線GL[1]相連的孤立像素對IPP(即,像素對PP(1,1)、PP(3,1))並未接收到充電用的資料電壓。再者,與閘極線GL[2]相連的共接像素對JPP(即,PP(1,2)、PP(3,2))被直接充電,並且,連帶的使與閘極線GL[1]相連的孤立像素對IPP(即,像素對PP(1,1)、PP(3,1))藉由互連接線IL傳送的資料電壓進行間接充電。根據本發明的構想,此時資料線DL上的資料電壓對應於像素對PP(1,1)、PP(3,1)的顯示資料,且像素對PP(1,2)、PP(3,2)在這段單位期間雖然直接接收資料電壓,但用於對像素對PP(1,2)、PP(3,2)充電的資料電壓並未與其對應。 At the same time, the shared pixel pair JPP (ie, the pixel pair PP(2,1), PP(4,1)) connected to the gate line GL[1] is directly charged. On the other hand, the isolated pixel pair IPP (ie, the pixel pair PP(1,1), PP(3,1)) connected to the gate line GL[1] does not receive the data voltage for charging. Furthermore, the common pixel pair JPP (ie, PP(1,2), PP(3,2)) connected to the gate line GL[2] is directly charged, and the gate line GL[ 1] The connected isolated pixels indirectly charge the IPP (ie, the pixel pair PP(1,1), PP(3,1)) through the data voltage transmitted by the interconnection line IL. According to the concept of the present invention, the data voltage on the data line DL at this time corresponds to the display data of the pixel pair PP(1,1), PP(3,1), and the pixel pair PP(1,2), PP(3, 2) Although the data voltage is directly received during this unit period, the data voltage used to charge the pixel pair PP(1,2) and PP(3,2) does not correspond to it.
據此,在單位期間T3,與閘極線GL[1]相連的共接像素對JPP(即,像素對PP(2,1)、PP(4,1))從原本的狀態A轉換至狀態B。在此同時,與閘極線GL[1]相連的孤立像素對(即,像素對PP(1,1)、PP(3,1))收到正確的資料電壓且被充電,因而為狀態C。在此同時,與閘極線GL[2]相連的共接像素對JPP(即,像素對PP(1,2)、PP(3,2))也同樣被與孤立像素對(即,像素對PP(1,1)、PP(3,1))對應的資料電壓充電。由於資料電壓並未對應於共接像素對JPP,因此共接像素對JPP為狀態B。 Accordingly, in the unit period T3, the common pixel pair JPP connected to the gate line GL[1] (that is, the pixel pair PP(2,1), PP(4,1)) transition from the original state A to the state B. At the same time, the isolated pixel pair (ie, the pixel pair PP(1,1), PP(3,1)) connected to the gate line GL[1] receives the correct data voltage and is charged, so it is in state C . At the same time, the common pixel pair JPP (ie, the pixel pair PP(1,2), PP(3,2)) connected to the gate line GL[2] is also connected to the isolated pixel pair (ie, the pixel pair). PP(1,1), PP(3,1)) corresponding to the data voltage charging. Since the data voltage does not correspond to the commonly connected pixel pair JPP, the commonly connected pixel pair JPP is in state B.
因為像素對PP(1,2)、PP(3,2)在單位期間T3已經由與其對應的資料電壓充電,在單位期間T3結束後(即,時點t4),像素對PP(1,2)、PP(3,2)裡的像素,即可正常顯示像素資料。 Because the pixel pair PP(1,2), PP(3,2) has been charged by the corresponding data voltage during the unit period T3, after the unit period T3 ends (that is, at time t4), the pixel pair PP(1,2) Pixels in PP(3,2) can display pixel data normally.
又,由虛線曲線的圈選處可以看出,此時與閘極線GL[1]相連的全部像素對,以及與閘極線GL[2]相連的共接像素對JPP均被充電。這 些被充電的像素對PP中,屬於共接像素對JPP者進行直接充電並處於狀態B,屬於孤立像素對IPP者進行間接充電並處於狀態C。 Moreover, it can be seen from the circled location of the dashed curve that all pixel pairs connected to the gate line GL[1] and the common pixel pair JPP connected to the gate line GL[2] are all charged. This Among the charged pixel pairs PP, those belonging to the shared pixels directly charge the JPP and are in state B, and those belonging to the isolated pixels are indirectly charging the IPP and are in state C.
第10E圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T4的像素對的狀態。請同時參看第9A圖的單位期間T4與第10E圖。此時,閘極控制信號的位準為GL[1]=H,且GL[2]=GL[3]=GL[4]=GL[5]=L。由第9A圖可以看出,單位期間T4同時對應於閘極線GL[1]的第二資料更新期間Tup2,以及閘極線GL[2]的等待期間Twt。 Figure 10E shows the state of the pixel pair in the unit period T4 of the display panel controlled by the gate lines GL1~GL[5]. Please refer to the unit period T4 and 10E in Figure 9A at the same time. At this time, the level of the gate control signal is GL[1]=H, and GL[2]=GL[3]=GL[4]=GL[5]=L. It can be seen from FIG. 9A that the unit period T4 simultaneously corresponds to the second data update period Tup2 of the gate line GL[1] and the waiting period Twt of the gate line GL[2].
在單位期間T4中,與閘極線GL[1]相連的孤立像素對IPP(即,像素對PP(1,1)、PP(3,1))因為在時點t4之前已經接收對應的資料電壓並完成充電,像素對PP(1,1)、PP(3,1)將從狀態C轉換至狀態D。 In the unit period T4, the isolated pixel pair IPP (ie, the pixel pair PP(1,1), PP(3,1)) connected to the gate line GL[1] has received the corresponding data voltage before the time point t4 And complete charging, the pixel pair PP(1,1), PP(3,1) will transition from state C to state D.
此時,與閘極線GL[1]相連的共接像素對JPP(即,像素對PP(2,1)、PP(4,1)),將在單位期間T4直接充電。而且,對像素對PP(2,1)、PP(4,1)充電的是與其直接對應的資料電壓。因此,像素對PP(2,1)、PP(4,1)在單位期間T4為狀態C。於單位期間T4結束後(即,時點t5),與閘極線GL[1]相連的共接像素對JPP開始正常顯示像素資料。 At this time, the common pixel pair JPP (ie, the pixel pair PP(2,1), PP(4,1)) connected to the gate line GL[1] will be directly charged in the unit period T4. Moreover, the pixel pair PP(2,1), PP(4,1) is charged with the data voltage directly corresponding to it. Therefore, the pixel pair PP(2,1) and PP(4,1) are in the state C during the unit period T4. After the unit period T4 ends (ie, time t5), the common pixel pair JPP connected to the gate line GL[1] starts to display pixel data normally.
另一方面,在單位期間T4,因為閘極線GL[2]為低位準(GL[2]=L),與閘極線GL[2]相連的所有像素對(即,像素對PP(1,1)、PP(1,2)、PP(3,1)、PP(3,2))並未被充電。然而,與閘極線GL[2]相連的共接像素對JPP(即,PP(1,2)、PP(3,2)),因為先前在單位期間T3已經經過一段時間的充電。因此,像素對PP(1,2)、PP(3,2)在單位期間T4為狀態A。 On the other hand, in the unit period T4, because the gate line GL[2] is at a low level (GL[2]=L), all pixel pairs connected to the gate line GL[2] (ie, the pixel pair PP(1) ,1), PP(1,2), PP(3,1), PP(3,2)) are not charged. However, the common-connected pixel pair JPP (ie, PP(1,2), PP(3,2)) connected to the gate line GL[2] is because the unit period T3 has been charged for a period of time. Therefore, the pixel pair PP(1,2) and PP(3,2) are in the state A during the unit period T4.
又,由虛線曲線的圈選處可以看出,此時與閘極線GL[1]相連的共接像素對JPP被充電並處於狀態C,與閘極線GL[2]相連的共接像素對JPP並未被充電並處於狀態A。因為像素對PP(2,1)、PP(4,1)在單位期間T4已經由與其對應的資料電壓充電,在單位期間T4結束後(即,時點t5),像素對 PP(2,1)、PP(4,1)開始正常顯示像素資料。換言之,自時點t5開始,第一列的像素對PP皆可正常顯示像素資料。 In addition, it can be seen from the circled location of the dashed curve that the common pixel pair JPP connected to the gate line GL[1] is charged and is in state C, and the common pixel pair connected to the gate line GL[2] The JPP is not charged and is in state A. Because the pixel pair PP(2,1), PP(4,1) has been charged by the corresponding data voltage during the unit period T4, after the unit period T4 ends (ie, at time t5), the pixel pair PP(2,1) and PP(4,1) start to display pixel data normally. In other words, starting from time t5, the pixel pair PP in the first row can display pixel data normally.
第10F圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T5的像素對PP的狀態。請同時參看第9A圖的單位期間T5與第10F圖。此時,閘極控制信號的位準為GL[1]=GL[4]=GL[5]=L,且GL[2]=GL[3]=L。由第9A圖可以看出,單位期間T5同時對應於閘極線GL[2]的第一資料更新期間Tup1,以及閘極線GL[3]的預充電期間Tpc。 Figure 10F shows the state of the pixel pair PP in the unit period T5 of the display panel controlled by the gate lines GL1~GL[5]. Please refer to the unit period T5 and 10F in Figure 9A at the same time. At this time, the level of the gate control signal is GL[1]=GL[4]=GL[5]=L, and GL[2]=GL[3]=L. It can be seen from FIG. 9A that the unit period T5 corresponds to the first data update period Tup1 of the gate line GL[2] and the precharge period Tpc of the gate line GL[3] at the same time.
在此同時,與閘極線GL[2]相連的共接像素對JPP(即,像素對PP(1,2)、PP(3,2))被直接充電。另一方面,與閘極線GL[2]相連的孤立像素對IPP(即,像素對PP(2,2)、PP(4,2))並未接收到高位準的GL[2]。再者,與閘極線GL[3]相連的共接像素對JPP(即,PP(2,3)、PP(4,3))被直接充電,且與閘極線GL[2]相連的孤立像素對IPP(即,像素對PP(2,2)、PP(4,2))被間接充電。根據本發明的構想,此時資料線DL傳送的資料電壓對應於像素對PP(2,2)、PP(4,2)的顯示資料,且像素對PP(2,3)、PP(4,3)在這段單位期間雖然被直接充電,但用於對像素對PP(2,3)、PP(4,3)充電的資料電壓並未與其對應。 At the same time, the common pixel pair JPP connected to the gate line GL[2] (ie, the pixel pair PP(1,2), PP(3,2)) is directly charged. On the other hand, the isolated pixel pair IPP (ie, the pixel pair PP(2,2), PP(4,2)) connected to the gate line GL[2] does not receive the high level GL[2]. Furthermore, the shared pixel pair JPP (ie, PP(2,3), PP(4,3)) connected to the gate line GL[3] is directly charged, and the one connected to the gate line GL[2] The isolated pixel pair IPP (ie, the pixel pair PP(2,2), PP(4,2)) is indirectly charged. According to the concept of the present invention, the data voltage transmitted by the data line DL at this time corresponds to the display data of the pixel pair PP(2,2), PP(4,2), and the pixel pair PP(2,3), PP(4, 3) Although it is directly charged during this unit period, the data voltage used to charge the pixel pair PP(2,3) and PP(4,3) does not correspond to it.
據此,在單位期間T5,與閘極線GL[2]相連的共接像素對JPP(即,像素對PP(1,2)、PP(3,2))從原本的狀態A轉換至狀態B。在此同時,與閘極線GL[2]相連的孤立像素對IPP(即,像素對PP(2,2)、PP(4,2))收到與其對應的資料電壓且被充電,故為狀態C。另,與閘極線GL[3]相連的共接像素對JPP(即,像素對PP(2,3)、PP(4,3))被不是屬於自己的資料電壓充電,因此為狀態B。 According to this, in the unit period T5, the shared pixel pair JPP connected to the gate line GL[2] (ie, the pixel pair PP(1,2), PP(3,2)) transitions from the original state A to the state B. At the same time, the isolated pixel pair IPP (ie, the pixel pair PP(2,2), PP(4,2)) connected to the gate line GL[2] receives the corresponding data voltage and is charged, so State C. In addition, the shared pixel pair JPP (ie, the pixel pair PP(2,3), PP(4,3)) connected to the gate line GL[3] is charged with a data voltage that does not belong to itself, so it is in state B.
因為像素對PP(2,2)、PP(4,2)在單位期間T5已經由與其對應的資料電壓充電,在單位期間T5結束後(即,時點t6),像素對PP(2,2)、PP(4,2),可以開始正常顯示像素資料。 Because the pixel pair PP(2,2) and PP(4,2) have been charged by the corresponding data voltage during the unit period T5, after the unit period T5 ends (ie, time t6), the pixel pair PP(2,2) 、PP(4,2), you can start to display pixel data normally.
又,由虛線曲線的圈選處可以看出,此時與閘極線GL[2]相連的所有像素對,以及與閘極線GL[3]相連的共接像素對JPP均被充電。這些被充電的像素對PP中,屬於共接像素對JPP者被直接充電並處於狀態B,屬於孤立像素對IPP者被間接充電並處於狀態C。 Moreover, it can be seen from the circled location of the dashed curve that all pixel pairs connected to the gate line GL[2] and the common pixel pair JPP connected to the gate line GL[3] are all charged. Among the charged pixel pairs PP, those belonging to the shared pixel pair JPP are directly charged and are in the state B, and those belonging to the isolated pixel pair IPP are indirectly charged and are in the state C.
第10G圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T6的像素對PP的狀態。請同時參看第9A圖的單位期間T6與第10G圖。此時,閘極控制信號的位準為GL[1]=GL[3]=GL[4]=GL[5]=L,且GL[2]=H。由第9A圖可以看出,單位期間T6同時對應於閘極線GL[2]的第二資料更新期間Tup2,以及閘極線GL[3]的等待期間Twt。 Figure 10G shows the state of the pixel pair PP in the unit period T6 of the display panel controlled by the gate lines GL1~GL[5]. Please refer to the unit period T6 and 10G in Figure 9A at the same time. At this time, the level of the gate control signal is GL[1]=GL[3]=GL[4]=GL[5]=L, and GL[2]=H. It can be seen from FIG. 9A that the unit period T6 corresponds to the second data update period Tup2 of the gate line GL[2] and the waiting period Twt of the gate line GL[3] at the same time.
在單位期間T6中,與閘極線GL[2]相連的孤立像素對IPP(即,像素對PP(2,2)、PP(4,2))因為在時點t6之前已經接收對應的資料電壓並完成充電,像素對PP(2,2)、PP(4,2)從狀態C轉換至狀態D。 In the unit period T6, the isolated pixel pair IPP (ie, the pixel pair PP(2,2), PP(4,2)) connected to the gate line GL[2] has received the corresponding data voltage before the time t6 And complete charging, the pixel pair PP(2,2), PP(4,2) transition from state C to state D.
此時,與閘極線GL[2]相連的共接像素對JPP(即,像素對PP(1,2)、PP(3,2))在單位期間T6直接充電。而且,對像素對PP(1,2)、PP(3,2)充電的是與其直接對應的資料電壓。因此,像素對PP(1,2)、PP(3,2)在單位期間T6為狀態C。於單位期間T6結束後(即,時點t7),與閘極線GL[2]相連的共接像素對JPP,可以開始正常顯示像素資料。 At this time, the common pixel pair JPP connected to the gate line GL[2] (that is, the pixel pair PP(1,2), PP(3,2)) is directly charged in the unit period T6. Moreover, the pixel pairs PP(1,2) and PP(3,2) are charged with the data voltage directly corresponding to them. Therefore, the pixel pair PP(1,2), PP(3,2) is in the state C during the unit period T6. After the unit period T6 ends (ie, time t7), the common pixel pair JPP connected to the gate line GL[2] can start to display pixel data normally.
由虛線曲線的圈選處可以看出,此時與閘極線GL[2]相連的共接像素對JPP被充電並處於狀態C,與閘極線GL[3]相連的共接像素對JPP並未被充電並處於狀態A。因為像素對PP(1,2)、PP(3,2)在單位期間T6已經由與其對應的資料電壓充電,在單位期間T6結束後(即,時點t7),像素對PP(1, 2)、PP(3,2)正常顯示像素資料。換言之,自時點t7開始,第二列的像素對PP均正常顯示像素資料。 It can be seen from the circled location of the dashed curve that the common pixel pair JPP connected to the gate line GL[2] is charged and in state C, and the common pixel pair JPP connected to the gate line GL[3] Not being charged and in state A. Because the pixel pair PP(1,2), PP(3,2) has been charged by the corresponding data voltage during the unit period T6, after the unit period T6 ends (that is, at time t7), the pixel pair PP(1, 2), PP(3,2) displays pixel data normally. In other words, starting from the time point t7, the pixel pair PP in the second row normally displays pixel data.
第10H~10N圖所示為搭配閘極線GL1~GL[5]控制的顯示面板,在單位期間T7~T13的像素對PP的狀態。關於第10H~10N圖的操作,可類推前述說明而不再詳述。 Figures 10H~10N show the state of the pixel pair PP in the unit period T7~T13 for the display panel controlled by the gate lines GL1~GL[5]. Regarding the operation of the 10th to 10N pictures, the foregoing description can be analogized without detailed description.
承上,與閘極線GL[1]相連的孤立像素對IPP與共接像素對JPP分別從時點t4、t5開始顯示畫素資料;與閘極線GL[2]相連的孤立像素對IPP與共接像素對JPP,分別從時點t6、t7開始正常顯示畫素資料;與閘極線GL[3]相連的孤立像素對IPP與共接像素對JPP分別從時點t8、t9開始正常顯示畫素資料;與閘極線GL[4]相連的孤立像素對IPP與共接像素對JPP分別從時點t10、t11開始正常顯示畫素資料;以及,與閘極線GL[5]相連的孤立像素對IPP與共接像素對JPP分別從時點t12、t13過後開始正常顯示畫素資料。 Continuing from the above, the isolated pixel pair IPP and the common pixel pair JPP connected to the gate line GL[1] start to display pixel data from time t4 and t5 respectively; the isolated pixel pair IPP connected to the gate line GL[2] and The shared pixel pair JPP starts to display pixel data normally from time t6 and t7; the isolated pixel pair IPP connected to the gate line GL[3] and the shared pixel pair JPP start to display pixels normally from time t8 and t9 respectively Data; the isolated pixel pair IPP connected to the gate line GL[4] and the common pixel pair JPP start to display pixel data normally from time points t10 and t11, respectively; and, the isolated pixel pair connected to the gate line GL[5] The IPP and the shared pixel pair JPP start to display pixel data normally after the time points t12 and t13, respectively.
此外,在不考慮第一列與第N列的邊界情況下,細究像素對PP的充電過程也可以看出,在奇數編號的單位期間T3、T5、T7、T9中,共有M*3/2個像素對PP被充電(相當於M*3個像素被充電);以及,在偶數編號的單位期間T2、T4、T6、T8中,共有M/2個像素對PP被充電(相當於M個像素被充電)。 In addition, without considering the boundary between the first column and the Nth column, it can be seen that in the odd numbered unit period T3, T5, T7, T9, there is a total of M*3/2. Each pixel pair PP is charged (equivalent to M*3 pixels being charged); and, in even-numbered unit periods T2, T4, T6, T8, a total of M/2 pixel pairs PP are charged (equivalent to M The pixels are charged).
根據第7圖,在與閘極線GL[n](n為奇數)相連的像素對PP中,位於奇數行的像素對為孤立像素對IPP;位於偶數行的像素對PP為共接像素對JPP。在與閘極線GL[n](n為偶數)相連的像素對PP中,位於奇數行的像素對PP為共接像素對JPP;位於偶數行的像素對PP為孤立像素對IPP。其中,關於共接像素對JPP與孤立像素對IPP的狀態變化,可一併參看第8圖的表格。又,以第7圖的顯示面板與第8圖所述之孤立像素對IPP與共接像素對JPP的狀態變化,搭配第9A圖的波形,以及第10A~10H圖所示的閘極控制信 號GL[1]~GL[3]的波形變化與像素對PP的改變過程,可進一步歸納出第11圖的表格。 According to Figure 7, among the pixel pairs PP connected to the gate line GL[n] (n is an odd number), the pixel pairs located in odd rows are isolated pixel pairs IPP; the pixel pairs PP located in even rows are common pixel pairs. JPP. In the pixel pair PP connected to the gate line GL[n] (n is an even number), the pixel pair PP in the odd-numbered row is the common pixel pair JPP; the pixel pair PP in the even-numbered row is the isolated pixel pair IPP. Among them, regarding the state change of the common connected pixel pair JPP and the isolated pixel pair IPP, please refer to the table in Figure 8. In addition, the state changes of the isolated pixel pair IPP and the shared pixel pair JPP described in the display panel in Figure 7 and Figure 8 are combined with the waveforms in Figure 9A and the gate control signals shown in Figures 10A to 10H. The waveform changes of GL[1]~GL[3] and the change process of pixels to PP can be further summarized in the table in Figure 11.
請參見第11圖,其係基於第10A~10H圖,彙整閘極控制信號GL[1]、GL[2]、GL[3]的位準變化相對於像素對PP狀態之示意圖。此表格列出像素對PP所連接的閘極線GL、像素對PP在顯示面板的位置與各個單位期間等參數,可看出不同列的像素對PP之間的狀態變化與比較。為便於參看,第11圖以粗框表示在該段單位期間收到與其對應之資料電壓的像素對PP(即,處於狀態C的像素對PP),並以粗體虛線表示孤立像素對IPP經由互連接線IL與共接像素對JPP進行間接充電。 Please refer to Figure 11, which is based on Figures 10A to 10H, a schematic diagram of the level changes of the integrated gate control signals GL[1], GL[2], GL[3] relative to the state of the pixel pair PP. This table lists parameters such as the gate line GL connected to the pixel pair PP, the position of the pixel pair PP in the display panel, and each unit period. It can be seen that the state changes and comparisons between the pixel pairs PP in different columns are shown. For ease of reference, Figure 11 uses a bold frame to indicate the pixel pair PP that received its corresponding data voltage during the unit period (ie, the pixel pair PP in state C), and a bold dashed line indicates that the isolated pixel pair IPP passes through The interconnection line IL and the common pixel indirectly charge the JPP.
根據第11圖的粗框可以看出,自單位期間T3開始,每個單位期間均有其中一列的其中一類像素對PP可接收到正確的資料電壓。其中,在單位期間T3、T5、T7接收到正確的資料電壓的像素對PP是孤立像素對IPP,將由跨列的像素對PP提供。在單位期間T2、T4、T6接收到正確的資料電壓的像素對PP則是可直接接收正確的資料電壓的共接像素對JPP。 It can be seen from the bold frame in Figure 11 that since the unit period T3, each unit period has a row of one of the pixel pairs PP that can receive the correct data voltage. Among them, the pixel pair PP that receives the correct data voltage during the unit period T3, T5, and T7 is an isolated pixel pair IPP, which will be provided by the pixel pair PP across the columns. The pixel pair PP that receives the correct data voltage during the unit period T2, T4, and T6 is the common pixel pair JPP that can directly receive the correct data voltage.
第11圖可代表,在n=2的情況下,與閘極線GL[n-1]、GL[n]、GL[n+1]相連的像素對PP的狀態變化。由此歸納的關係,不但代表第4圖中,n為偶數的情況,也代表第6A圖中,n為奇數的情況。更進一步的,若從像素對PP本身的類型來看,針對閘極控制信號GL[n]的各個期間不同,顯示面板上的像素對PP的行為可大致歸納如下。如前所述,閘極控制信號GL[n]的一個變化週期包含:預充電期間Tpc、等待期間Twt、第一資料更新期間Tup1、第二資料更新期間Tup2。 Figure 11 can represent the state change of the pixel pair PP connected to the gate lines GL[n-1], GL[n], GL[n+1] in the case of n=2. The relationship summarized from this represents not only the case where n is an even number in Figure 4, but also the case where n is an odd number in Figure 6A. Furthermore, from the perspective of the type of the pixel pair PP, the behavior of the pixel pair PP on the display panel can be roughly summarized as follows for the different periods of the gate control signal GL[n]. As mentioned above, a change period of the gate control signal GL[n] includes the precharge period Tpc, the waiting period Twt, the first data update period Tup1, and the second data update period Tup2.
在閘極線GL[n]的預充電期間Tpc,閘極控制信號GL[n]為高位準。此時,位於第n列但未與閘極線GL[n]相連的孤立像素對IPP並未被充電。另一方面,同樣位於第n列也與閘極控制信號GL[n]相連的共接像素對 JPP雖然被直接充電,但是資料電壓代表的是位於第(n-1)列並與閘極線GL[n-1]相連的孤立像素對IPP的資料電壓。也就是說,在閘極線GL[n]的預充電期間Tpc,與閘極線GL[n]相連的共接像素對JPP以與閘極線G[n-1]相連之孤立像素對IPP的資料電壓進行第一次預充電。 During the precharge period Tpc of the gate line GL[n], the gate control signal GL[n] is at a high level. At this time, the isolated pixel pair IPP located in the nth column but not connected to the gate line GL[n] is not charged. On the other hand, the common pixel pair also located in the nth column and also connected to the gate control signal GL[n] Although the JPP is directly charged, the data voltage represents the data voltage of the isolated pixel in the (n-1)th column and connected to the gate line GL[n-1] to the IPP. That is, during the precharge period Tpc of the gate line GL[n], the common pixel pair JPP connected to the gate line GL[n] is the isolated pixel pair IPP connected to the gate line G[n-1] The data voltage is precharged for the first time.
其次,在閘極線GL[n]的等待期間Twt,位於第n列並與閘極線GL[n]相連的像素對(包含孤立像素對IPP與共接像素對JPP)均未充電。此時,位於第(n-1)列並與閘極線GL[n-1]列相連的共接像素對JPP被充電。 Secondly, during the waiting period Twt of the gate line GL[n], the pixel pairs (including the isolated pixel pair IPP and the shared pixel pair JPP) located in the nth column and connected to the gate line GL[n] are not charged. At this time, the shared pixel pair JPP located in the (n-1)th column and connected to the gate line GL[n-1] column is charged.
接著,在閘極線GL[n]的第一資料更新期間Tup1,位於第n列並與閘極線GL[n]相連的孤立像素對IPP,將經由位於第(n+1)列並與閘極線GL[n+1]相連的共接像素對JPP而間接的被充電。在此同時,位於第n列並與閘極線GL[n]相連的共接像素對JPP,也將因為閘極控制信號GL[n]為高位準而接收DL上的資料電壓。惟,此時資料線DL傳送的是與位於第n列並與閘極線GL[n]相連的孤立像素對IPP對應之資料電壓。因此,位於第n列並與閘極線GL[n]相連的共接像素對JPP在第一資料更新期間Tup1進行第二次預充電。 Next, during the first data update period Tup1 of the gate line GL[n], the isolated pixel pair IPP located in the nth column and connected to the gate line GL[n] will pass through the (n+1)th column and The shared pixel pair JPP connected to the gate line GL[n+1] is indirectly charged. At the same time, the shared pixel pair JPP located in the nth column and connected to the gate line GL[n] will also receive the data voltage on the DL because the gate control signal GL[n] is at a high level. However, at this time, the data line DL transmits the data voltage corresponding to the isolated pixel pair IPP located in the nth row and connected to the gate line GL[n]. Therefore, the common-connected pixel located in the nth column and connected to the gate line GL[n] precharges the JPP for the second time during the first data update period Tup1.
最後,在閘極線GL[n]的第二資料更新期間Tup2,位於第n列並與閘極線GL[n]相連的共接像素對JPP直接從資料線DL接收與其對應的資料電壓。如前所述,位於第n列並與閘極線GL[n]相連的共接像素對JPP先前已經在預充電期間Tpc進行過第一次預充電,以及在第一資料更新期間Tup1進行過第二次預充電。據此,位於第n列並與閘極線GL[n]相連的共接像素對JPP可較快充電與像素資料對應的位準。 Finally, during the second data update period Tup2 of the gate line GL[n], the shared pixel pair JPP located in the nth row and connected to the gate line GL[n] directly receives the data voltage corresponding to the pixel pair JPP from the data line DL. As mentioned above, the common-connected pixel on the nth column and connected to the gate line GL[n] has previously precharged the JPP for the first time during the precharge period Tpc, and has also been precharged during the first data update period Tup1. Precharge for the second time. Accordingly, the shared pixel pair JPP located in the nth column and connected to the gate line GL[n] can be charged to the level corresponding to the pixel data faster.
承上所述,根據本發明構想之實施例的顯示面板,可透過n條GL電連接於閘極驅動電路,以及透過(M+1)條資料線DL電連接於源極驅動電路。其中,源極驅動電路隨著時序控制器的控制而輸出(M+1)個 資料電壓,而閘極驅動電路在顯示面板的兩側對稱設置多個移位暫存器SR,並隨著時序控制器的控制而輸出N個閘極控制信號GL。顯示面板上,與兩個彼此相鄰之閘極線GL相連的像素對PP的控制彼此相關。例如,與閘極線GL[2]相連的孤立像素對IPP的控制以及與閘極線GL[3]相連的共接像素對JPP的控制相關;另一方面,與閘極線GL[3]相連的孤立像素對IPP的控制和與閘極線GL[4]相連的共接像素對JPP的控制相關。 As mentioned above, the display panel according to the embodiment of the present invention can be electrically connected to the gate driving circuit through n GLs and electrically connected to the source driving circuit through (M+1) data lines DL. Among them, the source drive circuit outputs (M+1) pieces according to the control of the timing controller Data voltage, and the gate driving circuit symmetrically arranges a plurality of shift registers SR on both sides of the display panel, and outputs N gate control signals GL following the control of the timing controller. On the display panel, the pixel pairs PP connected to the two adjacent gate lines GL are related to each other. For example, the isolated pixels connected to the gate line GL[2] control IPP and the common pixels connected to the gate line GL[3] control JPP; on the other hand, it is related to the gate line GL[3] The control of IPP by the connected isolated pixels is related to the control of JPP by the common pixels connected to the gate line GL[4].
假設與閘極線GL[n]相連的兩個(分別位於顯示面板兩側的)移位暫存器SR同步產生閘極控制信號GL[n],且與閘極線GL[n+1]相連的兩個(分別位於顯示面板兩側的)移位暫存器SR同步產生閘極控制信號GL[n+1]。根據前述,共有M/2個共接像素對JPP與M/2個孤立像素IPP對電連接於閘極線GL(n+1);以及,共有M/2個共接像素JPP對與M/2個孤立像素對IPP電連接於閘極線GL(n+1)。其中,和閘極線GL[n]相連的M/2個孤立像素對IPP,沿列方向與和閘極線GL[n+1]相連的M/2個共接像素對JPP交錯排列;和閘極線GL[n]相連的M/2個共接像素對JPP則與和閘極線GL[n+1]相連的孤立像素對IPP交錯排列。 Assume that the two shift registers SR (located on both sides of the display panel) connected to the gate line GL[n] synchronously generate the gate control signal GL[n], which is connected to the gate line GL[n+1] The two connected shift registers SR (located on both sides of the display panel) synchronously generate gate control signals GL[n+1]. According to the foregoing, there are a total of M/2 common pixel pairs JPP and M/2 isolated pixel IPP pairs electrically connected to the gate line GL(n+1); and, a total of M/2 common pixel pairs JPP and M/ The two isolated pixel pairs IPP are electrically connected to the gate line GL(n+1). Among them, the M/2 isolated pixel pairs IPP connected to the gate line GL[n] are alternately arranged along the column direction with the M/2 common pixel pairs JPP connected to the gate line GL[n+1]; and The M/2 common pixel pairs JPP connected to the gate line GL[n] are alternately arranged with the isolated pixel pairs IPP connected to the gate line GL[n+1].
另,在與閘極線GL[n]相連的M/2個孤立像素對IPP,以及與閘極線GL[n+1]相連的M/2個共接像素對JPP之間,共設有M條互連接線IL。透過互接連線IL,與閘極線GL[n]相連的M個孤立像素IP電連接於與閘極線GL[n+1]相連的共接像素JP。 In addition, between the M/2 isolated pixel pairs IPP connected to the gate line GL[n] and the M/2 common pixel pairs JPP connected to the gate line GL[n+1], a total of M interconnection wires IL. Through the interconnection line IL, the M isolated pixels IP connected to the gate line GL[n] are electrically connected to the common pixel JP connected to the gate line GL[n+1].
本發明的實施例在顯示面板左右兩側設置對稱的移位暫存器SR。閘極控制信號GL可以透過這兩個對稱的移位暫存器SR同時傳送至顯示面板,且顯示面板具有預充電的功能,故前述的實施例具有良好的驅動能力。再者,由於每個移位暫存器SR應於兩列的像素P,代表移位暫存器SR 可使用的(行方向)長度較長,並能縮減所需之(列方向)寬度。因此,前述實施例也符合需要窄邊框的需求。 In the embodiment of the present invention, symmetrical shift registers SR are arranged on the left and right sides of the display panel. The gate control signal GL can be simultaneously transmitted to the display panel through the two symmetrical shift registers SR, and the display panel has a pre-charging function, so the aforementioned embodiment has good driving capability. Furthermore, since each shift register SR corresponds to two columns of pixels P, it represents the shift register SR The usable length (in the row direction) is longer, and the required width (in the column direction) can be reduced. Therefore, the foregoing embodiment also meets the requirement of a narrow frame.
綜上所述,本發明實施例所提供的顯示面板,具有良好的驅動能力,且閘極驅動電路所需的寬度較小,適合提供窄邊框使用。因此,本發明的顯示面板可以兼顧驅動能力與小面積兩類需求。以虛擬實境(virtual reality,簡稱為VR)的應用為例,每英寸像素(Pixels Per Inch,簡稱為PPI)需達到800~2000,且因VR裝置的解析度高與畫面切換頻率較高的特性,針對VR方面的應用,顯示面板需要較強的驅動能力。再者,關於VR裝置的穿戴應用,亦亟需使用窄邊框的設計。是故,本發明的顯示面板可用於VR裝置,或是其他需兼顧驅動能力並縮小邊框範圍的應用。 In summary, the display panel provided by the embodiment of the present invention has good driving capability, and the gate driving circuit requires a small width, which is suitable for providing a narrow frame. Therefore, the display panel of the present invention can meet the requirements of both driving capability and small area. Take the application of virtual reality (VR for short) as an example. Pixels Per Inch (PPI for short) needs to reach 800~2000, and due to the high resolution of the VR device and the high frequency of screen switching Characteristics. For VR applications, the display panel needs strong driving capability. Furthermore, for wearable applications of VR devices, there is an urgent need to use a narrow frame design. Therefore, the display panel of the present invention can be used in VR devices or other applications that need to take into account the driving ability and reduce the frame range.
前述的說明係基於閘極控制信號GL的位準變化為主,另一方面,由資料線DL傳送的資料電壓,則可搭配像素P的顯示與規劃而異。由於本發明改變顯示面板上的像素連接方式,主要影響的是閘極線GL的控制。資料線DL所傳送的資料電壓,可以由時序控制器因應像素P排列方式的不同而調整。以下利用表4說明,在前述實施例中,資料線DL[1]~DL[5]在單位期間T3~T10傳送的資料電壓與像素P之間的對應關係。 The foregoing description is mainly based on the level change of the gate control signal GL. On the other hand, the data voltage transmitted by the data line DL can be different with the display and planning of the pixel P. Since the present invention changes the connection mode of pixels on the display panel, the main influence is the control of the gate line GL. The data voltage transmitted by the data line DL can be adjusted by the timing controller according to the different arrangement of the pixels P. Table 4 is used to illustrate the correspondence between the data voltages transmitted by the data lines DL[1] ˜DL[5] during the unit period T3 ˜T10 and the pixel P in the foregoing embodiment.
另,為便於說明,由前述圖中可以看出,每一個像素對PP包含兩個像素P。此處將每一個像素對PP所包含的兩個像素P中,位於上方者,定義為像素對的第一個像素P1;以及,將每一個像素對PP所包含的兩個像素P中,位於下方者,定義為像素對PP的第二個像素P2。 In addition, for ease of description, it can be seen from the foregoing figures that each pixel pair PP includes two pixels P. Here, of the two pixels P included in each pixel pair PP, the one located above is defined as the first pixel P1 of the pixel pair; and, among the two pixels P included in each pixel pair PP, it is located The lower one is defined as the second pixel P2 of the pixel pair PP.
此處僅以表4的單位期間T3為例,說明資料線DL如何傳送資料電壓。在單位期間T3,資料線DL[1]將資料電壓傳送至像素對PP(1,1)的第一個像素P1;資料線DL[2]將資料電壓傳送至像素對PP(1,1)的第二個像素P2;資料線DL[3]將資料電壓傳送至像素對PP(3,1)的第一個像素P1;資料線DL[4]將資料電壓傳送至像素對PP(3,1)的第二個像素P2;資料線DL[5]並未傳送資料電壓。關於其他單位期間中,資料線DL如何傳送資料電壓的說明,此處不再詳述。 Here, only the unit period T3 in Table 4 is taken as an example to illustrate how the data line DL transmits the data voltage. In the unit period T3, the data line DL[1] transmits the data voltage to the first pixel P1 of the pixel pair PP(1,1); the data line DL[2] transmits the data voltage to the pixel pair PP(1,1) The data line DL[3] transmits the data voltage to the first pixel P1 of the pixel pair PP(3,1); the data line DL[4] transmits the data voltage to the pixel pair PP(3, 1) The second pixel P2; the data line DL[5] does not transmit a data voltage. The description of how the data line DL transmits the data voltage during other unit periods will not be detailed here.
更進一步的,為節省時序控制器的接腳數量,時序控制器還可搭配解多工器產生的解多工信號,產生資料電壓。以下為一種因應解多工信號,控制資料線DL的電壓變化的例子。 Furthermore, in order to save the number of pins of the timing controller, the timing controller can also cooperate with the demultiplexing signal generated by the demultiplexer to generate the data voltage. The following is an example of controlling the voltage change of the data line DL in response to the demultiplexing signal.
請參見第12圖,其係根據本發明實施例的顯示面板,進一步搭配解多工器控制之示意圖。在此圖式中,假設源極驅動電路50包含源極
驅動器51、52。其中,與資料線DL[1]~DL[6]相連的源極驅動器51包含開關a1、a2、b1、b2、c1、c2;與資料線DL[7]~DL[12]相連的源極驅動器52包含開關a3、a4、b3、b4、c3、c4。開關a1、a2、a3、a4由開關控制信號SWa決定是否導通;開關b1、b2、b3、b4由開關控制信號SWb決定是否導通;開關c1、c2、c3、c4由開關控制信號SWc決定是否導通。開關控制信號SWa、SWb、SWc為時序控制器搭配解多工器產生的解多工信號,且開關控制信號SWa、SWb、SWc輪流為高位準。由於源極驅動器51與源極驅動器52的控制方式彼此類似,以下僅以源極驅動器為例,說明與其相關的控制信號與操作方式。
Please refer to FIG. 12, which is a schematic diagram of a display panel according to an embodiment of the present invention further equipped with a demultiplexer control. In this figure, it is assumed that the source drive circuit 50 includes a
請參見第13圖,其係與第12圖所示的顯示面板中的第一源極驅動器控制相關之信號的波形圖。此圖式的波形由上而下依序為閘極線GL[1]、GL[2]、GL[3];開關控制信號SWa、SWb、SWc;動態資料線IC[1]、IC[2]所傳送的資料電壓;以及,資料線DL[1]、DL[2]、DL[3]、DL[4]、DL[5]、DL[6]所傳送的資料電壓。關於閘極線GL[1]、GL[2]、GL[3]的變化因與第9A、9B圖的敘述相同而不再說明。 Please refer to FIG. 13, which is a waveform diagram of signals related to the control of the first source driver in the display panel shown in FIG. 12. The waveforms of this figure are gate lines GL[1], GL[2], GL[3] from top to bottom; switch control signals SWa, SWb, SWc; dynamic data lines IC[1], IC[2 ] The voltage of the transmitted data; and, the voltage of the data transmitted by the data lines DL[1], DL[2], DL[3], DL[4], DL[5], DL[6]. Since the changes of the gate lines GL[1], GL[2], and GL[3] are the same as those described in Figures 9A and 9B, they will not be described again.
為便於說明,第13圖定義六個單位期間TM1、TM2、TM3、TM4、TM5、TM6。其中,單位期間TM3、TM4、TM5、TM6各自包含五個子單位期間,在這五個子單位期間中,第一個和最後一個子單位期間為防止誤動作使用,此處不特別說明。此外,第二個子單位期間對應於開關控制信號SWa為高位準的期間、第三個子單位期間對應於開關控制信號SWb為高位準的期間、第四個子單位期間對應於開關控制信號SWc為高位準的期間。例如,在單位期間TM3中,將開關控制信號SWa為高位準的期間定義為子單位期間TM3a、將開關控制信號SWb為高位準的期間定義為子 單位期間TM3b、將開關控制信號SWc為高位準的期間定義為子單位期間TM3c,其餘子單位期間的標示可類推得出故不再詳述。 For ease of description, Figure 13 defines six unit periods TM1, TM2, TM3, TM4, TM5, and TM6. Among them, the unit periods TM3, TM4, TM5, and TM6 each include five sub-unit periods. Among the five sub-unit periods, the first and last sub-unit periods are used to prevent misoperation, and are not specifically described here. In addition, the second subunit period corresponds to the period during which the switch control signal SWa is at a high level, the third subunit period corresponds to the period during which the switch control signal SWb is at a high level, and the fourth subunit period corresponds to the period during which the switch control signal SWc is at a high level. Period. For example, in the unit period TM3, the period during which the switch control signal SWa is at a high level is defined as the sub-unit period TM3a, and the period during which the switch control signal SWb is at a high level is defined as the sub-unit period. The unit period TM3b and the period during which the switch control signal SWc is at a high level are defined as the sub-unit period TM3c, and the labels of the remaining sub-unit periods can be derived by analogy and will not be described in detail.
動態資料線IC[1]、ÍC[2]在單位期間TM3、TM4、TM5、TM6自時序控制器接收要傳送至顯示面板的資料電壓。如第13圖所示,在各子單位期間,動態資料線IC[1]、ÍC[2]的電壓也配合開關控制信號SWa、SWb、SWc為高位準的期間輪流改變。隨著開關控制信號SWa、SWb、SWc的輪流導通,動態資料線IC[1]將資料電壓輪流傳送至資料線DL[1]、DL[3]、DL[5]中的其中一者。隨著開關控制信號SWa、SWb、SWc的輪流導通,動態資料線IC[2]將資料電壓輪流傳送至資料線DL[2]、DL[4]、DL[6]中的其中一者。 The dynamic data lines IC[1] and ÍC[2] receive the data voltage to be transmitted to the display panel from the timing controller during the unit period TM3, TM4, TM5, and TM6. As shown in Figure 13, during each sub-unit period, the voltages of the dynamic data lines IC[1] and ÍC[2] also change alternately according to the period when the switch control signals SWa, SWb, and SWc are at high levels. As the switch control signals SWa, SWb, and SWc are turned on in turn, the dynamic data line IC[1] transmits the data voltage to one of the data lines DL[1], DL[3], and DL[5] in turn. As the switch control signals SWa, SWb, and SWc are turned on in turn, the dynamic data line IC[2] transmits the data voltage to one of the data lines DL[2], DL[4], and DL[6] in turn.
因此,在單位期間TM3中的第二個子區段(TM3a),開關a1將隨著開關控制信號SWa為高位準而導通。據此,動態資料線IC[1]在TM3a將資料電壓傳送至資料線DL[1]。其餘波形亦具有類似關係,此處不再詳述。 Therefore, in the second subsection (TM3a) of the unit period TM3, the switch a1 will be turned on as the switch control signal SWa is at a high level. Accordingly, the dynamic data line IC[1] transmits the data voltage to the data line DL[1] in TM3a. The other waveforms also have a similar relationship, which will not be detailed here.
以下,分別說明在採用解多工架構時,在單位期間TM3、TM4、TM5、TM6中,搭配開關控制信號SWa、SWb、SWc而決定資料線DL[1]~DL[6]傳送資料電壓的切換方式,進而使顯示面板上的像素可正常接收資料電壓。為便於說明,以下各圖中,以較粗的線條代表自動態資料線IC[1]、IC[2]接收資料電壓的資料線DL,以及具有高位準的閘極線GL。 In the following, when the demultiplexing architecture is adopted, in the unit periods TM3, TM4, TM5, and TM6, the switch control signals SWa, SWb, SWc are used to determine the data transmission voltage of the data lines DL[1]~DL[6]. The switching method allows the pixels on the display panel to receive the data voltage normally. For ease of description, in the following figures, thicker lines represent the data line DL receiving the data voltage from the dynamic data lines IC[1] and IC[2], and the gate line GL with a high level.
由於在第13圖TM3中的閘極控制信號GL[1]~GL[3],與第9A圖單位期間T3中的閘極控制信號GL[1]~GL[3]的狀態類似,前述關於像素對因應閘極狀態在單位期間T3與對應關係均可直接套用於單位期間TM3。同理,前述關於像素對在單位期間T4、T5、T6的狀態可直接套用於單位期間TM4、TM5、TM6。 Since the gate control signals GL[1]~GL[3] in TM3 in Figure 13 are similar to the gate control signals GL[1]~GL[3] in the unit period T3 in Figure 9A, The pixel pair corresponding to the gate state in the unit period T3 and the corresponding relationship can be directly applied to the unit period TM3. In the same way, the aforementioned state of the pixel pairs in the unit periods T4, T5, and T6 can be directly applied to the unit periods TM4, TM5, and TM6.
請參見第14A、14B、14C圖,其係顯示面板中,與第一源極驅動器相關的像素在單位期間TM3的變化。其中,第14A圖對應於子單位 期間TM3a;第14B圖對應於子單位期間TM3b;第14C圖對應於子單位期間TM3c。此時,與閘極線GL[1]相連的共接像素JP以及與閘極線GL[2]相連的共接像素JP,均直接自資料線DL接收資料電壓。此外,與閘極線GL[1]相連的孤立像素IP,也將經由與閘極線GL[2]相連的共接像素JP,間接自資料線DL接收資料電壓。此時,隨著傳送資料電壓的資料線DL不同,與閘極線GL[1]、GL[2]相連的共接像素以及與閘極線GL[1]相連的孤立像素IP,也將輪流接收到資料電壓。請一併參看第14A、14B、14C圖與表5。 Please refer to Figures 14A, 14B, and 14C, which are the changes in the TM3 of the pixels associated with the first source driver in the display panel during the unit period. Among them, Figure 14A corresponds to the sub-unit Period TM3a; Figure 14B corresponds to the sub-unit period TM3b; Figure 14C corresponds to the sub-unit period TM3c. At this time, the common pixel JP connected to the gate line GL[1] and the common pixel JP connected to the gate line GL[2] both directly receive the data voltage from the data line DL. In addition, the isolated pixel IP connected to the gate line GL[1] will also indirectly receive the data voltage from the data line DL via the common pixel JP connected to the gate line GL[2]. At this time, as the data line DL that transmits the data voltage is different, the common pixels connected to the gate lines GL[1] and GL[2] and the isolated pixels IP connected to the gate line GL[1] will also take turns The data voltage is received. Please refer to Figures 14A, 14B, 14C and Table 5 together.
在第14A圖中,資料線DL[1]、DL[2]從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM3a,與閘極線GL[1]相連的共接像素P(2,1)將直接利用DL[2]傳送的資料電壓進行預充電;與閘極線GL[1]相連的孤立像素P(1,1)透過與閘極線GL[2]相連的共接像素P(1,3)間接接收資料線DL[1]傳送的資料電壓;與閘極線GL[1]相連的孤立像素P(1,2)透過與閘極線GL[2]相連的共接像素P(1,4)間接接收資料線DL[2]傳送的資料電壓;以及,與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)直接利用資料線DL[1]、DL[2]傳送的資料電壓進行預充電。簡言之,在子單位期間TM3a,雖然一共有五個像素在子單位期間TM3a充電,但其中共接像素P(2,1)、P(1,3)、P(1,4)僅進行預充電,資料電壓的電壓值仍須與孤立像素對應。因此,在子單位期間TM3a中,由動態資料線IC[1]傳送至資料線DL[1]的資料電壓對應於孤立像素P(1,1),由動態資料線IC[2]傳送至資料線DL[2]的資料電壓對應於孤立像素P(1,2)。 In Figure 14A, data lines DL[1] and DL[2] receive data voltages from dynamic data lines IC[1] and IC[2], respectively. During the sub-unit period TM3a, the common pixel P(2,1) connected to the gate line GL[1] will directly use the data voltage transmitted by DL[2] for precharging; the one connected to the gate line GL[1] The isolated pixel P(1,1) indirectly receives the data voltage transmitted by the data line DL[1] through the common pixel P(1,3) connected to the gate line GL[2]; it is connected to the gate line GL[1] The isolated pixels P(1,2) indirectly receive the data voltage transmitted by the data line DL[2] through the common pixel P(1,4) connected to the gate line GL[2]; and, with the gate line GL[ 2] The connected common pixels P(1,3) and P(1,4) directly use the data voltage transmitted by the data lines DL[1] and DL[2] for precharging. In short, in the sub-unit period TM3a, although a total of five pixels are charged in the sub-unit period TM3a, the pixels P(2,1), P(1,3), and P(1,4) are only For precharge, the voltage value of the data voltage must still correspond to the isolated pixel. Therefore, in the sub-unit period TM3a, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[1] corresponds to the isolated pixel P(1,1), which is transmitted to the data by the dynamic data line IC[2] The data voltage of the line DL[2] corresponds to the isolated pixel P(1,2).
在第14B圖中,資料線DL[3]、DL[4]從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM3b,與閘極線GL[1]相連的共接像素P(2,2)、P(4,1)分別直接利用資料線DL[3]、DL[4]傳送的資料電壓進行預充電;與閘極線GL[1]相連的孤立像素P(3,1)透過與閘極線GL[2]相連的共接像 素P(3,3)接收資料線DL[3]傳送的資料電壓;孤立像素P(3,2)透過與閘極線GL[2]相連的共接像素P(3,4)接收資料線DL[4]傳送的資料電壓;以及,與閘極線GL[2]相連的共接像素P(3,3)、P(3,4)直接利用資料線DL[3]、DL[4]傳送的資料電壓進行預充電。簡言之,雖然一共有6個像素在子單位期間TM3b充電,但其中共接像素P(2,2)、P(3,3)、P(3,4)、P(4,1)僅是進行預充電,資料電壓的電壓值仍須與孤立像素IP對應。因此,在子單位期間TM3b中,由動態資料線IC[1]傳送至資料線DL[3]的資料電壓對應於孤立像素P(3,1),由動態資料線IC[2]傳送至資料線DL[4]的資料電壓對應於孤立像素P(3,2)。 In Figure 14B, data lines DL[3] and DL[4] receive data voltages from dynamic data lines IC[1] and IC[2], respectively. During the sub-unit period TM3b, the common pixels P(2,2) and P(4,1) connected to the gate line GL[1] directly use the data voltages transmitted by the data lines DL[3] and DL[4], respectively Pre-charge; the isolated pixel P(3,1) connected to the gate line GL[1] through the common connection image connected to the gate line GL[2] The pixel P(3,3) receives the data voltage transmitted by the data line DL[3]; the isolated pixel P(3,2) receives the data line through the common pixel P(3,4) connected to the gate line GL[2] The data voltage transmitted by DL[4]; and the common pixels P(3,3) and P(3,4) connected to the gate line GL[2] directly use the data lines DL[3], DL[4] The transmitted data voltage is precharged. In short, although a total of 6 pixels are charged during the sub-unit period TM3b, the pixels P(2,2), P(3,3), P(3,4), P(4,1) are only For precharging, the voltage value of the data voltage must still correspond to the isolated pixel IP. Therefore, in the sub-unit period TM3b, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[3] corresponds to the isolated pixel P(3,1), which is transmitted to the data by the dynamic data line IC[2] The data voltage of the line DL[4] corresponds to the isolated pixel P(3, 2).
在第14C圖中,資料線DL[5]、DL[6]從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM3c,與閘極線GL[1]相連的共接像素P(4,2)、P(6,1)直接利用資料線DL[5]、DL[6]傳送的資料電壓進行預充電;與閘極線GL[1]相連的孤立像素P(5,1)透過與閘極線GL[2]相連的共接像素P(5,3)接收資料線DL[5]傳送的資料電壓;孤立像素P(5,2)透過與閘極線GL[2]相連的共接像素P(5,4)接收資料線DL[6]傳送的資料電壓;與閘極線GL[2]相連的共接像素P(5,3)、P(5,4)直接利用資料線DL[5]、DL[6]傳送的資料電壓進行預充電。簡言之,雖然共有6個像素P將在子單位期間TM5b充電,但其中共接像素P(4,2)、P(5,3)、P(5,4)、P(6,1)僅進行預充電,資料電壓的值仍須與孤立像素IP對應。因此,在子單位期間TM3c中,動態資料線IC[1]傳送至資料線DL[5]的資料電壓對應於孤立像素P(5,1),動態資料線IC[2]傳送至資料線DL[6]的資料電壓對應於孤立像素P(5,2)。 In Figure 14C, data lines DL[5] and DL[6] receive data voltages from dynamic data lines IC[1] and IC[2], respectively. During the sub-unit period TM3c, the common pixels P(4,2) and P(6,1) connected to the gate line GL[1] directly use the data voltages transmitted by the data lines DL[5] and DL[6]. Precharge; the isolated pixel P(5,1) connected to the gate line GL[1] receives the data line DL[5] through the common pixel P(5,3) connected to the gate line GL[2] Data voltage; the isolated pixel P(5,2) receives the data voltage transmitted by the data line DL[6] through the common pixel P(5,4) connected to the gate line GL[2]; and the gate line GL[2 ] The connected common pixels P(5,3) and P(5,4) directly use the data voltage transmitted by the data lines DL[5] and DL[6] for precharging. In short, although there are a total of 6 pixels P that will be charged during the sub-unit period TM5b, the pixels P(4,2), P(5,3), P(5,4), P(6,1) Only pre-charging is performed, and the value of the data voltage must still correspond to the isolated pixel IP. Therefore, in the sub-unit period TM3c, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[5] corresponds to the isolated pixel P(5,1), and the dynamic data line IC[2] is transmitted to the data line DL The data voltage of [6] corresponds to the isolated pixel P(5, 2).
在單位期間TM3,與閘極線GL[1]相連的共接像素對P(2,1)、P(2,2)、P(4,1)、P(4,2)、P(6,1)均處於狀態B;與閘極線GL[1]相連的孤立像素P(1,1)、P(1,2)、P(3,1)、P(3,2)、P(5,1)、P(5,2)均處於狀態C;與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)、P(3,3)、P(3,4)、P(5,3)、 P(5,4)均處於狀態B。在第14A、14B、14C圖中,以較細的虛線圈選處於狀態B的共接像素JP,以較粗的虛線圈選處於狀態C的孤立像素IP。據此,與閘極線GL[1]相連的孤立像素P(1,1)、P(1,2)、P(3,1)、P(3,2)、P(5,1)、P(5,2)在單位期間TM3結束後,即可正常顯示像素資料。 In the unit period TM3, the common pixel pairs P(2,1), P(2,2), P(4,1), P(4,2), P(6) connected to the gate line GL[1] ,1) are in state B; isolated pixels P(1,1), P(1,2), P(3,1), P(3,2), P() connected to the gate line GL[1] 5,1), P(5,2) are in state C; the common pixels P(1,3), P(1,4), P(3,3), P(3,4), P(5,3), P(5,4) are in state B. In Figures 14A, 14B, and 14C, the common pixel JP in the state B is selected with a thin dashed circle, and the isolated pixel IP in the state C is selected with a thick dashed circle. Accordingly, the isolated pixels P(1,1), P(1,2), P(3,1), P(3,2), P(5,1), P(5,2) can display pixel data normally after the unit period TM3 ends.
請參見第15A、15B、15C圖,其係顯示面板中,與第一源極驅動器相關的像素P在單位期間TM4的變化。其中,第15A圖對應於子單位期間TM4a;第15B圖對應於子單位期間TM4b;第15C圖對應於子單位期間TM4c。此時,與閘極線GL[1]相連的共接像素JP將直接自資料線DL接收資料電壓。隨著傳送資料電壓的資料線DL不同,與閘極線GL[1]相連的共接像素將輪流接收到資料電壓。請一併參看第15A、15B、15C圖與表6。 Please refer to FIGS. 15A, 15B, and 15C, which are the changes of the pixel P related to the first source driver in the unit period TM4 in the display panel. Among them, Figure 15A corresponds to the sub-unit period TM4a; Figure 15B corresponds to the sub-unit period TM4b; and Figure 15C corresponds to the sub-unit period TM4c. At this time, the common pixel JP connected to the gate line GL[1] will directly receive the data voltage from the data line DL. As the data line DL for transmitting the data voltage is different, the common pixels connected to the gate line GL[1] will receive the data voltage in turn. Please refer to Figures 15A, 15B, 15C and Table 6 together.
在第15A圖中,資料線DL[1]、DL[2]在子單位期間TM4a從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM4a,與閘極線GL[1]相連的共接像素P(2,1)直接利用資料線DL[2]傳送的資料電壓充電。因此,在子單位期間TM4a中,由動態資料線IC[1]傳送至資料線DL[1]的資料電壓並未對應至任何像素P(或者,動態資料線IC[1]暫停傳送資料電壓),由動態資料線IC[2]傳送至資料線DL[2]的資料電壓對應於像素P(2,1)。 In Figure 15A, the data lines DL[1] and DL[2] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM4a, respectively. In the sub-unit period TM4a, the common pixel P(2,1) connected to the gate line GL[1] is directly charged with the data voltage transmitted by the data line DL[2]. Therefore, in the sub-unit period TM4a, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[1] does not correspond to any pixel P (or, the dynamic data line IC[1] suspends the data voltage transmission) , The data voltage sent from the dynamic data line IC[2] to the data line DL[2] corresponds to the pixel P(2,1).
在第15B圖中,資料線DL[3]、DL[4]在子單位期間TM3b從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM4b,與閘極線GL[1]相連的共接像素P(2,2)、P(4,1)分別直接利用資料線DL[3]、DL[4]傳送的資料電壓充電。因此,在子單位期間TM4b中,動態資料線IC[1]傳送至資料線DL[3]的資料電壓對應於像素P(2,2),動態資料線IC[2]傳送至資料線DL[4]的資料電壓對應於像素P(4,1)。 In FIG. 15B, the data lines DL[3] and DL[4] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM3b, respectively. During the sub-unit period TM4b, the common pixels P(2,2) and P(4,1) connected to the gate line GL[1] directly use the data voltages transmitted by the data lines DL[3] and DL[4], respectively Recharge. Therefore, in the sub-unit period TM4b, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[3] corresponds to the pixel P(2,2), and the dynamic data line IC[2] is transmitted to the data line DL[ The data voltage of 4] corresponds to the pixel P(4,1).
在第15C圖中,資料線DL[5]、DL[6]在子單位期間TM3c從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM4c,與閘極線 GL[1]相連的共接像素P(4,2)、P(6,1)直接利用資料線DL[5]、DL[6]傳送的資料電壓充電。因此,在子單位期間TM4c中,動態資料線IC[1]傳送至資料線DL[5]的資料電壓對應於像素P(4,2),動態資料線IC[2]傳送至資料線DL[6]的資料電壓對應於像素P(6,1)。 In Figure 15C, the data lines DL[5] and DL[6] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM3c, respectively. During the sub-unit period TM4c, and the gate line The common pixels P(4,2) and P(6,1) connected to GL[1] are directly charged by the data voltage transmitted by the data lines DL[5] and DL[6]. Therefore, in the sub-unit period TM4c, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[5] corresponds to the pixel P(4,2), and the dynamic data line IC[2] is transmitted to the data line DL[ The data voltage of 6] corresponds to the pixel P(6,1).
在單位期間TM4,與閘極線GL[1]相連的共接像素對P(2,1)、P(2,2)、P(4,1)、P(4,2)、P(6,1)均處於狀態C。據此,與閘極線GL[1]相連的共接像素對P(2,1)、P(2,2)、P(4,1)、P(4,2)、P(6,1)在單位期間TM4結束後,即可正常顯示像素資料。 In the unit period TM4, the common pixel pairs P(2,1), P(2,2), P(4,1), P(4,2), P(6) connected to the gate line GL[1] ,1) are in state C. Accordingly, the common pixel pairs P(2,1), P(2,2), P(4,1), P(4,2), P(6,1) connected to the gate line GL[1] ) After the unit period TM4 ends, the pixel data can be displayed normally.
請參見第16A、16B、16C圖,其係顯示面板中,與第一源極驅動器相關的像素在單位期間TM5的變化。其中,第16A圖對應於子單位期間TM5a;第16B圖對應於子單位期間TM5b;第16C圖對應於子單位期間TM5c。此時,與閘極線GL[2]相連的共接像素JP以及與閘極線GL[3]相連的共接像素JP,均直接自資料線DL接收資料電壓。此外,與閘極線GL[2]相連的孤立像素IP,也將經由與閘極線GL[3]相連的共接像素JP,間接自資料線DL接收資料電壓。此時,隨著傳送資料電壓的資料線DL不同,與閘極線GL[2]、閘極線GL[3]相連的共接像素及與閘極線GL[2]相連的孤立像素IP,也將輪流接收到資料電壓。請一併參看第16A、16B、16C圖與表7。 Please refer to Figures 16A, 16B, and 16C, which are the changes of TM5 in the unit period of the pixels related to the first source driver in the display panel. Among them, Figure 16A corresponds to the sub-unit period TM5a; Figure 16B corresponds to the sub-unit period TM5b; Figure 16C corresponds to the sub-unit period TM5c. At this time, the common pixel JP connected to the gate line GL[2] and the common pixel JP connected to the gate line GL[3] both directly receive the data voltage from the data line DL. In addition, the isolated pixel IP connected to the gate line GL[2] will also indirectly receive the data voltage from the data line DL via the common pixel JP connected to the gate line GL[3]. At this time, as the data line DL that transmits the data voltage is different, the common pixel connected to the gate line GL[2] and the gate line GL[3] and the isolated pixel IP connected to the gate line GL[2], The data voltage will also be received in turn. Please refer to Figures 16A, 16B, 16C and Table 7 together.
在第16A圖中,資料線DL[1]、DL[2]在子單位期間TM5a從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM5a,與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)直接利用資料線DL[1]、DL[2]傳送的資料電壓進行預充電;與閘極線GL[2]相連的孤立像素P(2,3)透過與閘極線GL[3]相連的共接像素P(2,5)間接接收DL[2]傳送的資料電壓;與閘極線 GL[3]相連的共接像素P(2,5)直接利用資料線DL[2]傳送的資料電壓進行預充電。簡言之,雖然一共有五個像素P在子單位期間TM5b充電,但其中共接像素P(1,3)、P(1,4)、P(2,6)僅進行預充電,資料電壓的電壓值仍須與孤立像素IP對應。因此,在子單位期間TM5a中,經由動態資料線IC[1]傳送至資料線DL[1]的資料電壓對應於孤立像素P(1,1),經由動態資料線IC[2]傳送至資料線DL[2]的資料電壓對應於孤立像素P(1,2)。 In FIG. 16A, the data lines DL[1] and DL[2] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM5a, respectively. During the sub-unit period TM5a, the common pixels P(1,3) and P(1,4) connected to the gate line GL[2] directly use the data voltages transmitted by the data lines DL[1] and DL[2]. Precharge; the isolated pixel P(2,3) connected to the gate line GL[2] indirectly receives the data sent by DL[2] through the common pixel P(2,5) connected to the gate line GL[3] Voltage; with gate line The common pixel P(2,5) connected to GL[3] directly uses the data voltage transmitted by the data line DL[2] for precharging. In short, although there are a total of five pixels P charged during the sub-unit period TM5b, the common pixels P(1,3), P(1,4), and P(2,6) are only precharged. The data voltage The voltage value of must still correspond to the isolated pixel IP. Therefore, in the sub-unit period TM5a, the data voltage transmitted to the data line DL[1] via the dynamic data line IC[1] corresponds to the isolated pixel P(1,1), and is transmitted to the data via the dynamic data line IC[2] The data voltage of the line DL[2] corresponds to the isolated pixel P(1,2).
在第16B圖中,資料線DL[3]、DL[4]從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM5b,與閘極線GL[2]相連的共接像素P(3,3)、P(3,4)分別直接利用資料線DL[3]、DL[4]傳送的資料電壓進行預充電;與閘極線GL[2]相連的孤立像素P(2,4)透過與閘極線GL[3]相連的共接像素P(2,6)接收資料線DL[3]傳送的資料電壓;與閘極線GL[2]相連的孤立像素P(4,3)透過與閘極線GL[3]相連的共接像素P(4,5)而間接接收資料線DL[4]傳送的資料電壓。簡言之,儘管共有五個像素P在子單位期間TM5b充電,但其中共接像素(3,3)、P(3,4)、P(2,6)僅進行預充電,資料電壓的電壓值仍須與孤立像素IP對應。因此,在子單位期間TM5b中,經由動態資料線IC[1]傳送至資料線DL[3]的資料電壓對應於像素P(3,1),經由動態資料線IC[2]傳送至資料線DL[4]的資料電壓對應於像素P(3,2)。 In Figure 16B, data lines DL[3] and DL[4] receive data voltages from dynamic data lines IC[1] and IC[2], respectively. During the sub-unit period TM5b, the common pixels P(3,3) and P(3,4) connected to the gate line GL[2] directly use the data voltages transmitted by the data lines DL[3] and DL[4], respectively Pre-charge; the isolated pixel P(2,4) connected to the gate line GL[2] receives the data line DL[3] transmission through the common pixel P(2,6) connected to the gate line GL[3] The data voltage; the isolated pixel P(4,3) connected to the gate line GL[2] indirectly receives the data line DL[4] through the common pixel P(4,5) connected to the gate line GL[3] ] The voltage of the transmitted data. In short, although there are a total of five pixels P that are charged during the sub-unit period TM5b, the pixels (3,3), P(3,4), and P(2,6) that are connected in common are only precharged, and the voltage of the data voltage The value must still correspond to the isolated pixel IP. Therefore, in the sub-unit period TM5b, the data voltage transmitted to the data line DL[3] via the dynamic data line IC[1] corresponds to the pixel P(3,1), and is transmitted to the data line via the dynamic data line IC[2] The data voltage of DL[4] corresponds to the pixel P(3, 2).
在第16C圖中,資料線DL[5]、DL[6]從動態資料線IC[1]、IC[2]分別接收資料電壓。在子單位期間TM5c,與閘極線GL[1]相連的共接像素P(5,3)、P(5,4)直接利用資料線DL[5]、DL[6]傳送的資料電壓進行預充電;與閘極線GL[2]相連的孤立像素P(4,4)透過與閘極線GL[3]相連的共接像素P(4,6)接收資料線DL[5]傳送的資料電壓;與閘極線GL[2]相連的孤立像素P(6,3)透過與閘極線GL[3]相連的共接像素P(6,5)接收資料線DL[6]傳送的資料電壓。簡言之,雖然共有四個像素在子單位期間TM5c充電,但其中共接 像素P(5,3)、P(5,4)僅進行預充電,資料電壓的電壓值仍須與孤立像素對應。因此,在子單位期間TM5c中,由動態資料線IC[1]傳送至資料線DL[5]的資料電壓對應於像素P(4,4),由動態資料線IC[2]傳送至資料線DL[6]的資料電壓對應於像素P(6,3)。 In Figure 16C, data lines DL[5] and DL[6] receive data voltages from dynamic data lines IC[1] and IC[2], respectively. During the sub-unit period TM5c, the common pixels P(5,3) and P(5,4) connected to the gate line GL[1] directly use the data voltages transmitted by the data lines DL[5] and DL[6]. Precharge; the isolated pixel P(4,4) connected to the gate line GL[2] receives the data line DL[5] through the common pixel P(4,6) connected to the gate line GL[3] Data voltage; the isolated pixel P(6,3) connected to the gate line GL[2] receives the data line DL[6] through the common pixel P(6,5) connected to the gate line GL[3] Data voltage. In short, although a total of four pixels are charged during the sub-unit period TM5c, a total of The pixels P(5,3) and P(5,4) are only precharged, and the voltage value of the data voltage must still correspond to the isolated pixel. Therefore, in the sub-unit period TM5c, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[5] corresponds to the pixel P(4,4), and is transmitted from the dynamic data line IC[2] to the data line The data voltage of DL[6] corresponds to the pixel P(6,3).
在單位期間TM5,與閘極線GL[1]相連的共接像素對P(2,1)、P(2,2)、P(4,1)、P(4,2)、P(6,1)均處於狀態B;與閘極線GL[1]相連的孤立像素P(1,1)、P(1,2)、P(3,1)、P(3,2)、P(5,1)、P(5,2)均處於狀態C;與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)、P(3,3)、P(3,4)、P(5,3)、P(5,4)均處於狀態B。在第16A、16B、16C圖中,以較細的虛線圈選處於狀態B的共接像素JP,以較粗的虛線圈選處於狀態C的孤立像素IP。據此,與閘極線GL[2]相連的孤立像素P(2,3)、P(4,3)、P(2,4)、P(6,3)、P(4,4)在單位期間TM5結束後,即可正常顯示像素資料。 In the unit period TM5, the common pixel pairs P(2,1), P(2,2), P(4,1), P(4,2), P(6) connected to the gate line GL[1] ,1) are in state B; isolated pixels P(1,1), P(1,2), P(3,1), P(3,2), P() connected to the gate line GL[1] 5,1), P(5,2) are in state C; the common pixels P(1,3), P(1,4), P(3,3), P(3,4), P(5,3), P(5,4) are all in state B. In Figures 16A, 16B, and 16C, the common pixel JP in the state B is selected with a thin dashed circle, and the isolated pixel IP in the state C is selected with a thick dashed circle. Accordingly, the isolated pixels P(2,3), P(4,3), P(2,4), P(6,3), P(4,4) connected to the gate line GL[2] After the unit period TM5 ends, the pixel data can be displayed normally.
請參見第17A、17B、17C圖,其係顯示面板中,與第一源極驅動器相關的像素在單位期間TM6的變化。其中,第17A圖對應於子單位期間TM6a;第17B圖對應於子單位期間TM6b;第17C圖對應於子單位期間TM6c。請一併參看第17A、17B、17C圖與表8。 Please refer to Figures 17A, 17B, and 17C, which are the changes of TM6 in the unit period of the pixels related to the first source driver in the display panel. Among them, Figure 17A corresponds to the sub-unit period TM6a; Figure 17B corresponds to the sub-unit period TM6b; Figure 17C corresponds to the sub-unit period TM6c. Please refer to Figures 17A, 17B, 17C and Table 8 together.
在第17A圖中,資料線DL[1]、DL[2]在子單位期間TM6a分別從動態資料線IC[1]、IC[2]接收資料電壓。在子單位期間TM6a,與閘極線GL[1]相連的共接像素P(1,3)直接利用資料線DL[2]傳送的資料電壓充電;與閘極線GL[2]相連的共接像素P(1,4)直接利用資料線DL[2]傳送的資料電壓充電。因此,在子單位期間TM6b中,由動態資料線IC[1]傳送至資料線DL[3]的資料電壓對應於共接像素P(1,3),由動態資料線IC[2]傳送至資料線DL[4]的資料電壓對應於共接像素P(1,4)。 In Figure 17A, the data lines DL[1] and DL[2] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM6a, respectively. During the sub-unit period TM6a, the common pixel P(1,3) connected to the gate line GL[1] is directly charged with the data voltage transmitted by the data line DL[2]; the common pixel connected to the gate line GL[2] The connected pixel P (1, 4) is directly charged with the data voltage transmitted by the data line DL[2]. Therefore, in the sub-unit period TM6b, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[3] corresponds to the common pixel P(1,3), which is transmitted from the dynamic data line IC[2] to The data voltage of the data line DL[4] corresponds to the commonly connected pixel P(1, 4).
在第17B圖中,資料線DL[3]、DL[4]在子單位期間TM6b分別從動態資料線IC[1]、IC[2]接收資料電壓。在子單位期間TM6b,與閘極線GL[1]相連的共接像素P(3,3)、P(3,4)分別由資料線DL[3]、DL[4]傳送的資料電壓充電。因此,在子單位期間TM6b中,由動態資料線IC[1]傳送至資料線DL[3]的資料電壓對應於共接像素P(3,3),由動態資料線IC[2]傳送至資料線DL[4]的資料電壓對應於共接像素P(3,4)。 In FIG. 17B, the data lines DL[3] and DL[4] receive data voltages from the dynamic data lines IC[1] and IC[2] during the sub-unit period TM6b, respectively. During the sub-unit period TM6b, the common pixels P(3,3) and P(3,4) connected to the gate line GL[1] are respectively charged by the data voltage transmitted by the data lines DL[3] and DL[4] . Therefore, in the sub-unit period TM6b, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[3] corresponds to the common pixel P(3,3), which is transmitted from the dynamic data line IC[2] to The data voltage of the data line DL[4] corresponds to the commonly connected pixel P(3, 4).
在第17C圖中,資料線DL[5]、DL[6]在子單位期間TM6c從動態資料線IC[1]、動態資料線IC[2]分別接收資料電壓。在子單位期間TM6c,與閘極線GL[2]相連的共接像素P(5,3)、P(5,4)直接利用資料線DL[5]、DL[6]傳送的資料電壓充電。因此,在子單位期間TM6c中,由動態資料線IC[1]傳送至資料線DL[5]的資料電壓對應於共接像素P(5,3),由動態資料線IC[2]傳送至資料線DL[6]的資料電壓對應於共接像素P(5,4)。 In Figure 17C, the data lines DL[5] and DL[6] receive data voltages from the dynamic data line IC[1] and the dynamic data line IC[2] during the sub-unit period TM6c. During the sub-unit period TM6c, the common pixels P(5,3) and P(5,4) connected to the gate line GL[2] are directly charged with the data voltage transmitted by the data lines DL[5] and DL[6] . Therefore, in the sub-unit period TM6c, the data voltage transmitted from the dynamic data line IC[1] to the data line DL[5] corresponds to the common pixel P(5,3), which is transmitted from the dynamic data line IC[2] to The data voltage of the data line DL[6] corresponds to the common connection pixel P(5, 4).
在單位期間TM6,與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)、P(3,3)、P(3,4)、P(5,3)、P(5,4)均處於狀態C。據此,與閘極線GL[2]相連的共接像素P(1,3)、P(1,4)、P(3,3)、P(3,4)、P(5,3)、P(5,4)在單位期間TM6結束後,即可正常顯示像素資料。 In the unit period TM6, the common pixels P(1,3), P(1,4), P(3,3), P(3,4), P(5, 3), P(5,4) are in state C. Accordingly, the common pixels P(1,3), P(1,4), P(3,3), P(3,4), P(5,3) connected to the gate line GL[2] , P(5,4) After the unit period TM6 ends, the pixel data can be displayed normally.
前述的實施例說明本案可以藉由共接像素JPP與孤立像素IPP的連線,以及雙向驅動的方式,達到提升驅動能力、縮減邊框寬度的效果。此外,本發明也可搭配使用解多工器,減少時序控制器控制源極驅動電路所需的接線。另須留意的是,本發明的設計係獨立於像素P所對應的顏色。也就是說,孤立像素IP與共接像素JP包含之與液晶電容Clc對應的顏色,並不影響本案針對共接像素JP與孤立像素IP之間的連線的設計。 The foregoing embodiment illustrates that this solution can achieve the effect of improving the driving capability and reducing the frame width by connecting the connection of the shared pixel JPP and the isolated pixel IPP and the bidirectional driving method. In addition, the present invention can also be used with a demultiplexer to reduce the wiring required by the timing controller to control the source drive circuit. It should also be noted that the design of the present invention is independent of the color corresponding to the pixel P. In other words, the color corresponding to the liquid crystal capacitor Clc contained in the isolated pixel IP and the common pixel JP does not affect the design of the connection between the common pixel JP and the isolated pixel IP in this case.
在顯示面板上,可基於不同考量而以不同的方式排列濾光層的顏色。以下列出兩種像素P可能對應之濾光層的色彩的排列方式。為便於 說明,此處以縱向條紋代表像素P內的液晶電容Clc對應於紅色R濾光層:以橫向條紋代表像素P內的液晶電容Clc對應於藍色B濾光層:以及,以右上至左下的對角方向條紋代表像素P內的液晶電容Clc對應於綠色G濾光層。 On the display panel, the color of the filter layer can be arranged in different ways based on different considerations. The color arrangement of the filter layer that two pixels P may correspond to are listed below. For convenience Note that the vertical stripe represents the liquid crystal capacitor Clc in the pixel P corresponding to the red R filter layer: the horizontal stripe represents the liquid crystal capacitor Clc in the pixel P corresponds to the blue B filter layer: and the pairs from top right to bottom left The angular stripes represent that the liquid crystal capacitor Clc in the pixel P corresponds to the green G filter layer.
接著說明顯示面板上的像素P搭配色彩設定的對應關係。在第18、19圖中,像素單元PU(1,1)對應於像素P(1,1)、P(2,1)、P(3,1);像素單元PU(1,2)對應於像素P(1,2)、P(2,2)、P(3,2);像素單元PU(2,1)對應於像素P(4,1)、P(5,1)、P(6,1)。其餘可類推得出。各個像素單元所包含之各色像素P的排列方式可能不同(例如,第18圖)或相同(例如,第19圖)。 Next, the corresponding relationship between the pixel P on the display panel and the color setting will be described. In Figures 18 and 19, the pixel unit PU(1,1) corresponds to the pixels P(1,1), P(2,1), P(3,1); the pixel unit PU(1,2) corresponds to Pixels P(1,2), P(2,2), P(3,2); pixel unit PU(2,1) corresponds to pixels P(4,1), P(5,1), P(6 ,1). The rest can be deduced by analogy. The arrangement of the color pixels P included in each pixel unit may be different (for example, FIG. 18) or the same (for example, FIG. 19).
在第18圖中,其中一類像素單元PU(例如,像素單元PU(1,1))所包含的像素P,由左而右分別包含與紅色R、綠色G、藍色B濾光層對應之液晶電容Clc,另外一類像素單元(例如,像素單元PU(1,2))所包含像素P,由左而右分別包含與綠色G、藍色B、紅色R濾光層對應之液晶電容Clc。 In Figure 18, one type of pixel unit PU (for example, the pixel unit PU(1,1)) includes pixels P corresponding to the red R, green G, and blue B filter layers from left to right. The liquid crystal capacitor Clc, another type of pixel unit (for example, the pixel unit PU(1, 2)) includes the pixel P, from left to right includes the liquid crystal capacitor Clc corresponding to the green G, blue B, and red R filter layers.
在第19圖中,假設每個像素單元內的像素P具有相同的顏色排列方式。即,每個像素單元內的像素P由左而右分別為包含與綠色G濾光層、紅色R濾光層、藍色B濾光層對應的液晶電容Clc。須留意的是,第18、19圖所示的像素P和與液晶電容Clc對應之濾光層的顏色之間的對應關係,僅作為舉例使用,並非用於限制本發明。 In Figure 19, it is assumed that the pixels P in each pixel unit have the same color arrangement. That is, from left to right, the pixels P in each pixel unit include liquid crystal capacitors Clc corresponding to the green G filter layer, the red R filter layer, and the blue B filter layer. It should be noted that the correspondence between the pixel P and the color of the filter layer corresponding to the liquid crystal capacitor Clc shown in FIGS. 18 and 19 is only used as an example, and is not intended to limit the present invention.
如前所述,本發明可藉由改變顯示面板的連接方式,兼顧驅動能力與窄邊框的需求。此外,本發明的設計還可任意搭配與像素P對應之濾光層的顏色的排列方式。因此,基於本發明構想而設計的顯示面板,提供相當彈性的作法,達到提升驅動能力與縮小閘極驅動電路面積的效果。進一步地,若移位暫存器的電流驅動能力較強時,本發明還可進一步 縮減所需使用之移位暫存器的數量,例如,僅於顯示面板的左側設置移位暫存器,或是僅於顯示面板的右側設置移位暫存器。 As mentioned above, the present invention can change the connection mode of the display panel to meet the requirements of driving capability and narrow frame. In addition, the design of the present invention can also arbitrarily match the color arrangement of the filter layer corresponding to the pixel P. Therefore, the display panel designed based on the concept of the present invention provides a fairly flexible method to achieve the effect of improving the driving capability and reducing the area of the gate driving circuit. Further, if the current drive capability of the shift register is relatively strong, the present invention can further Reduce the number of shift registers to be used, for example, only set the shift register on the left side of the display panel, or set the shift register only on the right side of the display panel.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those who have ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.
3:顯示裝置 3: display device
30:時序控制器 30: timing controller
32:源極驅動電路 32: Source drive circuit
33:閘極驅動電路 33: Gate drive circuit
33a、33b:緩衝器 33a, 33b: buffer
35:顯示面板 35: display panel
35a、35b:像素 35a, 35b: pixels
351:主動區域 351: Active Area
353:非主動區域 353: Inactive Area
SR[1]、SR[2]、SR[N-1]、SR[N]、SR[1’]、SR[2’]、SR[(N-1)’]、SR[N’]:移位暫存器 SR[1], SR[2], SR[N-1], SR[N], SR[1'], SR[2'], SR[(N-1)'], SR[N']: Shift register
GL[1]、GL[2]、GL[N-1]、GL[N]:閘極線 GL[1], GL[2], GL[N-1], GL[N]: gate line
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108105789A TWI706390B (en) | 2019-02-21 | 2019-02-21 | Display panel and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108105789A TWI706390B (en) | 2019-02-21 | 2019-02-21 | Display panel and display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202032517A TW202032517A (en) | 2020-09-01 |
TWI706390B true TWI706390B (en) | 2020-10-01 |
Family
ID=73643670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108105789A TWI706390B (en) | 2019-02-21 | 2019-02-21 | Display panel and display device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI706390B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201601141A (en) * | 2014-06-23 | 2016-01-01 | 友達光電股份有限公司 | Display panel |
WO2016000369A1 (en) * | 2014-07-04 | 2016-01-07 | 京东方科技集团股份有限公司 | Transmit electrode scanning circuit, array substrate and display device |
TW201608545A (en) * | 2014-08-22 | 2016-03-01 | 友達光電股份有限公司 | Display panel |
WO2018018886A1 (en) * | 2016-07-29 | 2018-02-01 | 京东方科技集团股份有限公司 | Drive circuit, display panel, display device, and drive method |
-
2019
- 2019-02-21 TW TW108105789A patent/TWI706390B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201601141A (en) * | 2014-06-23 | 2016-01-01 | 友達光電股份有限公司 | Display panel |
WO2016000369A1 (en) * | 2014-07-04 | 2016-01-07 | 京东方科技集团股份有限公司 | Transmit electrode scanning circuit, array substrate and display device |
TW201608545A (en) * | 2014-08-22 | 2016-03-01 | 友達光電股份有限公司 | Display panel |
WO2018018886A1 (en) * | 2016-07-29 | 2018-02-01 | 京东方科技集团股份有限公司 | Drive circuit, display panel, display device, and drive method |
Also Published As
Publication number | Publication date |
---|---|
TW202032517A (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10783820B2 (en) | Gate driver and flat panel display device including the same | |
US10699627B2 (en) | Driving method of display panel, display panel and display device | |
US7839374B2 (en) | Liquid crystal display device and method of driving the same | |
CN103714785B (en) | Liquid crystal display | |
WO2009104322A1 (en) | Display apparatus, display apparatus driving method, and scan signal line driving circuit | |
US8305326B2 (en) | Gate driving circuit having improved tolerance to gate voltage ripple and display device having the same | |
US8238512B2 (en) | Dual shift register | |
KR101909675B1 (en) | Display device | |
WO2019161669A1 (en) | Gate drive circuit, touch display device, and driving method | |
US20080278467A1 (en) | Liquid crystal display having progressive and interlaced modes, and driving method of the liquid crystal display | |
KR101314088B1 (en) | Shift Register and Liquid Crystal Display Using The Same | |
CN101154006B (en) | LCD device | |
US20100085348A1 (en) | Display device and method of driving the same | |
WO2017080103A1 (en) | Goa drive circuit, tft display panel and display device | |
JP2005018066A (en) | Liquid crystal display device and driving method thereof | |
JP2008107851A (en) | Matrix display device | |
JPH1073843A (en) | Active matrix type liquid crystal display device | |
US20060017686A1 (en) | Display device | |
US20180108320A1 (en) | Gate driving circuit, display panel and display apparatus having the same, and driving method thereof | |
JP3426520B2 (en) | Display panel driving method and display device | |
JP2006085131A (en) | Liquid crystal display | |
JP2003255907A (en) | Display device | |
JP2002297109A (en) | Liquid crystal display device and driving circuit therefor | |
CN111048027B (en) | Display including multiplexer and control method thereof | |
TWI706390B (en) | Display panel and display device |