TWI705268B - Liquid crystal beam control device with improved zone transition and method of manufacture thereof - Google Patents
Liquid crystal beam control device with improved zone transition and method of manufacture thereof Download PDFInfo
- Publication number
- TWI705268B TWI705268B TW105129480A TW105129480A TWI705268B TW I705268 B TWI705268 B TW I705268B TW 105129480 A TW105129480 A TW 105129480A TW 105129480 A TW105129480 A TW 105129480A TW I705268 B TWI705268 B TW I705268B
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid crystal
- electrode
- electric field
- electrodes
- elements
- Prior art date
Links
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
本申請案請求於2015年9月10日申請的美國第62/216,951號臨時專利申請案、及於2015年11月24日申請的第PCT/CA2015/051222號PCT專利申請的優先權,其全部內容通過引用併入本文。 This application claims priority for US provisional patent application No. 62/216,951 filed on September 10, 2015, and PCT patent application No. PCT/CA2015/051222 filed on November 24, 2015, all of which The content is incorporated herein by reference.
本申請案的公開內容涉及液晶光學裝置以及它們的製造方法,該液晶光學裝置例如透鏡和光束轉向裝置,其具有相鄰的分段或區域。 The disclosure of this application relates to liquid crystal optical devices, such as lenses and beam steering devices, which have adjacent segments or regions, and their manufacturing methods.
使用向列型液晶單元的光束轉向裝置和菲涅爾透鏡,受控制電場的動態控制,具有分離的單元區域是已知的技術。這些裝置由於液晶分子取向的空間變化而具有折射率的空間變化。這會產生光學相位延遲的空間變化,可以產生光束轉向裝置和菲涅爾透鏡。液晶光束控制裝置是本領域中公知的。 It is a known technology to use a beam steering device and a Fresnel lens of nematic liquid crystal cells, which are dynamically controlled by a controlled electric field, and have separate cell areas. These devices have spatial changes in refractive index due to spatial changes in the orientation of liquid crystal molecules. This produces a spatial variation of the optical phase delay, which can produce beam steering devices and Fresnel lenses. Liquid crystal beam control devices are well known in the art.
這種裝置通常使用液晶單元上的圖案化的電極,來創建折射率的空間變化以用於控制光束。為保持低電壓,電極可放置在單元基板的內側或兩側。為提高光學性能,由圖案化的電極限定的光束調整單元的大小或長寬比可以是小的。為提供具有大光通孔的裝置,多個光束轉向元件被佈置在一起,很像一個菲涅爾透鏡或光束轉向裝置。在液晶光束轉向裝置中,相鄰的光束轉向元件之間的邊界可以佔據該光通孔的一大部分,例如高達50%,因為從邊界的一側到另一側,液晶取向的變化幾乎達到90度。 Such devices usually use patterned electrodes on liquid crystal cells to create a spatial variation of refractive index for controlling the beam. To keep the voltage low, electrodes can be placed on the inside or both sides of the unit substrate. In order to improve optical performance, the size or aspect ratio of the beam adjustment unit defined by the patterned electrode may be small. To provide a device with a large light through hole, multiple beam steering elements are arranged together, much like a Fresnel lens or beam steering device. In the liquid crystal beam steering device, the boundary between adjacent beam steering elements can occupy a large part of the light through hole, for example, up to 50%, because from one side of the boundary to the other side, the change in the orientation of the liquid crystal almost reaches 90 degrees.
不像實體的(固定的)菲涅爾透鏡或光束轉向裝置,其可以具有在不同的部分(在此稱為“微元件”,應該理解該部分或微元件並沒有必要僅限於非常小的尺寸)之間的邊界上的折射率的突變,在用電場控制液晶分子的取向的情況下,就很難實現電場引起液晶分子的取向的急劇變化。這將導致光學裝置的光通孔的一個相當大的部分不能夠用於裝置所期望的光學操作。這部分可被稱為“回掃”(fly back)區域或非線性區(NLZ)。 Unlike a physical (fixed) Fresnel lens or beam steering device, it can have different parts (referred to herein as "micro-elements". It should be understood that this part or micro-elements are not necessarily limited to very small sizes). With the sudden change of refractive index on the boundary between ), in the case of controlling the orientation of liquid crystal molecules with an electric field, it is difficult to realize a sharp change in the orientation of liquid crystal molecules caused by the electric field. This will result in a relatively large portion of the optical through hole of the optical device that cannot be used for the desired optical operation of the device. This part can be referred to as the "fly back" zone or non-linear zone (NLZ).
還存在各種各樣的問題,包括角度控制的範圍,光束強度分佈的質量,製造的成本,工作電壓等等。當不能恰當地控制相鄰微元件之間的邊界,光學裝置的有用部分由於控制不當的液晶的邊界區域而減少。 There are also various problems, including the range of angle control, the quality of the beam intensity distribution, the cost of manufacturing, the operating voltage and so on. When the boundary between adjacent micro-elements cannot be properly controlled, the useful part of the optical device is reduced due to improper control of the boundary area of the liquid crystal.
申請人已經發現了許多有關光束轉向液晶 裝置的光學性能的特性。 The applicant has discovered a lot of relevant light beam steering liquid crystal The characteristics of the optical performance of the device.
申請人提出一種液晶光學裝置,以實現在微元件之間的邊界處具有突然過渡的光學相位延遲的空間變化,其無法使用傳統的液晶光學裝置的電氣控制場電極系統來實現。這個相位延遲分佈可以是在多個微元件的邊界處的近似的鋸齒狀波形。相位延遲分佈在光通孔上不必是鋸齒狀波形,然而,理想的結果是,相位延遲在邊界區域的空間壓縮或突然變化,類似於一個鋸齒狀波形。申請人還提出了一個液晶光學裝置,提高在微元件之間的邊界的液晶的電場控制。這減少了不正確的轉向(重定向)或聚焦光,而且還增加了光學裝置的有效光通孔。 The applicant proposes a liquid crystal optical device to realize a spatial variation of optical phase retardation with a sudden transition at the boundary between microelements, which cannot be realized using the electric control field electrode system of a conventional liquid crystal optical device. This phase delay distribution can be an approximate saw-tooth waveform at the boundary of a plurality of micro-elements. The phase delay distribution on the optical through hole does not have to be a saw-tooth waveform. However, the ideal result is that the phase delay is spatially compressed or suddenly changed in the boundary area, similar to a saw-tooth waveform. The applicant also proposed a liquid crystal optical device to improve the electric field control of the liquid crystal at the boundary between the microelements. This reduces incorrect steering (redirection) or focusing of light, and it also increases the effective light through hole of the optical device.
可以在雙頻液晶上使用具有低頻和高頻電場的組合來實現在微元件之間的邊界處的改進的相位延遲的過渡。 A combination of low-frequency and high-frequency electric fields can be used on dual-frequency liquid crystals to achieve an improved phase retardation transition at the boundary between microelements.
可以使用浮置電極,以用於微元件內電場的成型,來實現在微元件之間的邊界處的改進的相位延遲的過渡。 Floating electrodes can be used for shaping the electric field within the micro-elements to achieve an improved phase delay transition at the boundary between the micro-elements.
可以使用一對液晶層,每個液晶層具有被光學惰性區分隔開的微元件,其對應於光學惰性區和另一層的微元件,從而電場作用於微元件的液晶,而不作用於惰性區域,來實現在透鏡和/或轉向元件之間的邊界處的改進的相位延遲過渡。 A pair of liquid crystal layers can be used, each liquid crystal layer having microelements separated by an optically inert area, which corresponds to the optically inert area and another layer of microelements, so that the electric field acts on the liquid crystal of the microelements, but not on the inert area , To achieve an improved phase delay transition at the boundary between the lens and/or steering element.
可以使用佈置在液晶微元件之間的導電壁來實現在透鏡元件之間的邊界處的改進的相位延遲過渡, 從而使作用在一個微元件的液晶上的電場不會作用於相鄰的微元件的液晶。 The conductive walls arranged between the liquid crystal microelements can be used to achieve an improved phase retardation transition at the boundary between the lens elements, Therefore, the electric field acting on the liquid crystal of one micro element will not act on the liquid crystal of the adjacent micro element.
可以通過對液晶微元件的電極施加具有相位差的電信號,來實現在透鏡和/或轉向元件之間的邊界處的改進的相位延遲過渡,從而使作用在一個微元件的液晶上的電場的一部分的方向被引導為液晶層的方向,其結果是相鄰微元件的電極產生的電場具有很小的相位延遲分佈的影響。微元件電極的電壓差也可以用於實現所需的電場和液晶控制的交互。 The improved phase delay transition at the boundary between the lens and/or the steering element can be achieved by applying electrical signals with phase difference to the electrodes of the liquid crystal micro-element, so that the electric field acting on the liquid crystal of a micro-element is reduced. A part of the direction is guided to the direction of the liquid crystal layer. As a result, the electric field generated by the electrodes of the adjacent micro-elements has a small influence on the phase retardation distribution. The voltage difference between the electrodes of the micro-elements can also be used to achieve the required interaction between the electric field and the liquid crystal control.
申請人已發現,在液晶單元的一側的條狀電極與液晶單元的相反一側的較寬的中間電極之間的偏置,可以實現適用於光束轉向的電場分佈,即鋸齒狀的分佈。這種電極幾何形狀的結果是在條狀電極附近的液晶單元上形成強電場,在中間電極上延伸的液晶單元上形成逐漸減弱的電場。所述偏置使得從條狀電極延伸的電場的電場線基本上垂直地通過單元環繞中間電極的相反側。電場的線相當垂直地穿過液晶,而其電極結構中不設置弱導電層,或相對電極之間不設置很大的距離。 The applicant has found that the bias between the strip electrode on one side of the liquid crystal cell and the wider intermediate electrode on the opposite side of the liquid crystal cell can achieve an electric field distribution suitable for beam steering, that is, a sawtooth distribution. The result of this electrode geometry is the formation of a strong electric field on the liquid crystal cells near the strip electrodes, and a gradually weakening electric field on the liquid crystal cells extending on the middle electrode. The bias makes the electric field lines of the electric field extending from the strip electrode substantially perpendicularly pass through the cell surrounding the opposite side of the middle electrode. The lines of the electric field pass through the liquid crystal quite perpendicularly, and the electrode structure is not provided with a weakly conductive layer, or there is no large distance between the opposite electrodes.
這種電極佈置提供了光束轉向的液晶分佈,其中在液晶的條狀電極的相對側不設置有效的電極,而設置更寬大的中間電極。為實現整個光通孔上形成光束轉向,兩層液晶可以被佈置為一層具有被間隔開的光束轉向液晶元件,其與另一層具有空閒的或非光束轉向的液晶元件對準。 This electrode arrangement provides a beam-turned liquid crystal distribution, in which no effective electrode is provided on the opposite side of the strip electrode of the liquid crystal, but a wider middle electrode is provided. To achieve beam steering on the entire light through hole, two layers of liquid crystals can be arranged as one layer with spaced beam steering liquid crystal elements aligned with the other layer with free or non-beam steering liquid crystal elements.
可以通過使用額外的中間電極,來改變轉向的方向(以使得光束轉向液晶取向分佈形成在其他方向上),或在中間電極的相對一側設置額外的條狀電極。 The direction of turning can be changed by using an additional intermediate electrode (so that the orientation distribution of the beam turned to the liquid crystal is formed in other directions), or an additional strip electrode can be arranged on the opposite side of the intermediate electrode.
申請人還發現,這種偏置電極結構可以為具有單層結構的光束轉向裝置提供一個良好的有效光通孔,其使用時間複用(time multiplexed)控制電極。因此,當奇數元件的電極被通電,即偶數元件的電極可以被斷開,即電浮置;而當偶數元件的電極被通電,即奇數元件的電極可以被斷開,即電浮置。 The applicant has also discovered that this bias electrode structure can provide a good effective light through hole for a beam steering device with a single-layer structure, which uses time multiplexed control electrodes. Therefore, when the electrodes of the odd-numbered elements are energized, the electrodes of the even-numbered elements can be disconnected, that is, electrically floating; and when the electrodes of the even-numbered elements are energized, the electrodes of the odd-numbered elements can be disconnected, that is, electrically floating.
申請人還發現,當電場在液晶單元的一個基板附近和另一個基板附近不同時,裝置的光學性能可取決於光傳播通過裝置的方向,例如從頂部到底部相對於從底部到頂部。由於通過裝置的光傳播方向不同而帶來的差異對於裝置的某些幾何形狀或設計是非常顯著的。 Applicants have also discovered that when the electric field is different near one substrate and another substrate of the liquid crystal cell, the optical performance of the device may depend on the direction of light propagation through the device, for example, from top to bottom versus bottom to top. The difference caused by the different light propagation directions through the device is very significant for certain geometric shapes or designs of the device.
申請人還發現,不同的方向(例如,正交)圖案化電極陣列可以由公共基板上的一個薄絕緣層分隔設置,並使用單層液晶(由層控制的偏振方向)以提供雙向光束控制。這種裝置可以在各方向上獨立地提供光束控制。 The applicant has also discovered that patterned electrode arrays in different directions (for example, orthogonal) can be separated by a thin insulating layer on a common substrate, and a single layer of liquid crystal (polarization direction controlled by the layer) is used to provide bidirectional beam control. This device can provide beam control independently in all directions.
3‧‧‧電場 3‧‧‧Electric field
4‧‧‧液晶分子 4‧‧‧Liquid crystal molecules
10‧‧‧光束轉向液晶裝置 10‧‧‧Beam steering LCD device
12a、12b、12c、12d、12e‧‧‧區域、區段 12a, 12b, 12c, 12d, 12e‧‧‧Area, section
13‧‧‧浮置電極 13‧‧‧Floating electrode
14a‧‧‧電極、窄電極、電極段 14a‧‧‧Electrode, narrow electrode, electrode segment
14b、14c‧‧‧邊界電極、控制電極 14b, 14c‧‧‧Boundary electrode, control electrode
14d‧‧‧電極、控制電極 14d‧‧‧electrode, control electrode
14e、14f‧‧‧電極、驅動電極、控制電極 14e, 14f‧‧‧electrodes, drive electrodes, control electrodes
15‧‧‧平面電極 15‧‧‧Plane electrode
16‧‧‧層、導電性層、高電阻層 16‧‧‧layer, conductive layer, high resistance layer
17‧‧‧導電壁 17‧‧‧Conductive wall
18‧‧‧光通孔 18‧‧‧Light through hole
19‧‧‧透明壁 19‧‧‧Transparent Wall
20‧‧‧驅動電路 20‧‧‧Drive circuit
22、24、26‧‧‧驅動器 22, 24, 26‧‧‧Drive
100‧‧‧裝置 100‧‧‧device
110‧‧‧液晶裝置 110‧‧‧LCD device
111‧‧‧基板 111‧‧‧Substrate
114、114A‧‧‧條狀電極、電極 114、114A‧‧‧Strip electrode, electrode
114B‧‧‧電極 114B‧‧‧electrode
115‧‧‧透明平面電極、電極 115‧‧‧Transparent plane electrode, electrode
118‧‧‧取向層 118‧‧‧Orientation layer
120‧‧‧液晶層 120‧‧‧Liquid crystal layer
120a、120b‧‧‧液晶 120a, 120b‧‧‧LCD
122‧‧‧填充物 122‧‧‧filling
本發明將通過參照所附的附圖詳細描述實施例,以更好的理解本發明的實施方式,其中:第1圖是具有兩個區域或光束轉向微元件的現有技術的液晶光束轉向裝置的一部分的示意性截面圖,其中,所述電場的控制是由大量的電極來實現,以提 供一個空間可變電場;第2圖是具有兩個區域或光束轉向微元件的現有技術的液晶光束轉向裝置的一部分的示意性截面圖,其中,所述電場的控制是由每個區域的兩個電極和一個高電阻材料層來幫助延展在每個區域中的電場;第3圖是具有兩個區域或光束轉向元件的雙頻液晶(DFLC)光束轉向裝置的示意性截面圖,其中,所述電場的控制是由每個區域的兩個電極和一個高電阻材料層來實現,以控制在每個區中的電場的延展,其中向電極輸入高頻電信號,以使液晶的本地局部取向垂直於較低頻率電場下的液晶的非本地局部取向;第4圖是模擬液晶取向引起的相位延遲與第2圖和第3圖中的實施方式中的電極間距離的函數關係的曲線圖,示出了兩種情況下的非線性區域(NLZ);第5圖是類似於第3圖的示意性截面圖,其中,每個區域具有兩個頻率f1的電極條帶;第6圖是第5圖的裝置的示意圖,是具有連接到驅動電路的五個區域的平面圖;第7A圖是LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,所述電場的控制是通過每個區域的兩個控制電極和在過渡區設置的導電壁來實現的;第7B圖是如第7A圖所示的LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其 中,根據提出的解決方案,所述電場的控制被通過使用弱導電材料層來增強,以用於延展每個區域中的電場;第7C圖是示出如第7B圖所示的另一個LC光束轉向裝置的示意性橫截面圖,根據提出的解決方案,其具有一個電浮置電極。 The present invention will describe the embodiments in detail with reference to the attached drawings to better understand the implementation of the present invention, in which: Figure 1 is a prior art liquid crystal beam steering device with two areas or beam steering micro-elements A schematic cross-sectional view of a part, wherein the control of the electric field is realized by a large number of electrodes to improve For a spatially variable electric field; Figure 2 is a schematic cross-sectional view of a part of a prior art liquid crystal beam steering device with two areas or beam steering micro-elements, wherein the electric field is controlled by each area Two electrodes and a layer of high-resistance material help spread the electric field in each area; Figure 3 is a schematic cross-sectional view of a dual-frequency liquid crystal (DFLC) beam steering device with two areas or beam steering elements, where, The control of the electric field is realized by two electrodes in each area and a layer of high-resistance material to control the extension of the electric field in each area, wherein high-frequency electrical signals are input to the electrodes to make the local parts of the liquid crystal The orientation is perpendicular to the non-local local orientation of the liquid crystal under a lower frequency electric field; Figure 4 is a graph that simulates the phase retardation caused by the orientation of the liquid crystal as a function of the distance between the electrodes in the embodiments in Figures 2 and 3 , Showing the non-linear region (NLZ) in two cases; Figure 5 is a schematic cross-sectional view similar to Figure 3, where each region has two electrode strips with frequency f1; Figure 6 is The schematic diagram of the device in Figure 5 is a plan view with five areas connected to the drive circuit; Figure 7A is a schematic cross-sectional view across adjacent areas or beam steering elements in the LC beam steering device, where according to the proposed The solution is that the electric field is controlled by two control electrodes in each area and a conductive wall set in the transition area; Figure 7B is the LC beam steering device shown in Figure 7A across adjacent areas Or a schematic cross-sectional view of the beam steering element, which According to the proposed solution, the control of the electric field is enhanced by using a layer of weakly conductive material to extend the electric field in each area; Fig. 7C shows another LC as shown in Fig. 7B A schematic cross-sectional view of a beam steering device, according to the proposed solution, with an electrically floating electrode.
第8A圖是LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,所述電場的控制是通過每個區域的一個控制電極來實現,其中採用寬的光學透明牆延伸到每個其他元件區域;第8B圖是如第8A圖所示的LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,所述電場的控制被通過使用弱導電材料層來增強,以用於延展每個區域中的電場;第8C圖是示出如第8B圖所示的另一個LC光束轉向裝置的示意性橫截面圖,根據提出的解決方案,其具有一個電浮置電極。 Figure 8A is a schematic cross-sectional view across adjacent areas or beam steering elements in the LC beam steering device. According to the proposed solution, the electric field is controlled by a control electrode in each area, where A wide optically transparent wall is used to extend to every other element area; Figure 8B is a schematic cross-sectional view across adjacent areas or beam steering elements in the LC beam steering device shown in Figure 8A, where according to the proposed Solution, the control of the electric field is enhanced by using a layer of weakly conductive material to extend the electric field in each area; Figure 8C is a schematic diagram showing another LC beam steering device as shown in Figure 8B Sexual cross-sectional view, according to the proposed solution, with an electrically floating electrode.
第9A圖是雙LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,所述電場的控制是通過每個區域的一個控制電極來實現,其中採用交錯的、寬的光學透明牆延伸到每個其他元件區域;第9B圖是如第9A圖所示的LC光束轉向裝置中跨越相鄰區域或光束轉向元件的示意性橫截面圖,其 中,根據提出的解決方案,所述電場的控制被通過使用弱導電材料層來增強,以用於延展每個區域中的電場;第9C圖是示出如第9B圖所示的另一個LC光束轉向裝置的示意性橫截面圖,根據提出的解決方案,其具有一個電浮置電極;第10A圖是LC光束轉向裝置中跨越單個區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,該裝置具有被在非轉向狀態下相同頻率、相位和振幅的驅動信號分量所驅動的兩個工作電極;第10B圖是如第10A圖的LC光束轉向裝置中跨越單個區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,兩個工作電極被具有相同頻率和相位、但具有相反振幅的驅動信號分量所驅動;第10C圖是如第10A圖的LC光束轉向裝置中跨越單個區域或光束轉向元件的示意性橫截面圖,其中,根據提出的解決方案,兩個工作電極被具有相同頻率和相位、但具有不同的相反振幅的驅動信號分量所驅動;第11圖是光束轉向光學裝置的示意性橫截面圖,根據提出的解決方案,其具有液晶單元內的帶有4個光束成形單元的圖案化電極,其中,條狀電極在一個基板上,平面電極在單元的相對基板上;第12圖是光束轉向光學裝置的示意性橫截面圖,根據提出的解決方案,其具有液晶單元內的4個光束成形單元,其中,條狀電極在單元的一個基板上,以形 成電極間的一個平面和邊緣電場;第13A圖是如第12圖中的單元的一個元件的變型放大圖,其中,根據提出的解決方案,條狀電極的間隙和單元厚度間隙的長寬比是大的;第13B圖是如第12圖中的單元的一個元件的變型放大圖,其中,根據提出的解決方案,條狀電極的間隙和單元厚度間隙的長寬比是小的;第13C圖是根據提出的解決方案的實施例的第12圖的單元的一個元件的放大視圖;第14圖是如第13C圖的元件的示意性平面圖,根據提出的解決方案,其中液晶取向平行於條狀電極;第15A圖是具有兩個液晶單元的液晶光束轉向裝置的橫截面示意圖,根據提出的解決方案,其中被供電的條狀電極在一個基板上,而偏置的中間電極被接地,上部單元的奇數元件具有中間電極,而偶數單元不具有中間電極;下部單元的偶數元件具有中間電極,而奇數單元不具有中間電極;第15B圖示出了如第15A圖的變型,根據提出的解決方案,其中的偏置是這樣的,中間電極向外延伸出去,條狀電極向內偏置;第16圖是根據提出的解決方案,如第15A圖的電場線和從模擬導出的液晶再取向的示意圖;第17圖是根據提出的解決方案,光學相位延遲與橫跨第15A圖中的裝置的位置的函數關係的模擬結 果的示意圖;第18A圖是單個液晶單元光束轉向裝置的示意性橫截面圖,根據提出的解決方案,其可在時間多路複用的方式下操作,以提供裝置中的每個元件中的光束轉向光學相位延遲分佈(即奇數和偶數),圖示為奇數元件的工作狀態;第18B圖是如第18A圖的相同的圖示,根據提出的解決方案,示出了偶數元件的工作狀態;第19圖是根據提出的解決方案的實施例,示出了第18A和18B圖的結構設置的模擬結果;第20圖是根據提出的解決方案的實施例,條狀電極陣列的示意性平面圖,其具有條狀電極之間的空間可變的間隙或間距;第21圖示出了光軸取向的示意性橫截面圖:在頂部,常規折射菲涅爾透鏡的橫截面;在中間,光學裝置的幾何形狀的橫截面,光學上對應於常規折射菲涅爾透鏡,包括四個層疊的LC層,以降低穿過整個裝置的入射光的靈敏度或像差,其中,該入射光不平行於整個裝置的所述光軸;以及在底部,示出了液晶透鏡的平面圖的示意圖,根據提出的解決方案,其中在中間具有圓形的幾何形狀,其包括一個中央的圓形微元件和四個同心帶狀微元件;以及第22圖根據提出的解決方案,是如第21 圖中所示的裝置的平面示意圖,其中,各個圖中類似的特徵使用類似的標號。而所描述的層的次序是有意義的,“頂部”和“底部”在本說明書中的限定,僅僅是用於參考本申請案的附圖中的方向,並不意味著任何絕對的空間方向。 Figure 9A is a schematic cross-sectional view of a double LC beam steering device that spans adjacent areas or beam steering elements. According to the proposed solution, the electric field is controlled by one control electrode in each area. Among them, staggered, wide optically transparent walls are used to extend to each other element area; Figure 9B is a schematic cross-sectional view across adjacent areas or beam steering elements in the LC beam steering device shown in Figure 9A, which According to the proposed solution, the control of the electric field is enhanced by using a layer of weakly conductive material to extend the electric field in each area; Fig. 9C shows another LC as shown in Fig. 9B A schematic cross-sectional view of the beam steering device, according to the proposed solution, which has an electrically floating electrode; Figure 10A is a schematic cross-sectional view across a single area or beam steering element in the LC beam steering device, where according to The proposed solution is that the device has two working electrodes driven by drive signal components of the same frequency, phase and amplitude in the non-steered state; Figure 10B is the LC beam steering device as shown in Figure 10A across a single area or A schematic cross-sectional view of the beam steering element, in which, according to the proposed solution, the two working electrodes are driven by drive signal components with the same frequency and phase but with opposite amplitudes; Figure 10C is the LC as shown in Figure 10A A schematic cross-sectional view of a beam steering device that spans a single area or beam steering element, in which, according to the proposed solution, two working electrodes are driven by drive signal components with the same frequency and phase but with different opposite amplitudes; Figure 11 is a schematic cross-sectional view of a beam steering optical device. According to the proposed solution, it has a patterned electrode with 4 beam shaping units in a liquid crystal cell, where the strip-shaped electrode is on a substrate and the plane The electrodes are on the opposite substrate of the unit; Figure 12 is a schematic cross-sectional view of the beam steering optical device. According to the proposed solution, it has 4 beam shaping units in the liquid crystal cell, of which the strip electrode is on one of the unit On the substrate, to shape A plane and fringe electric field between the electrodes; Figure 13A is an enlarged view of a variant of a cell as shown in Figure 12, in which, according to the proposed solution, the aspect ratio of the strip electrode gap and the cell thickness gap Figure 13B is a modified enlarged view of one element of the cell as in Figure 12, in which, according to the proposed solution, the aspect ratio of the strip electrode gap and the cell thickness gap is small; Figure 13C Figure is an enlarged view of one element of the unit of Figure 12 according to an embodiment of the proposed solution; Figure 14 is a schematic plan view of the element of Figure 13C, according to the proposed solution, in which the liquid crystal orientation is parallel to the strip 15A is a schematic cross-sectional view of a liquid crystal beam steering device with two liquid crystal cells, according to the proposed solution, in which the strip electrode is powered on a substrate, and the biased middle electrode is grounded, the upper part The odd-numbered element of the cell has a middle electrode, while the even-numbered cell does not have a middle electrode; the even-numbered element of the lower cell has a middle electrode, while the odd-numbered cell does not have a middle electrode; Figure 15B shows a modification as in Figure 15A, according to the proposed solution The scheme, where the bias is such that the middle electrode extends outwards, and the strip electrodes are biased inward; Figure 16 is based on the proposed solution, such as the electric field lines in Figure 15A and the reorientation of the liquid crystal derived from the simulation Figure 17 is a simulation of the optical phase delay as a function of the position across the device in Figure 15A according to the proposed solution Figure 18A is a schematic cross-sectional view of a single liquid crystal cell beam steering device. According to the proposed solution, it can be operated in a time multiplexed manner to provide each element in the device The optical phase delay distribution (i.e. odd and even) of the beam steering is shown as the working state of odd-numbered elements; Fig. 18B is the same diagram as Fig. 18A, which shows the working state of even-numbered elements according to the proposed solution Figure 19 is an embodiment according to the proposed solution, showing the simulation results of the structure of Figures 18A and 18B; Figure 20 is a schematic plan view of the strip electrode array according to an embodiment of the proposed solution , Which has a variable gap or pitch between the strip electrodes; Figure 21 shows a schematic cross-sectional view of the optical axis orientation: at the top, a cross-section of a conventional refractive Fresnel lens; in the middle, optical The cross-section of the geometry of the device, which corresponds optically to a conventional refractive Fresnel lens, includes four stacked LC layers to reduce the sensitivity or aberration of incident light passing through the entire device, where the incident light is not parallel to The optical axis of the entire device; and at the bottom, a schematic diagram showing a plan view of the liquid crystal lens, according to the proposed solution, which has a circular geometric shape in the middle, which includes a central circular micro-elements and four Concentric ribbon-shaped micro-elements; and Figure 22 is based on the proposed solution, as shown in Figure 21 A schematic plan view of the device shown in the figure, wherein similar features in each figure use similar reference numerals. The order of the described layers is meaningful, and the definitions of "top" and "bottom" in this specification are only for reference in the directions in the drawings of this application, and do not mean any absolute spatial directions.
第1圖示出了光束轉向液晶裝置10,其具有兩個區域或區段12a和12b。液晶材料被設置在基板之間,以形成光通孔,並且在它們的邊緣內(未示出)被封閉。該電場是由窄電極14a提供(例如佈置成條狀,如第6圖),它們各具有所需的電壓供給,並設置平面電極15的對面。在本實施例中,電極被設置在單元內的基板上。這樣可以減少所需的電壓,同時能夠在單元的外側安排電極,例如在比較薄的基板的相對側上。
Figure 1 shows a beam steering
本領域中已知,透射液晶裝置的電極可以是透明的,例如氧化銦錫(ITO)材料製成的塗層。所示的近似電壓(位於圖的頂部)在從區域12a的一側從零或一個最小值開始增大,並在區域12b的區域邊界處的另一側上再次開始增大。驅動頻率可以是對所有的電極14a都相同的,且液晶分子4自動定位為平行於電場3。儘管液晶單元的驅動信號通常是一個交流信號,但在某些情況下,應當理解的是,也可以使用低電壓DC信號。
It is known in the art that the electrodes of the transmissive liquid crystal device may be transparent, such as a coating made of indium tin oxide (ITO) material. The approximate voltage shown (at the top of the figure) increases from zero or a minimum on one side of the
單元壁(未示出)上的取向層保持基態向列 液晶分子在一個方向上取向,如圖所示。這樣的取向層(如摩擦的聚醯亞胺)在本領域中是公知的。 The orientation layer on the cell wall (not shown) maintains the ground state nematic The liquid crystal molecules are aligned in one direction, as shown in the figure. Such alignment layers (such as rubbed polyimide) are well known in the art.
區域12的寬度是‘w’,區域的光束轉向角θ是隨著區域12的相對極端的液晶材料的折射率的變化值δ n和單元L的厚度而增加,但是它隨著寬度‘w’的增加而減小,即。因此,需要減小寬度w。
The width of the
電場線從電壓差的區域延伸,並且所述電場的強度隨著與這些區域之間的距離降低。電場線(對應於上述的變化段)在第1圖中示意性地示出為虛線,而不同的線寬度對應於不同電場強度。當施加到電極段14a上的電壓是相等的,而平面電極15是在一個共同的電壓或接地電壓,則在單元中的電場基本上是均勻的(沒有電壓變化),而電場線基本上是垂直於單元壁基板(未示出)。電場強度正比於由電極14a和15之間的距離,或單元間隙大小劃分的電壓。
Electric field lines extend from areas of voltage difference, and the intensity of the electric field decreases with the distance from these areas. The electric field lines (corresponding to the above-mentioned change section) are schematically shown as dashed lines in Figure 1, and different line widths correspond to different electric field strengths. When the voltages applied to the
當電壓利用小的電極段14a而變化時,電場強度將橫跨光通孔而空間變化(例如如圖示意性的示出)。電場是在空間上變化的,但是平行線在整個光通孔都垂直於基板對,這對於液晶的控制是理想的。
When the voltage is changed by using the
如果某些電極段14a未連接到一個電位,則這些電極段14a對面的電場線會被彎曲,強度會隨著與其他接通的電極段14a的距離增加而降低。這樣彎曲的電場線也被稱為邊緣電場。
If some
區域12b的零電壓或最小電壓電極段14a具有由區域12a的相鄰最大電壓電極段14a產生的邊緣電場,其通過在區域邊界處產生兩個電極14a之間的一些電場線來形成(還具有在單元內由位於區域12b的零電壓或最小電壓電極段14a的相對面的區域12a的最大電壓電極段14a產生的電場)。這在第1圖的中心部分中示意性地示出了在區域12a和12b之間的電極段之間的弧形虛線。因此,沒有實現在區域12b內所期望的零或最小電場。此外,區域12b的零或最小電壓電極段14a的相對面的單元內的電場線不是平行的,從而導致區域12a和12b之間的液晶分子的不希望的指向。
The zero voltage or minimum
當電場從Vmax控制的區域變化到零或Vmin控制的區域時,在區域12a和12b之間的過渡區域中,從而產生了一個非線性取向區(NLZ)。單獨使用這種電極來實現電場的突然改變是不可能的。該非線性取向區也可以被稱為一個複位區或“回掃區”。
When the electric field changes from the region controlled by Vmax to zero or the region controlled by Vmin, a non-linear orientation zone (NLZ) is created in the transition region between
其結果是,當橫跨裝置的光通孔上設置許多區域12,該裝置的有效工作部分(線性變化)被減少到(w-NLZ)/w部分。該NLZ偏轉光束到不希望的方向上(相對於線性變化部分將光重新定向到期望的方向上),因此這是不理想的。
As a result, when
在第2圖中,電極段14a系列被通過使用弱導電性(或高電阻)層16和一對邊界電極14b與14c來簡化。弱導電層有助於逐漸擴展在光通孔上的每個區域12a
和12b的電壓,而不需要單獨控制一系列的電極14a,如在第2圖中的虛線示意性的示出。可以通過施加到電極14c上的電壓的頻率來控制電壓的擴展,以控制電壓的分佈,然而該頻率還會引起液晶分子平行於電場的排列(當LC的介電各向異性是正的)。電極14b可以接地或者根據需要連接到較低的電壓水平。在第2圖的設置中,每個區域的電極的數目被從第1圖中的許多個減少到只有兩個。有可能包括一個或一個小數量的附加電極,以幫助形成在光通孔的電壓分佈,特別是在邊緣附近。
In Figure 2, the series of
使用這種具有弱導電層的環形電極佈置而產生的電場,具有基本上互相平行並垂直於裝置的光通孔上的基板的電場線,且因此適合於控制液晶。表述“環形電極”是指,電極結構使用缺少的電極以在所得電場中創建空間變化,無論所述環形的孔是兩個獨立的電極之間的間隙,超出電極而延伸出的間隙,或者是一個單一的電極的孔。 The electric field generated using such a ring electrode arrangement with a weakly conductive layer has electric field lines substantially parallel to each other and perpendicular to the substrate on the light through hole of the device, and is therefore suitable for controlling liquid crystal. The expression "ring electrode" means that the electrode structure uses the missing electrode to create spatial variation in the resulting electric field, whether the ring-shaped hole is a gap between two independent electrodes, a gap extending beyond the electrode, or A single electrode hole.
應該理解的是,這裡的NLZ(第2圖)基本上如第1圖中一樣,仍然是一個問題,其中控制電極複雜性已經降低,即每個區域12中更少的電極14需要被驅動。
It should be understood that the NLZ (Fig. 2) here is basically the same as in Fig. 1, which is still a problem, in which the complexity of the control electrode has been reduced, that is, fewer electrodes 14 in each
在第3圖中,電極14d被提供並且連接到高頻電壓(圖示為f2),作用於液晶以產生垂直於電場的取向。本領域中已知的,該液晶是一個雙頻液晶(DFLC)。而電極14c連接到較低的頻率(圖示為f1),電極佈置使得液晶分子的取向平行於電場,電極14c將單元內的液晶定向
為幾乎垂直於取向層,而施加到電極14d的較高頻率有助於迫使單元內的液晶分子垂直於電場,從而形成平行於取向層的方向。因為施加到電極14d的電壓的頻率是高的,因此,相對於施加到電極14c上的較低的頻率,弱導電層無助於延展高頻電場。也可以考慮相反的情況,如果LC的基態取向是不同的,例如,垂直於取向層。
In Figure 3, the
如第3圖中示出的電場線,f1是實線,f2是虛線。兩個場重疊,並且從液晶材料仍感覺到它們的影響。電極14c產生一個相對較大的擴展電場,試圖使液晶分子取向為平行於f1的電場,而電極14d產生相對局部的電場,試圖使液晶分子取向為垂直於f2的電場。電極14c和14d上的電場如圖重疊,然而電極14c、14d和電極15之間的液晶分子如圖示出,被定向為從大致平行的取向到大致垂直的取向的空間壓縮過渡。
As the electric field lines shown in Figure 3, f1 is a solid line and f2 is a broken line. The two fields overlap, and their influence is still felt from the liquid crystal material. The
根據層16的性質和LC單元的幾何形狀,f1的合適的頻率的一個例子可以是在1到15kHz的範圍內。根據DFLC材料的性能和操作的溫度,f2的合適的頻率的一個例子是通常高於30kHz,例如50kHz。
Depending on the nature of the
有效的效果是具有重疊的不同頻率的電場,而其在液晶分子上的作用是快速改變(在時間和空間上)邊界處的液晶取向,從而如圖所示縮小NLZ區域。在第4圖的模擬中,使用的參數是:使用MLC-2048液晶(Merc k的一種DFLC材料)的液晶層為60μm厚,週期為150μm的重複光束轉向單元,寬度10μm的電極,間隙為10μm
的電極14d和14c,頻率在5-10kHz之間的10V電壓f1,頻率在100kHz的5.5V電壓f2。縱軸是光穿過液晶單元的相位延遲(微米級)。
The effective effect is to have overlapping electric fields of different frequencies, and its effect on the liquid crystal molecules is to rapidly change (in time and space) the orientation of the liquid crystal at the boundary, thereby reducing the NLZ area as shown in the figure. In the simulation in Figure 4, the parameters used are: the liquid crystal layer using MLC-2048 liquid crystal (a DFLC material of Merck) is 60μm thick, repeating beam steering unit with a period of 150μm, electrodes with a width of 10μm, and a gap of 10μm
The
該高頻場的作用是使液晶定向為垂直於電場的方向。控制電極14d和電極14c的組合效果是,在第3圖的情況下,較低頻率電場使液晶的淨取向比第1和2圖的其他情況下更在峰值,其中,控制電極14d被模擬為被連接到0V。然而,在NLZ區域的相位延遲分佈的形狀的極大改善,也大為降低。還可以看到,第3圖中的最小的相位延遲也被減小了,從而提供了在第3圖中的相位延遲的變化,幾乎是與對應的使用相同的驅動電壓f1的第1和2圖的實施方案中的模擬結果一樣大。對於第3圖的情況下的相位延遲分佈的形狀更具有線性傾斜(更接近理想的鋸齒狀波形),具有較少的正弦形狀。
The function of the high-frequency field is to orient the liquid crystal to the direction perpendicular to the electric field. The combined effect of the
應當理解,第3圖的實施例所取得的NLZ區域的縮小,可以通過使用第1圖的多個分段電極系統來實現,其中區域12b的第一電極14a將被高頻電壓驅動,從而使液晶垂直於電場定向。
It should be understood that the reduction of the NLZ area achieved in the embodiment of Figure 3 can be achieved by using the multiple segmented electrode system of Figure 1, where the
在第5圖的實施方案中,(非圓形)環形(線性成對的)的區域12a和12b的電極包括連接到頻率f1的最小和最大的驅動電壓的電極14b和14c。然後將位於邊界區域12a和12b之間、電極14c和14b之間的電極14d連接到頻率f2的驅動電壓。這提供了對所得的(總)電介質轉矩的空間分佈的更好的控制,並且因此更好地控制液晶
取向。如將要理解的是,如果一個光束轉向裝置用於在兩個方向上可變地使光轉向,且轉向是相反的方向(如前所述),理想的是用最大電壓驅動14b和用最小電壓驅動14c。應當理解,雖然提供了單獨的電極14c和14d被連接到低和高頻率,但所期望的相位延遲空間分佈仍然可以使用具有兩個頻率來驅動單電極而實現。
In the embodiment of Figure 5, the electrodes of the (non-circular) ring-shaped (linear paired)
液晶裝置10在第1至5圖中示意性的示出,包括在一個方向上取向的單層液晶。如本領域中已知的,這種裝置作用於光的單一線性偏振方向,而通過裝置10的非偏振光作為兩個線性偏振態由裝置進行處理。在液晶材料中的折射係數的空間調製是相對於光的一個偏振方向的,而另一個偏振方向不具有折射率的空間調製。為使該裝置10作用於非偏振光,一個第二單元通常設有正交於第1至5圖中所示的第一單元的LC分子的取向的LC分子,作用於其他偏振方向。以類似於第一單元的方式為額外的單元添加電極14和15。
The
如2009年12月10日公開的第WO2009/146530號國際專利申請公開案,將四個單元設置在一起,具有兩個單元的取向層,作用在相同的偏振方向的相反的方向上。當不平行於裝置10的光軸的光穿過元件時,這樣的佈置減小了裝置10的敏感度或像差。
For example, in the International Patent Application Publication No. WO2009/146530 published on December 10, 2009, four units are arranged together, and an alignment layer with two units acts in the opposite direction of the same polarization direction. When light that is not parallel to the optical axis of the
第6圖示出了光束轉向裝置的示意性平面圖,顯示了區域12a、12b、12c、12d和12e一起創建了光通孔18。根據第5圖配置的電極14b、14c和14d佈置是示
意性地示出了連接到電極的適當的驅動電路20。
Figure 6 shows a schematic plan view of the beam steering device, showing that the
根據液晶單元的典型尺寸,即約120微米的基板之間的單元間隙,以及約0.2的△n,這將需要在裝置中設置一個區域寬度,如第6圖所示出的約100微米,以提供約±13度的光束控制範圍。如果該裝置的光通孔18是3毫米寬,那麼將設有30個區域12來代替示意性地示出在第6圖中的五個。
According to the typical size of the liquid crystal cell, that is, the cell gap between the substrates of about 120 microns, and the Δn of about 0.2, it will be necessary to set an area width in the device, such as about 100 microns as shown in Figure 6, to Provides a beam control range of approximately ±13 degrees. If the light through
對於這樣的裝置的驅動電路可使用專用電路,FPGA裝置、DSP裝置來完成,並可以包括用於控制的一個編程處理器。如示意圖所示,驅動電路20具有驅動器22運行頻率f1以控制左電極14b、驅動器24運行頻率f1以控制右電極14c、以及驅動器26運行頻率f2以控制電極14c。在第6圖中未示出的是,驅動電路20也連接到相應的平面電極15。這樣的驅動器22、24、26可以是以簡單地開或關控制的,或者它們可以是可變可調節的,以控制可變可控的光參數,即光束轉向角。該驅動器22、24也可以是頻率調節和/或電壓調節的。該驅動器26可以具有固定的電壓和頻率,儘管在它的驅動信號的參數控制也是可能的。控制器28被提供為在第6圖的實施例中的驅動電路20的一部分,以提供響應於外部控制信號輸入端的驅動器22、24、26的設置。這樣的控制器28可以分別從驅動器22、24、26中提供,例如在軟體中。控制器28典型地儲存有校準數據,以允許控制信號被轉換成特定的驅動信號值。控制信號之間的相位延遲控制可以如第10A、10B和
10C圖所描述的參考實施。
The driving circuit of such a device can be completed by a dedicated circuit, FPGA device, DSP device, and can include a programming processor for control. As shown in the schematic diagram, the driving
雖然第6圖示出了由右至左傳播的光(或反之亦然,在同一平面上)的光束轉向裝置,然而應當理解,通過層疊額外單元具有正交排列的電極,光束轉向裝置可以在兩個方向引導光,即左-右和上-下。 Although Figure 6 shows a beam steering device for light propagating from right to left (or vice versa, on the same plane), it should be understood that by stacking additional units with orthogonally arranged electrodes, the beam steering device can be The light is guided in two directions, namely left-right and up-down.
根據提出的解決方案的另一實施方案,第7A圖示出相鄰區域12或LC光束轉向裝置10的光束轉向元件12,其中,所述電場的控制是通過每個區域12的兩個控制電極14c和14b採用提供在過渡區的導電壁17以降低每個區域12貫通到下一個區的從而形成NLZ的邊緣場。導電壁17可短接到平面電極15。為了在給定的方向轉向,電極14c可以在電極14b和15和導電壁17被連接到相同的電壓(或接地)時被驅動。已經發現這樣可以減少NLZ並增加在每個區域12中潛在的線性(棱柱狀)和提高光束轉向(或在圓形的幾何形狀提高菲涅爾透鏡的操作效率)。
According to another embodiment of the proposed solution, Figure 7A shows the
為清楚起見,連接電極14b與導電壁17到相同的電壓可以選擇性地在外部驅動電路20實現。一種隔離層(未示出)可以用在電極14c/14b與導電壁17之間。例如,通過電極14c、15和導電壁17連接到相同的電壓(或接地),而電極14b被驅動,入射光可以在相反的方向上轉向。
For clarity, connecting the
第7B圖示出所提出的方案的另一實施例,其使用在第7A圖所示的光學元件的幾何形狀中的弱導電
性或高電阻層(WCL)16。可以通過控制提供給電極14b和14c的驅動信號分量的頻率來實現一種改進的鋸齒分佈。使用浮置電極13,根據提出的解決方案的又一個實施方案,在第7C圖中示出,可以提高電場分佈,以獲得更多的線性棱柱狀調製分佈。使用浮置電極可與其他實施方案結合使用,例如,與第2至6圖所示的實施例結合。
Figure 7B shows another embodiment of the proposed solution, which uses the weakly conductive in the geometry of the optical element shown in Figure 7A
性 or high resistance layer (WCL) 16. An improved sawtooth distribution can be achieved by controlling the frequency of the drive signal component supplied to the
根據提出的解決方案的另一實施例,第8A圖示出相鄰區域12或LC光束轉向裝置10的光束轉向元件12,其具有兩個層疊的LC層(這些層不需要是緊鄰,或在全部區域寬度內交錯),其中,該電場是通過每個區域12內的一個控制電極(可替換的14e/14f)來控制,其中採用寬光學透明壁19,其在每個LC層的間隔的未驅動元件區域12內延伸,而LC層之間是形成交錯的圖案。
According to another embodiment of the proposed solution, Figure 8A shows the
透明壁19可以允許電場穿透,在驅動的電極14e或14f作用下,提供驅動和未驅動的光學裝置元件12之間的平滑電場過渡。為了在給定的方向轉向,電極14f可以在電極14e和15都連接到相同的電壓(或接地)時被驅動。為了頂部和底部的單元都具有相同的效果,電場的幾何形狀和排列方向可以是如第8A圖中相同的。
The
已經發現第8A圖的佈置在每個區域12(由於在該區域沒有LC)中在被驅動電極14f的作用下,基本上消除了液晶的邊緣場引起的不期望的重新取向,從而改善相位延遲操作。通過電極14f和15連接到相同的電壓(或接地),而電極14e被驅動,入射光可以在相反的方向上轉
向。每個LC層與一半的被驅動的光學裝置元件12操作,而在一個LC層的每個未驅動光學裝置元件12上的入射光由相應的其他LC層的被驅動的光學裝置元件12來轉向。
It has been found that the arrangement of Figure 8A in each region 12 (because there is no LC in this region) under the action of the driven
第8B圖示出了如第8A圖所示的採用WCL16的光學裝置的幾何形狀的另一實施例。一種改進的鋸齒狀分佈可以通過控制施加到電極14e和14f上的驅動信號分量的頻率來實現。根據提出的解決方案的進一步的實施方案,在每個被驅動的元件區域12中使用浮置電極13,在第8C圖中示出,以改善電場分佈,以在每個區域12中獲得更多的線性棱柱狀調製分佈。
Figure 8B shows another embodiment of the geometry of the optical device using WCL16 as shown in Figure 8A. An improved sawtooth distribution can be achieved by controlling the frequency of the driving signal components applied to the
根據提出的解決方案的另一實施例,第9A圖示出了相鄰區域12或採用交錯的寬光學透明壁19的雙LC層光束轉向裝置10的光束轉向元件12,其中壁19延展到每個LC層的另一個未驅動的區域12中,其中,該電場的控制是通過每個區域12的一個控制電極(交替的14e/14f)來實現。在第8A、8B和8C圖的實施例中,存在由前LC層使光轉向,然後再由後LC層進行轉向的可能性,從而表示一種影響NLZ的不同方式。已經發現,這可以減少在每個區域12的光輸出。為了降低由於這個再轉向的損失、和提高相位延遲操作,光學元件的層狀幾何中的中央基板11b被省略。在晶片級製造中,電極層15(和相關聯的取向層)沉積在每個透明壁19上。翻轉芯片製造技術可被用於將交錯電極條帶配合到圖示的電極層15上。LC材料可以被施加到被驅動的光學裝置的元件區域12中,例
如,通過真空,注射或毛細作用。
According to another embodiment of the proposed solution, Fig. 9A shows the
根據所提出的方案的另一實施例,第9B圖示出了如第9A圖所示的光學裝置的幾何形狀中採用WCL 16。可以通過控制提供給電極14e和14f的驅動信號分量的頻率來實現一種改進的鋸齒分佈。在每個被驅動的元件區域12中使用浮置電極13,根據提出的解決方案的進一步的實施方案,在第9C圖中示出,以改善電場分佈,以在每個區域12中獲得更多的線性棱柱狀調製分佈。
According to another embodiment of the proposed solution, Fig. 9B shows the use of
根據提出的解決方案的另一實施例,第10A圖示出了單個區域或液晶光束轉向裝置10的光束轉向元件12,其具有兩個被驅動的電極14e和14f,每一個電極相應地由一個驅動信號分量來驅動驅動,其中每一個都具有振幅、頻率和相位。所產生的橫跨區域元件12的電勢分佈是如圖中所示的虛線的弧面,其中採用與電極15(相同的相位和相同的頻率)的5V驅動信號來控制電極14e和14f。這個狀態下的元件區域12不提供光束控制。作為參考,根據本實施例的方案,未連接的電極14c被示出,以確認來調整電勢分佈,可以在不脫離所提出的方案的情況下,用於其他光學裝置的幾何形狀。
According to another embodiment of the proposed solution, Figure 10A shows a single area or
第10B圖示出第10A圖中的兩個被驅動的電極14e和14f,其上採用對應的相同的頻率和振幅的驅動信號分量,但具有相反的相位。可以通過5V驅動電極14e、-5V驅動電極14f來實現光束轉向,其中所述電場的電勢分佈導致LC分子的取向在區域元件12中具有拐點。第10C
圖示出第10A圖中的兩個被驅動的電極14e和14f,其上採用對應的不同的頻率、振幅和相位的驅動信號分量。當頻率是相同的,但具有一個相位差時,例如180度,那麼在電極之間具有大幅的電場分量和由此產生的沿液晶層的延伸。當驅動信號的頻率不同時,電極14e和14f之間的電壓是具有跳動頻率的的交替電壓,該電壓產生一個沿液晶層的擴展的電場。通過5V驅動電極14f、-2V驅動電極14e來調整光束轉向,其中所述電場的電勢分佈影響LC分子的取向,以使中心拐點從中間移動到區域元件12的一側。
Figure 10B shows the two driven
光束控制裝置是控制光束以實現:或者光束發散、或會聚、或光束的方向調整,即對光束實現控制的光學裝置。 The beam control device is an optical device that controls the beam to achieve: either the beam diverges, or converges, or the direction of the beam is adjusted, that is, an optical device that controls the beam.
在液晶裝置的情況下,電場通常用於控制液晶材料的取向。取向的變化影響折射率,並且可以創建所謂的梯度折射率(GRIN)透鏡。為實現光束控制,可以不需要一個聚焦透鏡。 In the case of liquid crystal devices, an electric field is generally used to control the orientation of the liquid crystal material. The change in orientation affects the refractive index, and so-called gradient index (GRIN) lenses can be created. To achieve beam control, a focusing lens may not be needed.
當該裝置的光通孔是大的,用液晶GRIN裝置來實現大角度的光束控制是困難的,因為在光通孔的折射率變化相對小。通過使用光通孔上的多個光束控制元件,用具有較小的長寬比的小光學元件可以提供更大的光束轉向能力。 When the light through hole of the device is large, it is difficult to achieve large-angle beam control with a liquid crystal GRIN device because the refractive index change in the light through hole is relatively small. By using multiple beam control elements on the light through hole, a small optical element with a smaller aspect ratio can provide greater beam steering capability.
可以對液晶光學裝置的光通孔上的電場進 行空間調製,以在空間上調製液晶取向。對於透鏡,期望光通孔上具有平滑變化的取向控制,而無需使用多個透鏡元件以形成透鏡。在光束控制裝置的情況下,使用多個元件可以是所期望的,如上所述,並且每個元件的小的光通孔面積上的電場分佈以及其與液晶的互相作用,這與大光通孔的裝置是不同的。 The electric field on the light through hole of the liquid crystal optical device can be Line spatial modulation to spatially modulate the liquid crystal orientation. For the lens, it is desirable to have a smoothly changing orientation control on the light through hole without using multiple lens elements to form the lens. In the case of a beam steering device, it may be desirable to use multiple elements, as described above, and the electric field distribution on the small light through hole area of each element and its interaction with the liquid crystal, which is the same as the large light flux The device of the hole is different.
在一些光束控制裝置中,利用設置在液晶層的相對側的電極來實現控制電場,並且在其他情況下,利用設置在包含液晶層的一個基板(11a/11b)上的電極來形成電場。 In some beam control devices, electrodes provided on opposite sides of the liquid crystal layer are used to control the electric field, and in other cases, electrodes provided on a substrate (11a/11b) containing the liquid crystal layer are used to form an electric field.
使用摩擦取向層來實現取向的向列液晶只可以影響非偏振入射光的一個偏振方向。為調製非偏振光,通常使用兩個正交的液晶取向層。第一層使光被分裂成兩個正交偏振,只有一個偏振方向根據液晶空間調製方式被調製,而另一偏振方向基本上未被調製。第二層被佈置成對由所述第一層未調製的偏振方向進行所需互補調製,並允許被所述第一層的調製的偏振方向很少被調製地穿過。 The nematic liquid crystal that uses the rubbed alignment layer to achieve alignment can only affect one polarization direction of unpolarized incident light. To modulate unpolarized light, two orthogonal liquid crystal alignment layers are usually used. The first layer splits the light into two orthogonal polarizations, only one polarization direction is modulated according to the liquid crystal spatial modulation method, and the other polarization direction is basically unmodulated. The second layer is arranged to perform the required complementary modulation of the polarization direction not modulated by the first layer and allows the polarization direction modulated by the first layer to pass through with little modulation.
為實現光束轉向的目的,有可能使用一個第一液晶層可控制地引導一個偏振方向的光在一個方向轉向,而一個第二液晶層被用於可控地操縱其他偏振方向的光在正交方向上轉向。 For the purpose of beam steering, it is possible to use a first liquid crystal layer to controllably steer the light of one polarization direction in one direction, while a second liquid crystal layer is used to controllably steer the light of other polarization directions in the orthogonal direction. Turn in the direction.
這可以參照第11圖以更好地理解,其示意性地示出了具有單個液晶層120的裝置,其具有互連的、
在一個基板上的平行條狀電極114,其被一個電極間隙g所分隔,且在另一個相對的基板111上設置有透明平面電極115,以實現橫跨厚度L的液晶層的控制電場(該厚度有時被稱為單元間隙)。條狀電極114也可以是透明的,即使它們通常僅10至20微米寬,不會阻礙光束的傳播。在兩個基板111的內表面採用刮擦過的聚合物的取向層118,以提供液晶120的一個初始基態取向。條狀電極114優選設置在光入射的單元的基板側,雖然它們也可以設置在相對的基板111上。
This can be better understood with reference to Figure 11, which schematically shows a device with a single
裝置100示意性示出並且不按比例地示出了在橫截面中的4個電極間隙,每個具有可控圓柱形透鏡元件,以用於光束控制。電極114的配置可以是線性的(即手指狀)、同心環、螺旋形或任何其它的幾何構型。電極間隙在光通孔上的數目可以根據應用而變化。 The device 100 shows schematically and not to scale 4 electrode gaps in cross section, each with a controllable cylindrical lens element for beam control. The configuration of the electrode 114 may be linear (ie, finger-shaped), concentric ring, spiral, or any other geometric configuration. The number of electrode gaps on the light through holes can vary according to applications.
如第11圖中當在電極114和115之間施加電壓時(見右邊單元中示出的電場線),在電極114和115下方的空間的電場比在電極之間的間隙更強。高電阻材料層可以在電極114附近添加,以幫助電場在間隙處分佈,但間隙相比液晶層厚度的長寬比相對較小,那麼這樣的高電阻材料層可能不會帶來很多益處。 As in Figure 11, when a voltage is applied between the electrodes 114 and 115 (see the electric field lines shown in the cell on the right), the electric field in the space under the electrodes 114 and 115 is stronger than the gap between the electrodes. A high-resistance material layer can be added near the electrode 114 to help distribute the electric field at the gap, but the gap has a relatively small aspect ratio compared to the thickness of the liquid crystal layer, so such a high-resistance material layer may not bring much benefit.
向列液晶材料層120控制光的單個偏振方向。如本領域中已知的,這樣的層可以堆疊在一起,使該裝置可以調整光的兩個線性偏振方向。在第11圖的實施例中,液晶材料120被示出具有幾乎與基板平行的取向,使
得它的基態具有從左到右的低預傾斜角。為調製正交的偏振方向,能夠提供向列型液晶的另一層具有與基板延伸到頁面內或外的平行取向。在該結構中,一個透明的(優選光學匹配的)所需尺寸的填充物122被設置用於分離液晶或相鄰單元的電場。第一可控電壓源V1連接到跨過條狀電極114A和對置的平面電極115,而第二可控電壓源V2連接到電極114B和對置的平面電極115。電壓V1和V2確定液晶取向,因此確定所述光束轉向的傾斜的方向。填充物可以是任何合適的材料,優選為透明材料,並且還優選具有類似於液晶材料的折射率。與此相反,相鄰單元的電場的分離,僅通過填充物122是導電的和可控制的來實現。在兩個填充物122之間的液晶相位延遲分佈可具有期望的光束控制質量。
The nematic liquid
此外,對於光束控制的目的,在第11圖所示的條狀電極圖案可以僅在一個方向上用來引起光束轉向。為了在兩個方向上的光束轉向,可以使用附加的層,其具有正交的控制電極114。 In addition, for the purpose of beam control, the strip electrode pattern shown in Figure 11 can be used to cause beam steering in only one direction. For beam steering in both directions, additional layers can be used, which have orthogonal control electrodes 114.
類似於第11圖,第12圖示出具有在一個基板111上的一個單一的液晶層120,其具有獨立電極114A和114B,由間隙隔開,以提供電極之間的控制電場,其在間隙下方的液晶中是空間可變的。當給第12圖中的電極114A和114B施加橫跨的電壓時(參見圖中的兩個單元右側的電場線),電場形成的幾何形狀基本上平行於電極之間的間隙中點的方向,同時在沒有填充物122的電極之間的間
隙的邊緣處,其變成基本上垂直的方向。控制電場對比第11圖具有非常不同的幾何形狀,但是根據所施加的電壓的條件,液晶取向是相似的(但不相同)。在本實施例中,透明材料122不響應於電場,且設置以形成液晶120單元的光束轉向的折射率分佈,透明材料122在兩個層上以交錯的方式設置。這將提供光在圖示平面內的單一偏振方向上的“左或右”傾斜的能力。
Similar to Figure 11, Figure 12 shows a single
第12圖的實施例相對於第11圖的實施例,具有只能在一個方向控制轉向的缺點。為了其他方向的轉向,應當使用單獨的單元來實現該目的,或者可替換地,如果使用一個雙頻液晶,則可以使用總體頻率以上的高頻率以引起液晶取向正交於電場,從而為另一個方向的轉向提供所需的分佈。 Compared with the embodiment in Fig. 11, the embodiment in Fig. 12 has the disadvantage that the steering can only be controlled in one direction. For steering in other directions, a separate unit should be used for this purpose, or alternatively, if a dual-frequency liquid crystal is used, a high frequency above the overall frequency can be used to cause the liquid crystal orientation to be orthogonal to the electric field, thereby providing another The steering of direction provides the required distribution.
在第12圖中,電極114A和114B之間的間距(g)的長寬比(R)與液晶層的厚度(L)之間的關係為,R=g/L,可以是,例如,0.7和4之間(優選地約為2.5,對應於微透鏡設備),其中,無需在電極114A和114B所處的絕緣基板111上設置任何弱導電性塗層。例如,g可以是大約100微米,而L可以約為50微米,而長寬比約為2。長寬比在確定上述的所需的電場空間變化中起重要作用。電極114A和114B如圖所示被佈置在基板111的內部的單元一側上,但是,它們也可以位於基板111的一個外側面上。這後一種設置可能需要較高的驅動信號電壓,然而,電場的幾何圖形可以是更適合於液晶材料內調製所述電
場。
In Figure 12, the relationship between the aspect ratio (R) of the distance (g) between the
第13A至13C圖示意性地更詳細地說明類似於第12圖的一對平行條狀電極114A和114B產生的電場。第13A圖示出了長寬比約為5。單元中的電場線多平行於基板,除了電極附近的邊緣區域。這種佈置是已知用於顯示器中,其中該液晶需要在兩種狀態之間切換,即一個接地狀態(例如扭曲向列或垂直),和液晶平行排列於基板的供電狀態。在這種情況下,目的是在單元(在電極114A和114B之間)內實現液晶的均勻再取向。
FIGS. 13A to 13C schematically illustrate in more detail the electric field generated by a pair of
第13B圖示出了單元的幾何形狀,其中,長寬比R小於約1。這種長寬比可以提供一個強度分佈,其具有邊際極值的觀察角的功能,不適合光束轉向。 Figure 13B shows the geometry of the cell, where the aspect ratio R is less than about 1. This aspect ratio can provide an intensity distribution that has the function of a marginal extreme observation angle and is not suitable for beam steering.
第13C圖示出了單元的幾何形狀,其中,長寬比R是大於約1且小於約4。這種幾何形狀提供了良好的光束轉向性能。 Figure 13C shows the geometry of the cell, where the aspect ratio R is greater than about 1 and less than about 4. This geometry provides good beam steering performance.
在第12圖和第13C圖的實施例中,所述電場具有“垂直”分量(稱為“平面外”),即垂直於該電極114A和114B所在的基板,和“水平”的分量,即延伸於電極之間。
In the embodiment of Figures 12 and 13C, the electric field has a "vertical" component (called "out-of-plane"), that is, perpendicular to the substrate where the
當液晶處於由取向層118取向的基態時,其在電極114A和114B(垂直於電極條帶)之間的方向延伸,被轉向的光束強度分佈可以由於電場和在單元中的液晶取向的期望空間分佈之間的角度不對稱差而被改變。如第13C圖所示,液晶120a的左側取向與電場對齊,而在填充
物122的任何液晶(在120b)構成的右側取向是垂直於電場的。
When the liquid crystal is in the ground state oriented by the
如第13A、13B和13C圖可以理解,長寬比對單元內的液晶取向的空間分佈產生影響,如第13C圖所示的一個合適的長寬比可以實現適當的光束調整光學裝置,而第13A和13C圖提供光束調整是不均勻的或無效的。 As can be understood from Figures 13A, 13B, and 13C, the aspect ratio affects the spatial distribution of the liquid crystal orientation in the cell. As shown in Figure 13C, a proper aspect ratio can realize a proper beam adjustment optical device. Figures 13A and 13C provide that the beam adjustment is uneven or ineffective.
條狀電極114A和114B可以是足夠窄的,以便減小相鄰單元之間的邊界區的尺寸。在第13C圖中所示的具有單元的裝置的光通孔可以有許多這樣的單元,無論是配置為條帶、環、螺旋或其它幾何圖案,限定每個單元間的小間隙為大約30微米至約90微米,並且典型地為約50微米,每個線性毫米單位的光通孔約有20個單元。
The
第11和12圖的配置在零功率的條件下不提供光調製,然後在供電驅動時提供光束控制。 The configurations in Figures 11 and 12 do not provide light modulation under zero-power conditions, and then provide beam control when driven by power.
在第14圖中,平面圖中示意性示出了另一種結構,其中所述取向層的方向幾乎與條狀電極114A和114B的方向相同。在此,在水平方向或X方向上的電場分量將作用在分子上,將它們轉為橫向,抵抗取向層的取向作用。但是,電場的垂直或Z方向分量跨越間隙對稱性良好地作用在液晶分子。該構造提供了用於光束轉向良好的相位延遲分佈。
In Figure 14, another structure is schematically shown in a plan view in which the orientation of the alignment layer is almost the same as the orientation of the
在第15A圖中,示出了一個不同的電場設置,用於光束調整和光束轉向。在這種佈置中,兩個LC 120單元從左到右用於轉向(操縱)具有快軸偏振的光束,或者
反之亦然。所有LC分子被定向在頁面的同一平面上,雖然相對於所述條狀電極114A和114B的方向,液晶的取向可以被選擇,例如與電極的方向平行,如上其它實施例所描述的。
In Figure 15A, a different electric field setting is shown for beam adjustment and beam steering. In this arrangement, two
為轉向操作,電極114C被接地(即連接至地或驅動信號源的極性相反)。施加電壓到電極114A,而電極114B是浮置的或斷開的。因此,對於在一個方向上的轉向,電極114A和114C可以連接到例如交流電壓源;而電極114B被斷開。在這種情況下,由於上層單元的作用,在垂直方向上傳播的光的約一半將被轉向到右邊,而由於下層單元的作用,另一個光被轉向到相同的方向。使得電極114A浮置而電極114B連接到電壓,將使光束轉向到左邊(對應於具有正的介電和光學各向異性的液晶)。兩個液晶層120之間的兩個中間基板111可以設置為一個單一的基板111。
For the steering operation, the
電極114A或114B與接地電極114C之間的電場基本上是“垂直”,即垂直於液晶層的橫向延展,即使電極114A和114B在電極114C的一側被稍微隔開。這在第16圖中示出。
The electric field between the
可以理解,電場將在一個被驅動的電極(例如114B)與最近的接地中間電極114C、在中間基板111的相對側上的接地電極114C、和在中間基板111同一側上的較遠的接地電極114C之間延伸。電場足夠強以延伸到最近的中間電極114C,以控制液晶120取向;而延伸到較遠
的電極114C的電場是足夠弱的,對液晶120的取向可以忽略。因此,這樣的電場線是適合用於對在接近基板平面111處具有接地狀態的方向(由取向層提供)的液晶120,如圖所示。電場線是在被驅動電極114A和/或114B的下面的區域最強,並且在從最近的電極114C遠離的方向要弱得多,並且同樣地向電極114C的中間的方向強度逐漸減小。這提供了電場梯度,適合用於液晶材料120的空間可變的取向,以提供光束轉向或光束調整的元件。
It can be understood that the electric field will be between a driven electrode (such as 114B) and the nearest grounded
設置有在相對面的一個偏置的中間電極114C的條狀電極佈置實現了相位延遲分佈,如第17圖所示。第17圖的模擬狀態是厚度為50微米的液晶,寬度為20微米的條狀電極114,條狀電極114A和114B之間的間隙為100微米。第16圖中的偏置並不需要非常大。從光束控制元件的中心開始計量,條狀電極114A或114B的外邊緣從偏置中間電極114C的相應的外邊緣延伸約20微米。這是條狀電極114A或114B的寬度。電極114A或114B的內側邊緣可能實際上與中間電極114C重疊,或不重疊(在第18A圖中,參數“D”可以是正的,零或略微負的,只要有條狀電極114B足夠延伸超出中間電極114C)。這樣做的偏置量可以根據需要變化,其效果是減少了元件112的外邊緣電場。
The strip electrode arrangement provided with a biased
如在第15B圖中所示,偏置也可以是中間電極114C比條狀電極114A和114B延伸更遠的結果。結果是相同的,即邊緣電場被降低,並且可以實現所期望的
光束轉向相位延遲分佈。
As shown in FIG. 15B, the bias may also be a result of the
向右轉向和向左轉向之間的不對稱性可以是由一個在條狀電極114A和114B之間垂直延伸的液晶平面取向進行說明,進而元件對電場的響應將有些不對稱。
The asymmetry between turning right and turning left can be explained by the orientation of a liquid crystal plane extending vertically between the
第17圖的模擬結果中值得注意的是:相位延遲從最小到最大的很陡的上升,如附圖標記B所示。由於所述偏置,如上所述這引起了邊緣場的減少的結果。如圖所示,該上升或返回區域只代表約20%的光通孔區域。還應當指出的是,這是通過使用在基板的內表面上的電極來實現,從而使電壓降低,並用一個單一的控制信號。該裝置還避免了對任何弱導電層的需要。 What is worth noting in the simulation results in Figure 17 is the steep rise in phase delay from minimum to maximum, as indicated by reference sign B. Due to the offset, this causes a reduction in fringe field as described above. As shown in the figure, the rising or returning area only represents about 20% of the light through hole area. It should also be noted that this is achieved by using electrodes on the inner surface of the substrate, thereby reducing the voltage and using a single control signal. The device also avoids the need for any weakly conductive layers.
光通孔的大約20%的返回區域會散射或在相反的方向引導光束。在一些應用設備中,這種影響是可以接受的,而在其他情況下,是不能接受的。當不能接受時,其中發現有該返回區域的所述光束控制元件的部分可以被遮蔽。雖然這降低了裝置的傳輸效率,但它可以去除散射或錯誤定向的光。如第17圖所示,如果對於左、右轉向合併的返回區被遮蔽,將有100微米的電極間隙中的60微米的可用轉向區,用以構成所述轉向元件。如上所述,如果液晶取向如第14圖所示,則可以預期合併的返回區域的大小會較少,由於左、右轉向模式之間很大的對稱性。 About 20% of the return area of the light via will scatter or direct the beam in the opposite direction. In some application devices, this effect is acceptable, while in other cases, it is unacceptable. When it is unacceptable, the part of the beam control element in which the return area is found can be shielded. Although this reduces the transmission efficiency of the device, it can remove scattered or misoriented light. As shown in Figure 17, if the combined return area for the left and right steering is shielded, there will be an available steering area of 60 microns in the electrode gap of 100 microns to form the steering element. As mentioned above, if the liquid crystal orientation is as shown in Figure 14, it can be expected that the size of the combined return area will be smaller due to the large symmetry between the left and right steering modes.
第18A圖示出了類似於第15A圖的實施例,其中奇數和偶數元件都偏置的中間電極114C和114D。這個裝置是通過交替施加如第18A圖所示的驅動信號,然
後,如第18B圖所示進行驅動。每個配置被用於形成電場以形成該裝置的光束轉向元件的奇數或偶數個元件。通過時間複用的電極驅動配置,所述液晶層120可以設置有所有元件的光束轉向相位延遲分佈。
Figure 18A shows an embodiment similar to Figure 15A, in which the
使用包括電子開關的驅動電路,一個驅動信號被首先施加在電極114A和114C上(而114B和114D被斷開),用於在一個方向上實現轉向,但施加一個驅動信號在電極114B和114C(而114A和114D被斷開)上,以使另一個方向上實現轉向。在第19圖中,示出了該第一“被驅動的手指組”的相位延遲。光束轉向坡段(ramp)為約80微米,而返回區為約20微米。其次,驅動信號被施加在電極114B和114D上(而114A和114C被斷開),用於在一個方向上實現轉向,但施加一個驅動信號在電極114A和114D(而114B和114C被斷開)上,以使另一個方向上實現轉向。在第19圖中,示出了該第二“被驅動的手指組”的相位延遲(驅動電壓為10V,液晶材料是50微米厚的LC80,而電極期間為120微米,電極114A和114B為20微米寬)。在這兩種設置中,光束轉向坡段和返回區的特性基本上是相同的,並且顯示產生了在當前驅動或調製的元件之間的未調製元件上的每個設置引起的調製的小波紋。在第一和第二配置之間來回選擇驅動電路,以實現所述裝置的所有元件上的光束轉向相位延遲分佈的維持。
Using a drive circuit that includes an electronic switch, a drive signal is first applied to the
在第18A圖的實施例中,優選的是使用中間電極114C,其在如圖所示的相對條狀電極中嵌入,由於
每個條狀電極可以用於左、右光束轉向控制。然而,下面的第15B圖的結構可以在第18A圖的情況下實現,但是偏置需要分開嵌入的條狀電極,以用於左和右光束轉向,以配合具有非常小的分離間隙的電極114C和114D。因此,電極114A和114B將被視為電極114A-右,114A-左,114B-右和114B-左。
In the embodiment of Figure 18A, it is preferable to use the
第15A或18A圖的裝置控制光在一個平面內的一個線性偏振方向,並且可以被認為是一個“1/4單元”。兩個這樣具有正交電極線的元件,但是具有在同一平面中的LC分子用於控制兩個平面內的相同的偏振方向,以形成一個“半單元”。此外,兩個“半單元”(總體8個LC單元)可被提供以操作在兩個平面內的非偏振光。在兩個平面進行操作的光束轉向裝置可以在兩個正交方向上控制光束。 The device in Figure 15A or 18A controls a linear polarization direction of light in a plane, and can be regarded as a "1/4 unit". Two such elements with orthogonal electrode lines but with LC molecules in the same plane are used to control the same polarization direction in the two planes to form a "half cell". In addition, two "half cells" (8 LC cells in total) can be provided to operate on unpolarized light in two planes. A beam steering device that operates in two planes can control the beam in two orthogonal directions.
光束控制器被提供以產生控制信號。舉例來說,光源(如LED芯)可以使用光束控制器控制強度和/或顏色。此外,可以使用光束控制器來控制動態液晶控制元件,即在電極114A和114B(或任何上述的電極的安排)可以使用光束控制電路進行控制。光束控制器可以包括專用電路,或者它可以包括可配置的電路(例如FPGA),或者可使用在合適的平臺上,例如一個CPU或DSP系統中運行的程序代碼來實現。
The beam controller is provided to generate control signals. For example, a light source (such as an LED core) can use a beam controller to control the intensity and/or color. In addition, a beam controller can be used to control the dynamic liquid crystal control element, that is, the
光束控制器可以被配置為從數據網絡接收控制命令來調整光束方向。一些光源(例如紅外光源)可以 用來提供數據通信,並且在這種情況下,光束控制器可以用於調節包含數據的光源,而動態LC控制元件可用於控制包含數據的光束。除了光投影或光源,這還可以用於掃描儀,接收器和閱讀器。 The beam controller can be configured to receive control commands from the data network to adjust the beam direction. Some light sources (e.g. infrared light sources) can Used to provide data communication, and in this case, the beam controller can be used to adjust the data-containing light source, and the dynamic LC control element can be used to control the data-containing beam. In addition to light projection or light source, this can also be used for scanners, receivers and readers.
在第20圖的實施例中示出了具有條狀電極114A和114B的電極陣列。電極間距在該裝置的6mm的光通孔的中間為50微米,並在外側為100微米。在示出的例子中,間隙從一個間隙至下一個間隙增大/減小5微米。小間隙有較高的光束調整或光束轉向能力或光學功率,和更大的間隙具有較小的光學功率。
In the embodiment of FIG. 20, an electrode array having
條狀電極之間的間隙的這樣的變化可以是線性的或非線性的。變化或微調的效果是可消除或減少在被傳輸的光中的任何顏色分離和熱點的形成。這是因為光學元件的不同部分將光的相同波長(即顏色)重定向到不同的方向上。 Such a change in the gap between the strip electrodes may be linear or non-linear. The effect of the change or fine-tuning is to eliminate or reduce any color separation and hot spot formation in the transmitted light. This is because different parts of the optical element redirect the same wavelength (ie color) of light to different directions.
例如,光束可以具有相對於光軸的對稱性。在此情況下,電極可為同心環114A和114B(基本上形成一個菲涅爾透鏡)。環的間距可以是在中央光軸附近較小,並在靠近最外面的環的位置相對較大,以使光束擴散更均勻。間距也可以考慮到光束的強度分佈,以強度更大的位置提供更多的元件。這種類型的電極(同心環)可與單元的對面基板上的星形-數字化電極結構配合使用。
For example, the light beam may have symmetry with respect to the optical axis. In this case, the electrodes may be
可以理解如本文所描述,該條狀電極圖案可應用於各種液晶單元設計。在同心環的情況下,在一個 徑向方向上相對於光軸進行光束調整或光束轉向,並且因此典型的設計可能具有兩層液晶,分別用於每個偏振方向。空間微調也可適用於圓形或星形電極的情況。 It can be understood that as described herein, the strip electrode pattern can be applied to various liquid crystal cell designs. In the case of concentric rings, in a The beam adjustment or beam steering is performed relative to the optical axis in the radial direction, and therefore a typical design may have two layers of liquid crystal, one for each polarization direction. Spatial fine adjustment can also be applied to circular or star-shaped electrodes.
如上述實施例的液晶裝置10/110包括具有在一個方向上排列的取向層的LC層。上文簡要提到的,這樣的裝置10/110作用在光的單一線性偏振方向,非偏振光穿過所述裝置,被光學裝置處理為兩個線性偏振態。LC材料的折射率的空間調製是作用於快軸偏振光的,而其它慢軸偏振光不受到折射率的空間調製。為了控制非偏振光,第二光學裝置10/110通常具有正交於第一光學裝置的取向的取向層,作用於其它偏振方向。這在第21圖中示意性地示出,設置與第一液晶單元的相似的方式佈置的額外的LC單元的電極114和115。該方案在2009年12月10公開的第WO2009/146530號國際專利申請公開案中,如第21圖示出,四個LC單元安排在一起,兩個LC單元的取向層作用於相同的光偏振方向,其具有相反的方向取向的取向層。這樣的4個LC單元的佈置降低了裝置10/110對不平行於整個裝置的光軸的入射光的敏感性或圖像像差。
The
雖然第5到20圖示出了光束控制裝置,但用來使液晶改變跨越區域的邊界中的取向以具有減小的非線性區的配置,也可用於各種菲涅爾透鏡的設計,例如,如第22圖所示。在這種情況下,電極的幾何形狀將是不同的,並不會僅形成矩形區域,而是通常呈弓形或圓形區域,此在菲涅爾透鏡的設計是公知的。第22圖所示的透鏡,常
規的折射對應的透鏡如在頁面中的橫截面中的虛線所示,其與具有類似的作用的四層液晶漸變折射率透鏡配合取向。中央區域由中央環狀電極14c結合弱導電材料16(第21圖中未示出)形成,以實現中央區域的軸對稱電壓分佈,軸附近趨於零。在該圖中,頻帶被維持為如相同的尺寸的常規菲涅爾透鏡,但是應該理解的是,使用這樣的液晶裝置,相對於使用較厚的光學折射材料來製作菲涅爾透鏡,每個微元件的尺寸將比通常小得多,數量大得多。為了更好的圖示,電極14c和14d的圖示具有比實際尺寸更大的分離。電極14c和14d之間的電連接和驅動信號源也為了便於繪圖,未示出。四層液晶材料(第21圖)具有如圖所示的取向,以提供對自然光(兩個偏振方向)的良好的光學性能,並降低對不平行於光軸的光的敏感性。如果光束接近平行於光軸,則這種透鏡10可以僅兩層,其可充分有效對自然光工作。另外的層也可用於增加透鏡材料的厚度,從而增加光學功率。
Although Figures 5 to 20 show the beam control device, the configuration used to make the liquid crystal change the orientation in the boundary of the cross-over area to have a reduced nonlinear region can also be used in the design of various Fresnel lenses, for example, As shown in Figure 22. In this case, the geometry of the electrode will be different, and will not only form a rectangular area, but usually an arcuate or circular area, which is well known in the design of Fresnel lenses. The lens shown in Figure 22, often
The lens corresponding to the regular refraction is shown by the dashed line in the cross section on the page, and it is aligned with a four-layer liquid crystal gradient index lens having a similar function. The central area is formed by the central ring-shaped
如上所述,在第6圖中示意性示出的裝置,使用與第7到22圖所述的不同的電場控制結構,或可以使用不同的菲涅爾透鏡設計,以用於各種應用,包括用於照明的由LED光源發射的光的重定向。液晶材料也可以用於轉向或聚焦紅外光,例如850奈米波長的光,以及如上所述的裝置可用於在紅外光譜掃描。 As mentioned above, the device schematically shown in Figure 6 uses a different electric field control structure than that described in Figures 7 to 22, or can use a different Fresnel lens design for various applications, including Redirection of light emitted by LED light sources for illumination. Liquid crystal materials can also be used to steer or focus infrared light, such as 850 nanometer wavelength light, and the devices described above can be used to scan in the infrared spectrum.
還應當理解的是,上述實施例的光學裝置可以在太赫茲(terahertz)頻率下進行操作,即波長範圍為 8000至14000奈米的人體輻射頻率。因此,按照菲涅爾折射透鏡的控制和/或紅外光投射光束的光束轉向控制對於波長範圍敏感的探測器,都可以找到有用的應用情況,例如,紅外運動檢測器的光學系統。 It should also be understood that the optical device of the above embodiment can be operated at a terahertz frequency, that is, the wavelength range is Human body radiation frequency of 8000 to 14000 nanometers. Therefore, according to the control of the Fresnel refractive lens and/or the beam steering control of the infrared light projection beam, the detectors sensitive to the wavelength range can find useful applications, for example, the optical system of the infrared motion detector.
雖然已通過參考其優選實施例示出和描述了本發明,但是本領域技術人員可瞭解,可在本發明中進行形式上和細節上的各種改變而不背離由所附申請專利範圍限定的本發明的精神和範圍。 Although the present invention has been shown and described with reference to its preferred embodiments, those skilled in the art will understand that various changes in form and details can be made in the present invention without departing from the invention defined by the scope of the appended application Spirit and scope.
111‧‧‧基板 111‧‧‧Substrate
114A‧‧‧條狀電極、電極 114A‧‧‧Strip electrode, electrode
114B‧‧‧電極 114B‧‧‧electrode
118‧‧‧取向層 118‧‧‧Orientation layer
120‧‧‧液晶層 120‧‧‧Liquid crystal layer
122‧‧‧填充物 122‧‧‧filling
Claims (29)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562216951P | 2015-09-10 | 2015-09-10 | |
US62/216,951 | 2015-09-10 | ||
PCT/CA2015/051222 WO2016082031A1 (en) | 2014-11-24 | 2015-11-24 | Liquid crystal beam control device with improved zone transition and method of manufacture thereof |
WOPCT/CA2015/051222 | 2015-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201725423A TW201725423A (en) | 2017-07-16 |
TWI705268B true TWI705268B (en) | 2020-09-21 |
Family
ID=60048133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105129480A TWI705268B (en) | 2015-09-10 | 2016-09-10 | Liquid crystal beam control device with improved zone transition and method of manufacture thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI705268B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101976735B1 (en) | 2017-09-14 | 2019-05-09 | 동우 화인켐 주식회사 | Touch sensor and image display device including the same |
TWI699592B (en) * | 2019-04-17 | 2020-07-21 | 友達光電股份有限公司 | Display apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI224698B (en) * | 2001-04-19 | 2004-12-01 | Ibm | Discrete pattern, optical member, light guide plate, side light device and light transmitting liquid crystal display device using the discrete pattern, method and program for generating the discrete pattern, computer-readable storage medium on which |
US20130063691A1 (en) * | 2011-08-30 | 2013-03-14 | Japan Display West Inc. | Liquid crystal optical device |
US20130250223A1 (en) * | 2012-03-22 | 2013-09-26 | Ayako Takagi | Liquid crystal optical apparatus and image display device |
EP2682810A1 (en) * | 2012-07-06 | 2014-01-08 | Kabushiki Kaisha Toshiba | Liquid crystal Fresnel lens and image display apparatus |
WO2014071530A1 (en) * | 2012-11-11 | 2014-05-15 | Lensvector Inc. | Capacitively coupled electric field control device |
-
2016
- 2016-09-10 TW TW105129480A patent/TWI705268B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI224698B (en) * | 2001-04-19 | 2004-12-01 | Ibm | Discrete pattern, optical member, light guide plate, side light device and light transmitting liquid crystal display device using the discrete pattern, method and program for generating the discrete pattern, computer-readable storage medium on which |
US20130063691A1 (en) * | 2011-08-30 | 2013-03-14 | Japan Display West Inc. | Liquid crystal optical device |
US20130250223A1 (en) * | 2012-03-22 | 2013-09-26 | Ayako Takagi | Liquid crystal optical apparatus and image display device |
EP2682810A1 (en) * | 2012-07-06 | 2014-01-08 | Kabushiki Kaisha Toshiba | Liquid crystal Fresnel lens and image display apparatus |
WO2014071530A1 (en) * | 2012-11-11 | 2014-05-15 | Lensvector Inc. | Capacitively coupled electric field control device |
Also Published As
Publication number | Publication date |
---|---|
TW201725423A (en) | 2017-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10747084B2 (en) | Liquid crystal beam control device with improved zone transition and method of manufacture thereof | |
TWI701462B (en) | Liquid crystal beam control device and manufacture | |
US11598995B2 (en) | Beam shaping device | |
US11703721B2 (en) | Liquid crystal beam control device | |
KR102092264B1 (en) | Lenses with electricallytunable power and alignment | |
US11221539B2 (en) | Liquid crystal beam control device generating flat-top distribution | |
JP6515115B2 (en) | Electrically adjustable lens and lens system | |
JP2012141552A (en) | Liquid crystal cylindrical lens array and display device | |
JP2017515139A5 (en) | ||
US10101629B2 (en) | Optical modulator including liquid crystal, driving method thereof, and optical device using the same | |
TWI705268B (en) | Liquid crystal beam control device with improved zone transition and method of manufacture thereof | |
US20190086761A1 (en) | Flat liquid crystal layered fresnel lens device | |
KR102354503B1 (en) | Optical modulatoin device and driving method thereof | |
US11340492B1 (en) | Liquid crystal gradient-index lens structure with improved transition region | |
CN117795415A (en) | Electrode structure for fresnel lens device |