TWI700372B - Blast furnace facility and monitoring method for liquid level of slag of blast furnace - Google Patents
Blast furnace facility and monitoring method for liquid level of slag of blast furnace Download PDFInfo
- Publication number
- TWI700372B TWI700372B TW108132857A TW108132857A TWI700372B TW I700372 B TWI700372 B TW I700372B TW 108132857 A TW108132857 A TW 108132857A TW 108132857 A TW108132857 A TW 108132857A TW I700372 B TWI700372 B TW I700372B
- Authority
- TW
- Taiwan
- Prior art keywords
- furnace
- slag
- blast furnace
- strain
- blast
- Prior art date
Links
Images
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
本揭露實施例是有關於一種高爐設備,特別關於一種高爐設備以及高爐爐渣液位之監測方法。 The disclosed embodiment relates to a blast furnace equipment, and in particular to a blast furnace equipment and a method for monitoring the blast furnace slag level.
高爐是煉鐵的一種設施,也是目前最具有規模經濟的煉鐵法。在煉鐵過程中,從高爐爐頂加入煉鐵原料,在爐內上升之還原氣體作用下,原料轉成熔融狀態並向下滴落,最後爐床處就會累積大量的鐵水與爐渣。 Blast furnace is a kind of ironmaking facility and the most economical ironmaking method at present. In the ironmaking process, the ironmaking raw materials are added from the top of the blast furnace, and under the action of the reducing gas rising in the furnace, the raw materials turn into a molten state and drip down, and finally a large amount of molten iron and slag will accumulate at the hearth.
一座高爐通常會有2個以上的出鐵口。在出鐵作業中,先在一個出鐵口處局部鑽孔洞,使鐵水與爐渣流出。當爐渣液位下降以致爐氣由出鐵口排出且爐渣噴濺流出時,表示爐渣液位已降至最低點,此時無法再出鐵,亦即完成此出鐵口的出鐵。之後,以堵泥機抵緊孔洞,藉油壓擠入耐火堵塞材將出鐵口關閉。在關閉此出鐵口的同時或之後,對另一個出鐵口重覆上述開孔出鐵以及堵孔停止之出鐵動作,如此不斷循環。最好的出鐵作業是將爐渣液位維持在穩定的高度,且高度越低越好。 A blast furnace usually has more than 2 tap holes. In the tapping operation, a hole is partially drilled at a tap hole to make the molten iron and slag flow out. When the slag liquid level drops so that the furnace gas is discharged from the tap hole and the slag splashes out, it means that the slag liquid level has dropped to the lowest point. At this time, no more tapping is possible, that is, the tapping of the tap hole is completed. After that, the hole is pressed tightly with a mud plugger, and the refractory plugging material is squeezed in by hydraulic pressure to close the taphole. Simultaneously or after closing the tap hole, repeat the tapping action of tapping the hole and stopping the hole for another tap hole, and so on. The best tapping operation is to maintain the slag level at a stable height, and the lower the height, the better.
當爐渣液位升高時,除了會影響爐內氣流分佈,也會增加浮力,進而造成原料下降的速度減慢、鐵水產量減少。更嚴重的是,若爐渣液位上升至鼓風嘴,則無法送風生產,甚至還有漏銑危險。因此,根據爐床爐渣液位(液體面高度)之高低,決定最佳出鐵、堵泥時機與開孔大小,並將液位控制在適當範圍,為高爐穩定煉鐵的關鍵技術之一。 When the slag liquid level rises, in addition to affecting the airflow distribution in the furnace, it will also increase buoyancy, which in turn will slow down the rate of raw material decline and reduce the output of molten iron. What's more serious is that if the slag liquid level rises to the tuyere, it will not be able to supply air for production, and there is even a risk of missing milling. Therefore, according to the level of the furnace slag (liquid surface height), determining the best tapping, mud plugging timing and hole size, and controlling the liquid level in an appropriate range is one of the key technologies for stable ironmaking in blast furnaces.
本揭露之目的在於提出一種高爐設備以及高爐爐渣液位之監測方法,能監測高爐爐渣液位以助於出鐵、堵泥時機之判斷,並穩定高爐的出鐵作業。 The purpose of this disclosure is to provide a monitoring method for blast furnace equipment and blast furnace slag level, which can monitor the blast furnace slag level to help judge the timing of iron tapping and mud blocking, and stabilize the blast furnace tapping operation.
根據本揭露之上述目的,提出一種高爐設備包含高爐以及監測系統。高爐具有爐壁、鼓風嘴及出鐵口。爐壁定義出容置空間以容置鐵水及位於鐵水之上之爐渣。爐壁包含爐殼。鼓風嘴穿設爐壁並連通容置空間。出鐵口穿設爐壁並與鐵水連通。監測系統包含應變計及處理模組。應變計設置於爐殼上,且應變計設於鼓風嘴之下方。當高爐執行煉鐵作業時,應變計取得爐殼之應變資訊。處理模組與應變計耦接以接收應變資訊,且可利用應變資訊計算高爐之爐渣之液位。 According to the above-mentioned objective of the present disclosure, a blast furnace equipment including a blast furnace and a monitoring system is proposed. The blast furnace has a furnace wall, a blast nozzle and a tap hole. The furnace wall defines a containing space for containing molten iron and slag on the molten iron. The furnace wall contains the furnace shell. The blast nozzle penetrates the furnace wall and communicates with the accommodating space. The tap hole penetrates the furnace wall and communicates with the molten iron. The monitoring system includes strain gauges and processing modules. The strain gauge is arranged on the furnace shell, and the strain gauge is arranged under the tuyere. When the blast furnace is performing ironmaking operations, the strain gauge obtains the strain information of the furnace shell. The processing module is coupled with the strain gauge to receive strain information, and the strain information can be used to calculate the slag level of the blast furnace.
在一些實施例中,應變計設於出鐵口之上方。 In some embodiments, the strain gauge is provided above the tap hole.
在一些實施例中,應變計之設置位置位於鐵水之底部與該爐渣之液面之間。 In some embodiments, the installation position of the strain gauge is between the bottom of the molten iron and the liquid level of the slag.
在一些實施例中,處理模組包含接收單元及濾波單元。接收單元與應變計耦接以接收應變資訊。濾波單元與接收單元耦接,並配置以濾除應變資訊之雜訊或應變資訊之應力變化之雜訊,以抽取爐殼之周向應力變化。 In some embodiments, the processing module includes a receiving unit and a filtering unit. The receiving unit is coupled with the strain gauge to receive strain information. The filter unit is coupled to the receiving unit and is configured to filter out noise of strain information or stress change noise of strain information, so as to extract circumferential stress changes of the furnace shell.
在一些實施例中,處理模組以關係式計算高爐之爐渣之液位,關係式為△h=△σ*t/(α*ρ*g*r),△h為爐渣之液位變化,△σ為爐殼之周向應力變化,t為爐殼之厚度,α為爐壁內之側向壓力作用於爐壁上所傳到爐殼之內壁的應力比例,ρ為爐渣之平均密度,g為重力加速度,r為爐殼之內徑。 In some embodiments, the processing module calculates the level of the slag in the blast furnace by using a relational formula. The relational formula is △h=△σ*t/(α*ρ*g*r), and △h is the change of the slag level. △σ is the circumferential stress change of the furnace shell, t is the thickness of the furnace shell, α is the stress ratio of the lateral pressure in the furnace wall acting on the furnace wall to the inner wall of the furnace shell, ρ is the average density of the slag , G is the acceleration of gravity, r is the inner diameter of the furnace shell.
根據本揭露之上述目的,另提出一種高爐爐渣液位之監測方法,其中高爐包含爐壁、鼓風嘴及出鐵口,爐壁定義出容置空間以容置鐵水及位於鐵水之上之爐渣,爐壁包含爐殼,鼓風嘴穿設爐壁並與容置空間連通,出鐵口穿設爐壁並與鐵水連通。監測方法包含:在爐殼上設置應變計,且使應變計之設置位置低於鼓風嘴之設置位置;當高爐執行煉鐵作業時,由應變計取得爐殼之應變資訊;以及利用應變資訊計算高爐之爐渣之液位。 According to the above objective of the present disclosure, another method for monitoring the slag level of a blast furnace is proposed. The blast furnace includes a furnace wall, a tuyere, and a tap hole. The furnace wall defines an accommodation space for containing molten iron and is located on the molten iron For the slag, the furnace wall includes the furnace shell, the blast nozzle penetrates the furnace wall and communicates with the accommodating space, and the tap hole penetrates the furnace wall and communicates with the molten iron. The monitoring method includes: installing a strain gauge on the furnace shell and making the setting position of the strain gauge lower than the setting position of the tuyere; when the blast furnace is performing ironmaking operations, the strain gauge obtains the strain information of the furnace shell; and using the strain information Calculate the slag level of the blast furnace.
在一些實施例中,利用應變資訊計算高爐之爐渣之液位包含:利用濾波單元濾除應變資訊之雜訊或應變資訊之應力變化之雜訊,以抽取爐殼之周向應力變化。 In some embodiments, calculating the liquid level of the slag of the blast furnace by using the strain information includes: filtering the noise of the strain information or the noise of the stress change of the strain information using a filter unit to extract the circumferential stress change of the furnace shell.
在一些實施例中,利用應變資訊計算高爐之爐渣之液位包含:利用關係式計算高爐之爐渣之液位,關係式為△h=△σ*t/(α*ρ*g*r),△h為爐渣之液位變化,△σ為 爐殼之周向應力變化,t為爐殼之厚度,α為爐壁內之側向壓力作用於爐壁上所傳到爐殼之內壁的應力比例,ρ為爐渣之平均密度,g為重力加速度,r為爐殼之內徑。 In some embodiments, using strain information to calculate the slag level of the blast furnace includes: calculating the level of the slag in the blast furnace using a relational formula, the relational formula being △h=△σ*t/(α*ρ*g*r), △h is the level change of slag, △σ is The circumferential stress change of the furnace shell, t is the thickness of the furnace shell, α is the stress ratio of the lateral pressure in the furnace wall acting on the furnace wall to the inner wall of the furnace shell, ρ is the average density of the slag, g is The acceleration of gravity, r is the inner diameter of the furnace shell.
在一些實施例中,在爐殼上設置應變計包含:將應變計設於出鐵口之上方。 In some embodiments, arranging the strain gauge on the furnace shell includes: arranging the strain gauge above the tap hole.
在一些實施例中,在爐殼上設置應變計包含:將應變計設於鐵水之底部與爐渣之液面之間。 In some embodiments, installing a strain gauge on the furnace shell includes: installing the strain gauge between the bottom of the molten iron and the liquid level of the slag.
綜上所述,本揭露提出一種高爐設備以及高爐爐渣液位之監測方法,藉由將應變計設置於高爐之爐殼,而能利用爐殼之應變資訊來監測高爐內之爐渣液位,並藉此達到多種功能,例如直接監測爐床處爐渣之液位高度、提供現場決定最佳出鐵時機、堵泥時機及開孔大小,並可將鐵水液位控制在適當範圍。如此,本揭露之高爐設備及其監測系統、以及高爐爐渣液位之監測方法能監測高爐爐渣液位以助於出鐵、堵泥時機之判斷,並穩定高爐的出鐵作業。 In summary, this disclosure proposes a method for monitoring blast furnace equipment and blast furnace slag level. By installing a strain gauge on the blast furnace shell, the strain information of the furnace shell can be used to monitor the slag level in the blast furnace. It achieves multiple functions, such as directly monitoring the level of slag at the hearth, providing on-site determination of the best tapping timing, clogging timing and opening size, and controlling the molten iron level within an appropriate range. In this way, the blast furnace equipment and the monitoring system thereof, and the blast furnace slag level monitoring method disclosed in the present disclosure can monitor the blast furnace slag level to help determine the timing of tapping and mud blocking, and stabilize the tapping operation of the blast furnace.
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present disclosure more obvious and understandable, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
1‧‧‧高爐設備 1‧‧‧Blast furnace equipment
10‧‧‧高爐 10‧‧‧Blast furnace
11‧‧‧爐壁 11‧‧‧furnace wall
111‧‧‧爐殼 111‧‧‧ Furnace shell
112‧‧‧耐火材 112‧‧‧Refractory
12‧‧‧鼓風嘴 12‧‧‧Blow mouth
13‧‧‧出鐵口 13‧‧‧Take Outlet
2‧‧‧監測系統 2‧‧‧Monitoring system
20‧‧‧監測系統 20‧‧‧Monitoring System
21‧‧‧應變計 21‧‧‧Strain gauge
22‧‧‧處理模組 22‧‧‧Processing Module
221‧‧‧接收單元 221‧‧‧Receiving unit
222‧‧‧濾波單元 222‧‧‧Filter unit
223‧‧‧計算單元 223‧‧‧Computer unit
224‧‧‧通知單元 224‧‧‧Notification Unit
31‧‧‧鐵水 31‧‧‧Molten Iron
311‧‧‧底部 311‧‧‧Bottom
32‧‧‧爐渣 32‧‧‧Slag
321‧‧‧液面 321‧‧‧Liquid level
H‧‧‧中空部 H‧‧‧Hollow part
S01、S02、S03‧‧‧步驟 S01, S02, S03‧‧‧Step
從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 From the following detailed description in conjunction with the accompanying drawings, a better understanding of the aspect of the disclosure can be obtained. It should be noted that, according to industry standard practices, each feature is not drawn to scale. In fact, in order to make the discussion clearer, the size of each feature can be increased or decreased arbitrarily.
〔圖1〕為本揭露實施例之一種高爐設備的示意圖。 [Figure 1] is a schematic diagram of a blast furnace equipment according to an embodiment of the disclosure.
〔圖2〕為本揭露實施例之一種高爐爐渣液位之監測系統的功能方塊圖。 [Figure 2] is a functional block diagram of a blast furnace slag level monitoring system according to an embodiment of the disclosure.
〔圖3〕為本揭露實施例之二個應變計所計算出的爐渣液位高度以及三個出鐵口之出鐵作業的歷程圖表。 [Figure 3] is a chart of the slag liquid level calculated by the two strain gauges in the embodiment of the disclosure and the history of the iron tapping operation of the three tap holes.
〔圖4〕為本揭露實施例之一種高爐爐渣液位之監測方法的流程圖。 [Figure 4] is a flowchart of a method for monitoring the slag level of a blast furnace according to an embodiment of the disclosure.
以下仔細討論本揭露的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論與揭示的實施例僅供說明,並非用以限定本揭露之範圍。本揭露的所有實施例揭露多種不同特徵,但這些特徵可依需求而單獨實施或結合實施。另外,關於本文中所使用之「第一」、「第二」、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。此外,本揭露所敘述之二元件之間的空間關係不僅適用於圖式所繪示之方位,亦適用於圖式所未呈現之方位,例如倒置之方位。 The embodiments of the present disclosure are discussed in detail below. However, it can be understood that the embodiments provide many applicable concepts, which can be implemented in various specific contents. The discussed and disclosed embodiments are for illustration only, and are not intended to limit the scope of the disclosure. All the embodiments of the present disclosure disclose multiple different features, but these features can be implemented separately or in combination according to requirements. In addition, the "first", "second", ... etc. used in this text do not particularly refer to the meaning of order or sequence, but only to distinguish elements or operations described in the same technical terms. In addition, the spatial relationship between the two elements described in this disclosure is not only applicable to the orientation shown in the diagram, but also applicable to the orientation not shown in the diagram, such as the inverted orientation.
圖1為本揭露實施例之一種高爐設備1的示意圖。如圖1所示,高爐設備1包含高爐10及監測系統20。高爐10用以進行煉鐵作業,監測系統20用以監測高爐10之爐渣32之液位。
FIG. 1 is a schematic diagram of a blast furnace equipment 1 according to an embodiment of the disclosure. As shown in FIG. 1, the blast furnace equipment 1 includes a
高爐10包含爐壁11、鼓風嘴12及複數個出鐵口
13。本實施例是以32個鼓風嘴(圖1僅顯示2個)12及4個出鐵口13(圖1僅顯示2個)為例作說明,但本揭露不限於此。爐壁11定義出容置空間H以容置煉鐵原料及煉鐵原料經熔煉所生成之鐵水31及爐渣32。鐵水31及爐渣32位於容置空間H之底部,其中爐渣32位於鐵水31之上。爐壁11在不同處可具有不同厚度及/或結構配置。舉例來說,高爐10底部的爐壁11包含爐殼111及耐火材112。耐火材112例如包含碳磚或其他耐火材料,並且在一些實施例中,耐火材112可由多種材料形成。在本實施例中,爐殼111作為爐壁11之外層,耐火材112作為爐壁111之內層,並且耐火材112相連於爐殼1111之內表面。在其他實施例中可有不同配置,例如爐殼111與耐火材112之間有設置具特定功用的中間層。鼓風嘴12穿設爐壁11並與容置空間H連通。鼓風嘴12可提供加熱的空氣進入高爐10內。出鐵口13穿設爐壁11並可與鐵水31連通。在本實施例中,出鐵口13的位置低於鼓風嘴12的位置,並對應容置空間H之底部,以利將鐵水12引出。
The
在此簡略說明高爐10之煉鐵過程。在煉鐵過程中,從高爐10之爐頂加入煉鐵原料,煉鐵原料例如包含鐵礦石、焦炭和熔劑。焦炭和鐵礦石在高爐10內形成交替分層結構。鼓風嘴12所排出的熱風會使焦炭燃燒,產生高溫的熾熱還原性煤氣。上升的高溫煤氣流加熱鐵礦石和熔劑,使其成為液態並向下滴落。最後爐床處就會累積大量的鐵水31與爐渣32。由於爐渣32的密度低於鐵水31的密度,所以爐渣32會浮在鐵水31上方。之後可藉由出鐵口13來進行出
鐵作業。
The ironmaking process of the
高爐設備1之監測系統20包含應變計(strain gauge)21與處理模組22,其中應變計21與處理模組22耦接。應變計21設置於爐殼111上。具體來說,應變計21設置於爐殼111之外表面上。在本實施例中,如圖1所示,應變計21設於鼓風嘴12之下方。在另一實施例中,應變計21可設於出鐵口13之上方。在又一實施例中,應變計21可設於鐵水31與爐渣32的範圍內,亦即,在垂直方向上,應變計21係位於鐵水31之底部311與爐渣32之液面321之間。
The
在一實施例中,監測系統20可包含多個應變計211,並且這些應變計21可沿爐殼111之外周緣分佈設置。舉例來說,若是二個應變計21,則此二應變計21可相對設置;若是三個應變計21,則這三個應變計21可平均設置於爐殼111之外周緣。此外,多個應變計21可設置於相同高度或不同高度,以達到多種應用。本揭露不限制應變計21之種類,其可例如為單軸、雙軸或三軸應變計,亦不限制應變計21之組態,其可例如為四分之一橋接、二分之一橋接或全橋接。
In an embodiment, the
當高爐10執行煉鐵作業時,應變計21可取得爐殼111的應變資訊。由於爐渣32的液位變化以及爐壁11內的高溫所產生的壓力,使得爐殼111產生應變,例如為軸向應變、彎曲應變、剪力應變、扭力應變、或其任一組合。當應變計21取得爐殼111的應變資訊時,與應變計21耦接之處理模組22可利用此應變資訊來監測高爐10內之爐渣32之液
位。在計算上,可直接利用爐殼111的應變資訊計算爐渣32之液位,或是間接利用爐殼111的應變資訊計算爐渣13之液位。舉例來說,可先將爐殼111的應變資訊轉換成其他資訊,例如爐殼111的應力變化,再利用爐殼111的應力變化計算爐渣32之液位,或者是先將爐殼111的應變資訊進行濾波,再利用濾波後的應變資訊計算爐渣32之液位。
When the
圖2為本揭露實施例之一種高爐爐渣液位之監測系統20的功能方塊圖。以下舉例說明如何利用爐殼111的應變資訊計算高爐10之爐渣32之液位。
2 is a functional block diagram of a blast furnace slag
處理模組22包含接收單元221、濾波單元222、及計算單元223。接收單元221與應變計21耦接,以接收應變計21之應變資訊。接收單元221可由有線傳輸或無線傳輸而與應變計21訊號連接,以接收應變資訊。濾波單元222與接收單元221耦接,並可濾除應變資訊之雜訊、或濾除由應變資訊轉換之應力變化之雜訊,以抽取爐殼111之周向應力變化。
The
在一實施例中,濾波單元222例如是合適的數位濾波器,例如是電腦上的軟體,可對應變資訊進行濾波,並將僅由爐渣32之液位高低變化△h所引起的爐殼111之周向應力變化△σ抽取出來。由於應變資訊或應力變化△σ亦可能由其他因素造成,例如高溫所產生的壓力,因此需要利用濾波單元222將僅由高低變化△h所引起的爐殼111之周向應力變化△σ抽取出來。
In one embodiment, the
需注意的是,這裡的濾波單元221亦使用應變
資訊△ε與應力變化△σ的關係式(1),關係式(1)如下:△ε*E=△σ (1)
It should be noted that the
其中,E為爐殼111之彈性模數(modulus of elastic)。在計算上,可先將應變資訊△ε濾波再用關係式(1)計算出應力變化△σ,或者是先用關係式(1)計算出應力變化△σ,再將應力變化△σ濾波。
Where E is the modulus of elasticity of the
計算單元223與濾波單元222耦接,以接收應力變化△σ,並利用應力變化△σ來計算爐渣32之液位變化△h。在一實施例中,使用下述之爐渣32之液位變化△h與爐殼111之周向應力變化△σ之關係式(2),計算出爐渣液位變化△h:△h=△σ*t/(α*ρ*g*r) (2)
The
其中,t是爐殼111之厚度;α是在高爐10內之側向壓力作用於整體爐壁11上所傳到爐殼111內壁的應力比例,因有些應力會被耐火材112吸收而無法傳到爐殼111,因此這個比例與爐壁11結構有關,並可例如透過有限元分析(finite element analysis)、或簡化公式、或經驗公式得到;ρ為爐渣32的平均密度;g是重力加速度;r是爐殼111之內徑(半徑)。
Among them, t is the thickness of the
在上述關係式(2)中,g是已知常數,△σ可由應變計21之應變資訊得到。另外,當所使用的高爐10決定時,t與r亦可視為常數,而α與ρ幾乎是常數或者是有微小的變化,因此在實務上,可例如半年測一次α與ρ參數。
In the above relationship (2), g is a known constant, and Δσ can be obtained from the strain information of the
本實施例是使用上述關係式(2)計算爐渣液位變化△h之外。在其他實施例中,可發現關係式(2)之△h與 △σ有正比的關係,而其他參數可視為常數。因此,在長期的監測中,甚至可不使用關係式(2),而是直接由應變資訊及/或應力變化△σ與液位變化△h的關係(例如是線性關係或非線性關係)來得到液位變化△h。 In this embodiment, the above-mentioned relationship (2) is used to calculate the slag level change Δh. In other embodiments, it can be found that △h in relation (2) and △σ has a proportional relationship, and other parameters can be regarded as constants. Therefore, in long-term monitoring, the relationship (2) may not even be used, but can be obtained directly from the relationship between strain information and/or stress change △σ and liquid level change △h (for example, linear relationship or non-linear relationship) The liquid level changes by △h.
根據出鐵作業程序,當爐氣由出鐵口13排出且爐渣噴濺而出時,表示爐渣32液位已經降至最低點,因此在一實施例中可將出鐵口13高度定義為爐渣32的液位零點,藉此可由液位變化△h計算出爐渣32的液位高度。
According to the tapping operation procedure, when the furnace gas is discharged from the
在一實施例中,監測系統20可更包含通知單元224,其與計算單元223耦接。當所監測到的液位超過預定範圍時,通知單元224可發出警告通知。當然,通知單元224可有其他應用,例如當所監測到的液位處在適當的範圍時,通知單元224發出出鐵通知。
In an embodiment, the
圖3為本揭露實施例之二個應變計所計算出的爐渣液位高度以及三個出鐵口輪流出鐵作業的歷程圖表。圖3上方曲線是從同高度之二個應變計之應變資訊所得到的爐渣液位之歷程曲線,時間長度為24小時。由於爐渣液位不是水平面,所以2條曲線並不會一樣。圖3下方條狀圖是實際出鐵作業的時間表,各長條圖形的起點與終點分別是鑽孔開始出鐵與堵孔停止出鐵的時刻。 FIG. 3 is a chart showing the height of the slag liquid level calculated by the two strain gauges in the embodiment of the disclosure and the history chart of the iron outflow operation from the three tapping holes. The upper curve of Figure 3 is the history curve of the slag level obtained from the strain information of two strain gauges at the same height, and the time length is 24 hours. Since the slag level is not horizontal, the two curves are not the same. The lower bar graph in Fig. 3 is the timetable of the actual tapping operation. The starting point and the end point of each bar graph are the moments when the drilling starts to tap and the hole stops tapping.
綜上所述,本揭露可根據應變資訊即可測得爐渣液位,且僅用一個應變計即可測得爐渣液位。此外,本揭露之上述爐渣液位變化與爐殼周向應力變化之關係式,簡單卻很精準。而且,藉由將多個應變計設置在同高度,可判別 爐渣液面之傾斜程度。當監測到爐渣液位過高時,可調整出鐵作業來降低液位。 In summary, the present disclosure can measure the slag level based on strain information, and can measure the slag level with only one strain gauge. In addition, the relationship between the slag level change and the circumferential stress change of the furnace shell disclosed in this disclosure is simple but very accurate. Moreover, by setting multiple strain gauges at the same height, it can be judged The degree of inclination of the slag liquid level. When the slag liquid level is too high, the tapping operation can be adjusted to lower the liquid level.
圖4為本揭露實施例之一種高爐爐渣液位之監測方法的流程圖。本實施例之監測方法是以應用於圖1所示之高爐10為例。監測高爐爐渣液位時,可進行步驟S01,以在爐殼111上設置應變計21,且使應變計21位在鼓風嘴12之下方。在其他實施例中,可更設置應變計21於出鐵口13之上方。接著,進行步驟S02,以在高爐10執行煉鐵作業時,利用應變計21監測而取得爐殼111的應變資訊。然後,進行步驟S03,以利用應變資訊計算高爐10之爐渣32的液位。
4 is a flowchart of a method for monitoring the slag level of a blast furnace according to an embodiment of the disclosure. The monitoring method of this embodiment is applied to the
進行步驟S03時可包含利用圖2所示之濾波單元222濾除應變資訊之雜訊、或濾除由應變資訊所轉換之應力變化之雜訊,以抽取爐殼111之周向應力變化。於此,濾波單元222例如為數位濾波器。藉由濾波可將僅由爐渣32之液位高低變化△h所引起之爐殼111的周向應力變化△σ抽取出來。另外,進行步驟S03可利用關係式計算高爐爐渣之液位,關係式可例如為上述關係式(2)。本實施例之監測方法之其他細部特徵可參照上述高爐設備1及其監測系統20之實施例。
Step S03 may include using the
綜合上述,本揭露提出一種高爐設備以及高爐爐渣液位之監測方法,藉由將應變計設置於高爐之爐殼,而能利用爐殼之應變資訊來監測高爐內之爐渣液位,並藉此達到多種功能,例如直接監測爐床處爐渣之液位高度、提供現場決定最佳出鐵時機、堵泥時機及開孔大小,並可將鐵水液 位控制在適當範圍。如此,本揭露之高爐設備及其監測系統、以及高爐爐渣液位之監測方法能監測高爐爐渣液位以助於出鐵、堵泥時機之判斷,並穩定高爐的出鐵作業。 In summary, this disclosure proposes a method for monitoring the blast furnace equipment and blast furnace slag level. By installing a strain gauge on the blast furnace shell, the strain information of the furnace shell can be used to monitor the slag level in the blast furnace. Achieve a variety of functions, such as directly monitoring the height of the slag liquid level at the hearth, providing on-site determination of the best tapping timing, clogging timing and hole size, and liquid iron The bit is controlled in an appropriate range. In this way, the blast furnace equipment and the monitoring system thereof, and the blast furnace slag level monitoring method disclosed in the present disclosure can monitor the blast furnace slag level to help determine the timing of tapping and mud blocking, and stabilize the tapping operation of the blast furnace.
以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。 The features of several embodiments are summarized above, so those who are familiar with the art can better understand the aspect of the disclosure. Those who are familiar with the art should understand that they can easily use the present disclosure as a basis to design or modify other processes and structures, thereby achieving the same goals and/or the same advantages as the embodiments described herein. . Those who are familiar with this art should also understand that these equivalent constructions do not depart from the spirit and scope of this disclosure, and they can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure.
1‧‧‧高爐設備 1‧‧‧Blast furnace equipment
10‧‧‧高爐 10‧‧‧Blast furnace
11‧‧‧爐壁 11‧‧‧furnace wall
111‧‧‧爐殼 111‧‧‧ Furnace shell
112‧‧‧耐火材 112‧‧‧Refractory
12‧‧‧鼓風嘴 12‧‧‧Blow mouth
13‧‧‧出鐵口 13‧‧‧Take Outlet
20‧‧‧監測系統 20‧‧‧Monitoring System
21‧‧‧應變計 21‧‧‧Strain gauge
22‧‧‧處理模組 22‧‧‧Processing Module
31‧‧‧鐵水 31‧‧‧Molten Iron
311‧‧‧底部 311‧‧‧Bottom
32‧‧‧爐渣 32‧‧‧Slag
321‧‧‧液面 321‧‧‧Liquid level
H‧‧‧容置空間 H‧‧‧accommodating space
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132857A TWI700372B (en) | 2019-09-11 | 2019-09-11 | Blast furnace facility and monitoring method for liquid level of slag of blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132857A TWI700372B (en) | 2019-09-11 | 2019-09-11 | Blast furnace facility and monitoring method for liquid level of slag of blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI700372B true TWI700372B (en) | 2020-08-01 |
TW202111130A TW202111130A (en) | 2021-03-16 |
Family
ID=73002928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132857A TWI700372B (en) | 2019-09-11 | 2019-09-11 | Blast furnace facility and monitoring method for liquid level of slag of blast furnace |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI700372B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101942537A (en) * | 2010-09-09 | 2011-01-12 | 山西太钢不锈钢股份有限公司 | On-line detection method of blast furnace slag quantity |
WO2014009367A1 (en) * | 2012-07-13 | 2014-01-16 | Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw | Method and device for measuring levels of cast-iron and slag in a blast furnace |
CN103993108A (en) * | 2014-06-04 | 2014-08-20 | 中冶南方工程技术有限公司 | Liquid level measurement method of suction well in blast furnace slag treatment system |
US20150330708A1 (en) * | 2014-05-16 | 2015-11-19 | Nucor Corporation | Furnace control for manufacturing steel using slag height measurement and off-gas analysis systems |
WO2018105652A1 (en) * | 2016-12-06 | 2018-06-14 | 新日鐵住金株式会社 | Method for evaluating volume of slag on surface of molten metal |
CN109439812A (en) * | 2018-10-18 | 2019-03-08 | 攀钢集团攀枝花钢铁研究院有限公司 | The method for measuring blast furnace slag discharge amount and blast furnace slag defoaming |
-
2019
- 2019-09-11 TW TW108132857A patent/TWI700372B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101942537A (en) * | 2010-09-09 | 2011-01-12 | 山西太钢不锈钢股份有限公司 | On-line detection method of blast furnace slag quantity |
WO2014009367A1 (en) * | 2012-07-13 | 2014-01-16 | Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw | Method and device for measuring levels of cast-iron and slag in a blast furnace |
US20150330708A1 (en) * | 2014-05-16 | 2015-11-19 | Nucor Corporation | Furnace control for manufacturing steel using slag height measurement and off-gas analysis systems |
CN103993108A (en) * | 2014-06-04 | 2014-08-20 | 中冶南方工程技术有限公司 | Liquid level measurement method of suction well in blast furnace slag treatment system |
WO2018105652A1 (en) * | 2016-12-06 | 2018-06-14 | 新日鐵住金株式会社 | Method for evaluating volume of slag on surface of molten metal |
CN109439812A (en) * | 2018-10-18 | 2019-03-08 | 攀钢集团攀枝花钢铁研究院有限公司 | The method for measuring blast furnace slag discharge amount and blast furnace slag defoaming |
Also Published As
Publication number | Publication date |
---|---|
TW202111130A (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101987139B1 (en) | Method for detecting air flow distribution in blast furnace | |
US11493273B2 (en) | Device and method for measuring softening and melting performances of iron ore in blast furnace under reducing condition | |
TWI700372B (en) | Blast furnace facility and monitoring method for liquid level of slag of blast furnace | |
Raipala | Deadman and hearth phenomena in the blast furnace | |
CN104537177A (en) | Method and device for determining position of softening face of softening and melting band in blast furnace | |
CN104525926B (en) | Ladle roll off the production line judge method | |
CN107858466B (en) | Method for predicting charge level depth of blast furnace during charge level lowering and blowing out | |
CN114737016B (en) | Furnace drying method of large converter | |
TWI468521B (en) | Method for determinig state of a blast furnace bed | |
EP3642370A1 (en) | Process fluid injection into shaft furnace with injector status test | |
TWI818606B (en) | System and method for monitoring temperature of carbon brick of furnace | |
TWI506140B (en) | A Method for Evaluating the Pre - Drilling Size of a New Furnace in a New Blast Furnace | |
KR100776036B1 (en) | Upper core change detection method using gas center flow index | |
JP2001262208A (en) | Blast furnace operation method | |
JP3077691B1 (en) | Blast furnace operation method | |
KR101516622B1 (en) | Methods for predicting the thickness of copper stave in blast furnace | |
JPS58213806A (en) | Operating method of blast furnace | |
JP7111278B1 (en) | METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE | |
CN110691855B (en) | Apparatus and method for measuring height of melt in melting furnace | |
EP4357465A1 (en) | Method for estimating depositional shape of blast furnace filling and method for substituting blast furnace coke | |
CN116144852A (en) | A method for on-line monitoring of blast furnace iron storage type ditch | |
WO2022168556A1 (en) | Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method | |
JP2008223121A (en) | How to repair the upper furnace wall of the blast furnace shaft | |
KR20000028284A (en) | Method for deciding ventilation inside melting furnace | |
TWI648406B (en) | Method and computer program product for detecting melting state of solid salamander in blast furnaces |