[go: up one dir, main page]

TWI692636B - 靜電電容測量用之感應晶片及具備該感應晶片之測量器 - Google Patents

靜電電容測量用之感應晶片及具備該感應晶片之測量器 Download PDF

Info

Publication number
TWI692636B
TWI692636B TW105117909A TW105117909A TWI692636B TW I692636 B TWI692636 B TW I692636B TW 105117909 A TW105117909 A TW 105117909A TW 105117909 A TW105117909 A TW 105117909A TW I692636 B TWI692636 B TW I692636B
Authority
TW
Taiwan
Prior art keywords
electrode
sensing
wafer
electrostatic capacitance
chip
Prior art date
Application number
TW105117909A
Other languages
English (en)
Other versions
TW201716774A (zh
Inventor
杉田吉平
南朋秀
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201716774A publication Critical patent/TW201716774A/zh
Application granted granted Critical
Publication of TWI692636B publication Critical patent/TWI692636B/zh

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

可於特定方向具有高指向性來進行靜電電容之測量。
一實施形態之靜電電容測量用之感應晶片係具有第1電極、第2電極以及第3電極。第1電極係具有第1部分。第2電極係具有延伸於第1電極之第1部分上的第2部分,且於感應晶片內從第1電極來加以絕緣。第3電極係具有延伸於第1電極之第1部分及第2電極之第2部分所交叉之方向的前面,且設置於第1部分上及第2部分上,並於該感應晶片內從第1電極及第2電極來加以絕緣。

Description

靜電電容測量用之感應晶片及具備該感應晶片之測量器
本發明實施形態係關於一種靜電電容測量用之感應晶片及具備該感應晶片之測量器。
在所謂半導體元件之電子元件的製造中,係使用處理被處理體用之處理裝置。處理裝置一般而言係具有處理容器及載置台。被處理體會藉由搬送裝置而被搬入至處理容器內,並載置於載置台上。然後,被處理體便會在處理容器內被處理。
載置台上的被處理體位置為了滿足所謂該被處理體之處理面內均勻性之各種的要求,是相當重要的要素。從而,搬送裝置便需要將被處理體搬送至載置台上的既定位置。
在因搬送裝置而使得被處理體之搬送位置從既定位置偏離的情況,便需要修正特定出搬送裝置之搬送位置的座標資訊。
為了搬送裝置之座標資訊的修正,便需要檢測出載置台上之被處理體的位置。以往,此般位置的檢測會使用靜電電容感應器。關於使用靜電電容之位置的檢測係例如記載於下述專利文獻1。
【先前技術文獻】
【專利文獻】
專利文獻1:日本特許第4956328號說明書
另外,在所謂電漿處理裝置之處理裝置中,係使用吸附被處理體之靜電夾具。又,載置台上係以圍繞被處理體邊緣之方式來設置有聚焦環。
圖1係顯示靜電夾具與聚焦環之構成的一範例之剖面圖。如圖1所示,靜電夾具ESC係具有略圓盤形狀。聚焦環FR係以圍繞靜電夾具ESC的方式來 相對於該靜電夾具ESC之中心軸線AXE而延伸於周圍方向。聚焦環FR係具有第1部分P1及第2部分P2。第1部分P1及第2部分P2係具有環狀板形狀。第2部分P2係設置於第1部分P1上。第2部分P2之內緣P2i係具有較第1部分P1之內緣P1i的直徑要大之直徑。被處理體(圖1中為晶圓W)係以其邊緣區域會位於聚焦環FR之第1部分P1上的方式來被載置於靜電夾具ESC上。
使用上述般之靜電夾具ESC與聚焦環FR之構成中,會在被處理體邊緣與聚焦環FR的第2部分P2之內緣P2i之間的間隙距離於周圍方向改變時,產生電漿之偏移,而產生被處理體面內之蝕刻尺寸改變等的特性偏差。又,會產生粒子相對於被處理體之局部附著。從而,便需要以被處理體邊緣與聚焦環FR的第2部分之內緣P2i之間的間隙距離於周圍方向中成為略固定的方式,來修正搬送裝置之座標資訊,亦即被處理體之搬送位置的座標資訊。因此,便需要測量被處理體邊緣與聚焦環FR的第2部分P2之內緣P2i之間的間隙距離。
於是,本案發明人便開發出一種技術,係將測定靜電電容來作為反映上述距離之物理量用的感應晶片搭載於與被處理體相同形狀之測量器,並藉由搬送裝置來將該測量器搬送於靜電夾具上,以藉由該測量器來取得靜電電容。於圖2顯示用以測量靜電電容之感應晶片一範例的縱剖面構造。圖2所示之感應晶片1000係可沿著與被處理體相同形狀之測量器邊緣來配置的感應晶片一範例,並具有基板部1002及電極1004。基板部1002係具有本體部1002m。本體部1002m係例如由矽所形成。本體部1002m表面係形成有絕緣區域1002f。絕緣區域1002f係例如為熱氧化膜。基板部1002係具有上面1002a、下面1002b及端面1002c。端面1002c係形成為梯狀,端面1002c之下側部分1002d會較該端面1002c之上側部1002u要突出於聚焦環FR側。電極1004會沿著端面1002c之上側部分1002u來加以設置。
圖3係顯示將圖2所示之感應晶片的電極連接於靜電電容,而讓該感應晶片1000移動於朝向聚焦環FR之第2部分P2的內緣P2i的方向RD(參照圖2)並進行測量的靜電電容。另外,在靜電電容測量時的第1部分P1之上面P1t與感應晶片1000下面之間的距離LVD(參照圖2)為100μm。圖3中,橫軸係表示基板部1002之端面1002c的下側部分1002d與聚焦環FR的第2部分P2之 內緣P2i之間的距離LRD(參照圖2),縱軸係顯示靜電電容。又,圖3係顯示假設僅於方向RD存在有靜電電容時之靜電電容計算值與使用感應晶片1000來測量之靜電電容實測值。
在對比於圖3所示之計算值而參照實測值時,於距離LRD為約2.5mm時,會產生使用感應晶片100之測量所得到之靜電電容(實測值)會急遽變大的現象。此2.5mm的距離LRD係第2部分P2之內緣P2i與第1部分P1之內緣P1i之間的距離L12(參照圖2)相同的距離。從而,此現象係代表不僅是相對於感應晶片1000之電極1004而於聚焦環FR的內緣(第2部分P2之內緣P2i)所存在的特定方向(圖2之方向RD)的靜電電容,在下方(圖2之方向VD)之靜電電容亦會對感應晶片1000之測量造成影響。然而,在聚焦環FR內緣與感應晶片1000之間的距離LRD的測量中,感應晶片1000下方之靜電電容是不需要的。
從而,便需要可於特定方向具有高指向性來進行靜電電容之測量。
一態樣中,係提供一種靜電電容測量用之感應晶片。此感應晶片係具有第1電極、第2電極以及第3電極。第1電極係具有第1部分。第2電極係具有延伸於第1電極之第1部分上的第2部分,且於感應晶片內從第1電極來加以絕緣。第3電極係具有延伸於第1電極之第1部分及第2電極之第2部分所交叉之方向的前面,且設置於第1部分上及第2部分上,並於該感應晶片內從第1電極及第2電極來加以絕緣。
一態樣相關之感應晶片係將為感應電極之第3電極設置於第1電極之第1部分上,第1電極之第1部分與第3電極之間係介設有第2電極之第2部分。在使用此感應晶片時,第1電極之電位會設定為大地電位,並將高頻訊號供給至第2電極與第3電極。此時,第3電極之電壓振幅便不會受到來自相對於該第3電極而設置有第1電極之方向,亦即感應晶片下方的靜電電容之影響,而成為反映特定方向,亦即該第3電極之前面所朝向之方向的靜電電容之電壓振幅。從而,藉由使用此感應晶片,便可於特定方向而具有高指向性來測量靜電電容。
一實施形態中,第1電極及第2電極亦可在配置有第3電極之前面的區域 側開口,並以圍繞第3電極周圍的方式來加以延伸。根據此實施形態,便可藉由第1電極及第2電極而針對特定方向以外之方向來遮蔽第3電極。從而,便可進一步地提升靜電電容之測量中相對於特定方向的指向性。
一實施形態中,感應晶片係進一步地具備有端面,該端面係具有既定曲率之曲面,第3電極之前面亦可沿著該端面來加以延伸。根據此實施形態,便可將第3電極之前面的各位置與聚焦環內緣之間的徑向距離設定為略等距離。從而,便可進一步地提升靜電電容之測量精度。
一實施形態中,感應晶片係進一步地具備有基板部。基板部係具有包含前面及下面之表面,該表面具有絕緣性。第3電極會沿著基板部之前面來加以延伸,第2電極之第2部分會沿著基板部之下面來加以延伸。一實施形態中,基板部係由絕緣材料所形成。藉由讓基板部由絕緣材料所形成,便可降低感應晶片之內部靜電電容。又,一實施形態中,絕緣材料亦可為硼矽酸玻璃、氮化矽、石英或氧化鋁。
另一態樣中,係提供一種用以測量靜電電容之測量器。此測量器係具備有基底基板、複數感應晶片以及電路基板。複數感應晶片係上述感應晶片中之任一者,且沿著基底基板邊緣來加以配列。電路基板,係搭載於基底基板上。電路基板係具有大地電位線、高頻振盪器、C/V轉換電路以及A/D轉換器。大地電位線係可電性連接於第1電極。高頻振盪器係構成為產生高頻訊號,且電性連接於第2電極及該第3電極。C/V轉換電路係構成為將各複數感應晶片之第3電極中的電壓振幅轉換為表示靜電電容之電壓訊號。A/D轉換器係將C/V轉換電路所輸出之電壓訊號轉換為數位值。根據此態樣之測量器,便可從感應晶片之第3電極中的電壓振幅來取得表示靜電電容之數位值。
一實施形態中,電路基板係進一步地具有記憶裝置以及通訊裝置。記憶裝置係構成為記憶該數位值。通訊裝置係構成為將記憶裝置所記憶之數位值無線傳輸。根據此實施形態,便可將記憶裝置所記憶之數位值無線傳輸。
一實施形態中,電路基板亦可進一步地具有用以將第1電極選擇性地連接於大地電位線之開關。在將第1電極選擇性地連接於大地電位線時,測量 器便可測量上述特定方向中之靜電電容。另一方面,在從大地電位線切斷第1電極時,測量器便可測量上述特定方向之靜電電容與下方之靜電電容的總合靜電電容。
一實施形態中,基底基板係具有圓盤形狀,複數感應晶片亦可沿著基底基板邊緣來加以設置。此實施形態中,各複數感應晶片係具有端面,該端面係具有既定曲率的曲面,第3電極之前面會沿著該端面來加以延伸。此實施形態中,測量器係具有與圓盤形狀之被處理體的形狀略相同形狀。又,測量器係可以高精度來測量反映聚焦環與該測量器邊緣之間的距離的特定方向中之靜電電容。
如上述說明,便可於特定方向具有高指向性來進行靜電電容之測量。
1‧‧‧處理系統
LM‧‧‧裝載模組
AN‧‧‧對位器
LL1、LL2‧‧‧裝載腔室
TC‧‧‧移轉腔室
TU1、TU2‧‧‧搬送裝置
PM1~PM6‧‧‧程序模組
MC‧‧‧控制部
10‧‧‧電漿處理裝置
12‧‧‧處理容器
30‧‧‧上部電極
40‧‧‧氣體源群
50‧‧‧排氣裝置
62‧‧‧第1高頻電源
64‧‧‧第2高頻電源
PD‧‧‧載置台
LE‧‧‧下部電極
ESC‧‧‧靜電夾具
FR‧‧‧聚焦環
P1‧‧‧第1部分
P2‧‧‧第2部分
100‧‧‧測量器
102‧‧‧基底基板
104‧‧‧感應晶片
104A~104H‧‧‧感應晶片
104f‧‧‧前側端面
141‧‧‧第1電極
141a‧‧‧第1部分
142‧‧‧第2電極
142a‧‧‧第2部分
143‧‧‧第3電極
143f‧‧‧前面
106‧‧‧電路基板
108、108A~108H‧‧‧配線群
161‧‧‧高頻振盪器
162‧‧‧C/V轉換電路
162A~162H‧‧‧C/V轉換電路
163‧‧‧A/D轉換器
164‧‧‧處理器
165‧‧‧記憶裝置
167‧‧‧電源
GL‧‧‧大地電位線
SWG‧‧‧開關
圖1係顯示靜電夾具與聚焦環之構成一範例的剖面圖。
圖2係顯示用以測量靜電電容之感應晶片一範例的圖式。
圖3係顯示使用圖2之感應晶片來測量的靜電電容。
圖4係例示具有搬送裝置之處理系統的圖式。
圖5係顯示電漿處理裝置一範例的圖式。
圖6係一實施形態相關之測量器的立體圖。
圖7係一實施形態相關之感應晶片的立體圖。
圖8係沿著圖7之VIII-VIII線所擷取的剖面圖。
圖9係沿著圖8之IX-IX線所擷取的剖面圖。
圖10係顯示一實施形態中之電路基板之構成的圖式。
圖11係電路基板106及感應晶片104的等價電路圖。
圖12係顯示一實施形態相關之處理系統的搬送裝置之調整方法的流程圖。
圖13係顯示另一實施形態相關之感應晶片之縱剖面圖。
圖14係顯示感應晶片之性能評價結果的圖表。
圖15係又一實施形態相關之感應晶片的縱剖面圖。
以下,便參照圖式就各種實施形態來詳細地說明。另外,各圖式中係對相同或相當的部分附加相同符號。
首先,便就用以處理被處理體(以下,會有稱為「晶圓W」的情形)的處理裝置以及具有用以將被處理體搬送至該處理裝置之搬送裝置的處理系統來加以說明。圖4係例示具有搬送裝置之處理系統的圖式。圖4所示之處理系統1係具備有台2a~2d、容器4a~4d、裝載模組LM、對位器AN、裝載腔室LL1,LL2、程序模組PM1~PM6以及移轉腔室TC。
台2a~2d會沿著裝載模組LM的一邊緣來加以配列。容器4a~4d會分別搭載於台2a~2d上。容器4a~4d會分別構成為收納晶圓W。
裝載模組LM係具有於其內部區劃出大氣壓狀態之搬送空間的腔室壁。裝載模組LM係在此搬送空間內具有搬送裝置TU1。搬送裝置TU1係構成為在容器4a~4d與對位器AN之間、對位器AN與裝載腔室LL1~LL2之間以及裝載腔室LL1~LL2與容器4a~4d之間搬送晶圓W。
對位器AN係與裝載模組LM連接。對位器AN會構成為進行晶圓W之位置調整(位置校正)。對位器AN中之晶圓W的位置調整可使用晶圓W的定向平面或凹口等來加以進行。
各裝載腔室LL1及裝載腔室LL2會設置於裝載模組LM與移轉腔室TC之間。各裝載腔室LL1及裝載腔室LL2會提供預備減壓室。
移轉腔室TC會透過閘閥來連接於裝載腔室LL1及裝載腔室LL2。移轉腔室TC會提供可減壓之減壓室,並於該減壓室收納搬送裝置TU2。搬送裝置TU2係構成為在裝載腔室LL1~LL2與程序模組PM1~PM6之間以及在程序模組PM1~PM6中之任意兩個程序模組之間搬送晶圓W。
程序模組PM1~PM6會透過閘閥來連接於移轉腔室TC。各程序模組PM1~PM6係構成為對晶圓W進行所謂電漿處理之專用處理的處理裝置。
此處理系統1中於進行晶圓W之處理時的一連串動作係例示如下。裝載模組LM之搬送裝置TU1會從容器4a~4d的任一者來取出晶圓W,並將該晶圓W搬送至對位器AN。接著,搬送裝置TU1便會從對位器AN來取出位置調整後之晶圓W,並將該晶圓W搬送至裝載腔室LL1及裝載腔室LL2中之一者的 裝載腔室。接著,一者的裝載腔室便會將預備減壓室之壓力減壓至既定壓力。接著,移轉腔室TC之搬送裝置TU2便會從一者之裝載腔室來取出晶圓W,而將該晶圓W搬送至程序模組PM1~PM6中之任一者。然後,程序模組PM1~PM6中之一個以上的程序模組便會處理晶圓W。然後,搬送裝置TU2便會將處理後之晶圓從程序模組搬送至裝載腔室LL1及裝載腔室LL2中之一者的裝載腔室。接著,搬送裝置TU1便會將晶圓W從一者的裝載腔室來搬送至容器4a~4d的任一者。
此處理系統1係進一步地具備有控制部MC。控制部MC可為具備有處理器、所謂記憶體之記憶裝置、顯示裝置、輸出入裝置、通訊裝置的電腦。上述處理系統1之一連串動作會藉由依照記憶裝置所記憶之程式的控制部MC而控制處理系統1之各部,來加以實現。
圖5係顯示可使用程序模組PM1~PM6的任一者之電漿處理裝置一範例的圖式。圖5所示之電漿處理裝置10係電容耦合型電漿蝕刻裝置。電漿處理裝置10係具備有略圓筒形狀之處理容器12。處理容器12係例如由鋁所形成,其內壁面係可施予陽極氧化處理。此處理容器12係保全接地。
處理容器12底部上係設置有略圓筒形狀之支撐部14。支撐部14係例如由絕緣材料所構成。支撐部14會在處理容器12內從處理容器12底部延伸於垂直方向。又,處理容器12內係設置有載置台PD。載置台PD係藉由支撐部14來被加以支撐。
載置台PD係具有下部電極LE及靜電夾具ESC。下部電極LE係含有第1板體18a及第2板體18b。第1板體18a及第2板體18b係例如由所謂鋁之金屬所構成,並成為略圓盤形狀。第2板體18b係設置於第1板體18a上,並電性連接於第1板體18a。
第2板體18b上係設置有靜電夾具ESC。靜電夾具ESC係具有將為導電膜之電極配置於一對絕緣層或絕緣板之間的構造,並具有略圓盤形狀。靜電夾具ESC之電極會透過開關23來電性連接有直流電源22。此靜電夾具ESC會藉由來自直流電源22之直流電壓所產生之庫倫力等的靜電力來吸附晶圓W。藉此,靜電夾具ESC便可保持晶圓W。
第2板體18b周緣部上係設置有聚焦環FR。此聚焦環FR係與參照圖1而 說明之聚焦環為相同者。亦即,聚焦環FR會以圍繞晶圓W邊緣及靜電夾具ESC的方式來加以設置。聚焦環FR係具有第1部分P1及第2部分P2。第1部分P1及第2部分P2係具有環狀板形狀。第2部分P2係設置於第1部分P1上。第2部分P2之內緣P2i係具有較第1部分P1之內緣P1i之直徑要大的直徑。晶圓W係以其邊緣區域會位於聚焦環FR之第1部分P1上的方式來被載置於靜電夾具ESC上。此聚焦環FR可由所謂矽、碳化矽、氧化矽之各種材料中的任一者所形成。
第2板體18b內部係設置有冷媒流道24。冷媒流道24會構成溫控機構。冷媒流道24會從處理容器12外部所設置之冷卻單元透過配管26a來供給有冷媒。供給至冷媒流道24之冷媒會透過配管26b而回到冷卻單元。如此般,冷媒流道24與冷卻單元之間便會循環有冷媒。藉由控制此冷媒溫度來控制靜電夾具ESC所支撐之晶圓W溫度。
又,電漿處理裝置10係設置有氣體供給管線28。氣體供給管線28會將來自導熱氣體供給機構之導熱氣體,例如He氣體供給至靜電夾具ESC上面與晶圓W內面之間。
又,電漿處理裝置10係具備有上部電極30。上部電極30會在載置台PD上方與該載置台PD對向配置。上部電極30與載置台PD之間係提供有用以對晶圓W進行電漿處理之處理空間S。
上部電極30會透過絕緣性遮蔽構件32來被處理容器12上部所支撐。上部電極30可含有頂板34及支撐體36。頂板34會面向處理空間S,該頂板34係設置有複數氣體噴出孔34a。此頂板34可由矽或石英所形成。或者,頂板34可藉由於鋁製基材表面形成所謂氧化釔之耐電漿性的膜來加以構成。
支撐體36會裝卸自如地支撐頂板34,且可例如由所謂鋁的導電性材料所構成。此支撐體36可具有水冷構造。支撐體36內部係設置有氣體擴散室36a。從此氣體擴散室36a來連通於氣體噴出孔34a的複數氣體流通孔36b會朝下方來加以延伸。又,支撐體36係形成有將處理氣體導入至氣體擴散室36a的氣體導入口36c,此氣體導入口36c係連接有氣體供給管38。
氣體供給管38會透過閥群42及流量控制器群44來連接有氣體源群40。氣體源群40係含有複數種氣體用之複數氣體源。閥群42係含有複數閥,流 量控制器群44係含有所謂質流控制器之複數流量控制器。氣體源群40之複數氣體源會分別透過閥群42所對應之閥及流量控制器群44所對應之流量控制器來連接於氣體供給管38。
又,電漿處理裝置10係沿著處理容器12內壁來裝卸自如地設置有沉積保護體46。沉積保護體46亦設置於支撐部14外周。沉積保護體46會防止蝕刻副產物(沉積)附著於處理容器12,並可藉由於鋁材披覆Y2O3等的陶瓷來加以構成。
處理容器12底部側及支撐部14與處理容器12側壁之間係設置有排氣板48。排氣板48係可例如藉由於鋁材披覆Y2O3等的陶瓷來加以構成。排氣板48係形成有貫穿於其板厚方向的複數孔。此排氣板48下方及處理容器12係設置有排氣口12e。排氣口12e會透過排氣管52來連接有排氣裝置50。排氣裝置50係具有壓力調節閥及渦輪分子泵等的真空泵,並可將處理容器12內的空間減壓至所欲真空度。又,處理容器12側壁係設置有晶圓W之搬出入口12g,此搬出入口12g係可藉由閘閥54來加以開閉。
又,電漿處理裝置10係進一步地具備有第1高頻電源62及第2高頻電源64。第1高頻電源62係產生電漿生成用之高頻的電源,例如產生27~100MHz頻率的高頻。第1高頻電源62會透過匹配器66來連接於上部電極30。匹配器66係具有用以匹配第1高頻電源62之輸出阻抗與負載側(上部電極30側)之輸入阻抗的電路。另外,第1高頻電源62亦可透過匹配器66來連接於下部電極LE。
第2高頻電源64係產生吸引離子至晶圓W用之高頻偏壓的電源,例如產生400kHz~13.56MHz範圍內之頻率的高頻偏壓。第2高頻電源64會透過匹配器68來連接於下部電極LE。匹配器68係具有用以匹配第2高頻電源64之輸出阻抗與負載側(下部電極LE側)之輸入阻抗的電路。
此電漿處理裝置10會將來自複數氣體源中所選擇的一種以上的氣體源的氣體供給至處理容器12內。又,藉由排氣裝置50來將處理容器12內空間之壓力設定為既定壓力。進一步地,藉由來自第1高頻電源62之高頻來激發處理容器12內之氣體。藉此來生成電漿。然後,藉由所產生之活性基來處理晶圓W。另外,亦可依需要而藉由第2高頻電源64之高頻偏壓來將離子吸 引至晶圓W。
以下,便就用以測量相對於聚焦環FR之距離所反映的靜電電容之測量器的實施形態來加以說明。圖6係一實施形態相關之測量器立體圖。圖6所示之測量器100係具備有基底基板102。基底基板102係例如由矽所形成,並具有與晶圓W相同的略圓盤形狀。基底基板102之直徑係與晶圓W相同的直徑,例如為300mm。
基底基板102係具有下側部分102a及上側部分102b。下側部分102a係於將測量器100配置於靜電夾具ESC上方時,位於較上側部分102b要靠近於靜電夾具ESC的部分。基底基板102之下側部分102a係搭載有靜電電容測量用之感應晶片104A~104H。另外,搭載於測量器100之感應晶片個數可為三個以上的任意個數。複數感應晶片104A~104H會沿著基底基板102邊緣,例如於該邊緣之整周配列為等間隔。具體而言,各複數感應晶片104A~104H的前側端面104f會以沿著基底基板102之下側部分102a邊緣的方式來加以設置。另外,圖6中係可觀察到複數感應晶片104A~104H中的感應晶片104A~104C。
基底基板102之上側部分102b上面會區劃出凹部102r。凹部102r係含有中央區域102c及複數放射區域102h。中央區域102c係與中心軸線AX100所交叉之區域。中心軸線AX100係於板厚方向通過基底基板102中心之軸線。中央區域102c係設置有電路基板106。複數放射區域102h會相對於中心軸線AX100而從中央區域102c來延伸於放射方向至配置有複數感應晶片104A~104H之區域的上方。複數放射區域102h係設置有分別用以電性連接複數感應晶片104A~104H與電路基板106的配線群108A~108H。另外,圖6所示之測量器100中,複數感應晶片104A~104H雖搭載於基底基板102之下側部分102a,但複數感應晶片104A~104H亦可搭載於基底基板102之上側部分102b。
以下,便就感應晶片來詳細地加以說明。圖7係一實施形態相關之感應晶片立體圖。圖8係沿著圖7之VIII-VIII線所擷取的剖面圖,並與感應晶片一同地顯示測量器之基底基板。圖9係沿著圖8之IX-IX線所擷取的剖面圖。圖7~圖9所示之感應晶片104係作為測量器100之複數感應晶片104A~104H來 使用的感應晶片。另外,在下述說明中,會適當地參照XYZ正交座標系統。X方向係表示感應晶片之前方向,Y方向係X方向所正交的一個方向,並表示感應晶片104的寬度方向,Z方向係X方向及Y方向所正交的方向,並表示感應晶片104之上面方向。
如圖7~圖9所示,一實施形態中,感應晶片104係具有前端側面104f、上面104t、下面104b、一對側面104s以及後側端面104r。前側端面104f會在X方向中構成感應晶片104之前側表面。感應晶片104係以前側端面104f會相對於中心軸線AX100而朝向放射方向的方式來搭載於測量器100之基底基板102(參照圖6)。又,在將感應晶片104搭載於基底基板102的狀態下,前側端面104f會沿著基底基板102邊緣來加以延伸。從而,前側端面104f更會在將測量器100配置於靜電夾具ESC上時,對向於聚焦環FR內緣。
後側端面104r會在X方向中構成感應晶圓104之後側表面。後端側面104r會在將感應晶片104搭載於基底基板102的狀態下,位於較前側端面104f要靠近中心軸線AX100。上面104t會在Z方向中構成感應晶片104之上側表面,下面104b會在Z方向中構成感應晶片104之下側表面。又,一對側面104s會在Y方向中構成感應晶片104表面。
感應晶片104係具有第1電極141、第2電極142及第3電極143。第1電極141會由導體所形成。第1電極141係具有第1部分141a。如圖7及圖8所示,第1部分141a在一實施形態中,係延伸於X方向及Y方向。
第2電極142會由導體所形成。第2電極142係具有第2部分142a。第2部分142a會在第1部分141a上加以延伸。第2電極142會在感應晶片104內從第1電極141來加以絕緣。如圖7及圖8所示,一實施形態中,第2部分142a會在第1部分141a上延伸於X方向及Y方向。
第3電極143係由導體所形成之感應電極,並設置於第1電極141之第1部分141a及第2電極142之第2部分142a上。第3電極143會在感應晶片104內從第1電極141及第2電極142來加以絕緣。第3電極143係具有前面143f。此前面143f會延伸於第1部分141a及第2部分142a所交叉之方向。又,前面143f會沿著感應晶片104之前側端面104f來加以延伸。一實施形態中,前面143f會構成感應晶片104之前端側面104f的一部分。或著,感應晶片104亦可具有在第 3電極143之前面143f前側覆蓋該前面143f的絕緣層。
如圖7~圖9所示,一實施形態中,第1電極141及第2電極142會在配置有第3電極143之前面143f的區域側(X方向)開口,並以圍繞第3電極143的方式來加以延伸。亦即,第1電極141及第2電極142會在第3電極143之上方、後方及側面中,以圍繞該第3電極143的方式來加以延伸。
又,如圖7及圖9所示,一實施形態中,感應晶片104之前端側面104f係具有既定曲率的曲面。亦即,前側端面104f係在該前側端面的任意位置具有固定曲率,該前側端面104f的曲率係測量器100之中心軸線AX100與該前側端面104f之間的距離之倒數。感應晶片104會以前面端面104f之曲率中心一致於中心軸線AX100的方式來被搭載於基底基板102。
一實施形態中,感應晶片104係進一步地具有基板部144、絕緣區域146~148、接點151~153以及層間連接配線154。基板部144係具有本體部144m及表層部144f。本體部144m係例如由矽所形成。表層部144f會覆蓋本體部144m表面。表層部144f會由絕緣材料所形成。表層部144f係例如矽之熱氧化膜。
第2電極142之第2部分142a會在基板部144下方加以延伸,基板部144與第2電極142之間係設置有絕緣區域146。絕緣區域146係例如由SiO2、SiN、Al2O3或聚醯亞胺所形成。
第1電極141之第1部分141a會在基板部144及第2電極142之第2部分142a的下方來加以延伸。第1電極141與第2電極142之間係設置有絕緣區域147。絕緣區域147係例如由由SiO2、SiN、Al2O3或聚醯亞胺所形成。
絕緣區域148會構成感應晶片104之上面104t。絕緣區域148係例如由SiO2、SiN、Al2O3或聚醯亞胺所形成。此絕緣區域148係形成有接點151~153。接點153會由導體所形成,並連接於第3電極143。具體而言,係藉由貫穿絕緣區域146、第2電極142、絕緣區域147及第1電極141的層間連接配線154來互相連接第3電極143與接點153。層間連接配線154之周圍係設置有絕緣體,該層間連接配線154會從第1電極141及第2電極142來加以絕緣。接點153會透過設置於基底基板102之層間連接配線123及設置於凹部102r之放射區域102h的配線183來連接於電路基板106。接點151及接點152亦同樣地由導 體所形成。接點151及接點152會分別透過所對應之層間連接配線來連接於第1電極141、第2電極142。接點151及接點152會透過設置於基底基板102之對應的層間連接配線及設置於凹部102r之放射區域102h的對應的配線來連接於電路基板106。
以下,便就電路基板106之構成來加以說明。圖10係顯示一實施形態中之電路基板構成的圖式。如圖10所示,電路基板106係具有高頻振盪器161、複數C/V轉換電路162A~162H以及A/D轉換器163。一實施形態中,電路基板106可進一步地具有記憶裝置165及通訊裝置166。又,又一實施形態中,電路基板106可進一步地具有處理器164及電源167。
各複數感應晶片104A~104會透過複數配線群108A~108H中所對應之配線群來連接於電路基板106。又,各複數感應晶片104A~104H會透過對應之配線群所包含的幾個配線來連接於複數C/V轉換電路162A~162H中所對應之C/V轉換電路。以下,便就與各複數感應晶片104A~104H為相同構成的一個感應晶片104、與複數配線群108A~108H為相同構成的一個配線群108以及與各複數C/V轉換電路162A~162H為相同構成的一個C/V轉換電路162來加以說明。
配線群108係含有配線181~183。配線181一端會連接於第1電極141所連接的接點151。此配線181會透過開關SWG來連接於電路基板106之大地GC所連接的大地電位線GL。又,配線182一端會連接於第2電極142所連接之接點152,配線182另端會連接於C/V轉換電路162。又,配線183一端會連接於第3電極143所連接之接點153,配線183另端會連接於C/V轉換電路162。
高頻振盪器161會連接於所謂電池的電源167,並構成為接收來自該電源167之電力以來產生高頻訊號。另外,電源167亦連接於處理器164及通訊裝置166。高頻振盪器161係具有複數輸出線。高頻振盪器161會透過複數輸出線來將所產生之高頻訊號施加至配線182及配線183。從而,來自高頻振盪器161之高頻訊號便會施加至感應晶片104之第2電極142及電3電極143。
C/V轉換電路162之輸入係連接有配線182及配線183。亦即,C/V轉換電路162之輸入係連接有感應晶片104之第2電極142及第3電極143。C/V轉換電路162會構成為從其輸入中之電壓振幅,來生成表示連接於該輸入之電極所 形成的靜電電容的電壓訊號,而輸出該電壓訊號。另外,連接於C/V轉換電路162之電極所形成的靜電電容越大,則該C/V轉換電路所輸出之電壓訊號的大小越大。
於圖11顯示電路基板106及感應晶片104的等價電路圖。圖11中,電容元件C1係感應晶片104之第3電極143對應於其前方(X方向)所形成的靜電電容的元件。又,電容元件C2係感應晶片104之第2電極142對應於其下方(-Z方向)所形成之靜電電容的元件。測量器100係搬送裝置所搬送之移動物體,電路基板106之大地GC並不與程序模組之大地GND連接。從而,電路基板106之大地GC的電位便不與大地GND為相同電位。因此,圖11之等價電路中,大地GC係表示為透過電壓源VS及阻抗R3來與大地GND連接。又,等價電路中,電容元件C1一端係表示為透過電壓源VS及阻抗R1來與大地GND連接,電容元件C2一端係表示為透過電壓源VS及阻抗R2來與大地GND連接。又,電容元件C1另端,亦即第3電極143會連接於高頻振盪器161,電容元件C2另端,亦即第2電極142會透過開關SW來連接於高頻振盪器161。
開關SW會在配線181連接於大地電位線GL的狀態下,於圖11的等價電路中成為開啟的狀態。從而,在配線181連接於大地電位線GL的狀態下,便會成為從C/V轉換電路162來切斷第2電極142的狀態。因此,在此狀態下,C/V轉換電路162便會輸出對應於第3電極143所形成之靜電電容的大小的大小之電壓訊號。另一方面,開關SW會在配線181並未連接於大地電位線GL的狀態下,於圖11的等價電路中成為關閉的狀態。從而,在配線181並未連接於大地電位線GL的狀態下,便會成為將第2電極142連接於C/V轉換電路162的狀態。因此,在此狀態下,C/V轉換電路162便會輸出具有對應於第3電極143於其前方(X方向)所形成的靜電電容與第2電極142於其下方(-Z方向)所形成之靜電電容的總合電容之大小的大小之電壓的電壓訊號。
A/D轉換器163之輸入係連接有複數C/V轉換電路162A~162H的輸出。又,A/D轉換器163會連接於處理器164。A/D轉換器163會藉由來自處理器164之控制訊號來加以控制,以將複數C/V轉換電路162A~162G的輸出訊號(電壓訊號)轉換為數位值。亦即,A/D轉換器163會生成表示靜電電容大小之數位值,並將該數位值輸出至處理器。
處理器164係連接有記憶裝置165。記憶裝置165係所謂非揮發性記憶體之記憶裝置,並構成為記憶A/D轉換器163所輸出之數位值。
通訊裝置166係依照任意無線通訊規格的通訊裝置。例如,通訊裝置166會依照Bluetooth(註冊商標)。通訊裝置166會構成為將記憶裝置165所記憶之數位值無線傳輸。
如上述,在測量器100所搭載之感應晶片104中,為感應電極之第3電極143會設置於第1電極141上,第1電極141與第3電極143之間會介設有第2電極142之第2部分。在使用此感應晶片104時,第1電極141之電位會設定為大地電位,第2電極142與第3電極143會供給有高頻訊號。此時,第3電極143之電壓振幅便不會受到相對於該第3電極143而來自設置有第1電極141之方向,亦即感應晶片104下方的靜電電容的影響,而成為反映特定方向,亦即朝向第3電極143之前面143f的方向(X方向)中的靜電電容的電壓振幅。從而,藉由感應晶片104,便可於特定方向具高指向性來測量靜電電容。
又,一實施形態中,第1電極141及第2電極142會在配置有第3電極143之前面的區域側(X方向)開口,並以圍繞第3電極143周圍的方式來加以延伸。根據此實施形態,便可藉由第1電極141及第2電極142而針對特定方向以外之方向來遮蔽第3電極143。從而,便可進一步地提升靜電電容之測量中相對於特定方向的感應晶片104之指向性。
又,一實施形態中,感應晶片104之前側端面104f係構成為具有特定曲率之曲面,第3電極143之前面143f會沿著前側端面104f來加以延伸。根據此實施形態,便可將第3電極143之前面143f的各位置與聚焦環FR內緣之間的徑向距離設定為略等距離。從而,便可進一步地提升靜電電容測量精度。
又,測量器100中,感應晶片104A~104H會沿著基底基板102邊緣來加以配列。從而,在將此測量器100配置於靜電夾具ESC上時,便可取得表示聚焦環FR與各感應晶片104A~104H之間的靜電電容的複數數位值。另外,靜電電容C會以C=ε S/d來加以表示。ε係第3電極143之前面143f與聚焦環FR內緣之間的介質的介電率,S係第3電極143之前面143f的面積,d可視為第3電極143之前面143f與聚焦環FR內緣之間的距離。從而,測量器100所取得之複數數位值係第3電極143之前面143f與聚焦環FR內緣之間的距離越 大,而越小。
一實施形態中,測量器100會構成為將上述數位值記憶於記憶裝置165而從通訊裝置166來將該數位值無線傳輸。藉由如此般使用無線傳輸之數位值,便可使得測量器100邊緣與聚焦環FR內緣之間的間隙距離(相對於中心軸線AX100而於放射方向的距離)在周圍方向中以成為固定的方式來修正搬送裝置之搬送位置的座標資訊。
以下,便就使用測量器100之處理系統1的搬送裝置之調整方法來加以說明。圖12係顯示一實施形態相關之處理系統的搬送裝置之調整方法的流程圖。圖12所示之方法MT係藉由搬送裝置TU1來將容器4a~4d的任一者所收納的測量器100搬送至對位器AN。然後,工序ST1中係藉由對位器AN來進行測量器100之位置調整(位置校正)。
接著的工序ST2係將測量器100搬送至程序模組PM1~PM6中的任一者。具體而言,測量器100會藉由搬送裝置TU1來被搬送至裝載腔室LL1及裝載腔室LL2中之一者的裝載腔室。接著,測量器100會藉由搬送裝置TU2從一者之裝載腔室來被搬送至程序模組PM1~PM6中之任一者,並載置於靜電夾具ESC上。
接著的工序ST3中,測量器100會進行靜電電容的測量。具體而言,測量器100會取得對應於聚焦環FR內緣與測量器100之各感應晶片104A~104H的第3電極143之間的靜電電容大小之複數數位值,並將該複數數位值記憶於記憶裝置165。另外,複數數位值可在處理器164之控制下於預定時間點來加以取得。
接著的工序ST4係將測量器100從程序模組搬出,而回到容器4a~4d的任一者。接著的工序ST5係將記憶裝置165所記憶之複數數位值傳輸至控制部MC。複數數位值可藉由來自控制部MC的指令而從通訊裝置166來傳輸至控制部MC,或者亦可藉由基於電路基板106所設置之計時器的計數之處理器164的控制,來在既定時間點傳輸至控制部MC。
接著的工序ST6中,控制部MC會基於所接收的複數數位值,來進行測量器100的搬送位置之確認。具體而言,控制部MC會從複數數位值來確認聚焦環FR內緣與測量器100邊緣之間的間隙距離於周圍方向的分布,而依照 預定基準來判斷聚焦環FR內緣與測量器100邊緣之間的間隙距離於周圍方向的分布是否能視為固定。
在聚焦環FR內緣與測量器100邊緣之間的間隙距離於周圍方向的分布無法視為固定的情況,便會在接著的工序STJ中判斷為有需要進行特定出搬送裝置TU2的搬送位置的座標資訊的修正,而在工序ST7中藉由控制部MC來修正搬送裝置TU2之該座標資訊。例如,從複數數位值來計算出讓聚焦環FR內緣與測量器100邊緣之間的間隙距離於周圍方向的分布成為固定的修正量,而使用該修正量來修正搬送裝置TU2之座標資訊。然後,再次實行工序ST1~工序ST6及工序STJ。另一方面,在能將聚焦環FR內緣與測量器100邊緣之間的間隙距離於周圍方向的分布視為固定的情況,便會工序STJ中判斷為無須進行特定出搬送裝置TU2之搬送位置的座標資訊之修正。
根據此般使用測量器100的方法MT,便可藉由測量器100來提供為了修正處理系統1之搬送裝置TU2的搬送位置之座標資訊而能加以使用的複數數位值,並依需要來修正搬送裝置TU2之該座標資訊。藉由將此般修正後之搬送裝置TU2用於晶圓W之搬送,便可將聚焦環FR內緣與晶圓W之間的間隙距離設定為略固定。其結果,便可抑制電漿的偏移,而抑制晶圓面內之所謂蝕刻尺寸改變之特性偏差。又,可抑制粒子朝晶圓W上的產生。
以下,便就可搭載於測量器100之另一實施形態相關的感應晶片來加以說明。圖13係另一實施形態相關之感應晶片的剖面圖。圖13係顯示有感應晶圓204之縱剖面圖,又,聚焦環FR會與感應晶圓204一同地顯示。
感應晶片204係具有第1電極241、第2電極242以及第3電極243。又,一實施形態中,感應晶片204可進一步地具有基板部244及絕緣區域247。
基板部244係具有本體部244m及表層部244f。本體部244m係例如由矽所形成。表層部244f會覆蓋本體部244m表面。表層部244f係由絕緣材料所形成。表層部244f係例如矽之熱氧化膜。
基板部244係具有上面244a、下面244b及前側端面244c。第2電極242會設置於基板部244之下面244b下方,並延伸於X方向及Y方向。又,第1電極241會透過絕緣區域247來設置於第2電極242下方,並延伸於X方向及Y方向。
基板部244之前側端面244c會形成為梯狀。前側端面244c的下側部分244d會較該前端側面244c的上側部分244u要突出於聚焦環FR側。第3電極243會沿著前側端面244c之上側部分244u來加以延伸。
在使用此感應晶片204來作為測量器100之感應晶片的情況,第1電極241會被連接於配線181,第2電極242會被連接於配線182,第3電極243會被連接於配線183。
在感應晶片204中,係藉由第1電極241及第2電極242而針對感應晶片204下方來遮蔽為感應電極之第3電極243。從而,根據此感應晶片204,便可於特定方向,亦即第3電極243之前面243f所朝向的方向(X方向)具指向性來測量靜電電容。
以下,便就感應晶片204之性能評價結果來加以說明。此性能評價中,係將感應晶片204之第3電極243連接於靜電電容測量器,而讓該感應晶片204移動於朝向聚焦環FR之第2部分P2的內緣P2i的方向RD,並測量靜電電容。又,為了比較,便將圖2所示之感應晶片1000的電極1004連接於靜電電容測量器,而讓該感應晶片1000移動於朝向聚焦環FR之第2部分P2的內緣P2i的方向RD,並測量靜電電容。另外,測量靜電電容時的第1部分P1上面P1t與感應晶片204之下面244b之間的距離LVD為300μm。又,測量靜電電容時的第1部分P1上面P1t與感應晶片1000之下面1002b之間的距離LVD亦為300μm。
於圖14顯示代表所測定之靜電電容的圖表。圖14中,橫軸係表示感應晶片204之前側端面244c的下側部分與聚焦環FR的第2部分P2之內緣P2i之間的距離LRD以及感應晶片1000之端面1002c的下側部分244d與聚焦環FR的第2部分P2之內緣P2i之間的距離LRD,縱軸係表示靜電電容。如圖14所示,感應晶片1000所測量的靜電電容雖會在距離LRD為2.5mm時上升,但感應晶片204所測量之靜電電容卻會降低距離LRD為2.5mm時的增加量。亦即,確認到藉由感應晶片204,便可於特定方向(圖13之方向RD)具高指向性來測量靜電電容。
以下,便就可搭載於測量器100之又一實施形態相關之感應晶片來加以說明。圖15係又一實施形態相關之感應晶片的縱剖面圖。圖15所示之感應 晶片104A係感應晶片104之變形態樣,並在具有基板部144A來取代基板部144的觀點上與感應晶片104有所相異。基板部144A係由絕緣材料所形成。例如,基板部144A係由硼矽酸玻璃所形成。另外,基板部144A亦可由氮化矽所形成。
基板部144A係多面體,並具有含前面144a及下面144b之表面。一範例中,基板部144A表面係進一步地含有上面144c、後面144d及一對側面。下面144b及上面144c會延伸於X方向及Y方向,並互相對向。前面144a會構成基板部144A之X方向的前面端面,並延伸於下面144b所交叉的方向。前面144a可具有既定曲率。此曲率係在將感應晶片104A搭載於基底基板102時中心軸線AX100與前面144a之間的距離之倒數。後面144d會在X方向中構成基板部144A的後側端面,並與前面144a對向。一對側面會在前面144a之Y方向中的一邊緣部與後面144d之Y方向中的一邊緣部之間,以及前面144a之Y方向中的另邊緣部與後面144d之Y方向中的另邊緣部之間來加以延伸。
第3電極143會沿著基板部144A之前面144a及上面144c來加以延伸。絕緣區域146會以覆蓋基板144A之下面144b、上面144c、後面144d以及一對側面及延伸於上面144c上的第3電極143的方式來加以延伸。第2電極142會設置為覆蓋絕緣區域146。又,第2電極142的第2部分142a會透過絕緣區域146來延伸於基板部144A之下面144b。又,絕緣區域147會以覆蓋第2電極142的方式來加以延伸。又,第1電極141會設置為覆蓋絕緣區域147。又,第1電極141之第1部分141a會透過絕緣區域147來延伸於第2電極142之第2部分142a下方。
在上述感應晶片104之基板部144的本體部144m由矽所形成的情況,感應晶片104便會具有內部靜電電容。因為此內部靜電電容,便需要將高頻振盪器161之輸出設定為更大的輸出。另一方面,由於感應晶片104A中基板部144A會由絕緣材料所形成,故內部靜電電容會極小。從而,便可在具有感應晶片104A的測量器100中,讓高頻振盪器161之輸出變小。
又,由於測量器100可在含有高溫之溫度帶區域(例如20℃~80℃)及減壓環境(例如1Torr(133.3Pa)以下)下使用,故需要抑制來自基板部144A之氣體的產生。因此,便可以硼矽酸玻璃、氮化矽、石英或氧化鋁來形成基板部 144A。藉由此般基板部144A,便可抑制氣體的產生。
又,由於測量器100會在含有高溫之溫度帶區域(例如20℃~80℃)下使用,故基板部144A最好是具有接近於基底基板102之構成材料的線膨脹係數的線膨脹係數。因此,在基底基板102由矽所形成的情況,便可以例如硼矽酸玻璃或氮化矽來形成基板部144A。此般基板部144A之線膨脹係數係接近於基底基板102之線膨脹係數。從而,便可抑制起因於基板部144A之線膨脹係數與基底基板102之線膨脹係數的差異所導致的感應晶片104之損傷以及來自基底基板102之感應晶片104的剝離。
又,測量器100之重量最好是小一點。從而,基板部144A的密度(每單位體積之質量)最好是接近於基底基板102之密度或較基底基板102之密度要小。因此,在基底基板102由矽所形成的情況,便可以例如硼矽酸玻璃來形成基板部144A。
以上,雖已就各種實施形態來加以說明,但並不限於上述實施形態而可構成各種變形態樣。例如,處理系統1之程序模組個數可為一個以上的任意個數。又,上述說明中,雖例示電漿處理裝置來作為程序模組PM1~PM6的範例,但程序模組PM1~PM6只要為使用靜電夾具及聚焦環者的話,便可為任意處理裝置。又,雖上述電漿處理裝置10為電容耦合型電漿處理裝置,但可作為程序模組PM1~PM6來使用之電漿處理裝置亦可為如感應耦合型電漿處理裝置、使用所謂微波之表面波的電漿處理裝置般,為任意電漿處理裝置。
又,雖上述實施形態中,控制部MC會從測量器100來取得複數數位值,來修正搬送裝置TU2的座標資訊,但亦可藉由不同於控制部MC的其他的電腦來進行來自測量器100之複數數位值的取得,以及搬送裝置TU2之座標資訊的修正。
102‧‧‧基底基板
102h‧‧‧放射區域
104‧‧‧感應晶片
104b‧‧‧下面
104f‧‧‧前側端面
104t‧‧‧上面
104r‧‧‧後側端面
123‧‧‧配線
141‧‧‧第1電極
141a‧‧‧第1部分
142‧‧‧第2電極
142a‧‧‧第2部分
143‧‧‧第3電極
143f‧‧‧前面
144‧‧‧基板部
144f‧‧‧表層部
144m‧‧‧本體部
146‧‧‧絕緣區域
147‧‧‧絕緣區域
148‧‧‧絕緣區域
153‧‧‧接點
154‧‧‧配線
183‧‧‧配線

Claims (9)

  1. 一種感應晶片,係靜電電容測量用之感應晶片,具備有:第1電極,係具有第1部分;第2電極,係具有延伸於該第1部分上的第2部分,且於該感應晶片內從該第1電極來加以絕緣;第3電極,係具有延伸於該第1部分及該第2部分所交叉之方向的前面,且設置於該第1部分上及該第2部分上,並於該感應晶片內從該第1電極及該第2電極來加以絕緣;以及端面;該端面係具有既定曲率之曲面;該第3電極之該前面會沿著該端面來加以延伸。
  2. 如申請專利範圍第1項之感應晶片,其中該第1電極及該第2電極會在配置有該第3電極之該前面的區域側開口,並以圍繞該第3電極周圍的方式來加以延伸。
  3. 如申請專利範圍第1或2項中任一項之感應晶片,其進一步地具備有基板部,係具有包含前面及下面之表面,該表面具有絕緣性;該第3電極會沿著該基板部之該前面來加以延伸;該第2電極之該第2部分會沿著該基板部之該下面來加以延伸。
  4. 如申請專利範圍第3項之感應晶片,其中該基板部係由絕緣材料所形成。
  5. 如申請專利範圍第4項之感應晶片,其中該絕緣材料係硼矽酸玻璃、氮化矽、石英或氧化鋁。
  6. 一種測量器,係用以測量靜電電容之測量器,具備有:基底基板; 複數感應晶片,係沿著該基底基板邊緣來配列之複數感應晶片,且各自為如申請專利範圍第1至5項中任一項的感應晶片;以及電路基板,係搭載於該基底基板上;該電路基板係具有:大地電位線,係可電性連接於該第1電極;高頻振盪器,係產生高頻訊號之高頻振盪器,且電性連接於該第2電極及該第3電極;C/V轉換電路,係將各該複數感應晶片之該第3電極中的電壓振幅轉換為表示靜電電容之電壓訊號;以及A/D轉換器,係將該C/V轉換電路所輸出之該電壓訊號轉換為數位值。
  7. 如申請專利範圍第6項之測量器,其中該電路基板係進一步地具有:記憶裝置,係用以記憶該數位值;以及通訊裝置,係用以將該記憶裝置所記憶之數位值無線傳輸。
  8. 如申請專利範圍第6或7項之測量器,其中該電路基板係進一步地具有用以將該第1電極選擇性地連接於該大地電位線之開關。
  9. 如申請專利範圍第6或7項中任一項之測量器,其中該基底基板係具有圓盤形狀;各該複數感應晶片係如申請專利範圍第3項之感應晶片;各該複數感應晶片之該端面會沿著該基底基板邊緣來加以設置。
TW105117909A 2015-06-11 2016-06-07 靜電電容測量用之感應晶片及具備該感應晶片之測量器 TWI692636B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015118184 2015-06-11
JP2015-118184 2015-06-11
JP2015207787A JP6537433B2 (ja) 2015-06-11 2015-10-22 静電容量測定用のセンサチップ及び同センサチップを備えた測定器
JP2015-207787 2015-10-22

Publications (2)

Publication Number Publication Date
TW201716774A TW201716774A (zh) 2017-05-16
TWI692636B true TWI692636B (zh) 2020-05-01

Family

ID=57752681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105117909A TWI692636B (zh) 2015-06-11 2016-06-07 靜電電容測量用之感應晶片及具備該感應晶片之測量器

Country Status (2)

Country Link
JP (1) JP6537433B2 (zh)
TW (1) TWI692636B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948873B2 (ja) 2017-07-31 2021-10-13 東京エレクトロン株式会社 測定器を較正する方法、及び、ケース
JP2019096757A (ja) 2017-11-24 2019-06-20 東京エレクトロン株式会社 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法
JP7037964B2 (ja) 2018-03-09 2022-03-17 東京エレクトロン株式会社 測定器、及びフォーカスリングを検査するためのシステムの動作方法
JP7029983B2 (ja) * 2018-03-09 2022-03-04 東京エレクトロン株式会社 測定器及び測定器のずれ量を求める方法
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US10794681B2 (en) 2018-09-04 2020-10-06 Applied Materials, Inc. Long range capacitive gap measurement in a wafer form sensor system
US11404296B2 (en) * 2018-09-04 2022-08-02 Applied Materials, Inc. Method and apparatus for measuring placement of a substrate on a heater pedestal
US11342210B2 (en) 2018-09-04 2022-05-24 Applied Materials, Inc. Method and apparatus for measuring wafer movement and placement using vibration data
US11521872B2 (en) * 2018-09-04 2022-12-06 Applied Materials, Inc. Method and apparatus for measuring erosion and calibrating position for a moving process kit
JP7630420B2 (ja) 2021-12-27 2025-02-17 東京エレクトロン株式会社 測定器
JP2024036173A (ja) 2022-09-05 2024-03-15 東京エレクトロン株式会社 測定方法、測定システムおよび測定器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424087U (zh) * 1990-06-21 1992-02-27
JPH0829111A (ja) * 1994-07-19 1996-02-02 Kyoto Jushi Seiko Kk 静電容量計を用いた厚みまたは変位測定装置、および静電容量計を用いた厚みまたは変位測定方法
CN1216277C (zh) * 2001-03-14 2005-08-24 新田株式会社 静电电容式传感器
TW200931581A (en) * 2007-08-24 2009-07-16 Tokyo Electron Ltd Method of adjusting moving position of transfer arm and position detecting jig
JP2010045145A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 半導体チップの搬送方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289196B2 (ja) * 1991-06-27 2002-06-04 ドレッサ・ナガノ、インク 変換器の全非直線性を低減する方法及び変換器の非直線性を低減する方法
US5359491A (en) * 1991-11-27 1994-10-25 U.S. Philips Corporation Capacitive sensor comprising a conductive front surface for forming a capacitor plate, and a coaxial cable shielded by a mineral insulator
JP3106805B2 (ja) * 1993-10-14 2000-11-06 富士電機株式会社 圧力差測定方法及び変位変換装置
JPH09280806A (ja) * 1996-04-09 1997-10-31 Nissan Motor Co Ltd 静電容量式変位計
JPH10144771A (ja) * 1996-11-06 1998-05-29 Sony Corp 半導体製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424087U (zh) * 1990-06-21 1992-02-27
JPH0829111A (ja) * 1994-07-19 1996-02-02 Kyoto Jushi Seiko Kk 静電容量計を用いた厚みまたは変位測定装置、および静電容量計を用いた厚みまたは変位測定方法
CN1216277C (zh) * 2001-03-14 2005-08-24 新田株式会社 静电电容式传感器
TW200931581A (en) * 2007-08-24 2009-07-16 Tokyo Electron Ltd Method of adjusting moving position of transfer arm and position detecting jig
JP2010045145A (ja) * 2008-08-12 2010-02-25 Hitachi Ltd 半導体チップの搬送方法および装置

Also Published As

Publication number Publication date
JP6537433B2 (ja) 2019-07-03
TW201716774A (zh) 2017-05-16
JP2017003557A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
TWI692636B (zh) 靜電電容測量用之感應晶片及具備該感應晶片之測量器
KR102307737B1 (ko) 정전 용량 측정용의 센서 칩 및 센서 칩을 구비한 측정기
TWI697657B (zh) 用以檢查聚焦環之系統、以及檢查聚焦環之方法
TWI724185B (zh) 靜電電容檢測用之檢測器及使用檢測器來校正處理系統中之搬送位置資料之方法
TWI714743B (zh) 取得表示靜電電容之數據的方法
KR102520285B1 (ko) 측정기의 어긋남량을 구하는 방법, 및, 처리 시스템에 있어서의 반송 위치 데이터를 교정하는 방법
CN109324303B (zh) 对测定器进行校准的方法和箱体
US10074549B2 (en) Method for acquiring data indicating electrostatic capacitance
KR102675477B1 (ko) 반송 방법 및 반송 시스템
JP6502232B2 (ja) フォーカスリング及びセンサチップ
JP2019160914A (ja) 測定器、及びフォーカスリングを検査するためのシステムの動作方法
TWI753140B (zh) 靜電容量測定用之測定器
TW202232108A (zh) 測定器及測定方法
KR20230099647A (ko) 측정기