[go: up one dir, main page]

TWI690055B - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TWI690055B
TWI690055B TW108123082A TW108123082A TWI690055B TW I690055 B TWI690055 B TW I690055B TW 108123082 A TW108123082 A TW 108123082A TW 108123082 A TW108123082 A TW 108123082A TW I690055 B TWI690055 B TW I690055B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
substrate
memory device
dielectric layer
Prior art date
Application number
TW108123082A
Other languages
Chinese (zh)
Other versions
TW202103299A (en
Inventor
池田典昭
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108123082A priority Critical patent/TWI690055B/en
Application granted granted Critical
Publication of TWI690055B publication Critical patent/TWI690055B/en
Publication of TW202103299A publication Critical patent/TW202103299A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory device including a substrate, a non-doped semiconductor layer, a plurality of contact portions and a metal-stacking layer is provided. The substrate includes a plurality of word lines and a plurality of isolation structures. The non-doped semiconductor layer is disposed on the substrate. The contact portions are adjacent to the non-doped semiconductor layer and in direct contact with the substrate. The metal-stacking layer is disposed on the substrate. A portion of the metal-stacking layer is disposed on the non-doped semiconductor layer and in direct contact with the contact portions.

Description

記憶體裝置與其製造方法 Memory device and its manufacturing method

本揭露實施例係有關於一種記憶體裝置與其製造方法,且特別有關於一種具有非摻雜半導體層的記憶體裝置與其製造方法。 The disclosed embodiments relate to a memory device and a method of manufacturing the same, and particularly to a memory device having an undoped semiconductor layer and a method of manufacturing the same.

動態隨機存取記憶體(dynamic random access memory,DRAM)裝置被廣泛地用於消費電子產品,例如個人電腦、智慧型手機和平板電腦。一般來說,製造DRAM裝置的步驟可包含在基板上形成金屬氧化物半導體(metal oxide semiconductor,MOS)電晶體和接點,並隨後在接點上形成電容器。電容器可以通過接點電性連接至基板和MOS電晶體。 Dynamic random access memory (DRAM) devices are widely used in consumer electronics products, such as personal computers, smart phones, and tablet computers. In general, the step of manufacturing a DRAM device may include forming a metal oxide semiconductor (MOS) transistor and a contact on the substrate, and then forming a capacitor on the contact. The capacitor can be electrically connected to the substrate and the MOS transistor through a contact.

在大多數DRAM裝置中,摻雜的多晶矽/金屬堆疊可用以作為位元線結構。然而,由於位元線結構的高度較高,這種結構可能導致高寄生電容(parasitic capacitance)。 In most DRAM devices, a doped polysilicon/metal stack can be used as the bit line structure. However, due to the high height of the bit line structure, this structure may result in high parasitic capacitance.

在一些示例中,摻雜的多晶矽/金屬堆疊位元線結構可以金屬位元線結構代替,以降低高寄生電容。然而,這種結構可 能增加DRAM裝置的單元區和周邊區之間的間隙(gap)。因此,增加了製造過程的難度。 In some examples, the doped polysilicon/metal stacked bit line structure may be replaced with a metal bit line structure to reduce high parasitic capacitance. However, this structure can The gap between the cell area and the peripheral area of the DRAM device can be increased. Therefore, the difficulty of the manufacturing process is increased.

根據本揭露的一些實施例,提出一種記憶體裝置的製造方法。記憶體裝置的製造方法包含提供一基板。基板包含複數字元線與複數隔離結構。記憶體裝置的製造方法也包含將一半導體層形成於基板上。記憶體裝置的製造方法更包含將半導體層與基板圖案化,以形成複數溝槽。溝槽暴露基板的部分。記憶體裝置的製造方法包含將一摻雜材料層形成於半導體層上並填充溝槽。記憶體裝置的製造方法也包含將摻雜材料層的一部分移除,以形成複數接點部分,使得每個接點部分的頂表面對齊或低於半導體層的頂表面。記憶體裝置的製造方法更包含將一金屬堆疊層形成於半導體層上。金屬堆疊層與接點部分直接接觸。 According to some embodiments of the present disclosure, a method for manufacturing a memory device is proposed. The manufacturing method of the memory device includes providing a substrate. The substrate includes a complex digital element line and a complex isolation structure. The manufacturing method of the memory device also includes forming a semiconductor layer on the substrate. The manufacturing method of the memory device further includes patterning the semiconductor layer and the substrate to form a plurality of trenches. The trench exposes a portion of the substrate. The manufacturing method of the memory device includes forming a doped material layer on the semiconductor layer and filling the trench. The manufacturing method of the memory device also includes removing a portion of the doped material layer to form a plurality of contact portions such that the top surface of each contact portion is aligned with or lower than the top surface of the semiconductor layer. The manufacturing method of the memory device further includes forming a metal stacked layer on the semiconductor layer. The metal stack layer is in direct contact with the contact part.

根據本揭露的一些實施例,提出一種記憶體裝置。記憶體裝置包含一基板、一非摻雜半導體層、複數接點部分以及一金屬堆疊層。基板包含複數字元線與複數隔離結構。非摻雜半導體層設置於基板上。接點部分與非摻雜半導體層相鄰並直接接觸基板。金屬堆疊層設置於基板上。金屬堆疊層的一部分設置於非摻雜半導體層上且與接點部分直接接觸。 According to some embodiments of the present disclosure, a memory device is proposed. The memory device includes a substrate, an undoped semiconductor layer, a plurality of contact portions, and a metal stack layer. The substrate includes a complex digital element line and a complex isolation structure. The undoped semiconductor layer is disposed on the substrate. The contact portion is adjacent to the undoped semiconductor layer and directly contacts the substrate. The metal stack layer is disposed on the substrate. A part of the metal stacked layer is disposed on the undoped semiconductor layer and directly contacts the contact part.

100:記憶體裝置 100: memory device

10:基板 10: substrate

10-1:單元區 10-1: Unit area

10-2:周邊區 10-2: surrounding area

12:隔離結構 12: Isolation structure

14:氧化矽層 14: Silicon oxide layer

16:氮化矽層 16: Silicon nitride layer

21:光阻層 21: Photoresist layer

22:光阻層 22: photoresist layer

23:光阻層 23: Photoresist layer

24:光阻層 24: photoresist layer

25:光阻層 25: photoresist layer

30:介電層 30: Dielectric layer

31:第一介電層 31: The first dielectric layer

32:第二介電層 32: Second dielectric layer

34:半導體層 34: Semiconductor layer

34T:頂表面 34T: top surface

36-1:第一摻雜半導體層 36-1: First doped semiconductor layer

36-2:第二摻雜半導體層 36-2: Second doped semiconductor layer

38:遮罩層 38: Mask layer

40:溝槽 40: Groove

42:間隔層 42: Spacer

44:摻雜材料層 44: doped material layer

46:接點部分 46: Contact part

46T:頂表面 46T: top surface

48:金屬堆疊層 48: metal stack

48-1:二矽化鈦層 48-1: Ti disilicide layer

50:位元線 50: bit line

52:閘導線 52: brake wire

54:電容器接點 54: capacitor contact

A-A’:剖面線 A-A’: Section line

WL:字元線 WL: character line

以下將配合所附圖式詳述本揭露實施例。應注意的是,各種特徵部件並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本揭露實施例的技術特徵。 The disclosed embodiments will be described in detail below in conjunction with the accompanying drawings. It should be noted that the various feature parts are not drawn to scale and are used for illustration only. In fact, the size of the element may be enlarged or reduced to clearly show the technical features of the disclosed embodiments.

第1圖至第15圖顯示根據本揭露實施例形成記憶體裝置的各階段的剖面圖。 1 to 15 show cross-sectional views of various stages of forming a memory device according to an embodiment of the present disclosure.

第16圖為根據本揭露實施例之記憶體裝置的部分俯視圖。 FIG. 16 is a partial top view of a memory device according to an embodiment of the present disclosure.

第17圖為沿著第16圖中之線B-B’所切之記憶體裝置的部分剖面圖。 Fig. 17 is a partial cross-sectional view of the memory device taken along line B-B' in Fig. 16;

首先,如第1圖所示,提供一基板10。在一些實施例中,基板10的材料可包括(但不限於)元素半導體(例如可包括矽或鍺)、化合物半導體(例如可包括碳化鉭(TaC)、砷化鎵(GaAs)、砷化銦(InAs)或磷化銦(InP))、合金半導體(例如可包括矽鍺(SiGe)、碳化矽鍺(SiGeC)、磷化鎵砷(GaAsP)或磷化鎵銦(GaInP))、其他適當之半導體或前述之組合,但本揭露實施例並非以此為限。在一些實施例中,基板10可為絕緣層上半導體基板(semiconductor-on-insulator(SOI)substrate)。 First, as shown in FIG. 1, a substrate 10 is provided. In some embodiments, the material of the substrate 10 may include (but is not limited to) element semiconductors (eg, may include silicon or germanium), compound semiconductors (eg, may include tantalum carbide (TaC), gallium arsenide (GaAs), indium arsenide (InAs) or indium phosphide (InP)), alloy semiconductors (e.g. may include silicon germanium (SiGe), silicon germanium carbide (SiGeC), gallium arsenide phosphide (GaAsP) or gallium indium phosphide (GaInP)), other suitable Semiconductors or combinations of the foregoing, but the disclosed embodiments are not limited thereto. In some embodiments, the substrate 10 may be a semiconductor-on-insulator (SOI) substrate.

在本實施例中,基板可包括複數字元線WL與複數隔離結構12。字元線WL與隔離結構12可被埋藏於基板10中,但本揭露實施例並非以此為限。舉例來說,如第1圖所示,一對相鄰的字元線WL可設置於兩個隔離結構12之間。 In this embodiment, the substrate may include a complex number line WL and a complex isolation structure 12. The word line WL and the isolation structure 12 may be buried in the substrate 10, but the disclosed embodiments are not limited thereto. For example, as shown in FIG. 1, a pair of adjacent word lines WL may be disposed between two isolation structures 12.

在一些實施例中,隔離結構12可為一淺溝槽隔離(shallow trench isolation,STI),且隔離結構12的材料可包括絕緣材料,例如氧化矽、氮化矽、氮氧化矽等,但本揭露實施例並非以此為限。隔離結構12可透過蝕刻製程及沉積製程所形成。 In some embodiments, the isolation structure 12 may be a shallow trench isolation (STI), and the material of the isolation structure 12 may include an insulating material, such as silicon oxide, silicon nitride, silicon oxynitride, etc. The disclosed embodiments are not limited thereto. The isolation structure 12 can be formed through an etching process and a deposition process.

在一些實施例中,字元線WL的材料可包括導電材料,例如非晶矽、多晶矽、金屬、金屬氮化物、導電金屬氧化物等,但本揭露實施例並非以此為限。字元線WL可透過蝕刻製程及沉積製程所形成。 In some embodiments, the material of the word line WL may include conductive materials, such as amorphous silicon, polysilicon, metal, metal nitride, conductive metal oxide, etc. However, the embodiments of the present disclosure are not limited thereto. The character line WL can be formed through an etching process and a deposition process.

在一些實施例中,如第1圖所示,可將一氧化矽層14與一氮化矽層16依序形成於基板10上。在此,氧化矽層14與氮化矽層16可透過沉積製程所形成。 In some embodiments, as shown in FIG. 1, a silicon oxide layer 14 and a silicon nitride layer 16 may be formed on the substrate 10 in sequence. Here, the silicon oxide layer 14 and the silicon nitride layer 16 can be formed through a deposition process.

在本實施例中,基板10可被區分為一單元區10-1及一周邊區10-2。如第2圖所示,可將一光阻層21形成於單元區10-1中的基板10(氮化矽層16)上,且可將周邊區10-2中的氧化矽層14與氮化矽層16移除。舉例來說,可透過圖案化製程將周邊區10-2中的氧化矽層14與氮化矽層16移除。在一些實施例中,前述圖案化製程可包括(但不限於)微影製程(例如,塗佈阻劑(coating the resist)、軟烘烤(soft baking)、曝光(exposure)、曝光後烘烤(post-exposure baking)、顯影(developing)、其他適當的製程或前述製程之組合)、蝕刻製程(例如,濕蝕刻製程、乾蝕刻製程、其他適當的製程或前述製程之組合)、其他適當的製程或前述製程之組合。 In this embodiment, the substrate 10 can be divided into a unit area 10-1 and a peripheral area 10-2. As shown in FIG. 2, a photoresist layer 21 can be formed on the substrate 10 (silicon nitride layer 16) in the cell region 10-1, and the silicon oxide layer 14 and nitrogen in the peripheral region 10-2 can be formed The siliconized layer 16 is removed. For example, the silicon oxide layer 14 and the silicon nitride layer 16 in the peripheral region 10-2 can be removed through a patterning process. In some embodiments, the aforementioned patterning process may include, but is not limited to, a lithography process (eg, coating the resist), soft baking, exposure, post-exposure baking, developing, other suitable processes or a combination of the foregoing processes), etching processes (e.g., wet etching Process, dry etching process, other suitable processes or a combination of the aforementioned processes), other suitable processes or a combination of the aforementioned processes.

如第3圖所示,將一介電層30形成於周邊區10-2中的基板10上。在一些實施例中,介電層30的材料可包括(但不限於)氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)、氮氧化鉿矽(HfSiON)、其他適當的介電材料或前述材料之組合。在一些實施例中,可透過氧化、化學氣相沉積(chemical vapor deposition,CVD)、電漿增強化學氣相沉積(plasma-enhanced chemical vapor deposition,PECVD)、其他適當的製程或前述製程之組合,將介電層30形成於周邊區10-2中的基板10上,但本揭露實施例並非以此為限。 As shown in FIG. 3, a dielectric layer 30 is formed on the substrate 10 in the peripheral region 10-2. In some embodiments, the material of the dielectric layer 30 may include (but is not limited to) silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), hafnium silicon oxynitride (HfSiON), other suitable Dielectric materials or combinations of the foregoing materials. In some embodiments, oxidation, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), other suitable processes, or a combination of the foregoing processes may be used. The dielectric layer 30 is formed on the substrate 10 in the peripheral region 10-2, but the disclosed embodiment is not limited thereto.

如第4圖所示,在一些實施例中,可將介電層30的一部分移除。舉例來說,可將一光阻層22形成於基板10(氮化矽層16)上,且可將(周邊區10-2中的)介電層30的部分移除。類似地,可透過圖案化製程將介電層30的部分移除。在一些實施例中,前述圖案化製程可包括(但不限於)微影製程(例如,塗佈阻劑、軟烘烤、曝光、曝光後烘烤、顯影、其他適當的製程或前述製程之組合)、 蝕刻製程(例如,濕蝕刻製程、乾蝕刻製程、其他適當的製程或前述製程之組合)、其他適當的製程或前述製程之組合。 As shown in FIG. 4, in some embodiments, a portion of the dielectric layer 30 may be removed. For example, a photoresist layer 22 can be formed on the substrate 10 (silicon nitride layer 16), and a portion of the dielectric layer 30 (in the peripheral region 10-2) can be removed. Similarly, a portion of the dielectric layer 30 can be removed through a patterning process. In some embodiments, the aforementioned patterning process may include, but is not limited to, a lithography process (eg, resist coating, soft baking, exposure, post-exposure baking, development, other suitable processes, or a combination of the aforementioned processes ), Etching process (eg, wet etching process, dry etching process, other suitable processes or a combination of the foregoing processes), other suitable processes or a combination of the foregoing processes.

如第5圖所示,在一些實施例中,可將介電層30再次形成於周邊區10-2中的基板10上,以形成一第一介電層31與一第二介電層32。在此,第二介電層32較第一介電層31厚。舉例來說,第一介電層31的厚度可為大約2nm至3nm,而第二介電層32的厚度可為大約5nm至6nm,但本揭露實施例並非以此為限。在其他實施例中,可省略第4圖與第5圖中的步驟,使得第一介電層31與第二介電層32具有相同的厚度。 As shown in FIG. 5, in some embodiments, the dielectric layer 30 may be formed on the substrate 10 in the peripheral region 10-2 again to form a first dielectric layer 31 and a second dielectric layer 32 . Here, the second dielectric layer 32 is thicker than the first dielectric layer 31. For example, the thickness of the first dielectric layer 31 may be about 2 nm to 3 nm, and the thickness of the second dielectric layer 32 may be about 5 nm to 6 nm, but the disclosed embodiments are not limited thereto. In other embodiments, the steps in FIGS. 4 and 5 may be omitted, so that the first dielectric layer 31 and the second dielectric layer 32 have the same thickness.

如第6圖所示,可將一半導體層34形成於基板10上。更詳細來說,半導體層34可設置於單元區10-1中的氮化矽層16上,且可設置於周邊區10-2中的介電層30(例如,第一介電層31與第二介電層32)上。在此,半導體層34可為一非摻雜半導體層,例如一非摻雜多晶矽層。亦即,氧化矽層14與氮化矽層16可設置於(單元區10-1中的)基板10與非摻雜半導體層34之間。然而,本揭露實施例並非以此為限。在一些實施例中,半導體層34可以是矽鍺(SiGe)層,其具有高電阻率。 As shown in FIG. 6, a semiconductor layer 34 can be formed on the substrate 10. In more detail, the semiconductor layer 34 may be disposed on the silicon nitride layer 16 in the cell region 10-1, and may be disposed on the dielectric layer 30 (eg, the first dielectric layer 31 and the On the second dielectric layer 32). Here, the semiconductor layer 34 may be an undoped semiconductor layer, such as an undoped polysilicon layer. That is, the silicon oxide layer 14 and the silicon nitride layer 16 may be disposed between the substrate 10 (in the cell region 10-1) and the undoped semiconductor layer 34. However, the disclosed embodiments are not limited thereto. In some embodiments, the semiconductor layer 34 may be a silicon germanium (SiGe) layer, which has a high resistivity.

如第7圖與第8圖所示,在一些實施例中,可將在周邊區10-2中的半導體層34摻雜。更詳細來說,可將一光阻層23形成於半導體層34上並暴露出半導體層34在第一介電層31上的部分(亦即,可透過光阻層23覆蓋在單元區10-1中的半導體層34及在第二介 電層32上的半導體層34),接著,可透過離子植入(ion implantation)或電漿摻雜(plasma doping)將硼(B)離子摻雜到半導體層34在第一介電層31上的部分中,以形成第7圖所示的一第一摻雜半導體層36-1。接著,可將一光阻層24形成於半導體層34上並暴露出半導體層34在第二介電層32上的部分(亦即,可透過光阻層24覆蓋在單元區10-1中的半導體層34及在第一介電層31上的半導體層34),接著,可透過離子植入或電漿摻雜將磷(P)離子摻雜到半導體層34在第二介電層32上的部分中,以形成第8圖所示的一第二摻雜半導體層36-2。 As shown in FIGS. 7 and 8, in some embodiments, the semiconductor layer 34 in the peripheral region 10-2 may be doped. In more detail, a photoresist layer 23 may be formed on the semiconductor layer 34 and expose a portion of the semiconductor layer 34 on the first dielectric layer 31 (that is, the cell region 10- 1 in the semiconductor layer 34 and in the second Semiconductor layer 34 on the electrical layer 32), and then, boron (B) ions can be doped into the semiconductor layer 34 on the first dielectric layer 31 by ion implantation or plasma doping To form a first doped semiconductor layer 36-1 shown in FIG. 7. Next, a photoresist layer 24 may be formed on the semiconductor layer 34 and expose a portion of the semiconductor layer 34 on the second dielectric layer 32 (that is, the photoresist layer 24 may cover the cell region 10-1 Semiconductor layer 34 and the semiconductor layer 34 on the first dielectric layer 31), then, phosphorus (P) ions can be doped into the semiconductor layer 34 on the second dielectric layer 32 by ion implantation or plasma doping To form a second doped semiconductor layer 36-2 shown in FIG. 8.

在此,第一摻雜半導體層36-1可設置於第一介電層34-1上且具有一第一導電類型(例如,P型),而第二摻雜半導體層36-2可設置於第二介電層34-2上且具有一第二導電類型(例如,N型),但本揭露實施例並非以此為限。 Here, the first doped semiconductor layer 36-1 may be disposed on the first dielectric layer 34-1 and has a first conductivity type (eg, P-type), and the second doped semiconductor layer 36-2 may be disposed It is on the second dielectric layer 34-2 and has a second conductivity type (for example, N-type), but the disclosed embodiments are not limited thereto.

如第9圖所示,在一些實施例中,可將一遮罩層38形成於半導體層34上。更詳細來說,遮罩層38可形成於在單元區10-1中的非摻雜半導體層34上,且形成於周邊區10-2中的第一摻雜半導體層36-1與第二摻雜半導體層36-2上。在一些實施例中,遮罩層38的材料可包括氧化矽(SiO2),且可透過原子層沉積(atomic layer deposition,ALD)、電漿增強化學氣相沉積(PECVD)、低壓化學氣相沉積(low-pressure chemical vapor deposition, LPCVD)、其他適當的製程或前述製程之組合,將遮罩層38形成於半導體層34上,但本揭露實施例並非以此為限。 As shown in FIG. 9, in some embodiments, a mask layer 38 may be formed on the semiconductor layer 34. In more detail, the mask layer 38 may be formed on the undoped semiconductor layer 34 in the cell region 10-1, and formed on the first doped semiconductor layer 36-1 and the second in the peripheral region 10-2 On the doped semiconductor layer 36-2. In some embodiments, the material of the mask layer 38 may include silicon oxide (SiO 2 ), and may be through atomic layer deposition (ALD), plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor The mask layer 38 is formed on the semiconductor layer 34 by low-pressure chemical vapor deposition (LPCVD), other suitable processes, or a combination of the foregoing processes, but the disclosed embodiments are not limited thereto.

如第10圖所示,可將半導體層34與基板10圖案化,以形成複數溝槽40。更詳細來說,可將一光阻層25形成於在單元區10-1中的非摻雜半導體層34(遮罩層38)上,接著將遮罩層38、非摻雜半導體層34、氮化矽層16與氧化矽層14的一些部分蝕刻,以形成溝槽40。在本實施例中,溝槽40可暴露出部分基板10。 As shown in FIG. 10, the semiconductor layer 34 and the substrate 10 may be patterned to form a plurality of trenches 40. In more detail, a photoresist layer 25 may be formed on the undoped semiconductor layer 34 (mask layer 38) in the cell region 10-1, and then the mask layer 38, the undoped semiconductor layer 34, Some portions of the silicon nitride layer 16 and the silicon oxide layer 14 are etched to form the trench 40. In this embodiment, the trench 40 may expose part of the substrate 10.

如第11圖所示,在一些實施例中,可將一間隔層42形成於溝槽40的側壁上。在一些實施例中,間隔層42的材料可包括(但不限於)氮化矽(SiN)或氧化矽(SiO2)。更詳細來說,可將氮化矽(SiN)(或氧化矽(SiO2))材料沉積於溝槽40中與遮罩層38上,接著,將氮化矽(SiN)(或氧化矽(SiO2))材料在遮罩層38上的部分及在溝槽40之底表面的部分移除(例如,蝕刻),使得間隔層42可形成於溝槽40的側壁上。然而,本揭露實施例並非以此為限。在一些實施例中,可省略第11圖中的步驟。 As shown in FIG. 11, in some embodiments, a spacer layer 42 may be formed on the sidewall of the trench 40. In some embodiments, the material of the spacer layer 42 may include, but is not limited to, silicon nitride (SiN) or silicon oxide (SiO 2 ). In more detail, silicon nitride (SiN) (or silicon oxide (SiO 2 )) material can be deposited in the trench 40 and on the mask layer 38, and then, silicon nitride (SiN) (or silicon oxide ( SiO 2 )) the portion of the material on the mask layer 38 and the portion of the bottom surface of the trench 40 are removed (eg, etched) so that the spacer layer 42 can be formed on the sidewall of the trench 40. However, the disclosed embodiments are not limited thereto. In some embodiments, the steps in Figure 11 may be omitted.

如第12圖所示,可將一摻雜材料層44形成於半導體層34(遮罩層38)上,且溝槽40可被摻雜材料層44填充。更詳細來說,可透過沉積將半導體材料形成於遮罩層38上與溝槽40中,接著,將半導體材料摻雜。在一些實施例中,可透過離子植入將磷(P)離子摻雜到半導體材料中以形成摻雜材料層44,但本揭露實施例並非以此為限。在其他實施例中,摻雜材料層44可透過將摻雜磷的多 晶矽沉積於遮罩層38上與溝槽40中所形成。在此,摻雜材料層44可具有低電阻率以電性連接基板10。由於遮罩層38可設置於半導體材料與非摻雜半導體層34之間,非摻雜半導體層34在摻雜製程(例如,離子植入)期間可被遮罩層38所保護。 As shown in FIG. 12, a doped material layer 44 can be formed on the semiconductor layer 34 (mask layer 38 ), and the trench 40 can be filled with the doped material layer 44. In more detail, a semiconductor material can be formed on the mask layer 38 and the trench 40 by deposition, and then, the semiconductor material is doped. In some embodiments, phosphorus (P) ions can be doped into the semiconductor material to form the doped material layer 44 through ion implantation, but the disclosed embodiments are not limited thereto. In other embodiments, the doped material layer 44 may be Crystal silicon is deposited on the mask layer 38 and formed in the trench 40. Here, the doped material layer 44 may have a low resistivity to be electrically connected to the substrate 10. Since the mask layer 38 can be disposed between the semiconductor material and the undoped semiconductor layer 34, the undoped semiconductor layer 34 can be protected by the mask layer 38 during the doping process (eg, ion implantation).

如第13圖所示,可將摻雜材料層44的一部分移除,以形成複數接點部分46。舉例來說,摻雜材料層44在遮罩層38上方的部分可透過乾蝕刻而回蝕,使得每個接點部分46的頂表面46T對齊或低於非摻雜半導體層34的頂表面34T。接著,可將遮罩層38移除,以暴露每個接點部分46的頂表面46T、非摻雜半導體層34的頂表面34T、第一摻雜半導體層36-1的頂表面以及第二摻雜半導體層36-2的頂表面。在本實施例中,如第13圖所示,接點部分46可與非摻雜半導體層34相鄰並直接接觸基板10。 As shown in FIG. 13, a part of the doped material layer 44 may be removed to form a plurality of contact parts 46. For example, the portion of the doped material layer 44 above the mask layer 38 can be etched back by dry etching so that the top surface 46T of each contact portion 46 is aligned or lower than the top surface 34T of the undoped semiconductor layer 34 . Next, the mask layer 38 may be removed to expose the top surface 46T of each contact portion 46, the top surface 34T of the undoped semiconductor layer 34, the top surface of the first doped semiconductor layer 36-1, and the second The top surface of the doped semiconductor layer 36-2. In this embodiment, as shown in FIG. 13, the contact portion 46 may be adjacent to the undoped semiconductor layer 34 and directly contact the substrate 10.

如第14圖所示,可將一金屬堆疊層48形成於半導體層34上。更詳細來說,金屬堆疊層48可形成於單元區10-1中的非摻雜半導體層34上,且形成於周邊區10-2中的第一摻雜半導體層36-1與第二摻雜半導體層36-2上。在本實施例中,金屬堆疊層48可直接接觸接點部分46。在一些實施例中,金屬堆疊層48可形成為一多層結構,且金屬堆疊層48(多層結構)可包括鈦、氮化鈦、鎢、矽化鎢、氮化鎢、二矽化鈦(TiS2)或其他適當的材料,但本揭露實施例並非以此為限。舉例來說,金屬堆疊層48可包括一二矽化鈦(TiS2)層48-1。二矽化鈦(TiS2)層48-1可直接接觸接點部分 46,以降低接點部分46和金屬堆疊層48之間的界面電阻(interface resistance)。 As shown in FIG. 14, a metal stacked layer 48 can be formed on the semiconductor layer 34. In more detail, the metal stack layer 48 may be formed on the undoped semiconductor layer 34 in the cell region 10-1, and the first doped semiconductor layer 36-1 and the second doped semiconductor layer formed in the peripheral region 10-2 On the hetero semiconductor layer 36-2. In this embodiment, the metal stack layer 48 may directly contact the contact portion 46. In some embodiments, the metal stack layer 48 may be formed as a multilayer structure, and the metal stack layer 48 (multilayer structure) may include titanium, titanium nitride, tungsten, tungsten silicide, tungsten nitride, and titanium disilicide (TiS 2 ) Or other suitable materials, but the disclosed embodiments are not limited thereto. For example, the metal stack layer 48 may include a titanium silicide (TiS 2 ) layer 48-1. The titanium disilicide (TiS 2 ) layer 48-1 can directly contact the contact portion 46 to reduce the interface resistance between the contact portion 46 and the metal stack layer 48.

如第15圖所示,可將金屬堆疊層48與半導體層34(第一摻雜半導體層36-1與第二摻雜半導體層36-2)圖案化,以形成記憶體裝置100。舉例來說,可將金屬堆疊層48蝕刻以在單元區10-1中形成複數位元線50,而可將金屬堆疊層48、第一摻雜半導體層36-1與第二摻雜半導體層36-2蝕刻以在周邊區10-2中形成複數閘導線(gate conductor)52。應注意的是,也可將在單元區10-1中的非摻雜半導體層34及在周邊區10-2中的第一摻雜半導體層36-1與第二摻雜半導體層36-2圖案化。此外,字元線WL可為埋藏閘極區,而基板10可包括圍繞此埋藏閘極區的源極/汲極區及通道區(未詳細繪示於第15圖中)。亦即,接點部分46可直接接觸基板10在單元區10-1中的源極/汲極區。 As shown in FIG. 15, the metal stack layer 48 and the semiconductor layer 34 (the first doped semiconductor layer 36-1 and the second doped semiconductor layer 36-2) may be patterned to form the memory device 100. For example, the metal stack layer 48 may be etched to form a complex bit line 50 in the cell region 10-1, and the metal stack layer 48, the first doped semiconductor layer 36-1, and the second doped semiconductor layer 36-2 is etched to form a plurality of gate conductors 52 in the peripheral region 10-2. It should be noted that the undoped semiconductor layer 34 in the cell region 10-1 and the first doped semiconductor layer 36-1 and the second doped semiconductor layer 36-2 in the peripheral region 10-2 may also be used Patterned. In addition, the word line WL may be a buried gate region, and the substrate 10 may include a source/drain region and a channel region surrounding the buried gate region (not shown in detail in FIG. 15). That is, the contact portion 46 may directly contact the source/drain region of the substrate 10 in the unit region 10-1.

在一些實施例中,前述沉積製程可包括(但不限於)化學氣相沉積(CVD)、高密度電漿化學氣相沈積(high-density plasma chemical vapor deposition,HDCVD)、電漿增強化學氣相沉積(PECVD)、低壓化學氣相沉積(LPCVD)、其他適當的製程或前述製程之組合。在一些實施例中,前述蝕刻製程可包括(但不限於)濕蝕刻、乾蝕刻、其他適當的製程或前述製程之組合。 In some embodiments, the foregoing deposition process may include (but is not limited to) chemical vapor deposition (CVD), high-density plasma chemical vapor deposition (HDCVD), plasma enhanced chemical vapor deposition Deposition (PECVD), low pressure chemical vapor deposition (LPCVD), other suitable processes, or a combination of the foregoing processes. In some embodiments, the foregoing etching process may include, but is not limited to, wet etching, dry etching, other suitable processes, or a combination of the foregoing processes.

在此,第15圖可具有顯示沿著第16圖的線A-A’所切的記憶體裝置100的部分剖面圖,但一些部件並未顯示於第15圖中 (例如,電容器接點54及電容器)。應注意的是,為了簡便起見,並非所有記憶體裝置100的部件皆顯示於第16圖與第17圖中。 Here, FIG. 15 may have a partial cross-sectional view showing the memory device 100 cut along the line A-A' of FIG. 16, but some components are not shown in FIG. 15. (For example, capacitor contact 54 and capacitor). It should be noted that, for the sake of simplicity, not all components of the memory device 100 are shown in FIGS. 16 and 17.

如第16圖與第17圖所示,由於非摻雜半導體層34可以具有高電阻率(例如,在室溫下約10E3Ωm),其可更接近絕緣體,非摻雜半導體層34的電線力(electric line force)可小於摻雜半導體層。因此,可有效降低一位元線50與另一位元線50之間或一位元線50與電容器接點54之間的位元線寄生電容。 As shown in FIGS. 16 and 17, since the undoped semiconductor layer 34 can have a high resistivity (for example, about 10E3Ωm at room temperature), it can be closer to the insulator, and the wire force of the undoped semiconductor layer 34 ( electric line force) may be smaller than the doped semiconductor layer. Therefore, the bit line parasitic capacitance between the bit line 50 and the other bit line 50 or between the bit line 50 and the capacitor contact 54 can be effectively reduced.

承上述說明,根據本揭露實施例之具有非摻雜半導體層34的記憶體裝置100可具有低寄生電容。再者,根據本揭露實施例之記憶體裝置100的製造方法可最小化記憶體裝置100的單元區10-1和周邊區10-2之間的間隙。 According to the above description, the memory device 100 with the undoped semiconductor layer 34 according to the disclosed embodiment may have low parasitic capacitance. Furthermore, the manufacturing method of the memory device 100 according to the embodiment of the present disclosure can minimize the gap between the unit area 10-1 and the peripheral area 10-2 of the memory device 100.

以上概述數個實施例的部件,以便在本揭露所屬技術領域中具有通常知識者可以更理解本揭露實施例的觀點。在本揭露所屬技術領域中具有通常知識者應該理解,他們能以本揭露實施例為基礎,設計或修改其他製程和結構以達到與在此介紹的實施例相同之目的及/或優勢。在本揭露所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本揭露的精神與範圍,且他們能在不違背本揭露之精神和範圍之下,做各式各樣的改變、取代和替換。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露。 The above summarizes the components of several embodiments, so that those with ordinary knowledge in the technical field to which the present disclosure belongs can better understand the viewpoints of the disclosed embodiments. Those with ordinary knowledge in the technical field to which this disclosure pertains should understand that they can design or modify other processes and structures based on the disclosed embodiments to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which this disclosure belongs should also understand that such equivalent structures do not deviate from the spirit and scope of this disclosure, and they can do various things without violating the spirit and scope of this disclosure. Various changes, substitutions and replacements. Therefore, the scope of protection disclosed in this disclosure shall be deemed as defined by the scope of the attached patent application. In addition, although the present disclosure has been disclosed above in several preferred embodiments, it is not intended to limit the present disclosure.

100:記憶體裝置 100: memory device

34:半導體層 34: Semiconductor layer

10:基板 10: substrate

46:接點部分 46: Contact part

10-1:單元區 10-1: Unit area

50:位元線 50: bit line

10-2:周邊區 10-2: surrounding area

52:閘導線 52: brake wire

12:隔離結構 12: Isolation structure

A-A’:剖面線 A-A’: Section line

14:氧化矽層 14: Silicon oxide layer

WL:字元線 WL: character line

16:氮化矽層 16: Silicon nitride layer

Claims (13)

一種記憶體裝置的製造方法,包含:提供一基板,其中該基板包含複數字元線與複數隔離結構;將一半導體層形成於該基板上;將該半導體層與該基板圖案化,以形成複數溝槽,其中該等溝槽暴露該基板的部分;將一摻雜材料層形成於該半導體層上並填充該等溝槽;將該摻雜材料層的一部分移除,以形成複數接點部分,使得每該接點部分的頂表面對齊或低於該半導體層的頂表面;以及將一金屬堆疊層形成於該半導體層上,其中該金屬堆疊層與該等接點部分直接接觸。 A manufacturing method of a memory device includes: providing a substrate, wherein the substrate includes a complex number of digital lines and a complex isolation structure; forming a semiconductor layer on the substrate; patterning the semiconductor layer and the substrate to form a complex number Trenches, wherein the trenches expose portions of the substrate; a doped material layer is formed on the semiconductor layer and fills the trenches; a portion of the doped material layer is removed to form a plurality of contact portions So that the top surface of each contact portion is aligned with or lower than the top surface of the semiconductor layer; and a metal stacked layer is formed on the semiconductor layer, wherein the metal stacked layer is in direct contact with the contact portions. 如申請專利範圍第1項所述之記憶體裝置的製造方法,其中在將該摻雜材料層形成於該半導體層上並填充該等溝槽的步驟之前,該製造方法更包含:將一間隔層形成於該等溝槽的側壁上。 The method for manufacturing a memory device as described in item 1 of the patent application scope, wherein before the step of forming the doped material layer on the semiconductor layer and filling the trenches, the manufacturing method further includes: separating a space A layer is formed on the sidewalls of the trenches. 如申請專利範圍第1項所述之記憶體裝置的製造方法,其中該基板具有一單元區及一周邊區,且在將該半導體層形成於該基板上的步驟之前,該製造方法更包含:將一介電層形成於該周邊區中的該基板上,其中該介電層包含一第一介電層及一第二介電層,且該第二介電層較該第一介電層厚。 The method for manufacturing a memory device as described in item 1 of the patent application, wherein the substrate has a unit area and a peripheral area, and before the step of forming the semiconductor layer on the substrate, the manufacturing method further includes: A dielectric layer is formed on the substrate in the peripheral area, wherein the dielectric layer includes a first dielectric layer and a second dielectric layer, and the second dielectric layer is thicker than the first dielectric layer . 如申請專利範圍第3項所述之記憶體裝置的製造方法,更包含:將在該周邊區中的該半導體層摻雜;其中在該第一介電層上的該半導體層具有一第一導電類型而在該第二介電層上的該半導體層具有一第二導電類型,該第二導電類型與該第一導電類型不同。 The method for manufacturing a memory device as described in item 3 of the patent application scope further includes: doping the semiconductor layer in the peripheral region; wherein the semiconductor layer on the first dielectric layer has a first The conductivity type and the semiconductor layer on the second dielectric layer has a second conductivity type, which is different from the first conductivity type. 如申請專利範圍第3項所述之記憶體裝置的製造方法,其中在將該介電層形成於該周邊區中的該基板上的步驟之前,該製造方法更包含:將一氧化矽層與一氮化矽層依序形成於該基板上;及將該周邊區中的該氧化矽層與該氮化矽層移除。 The method for manufacturing a memory device as described in item 3 of the patent application scope, wherein before the step of forming the dielectric layer on the substrate in the peripheral region, the manufacturing method further includes: a silicon monoxide layer and A silicon nitride layer is sequentially formed on the substrate; and the silicon oxide layer and the silicon nitride layer in the peripheral area are removed. 如申請專利範圍第1項所述之記憶體裝置的製造方法,其中在將該半導體層與該基板圖案化的步驟之前,該製造方法更包含:將一遮罩層形成於該半導體層上。 The method for manufacturing a memory device as described in item 1 of the patent application scope, wherein before the step of patterning the semiconductor layer and the substrate, the manufacturing method further includes: forming a mask layer on the semiconductor layer. 一種記憶體裝置,包含:一基板,包含複數字元線與複數隔離結構;一非摻雜半導體層,設置於該基板上;複數接點部分,與該非摻雜半導體層相鄰並直接接觸該基板;以及 一金屬堆疊層,設置於該基板上,其中該金屬堆疊層的一部分設置於該非摻雜半導體層上且與該等接點部分直接接觸。 A memory device includes: a substrate including a complex digital element line and a complex isolation structure; an undoped semiconductor layer disposed on the substrate; a complex contact portion adjacent to the undoped semiconductor layer and directly contacting the Substrate; and A metal stacked layer is disposed on the substrate, wherein a portion of the metal stacked layer is disposed on the undoped semiconductor layer and directly contacts the contact portions. 如申請專利範圍第7項所述之記憶體裝置,更包含:一間隔層,設置於每該接點部分與該非摻雜半導體層之間。 The memory device as described in item 7 of the patent application scope further includes: a spacer layer disposed between each contact portion and the undoped semiconductor layer. 如申請專利範圍第7項所述之記憶體裝置,其中該基板具有一單元區及一周邊區,且該記憶體裝置更包含:一介電層,設置於該周邊區中的該基板上;其中該非摻雜半導體層設置於該單元區中。 A memory device as described in item 7 of the patent application range, wherein the substrate has a unit area and a peripheral area, and the memory device further includes: a dielectric layer disposed on the substrate in the peripheral area; wherein The undoped semiconductor layer is disposed in the unit area. 如申請專利範圍第9項所述之記憶體裝置,其中該介電層被區分為一第一介電層及一第二介電層,且該第二介電層較該第一介電層厚。 The memory device as described in item 9 of the patent application range, wherein the dielectric layer is divided into a first dielectric layer and a second dielectric layer, and the second dielectric layer is higher than the first dielectric layer thick. 如申請專利範圍第10項所述之記憶體裝置,更包含:一第一摻雜半導體層,設置於該第一介電層上;及一第二摻雜半導體層,設置於該第二介電層上;其中該第一摻雜半導體層具有一第一導電類型而該第二摻雜半導體層具有一第二導電類型,該第二導電類型與該第一導電類型不同。 The memory device as described in item 10 of the patent application scope further includes: a first doped semiconductor layer disposed on the first dielectric layer; and a second doped semiconductor layer disposed on the second dielectric On the electrical layer; wherein the first doped semiconductor layer has a first conductivity type and the second doped semiconductor layer has a second conductivity type, the second conductivity type is different from the first conductivity type. 如申請專利範圍第11項所述之記憶體裝置,其中該金屬堆疊層的另一部分設置於該第一摻雜半導體層與該第二摻雜半導體層上。 The memory device as described in item 11 of the patent application range, wherein another part of the metal stack layer is disposed on the first doped semiconductor layer and the second doped semiconductor layer. 如申請專利範圍第9項所述之記憶體裝置,更包含: 一氧化矽層,設置於該單元區中的該基板上;及一氮化矽層,設置於該氧化矽層上;其中該氧化矽層與該氮化矽層設置於該基板與該非摻雜半導體層之間。 The memory device as described in item 9 of the patent application scope further includes: A silicon oxide layer provided on the substrate in the unit area; and a silicon nitride layer provided on the silicon oxide layer; wherein the silicon oxide layer and the silicon nitride layer are provided on the substrate and the undoped Between semiconductor layers.
TW108123082A 2019-07-01 2019-07-01 Memory device and method for fabricating the same TWI690055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123082A TWI690055B (en) 2019-07-01 2019-07-01 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123082A TWI690055B (en) 2019-07-01 2019-07-01 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI690055B true TWI690055B (en) 2020-04-01
TW202103299A TW202103299A (en) 2021-01-16

Family

ID=71134225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123082A TWI690055B (en) 2019-07-01 2019-07-01 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI690055B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757043B (en) * 2021-01-08 2022-03-01 華邦電子股份有限公司 Semiconductor memory structure and method for forming the same
TWI795747B (en) * 2020-07-24 2023-03-11 南韓商三星電子股份有限公司 Semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW311282B (en) * 1996-02-26 1997-07-21 Taiwan Semiconductor Mfg Manufacturing method of memory contact structure
US5843816A (en) * 1997-07-28 1998-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated self-aligned butt contact process flow and structure for six transistor full complementary metal oxide semiconductor static random access memory cell
US6649508B1 (en) * 2000-02-03 2003-11-18 Samsung Electronics Co., Ltd. Methods of forming self-aligned contact structures in semiconductor integrated circuit devices
US7294567B2 (en) * 2002-03-11 2007-11-13 Micron Technology, Inc. Semiconductor contact device and method
US20080067566A1 (en) * 2006-09-15 2008-03-20 Do-Yeon Choi Contact structure having conductive oxide layer, ferroelectric random access memory device employing the same and methods of fabricating the same
US7387919B2 (en) * 2004-11-26 2008-06-17 Samsung Electronics Co Ltd Methods of fabricating a semiconductor device having a node contact structure of a CMOS inverter
US8309416B2 (en) * 2009-09-30 2012-11-13 Hynix Semiconductor Inc. Semiconductor device with buried bit lines interconnected to one-side-contact and fabrication method thereof
US9478495B1 (en) * 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof
US9599186B2 (en) * 2014-02-27 2017-03-21 Exedy Corporation Damper device
US20180374866A1 (en) * 2017-06-26 2018-12-27 Sandisk Technologies Llc Three-dimensional memory device having direct source contact and metal oxide blocking dielectric and method of making thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW311282B (en) * 1996-02-26 1997-07-21 Taiwan Semiconductor Mfg Manufacturing method of memory contact structure
US5843816A (en) * 1997-07-28 1998-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated self-aligned butt contact process flow and structure for six transistor full complementary metal oxide semiconductor static random access memory cell
US6649508B1 (en) * 2000-02-03 2003-11-18 Samsung Electronics Co., Ltd. Methods of forming self-aligned contact structures in semiconductor integrated circuit devices
US7294567B2 (en) * 2002-03-11 2007-11-13 Micron Technology, Inc. Semiconductor contact device and method
US7387919B2 (en) * 2004-11-26 2008-06-17 Samsung Electronics Co Ltd Methods of fabricating a semiconductor device having a node contact structure of a CMOS inverter
US20080067566A1 (en) * 2006-09-15 2008-03-20 Do-Yeon Choi Contact structure having conductive oxide layer, ferroelectric random access memory device employing the same and methods of fabricating the same
US8309416B2 (en) * 2009-09-30 2012-11-13 Hynix Semiconductor Inc. Semiconductor device with buried bit lines interconnected to one-side-contact and fabrication method thereof
US9599186B2 (en) * 2014-02-27 2017-03-21 Exedy Corporation Damper device
US9478495B1 (en) * 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof
US20180374866A1 (en) * 2017-06-26 2018-12-27 Sandisk Technologies Llc Three-dimensional memory device having direct source contact and metal oxide blocking dielectric and method of making thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795747B (en) * 2020-07-24 2023-03-11 南韓商三星電子股份有限公司 Semiconductor device
TWI757043B (en) * 2021-01-08 2022-03-01 華邦電子股份有限公司 Semiconductor memory structure and method for forming the same
US11696435B2 (en) 2021-01-08 2023-07-04 Winbond Electronics Corp. Semiconductor memory structure and method for forming the same

Also Published As

Publication number Publication date
TW202103299A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US10804203B2 (en) Semiconductor device and fabrication method for the same
US9472646B2 (en) Dual work function buried gate type transistor and method for fabricating the same
US9608077B1 (en) Semiconductor structure and method for manufacturing the same
CN101213666B (en) A semiconductor device including a vertical decoupling capacitor and forming method thereof
US11139306B2 (en) Memory device and method for fabricating the same
CN111081757B (en) Semiconductor device and method for manufacturing the same
CN107799534B (en) Semiconductor device structure with self-aligned capacitor device
CN111223813B (en) Preparation method of semiconductor structure
KR102167625B1 (en) Semiconductor devices and methods of manufacturing the same
KR101675319B1 (en) Methods of manufacturing semiconductor devices
TWI690055B (en) Memory device and method for fabricating the same
TWI757043B (en) Semiconductor memory structure and method for forming the same
TW202027256A (en) Static random-access memory structure and related fabrication method
JP4639524B2 (en) Manufacturing method of semiconductor device
TW202236534A (en) Semiconductor memory structure
CN112309984B (en) Memory device and manufacturing method thereof
US20220359525A1 (en) Memory device and method of forming the same
US11527537B2 (en) Memory structure and manufacturing method thereof
CN114373718A (en) Semiconductor device and method for manufacturing the same
US20050142740A1 (en) Method and resulting structure for fabricating dram cell structure using oxide line spacer
US8698235B2 (en) Slit recess channel gate
US20250081431A1 (en) Integrated circuit device and method of manufacturing the same
US20240130116A1 (en) Semiconductor device
TW202322285A (en) Semiconductor structure and method of forming the same
CN111627992A (en) Grid structure and manufacturing method thereof