TWI688112B - 軟性薄膜太陽能電池的製法及其製品 - Google Patents
軟性薄膜太陽能電池的製法及其製品 Download PDFInfo
- Publication number
- TWI688112B TWI688112B TW107146182A TW107146182A TWI688112B TW I688112 B TWI688112 B TW I688112B TW 107146182 A TW107146182 A TW 107146182A TW 107146182 A TW107146182 A TW 107146182A TW I688112 B TWI688112 B TW I688112B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- alkali metal
- absorption layer
- solar cell
- film solar
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本發明提供一種軟性薄膜太陽能電池的製法,其實質是由以下步驟所組成:(a)於一含有鹼金屬元素的雲母基板之上形成一附著層;(b)於該附著層上形成一第一電極單元;(c)濺射一由Cu、In、Ga與A所構成之四元靶材以於該第一電極單元上形成一含有一Cu、In、Ga、A與鹼金屬元素之組成並呈黃銅礦晶相的吸收層;(d)於該吸收層上形成一緩衝層;(e)於該緩衝層上形成一透明導電層;及(f)於該透明導電層上形成一第二電極單元;其中,該步驟(c)之四元靶材中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合。本發明亦提供一種由前述製法所製得的製品。
Description
本發明是有關於一種薄膜太陽能電池,特別是指一種軟性薄膜太陽能電池的製法及其製品。
在現有的各類太陽能電池中,以薄膜太陽能電池因其光電轉換效率(photoelectric conversion efficiency;以下稱PCE)佳且製作成本也相對低於單晶或多晶矽太陽能電池,而廣受到業界所重視。薄膜太陽能電池主要是以具有黃銅礦晶相(chalcopyrite phase)的光電材料,如,硒化銅銦鎵[Cu(In,Ga)Se
2,以下稱CIGS)]做為其一吸收層(absorber layer)。
參閱圖1,中國大陸第CN 106981832 A早期公開號發明專利案(以下稱前案1)公開一種柔性CIGS多晶薄膜太陽能電池1,其包括一柔性雲母(mica)襯底11、一濺鍍(sputtering)於該柔性雲母襯底11上的金屬鉬(Mo)電極12、一經由熱蒸鍍法沉積於該金屬鉬電極12上之含鹼金屬的材料層13、一生長於該含鹼金屬的材料層13上的CIGS光學吸收層14、一通過化學水浴法(chemical bath deposition;CBD)沉積於該CIGS光學吸收層14上且是由硫化鎘(CdS)所構成的窗口層15、一形成於該窗口層15上的ZnO高阻層16,及一經由磁控濺鍍法沉積於該ZnO高阻層16上的透明導電氧化物層17。
在上述前案1所載之柔性CIGS多晶薄膜太陽能電池1中,雖然因其CIGS光學吸收層14是製備於柔性雲母襯底11上而得以具有可撓性的特點;然而,該柔性雲母襯底11上所沉積的疊層數量甚多,導致製程繁瑣。
此外,基於雲母與Mo電極層兩者的介面間存在有附著性的問題。因此,為提升Mo電極層與雲母間的附著性,中國大陸第CN 101258610 A早期公開號發明專利案(以下稱前案2)也公開一種黃銅礦型太陽能電池。前案2主要是在集成雲母基板與鉬金屬電極間再依序形成一中間層、一由SiN或SiO
2所構成之表面平滑層,與一由TiN或TaN所構成之黏合劑層,以藉此提升集成雲母基板與鉬金屬電極兩者間的附著性。同樣地,前案2所載之雲母基板與鉬金屬電極間也因存在有中間層、表面平滑層與黏著劑層等數量甚多的疊層,而導致製程甚為繁瑣。
又,發明人亦曾於Adv. Energy Mter.
2017, 1602571之Over 14% Efficiency of Directly Sputtered Cu(In, Ga)Se
2Absorbers without Postselenization by Post-Treatment of Alkali Metals一文中(以下稱前案3),公開一種經鹼金屬之後處理程序以在無需後硫化製程的前提下直接濺鍍Cu(In, Ga)Se
2吸收層的技術。前案3主要是濺鍍一Cu(In, Ga)Se
2之四元靶材,以省略掉以往濺鍍CuIn與CuGa等二元靶材以形成一前驅物多層膜層厚的後硫化製程。前案3雖然因直接採用四元靶材而省略掉後硫化製程的程序;然而,前案3是採用不具可撓性的鈉玻璃(soda-lime glass)作為沉積其Mo電極與Cu(In, Ga)Se
2吸收層的基板,於可撓性的應用面上受到限制。
經上述說明可知,在簡化軟性薄膜太陽能之製法與結構的前提下,亦能維持薄膜太陽能電池應有的光電轉換效率(PCE)與電性表現,是本案所屬技術領域中的技術人員有待突破的課題。
因此,本發明的第一目的,即在提供一種製程簡化亦能維持11%以上之光電轉換效率(PCE)的軟性薄膜太陽能電池的製法。
於是,本發明軟性薄膜太陽能電池的製法,其實質是由以下步驟所組成:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。該步驟(a)是於一含有鹼金屬元素的雲母基板之上形成一附著層;該步驟(b)是於該附著層上形成一第一電極單元;該步驟(c)是濺射一由Cu、In、Ga與A所構成之四元靶材以於該第一電極單元上形成一含有一Cu、In、Ga、A與鹼金屬元素之組成並呈黃銅礦晶相的吸收層;該步驟(d)是於該吸收層上形成一緩衝層;該步驟(e)是於該緩衝層上形成一透明導電層;且該步驟(f)是於該透明導電層上形成一第二電極單元;其中,該步驟(c)之四元靶材中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合。
此外,本發明的第二目的,即在提供一種膜層結構簡化並能維持11%以上之光電轉換效率(PCE)的軟性薄膜太陽能電池。
於是,本發明軟性薄膜太陽能電池,其實質上是由以下元件所組成:一雲母基板、一附著層、一第一電極單元、一吸收層、一緩衝層、一透明導電層,及一第二電極單元。該雲母基板含有鹼金屬元素;該附著層形成於該雲母基板之上;該第一電極單元形成於該附著層上;該吸收層形成於該第一電極單元上,且含有一Cu、In、Ga、A與鹼金屬元素之組成並呈一呈黃銅礦晶相;該緩衝層形成於該吸收層上;該透明導電層形成於該緩衝層上;且該第二電極單元形成於該透明導電層上;其中,該吸收層中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合,且該吸收層是經濺射一由Cu、In、Ga與A所構成之四元靶材所製得。
本發明的功效在於:採用含有鹼金屬元素的雲母基板而省略掉前案1所揭示之該含鹼金屬的材料層,其經由該雲母基板以提供該吸收層內含有鹼金屬元素並藉此貢獻其軟性薄膜太陽能電池之外部量子效率(EQE)以提升其光電轉換效率(PCE;η),可在製程與元件結構兩者皆簡化的前提下,仍取得11%以上的光電轉換效率(PCE;η)。
<發明詳細說明>
參閱圖2與圖3,本發明軟性薄膜太陽能電池的製法的一第一實施例,其實質是由以下步驟所組成:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。
該步驟(a)是於一含有鹼金屬元素的雲母基板2之上形成一附著層3;該步驟(b)是於該附著層3上形成一第一電極單元4;該步驟(c)是濺射一由Cu、In、Ga與A所構成之四元靶材(圖未示)以於該第一電極單元4上形成一含有一Cu、In、Ga、A與鹼金屬元素之組成並呈黃銅礦晶相的吸收層5;該步驟(d)是於該吸收層5上形成一緩衝層6;該步驟(e)是於該緩衝層6上形成一透明導電層7;且該步驟(f)是於該透明導電層7上形成一第二電極單元8;其中,該步驟(c)之四元靶材中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合。在本發明之一具體例中,該步驟(c)之四元靶材中的A是Se。
為令本發明該實施例之步驟(c)所形成的該吸收層5具有足夠的溫度以相變化成該黃銅礦晶相。因此,較佳地,於實施該步驟(c)時的一基板溫度是介於450 ˚C至650 ˚C間。更佳地,該基板溫度是介於500 ˚C至600 ˚C間;在該具體例中,該基板溫度是550 ˚C。
此處需補充說明的是,本發明該實施例之步驟(a)所載之雲母基板2內的鹼金屬元素,是用以在實施該步驟(c)的過程中,可經由該基板溫度提供一熱能給鹼金屬元素,令鹼金屬元素透過該熱能朝上擴散至該吸收層5內以藉此增加該吸收層5之外部量子效率(EQE)。因此,適用於本發明該具體例之步驟(a)之雲母基板2內與該步驟(c)之吸收層5內的鹼金屬元素是至少一選自由下列所構成之群組的鹼金屬元素:鉀(K)、鈉(Na)。
參閱圖4,經上述所載之實施例之製法的詳細說明可知,本發明該實施例之軟性薄膜太陽能電池實質上是由以下元件所組成:該雲母基板2、該附著層3、該第一電極單元4、該吸收層5、該緩衝層6、該透明導電層7,及該第二電極單元8。
該雲母基板2含有鹼金屬元素;該附著層3形成於該雲母基板2之上;該第一電極單元4形成於該附著層3上;該吸收層5形成於該第一電極單元4上,且含有一Cu、In、Ga、A與鹼金屬元素之組成並呈該呈黃銅礦晶相;該緩衝層6形成於該吸收層5上;該透明導電層7形成於該緩衝層5上;且該第二電極單元8形成於該透明導電層7上。在本發明該實施例之軟性薄膜太陽能電池中,適用於該吸收層5中的A,以及適用於該雲母基板2與該吸收層5內的鹼金屬元素已如前所述,於此不再多加贅述,且該吸收層5是經濺射該由Cu、In、Ga與A所構成之四元靶材所製得,濺射該四元靶材時所執行的該基板溫度,亦已載於上述該實施例之製法中,於此不再多加贅述。 <具體例>
本發明軟性薄膜太陽能電池的製法的一具體例是根據該實施例來實施,其具體的製法是詳細說明於下。
首先,再參閱圖2與圖3,採用一經清潔且厚度25 μm的白雲母(muscovite)基板以作為本發明該具體例之雲母基板2,並以直流濺鍍法(d.c. sputtering)在一氮氣(N
2)環境內於該雲母基板2上濺鍍一TiN層以作為本發明該具體例之附著層3。
接著,以直流濺鍍法依序在20 mTorr與3 mTorr的工作壓力且100 W之靶材輸出功率下於該附著層3上濺鍍一總厚度約1000 nm的雙層鉬電極,以做為本發明該具體例之第一電極單元4。在本發明該具體例中,該雙層鉬電極採用不同工作壓力來實施之目的在於,下層鉬電極是用以提升其對該TiN層之附著層3的附著性,上層鉬電極是用以降低其阻值並改善該第一電極單元4之電性。
於完成該第一電極單元4後,以脈衝式(pulse)直流濺鍍法在550 ˚C之基板溫度、15 mTorr的工作壓力與40 W之靶材輸出功率下,於該第一電極單元4上濺鍍一厚度約2700 nm之黃銅礦晶相的CIGSe吸收層,以作為本發明該具體例之吸收層5。在本發明該具體例中,形成該黃銅礦晶相之CIGSe吸收層所使用的一四元靶材(圖未示)是相同於前案3,其四元靶材的具體組成配比於此不再多加贅述。
後續,以化學水浴法(CBD)在60 ˚C的環境溫度下於該吸收層5上沉積一厚度約50 nm的CdS層以作為本發明該具體例之緩衝層6。
進一步地,以射頻(r.f.)濺鍍法在1 mTorr的工作壓力下於該緩衝層6上濺鍍一厚度約200 nm的Al:ZnO層,以作為本發明該具體例之透明導電層7。
最後,對一電子槍(e-gun;圖未示)提供15 kA的電流以經由電子束蒸鍍法(e-beam evaporation)在該透明導電層7上沉積複數彼此間隔排列且厚度約1500 nm的Al層81,從而作為本發明該具體例之第二電極單元8。 <比較例>
為了用以與本發明該具體例所製得之吸收層5進行比較,申請人是根據上述該具體例之製法來實施本發明之一比較例。本發明該比較例之製法大致上是相同於該具體例,其不同處是在於,該比較例是採用一軟性不鏽鋼基板(圖未示)以取代該雲母基板2,而該軟性不鏽鋼基板上是未形成有該具體例之該TiN層(附著層3),且該第一電極單元4並未在20 mTorr的工作壓力下執行,其僅在3 mTorr的工作壓力下執行。
此處需補充說明的是,基於該比較例是採用該軟性不鏽鋼基板來取代該雲母基板2,其軟性不鏽鋼基板與上方的第一電極單元4間無須再經由20 mTorr之工作壓力下所完成的下層鉬電極來改善其附著性問題,於此合先敘明。 <分析數據>
本發明該具體例之雲母基板經X射線螢光光譜儀(x-ray fluorescence spectrometer;XRFS)分析所得的成分,是彙整於下列表1.中。由表1.顯示可知,本發明該具體例之雲母基板內所含之鹼金屬元素有9.359 at%的K與0.5492 at%的Na。
參閱圖5所顯示之SIMS的縱深成分分析可知,本發明該具體例之CIGSe吸收層內顯示有鹼金屬元素K與Na的訊號,證實該具體例之CIGSe吸收層內的K與Na等鹼金屬元素是自其雲母基板朝上擴散至CIGSe吸收層內。反觀圖6所顯示之SIMS的縱深成分分析,本發明該比較例之CIGSe吸收層內雖含有鹼金屬元素K與Na的訊號;然而,K與Na等鹼金屬元素的訊號是遠低於圖5。
進一步由圖7所顯示之外部量子效率(EQE)對波長曲線圖可知,本發明該具體例之軟性薄膜太陽能電池於500 nm至1000 nm區間的平均外部量子效率已達86.34%,此86.34%之平均外部量子效率(EQE)有利於貢獻在該具體例之光電轉換效率(PCE;η)之功效上。反觀本發明該比較例之軟性薄膜太陽能電池於500 nm至1000 nm區間內的平均外部量子效率(EQE)卻已下降至82.26%,其所能貢獻在該比較例之光電轉換效率(PCE;η)的功效應相對低於該具體例。
根據前述具體例與比較例之製法及其SIMS之縱深成分分析的比對說明可知,該具體例基於其雲母基板內含有K、Na等鹼金屬元素,而得以令雲母基板內的鹼金屬元素在CIGSe吸收層成膜過程中經由其基板溫度以朝上擴散至其CIGSe吸收層內;因此,該具體例與比較例兩者在其CIGSe吸收層內之成分的明顯差異是在於,該具體例之CIGSe吸收層內的鹼金屬元素含量大幅地高出該比較例,且此鹼金屬元素含量的明顯差異更反映在其兩者的外部量子效率上。經前述所載技術內容可初步推得,該具體例之CIGSe吸收層內的K與Na等鹼金屬元素,是有利於提升其軟性薄膜太陽能電池於500 nm至1000 nm區間內的平均外部量子效率(EQE)。
由圖8所顯示之電流密度(J)對電壓(V)曲線圖可知(亦可配合參閱下方所彙整的表2.),本發明該具體例之軟性薄膜太陽能電池的開路電壓(open circuit voltage;Voc)與短路電流密度(short circuit current density;Jsc)各為501 mV與33.78 mA/cm
2,且經換算其填充因子(fill factor;FF)與光電轉換效率(η)已達69.94%與11.83%。
反觀圖9所顯示之電流密度(J)對電壓(V)曲線圖或上方表2.可知,本發明該比較例之軟性薄膜太陽能電池的開路電壓(Voc)為524 mV,雖略高於該具體例之501 mV。然而,該比較例僅具有28.49 mA/cm
2之短路電流密度(Jsc),已大幅地低於該具體例(33.78 mA/cm
2),且經換算其光電轉換效率(η)也已下降至10.34%。
綜上所述,本發明軟性薄膜太陽能電池的製法及其製品,因採用含有K與Na等鹼金屬元素的雲母基板2而省略掉前案1所揭示之該含鹼金屬的材料層13,其經由該雲母基板2以提供該吸收層內含有鹼金屬元素並藉此貢獻其軟性薄膜太陽能電池之外部量子效率(EQE)以提升其光電轉換效率(PCE;η),可在製程與元件結構兩者皆簡化的前提下,仍取得11%以上的光電轉換效率(PCE;η),故確實能達成本發明的目的。
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。
2:雲母基板
3:附著層
4:第一電極單元
5:吸收層
6:緩衝層
7:透明導電層
8:第二電極單元
81:Al層
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一正視示意圖,說明中國大陸第CN 106981832 A早期公開號發明專利案所公開的柔性CIGS多晶薄膜太陽能電池; 圖2是一製作流程示意圖,說明本發明軟性薄膜太陽能電池之製法的一實施例的一步驟(a)、一步驟(b)、一步驟(c)與一步驟(d); 圖3是一製作流程示意圖,說明本發明該實施例之製法的一步驟(e)與一步驟(f); 圖4是一正視示意圖,說明經本發明該實施例之製法所製得的軟性薄膜太陽能電池; 圖5是二次離子質譜圖(secondary ion mass spectrogram;以下簡稱SIMS),說明經本發明軟性薄膜太陽能電池之製法的一具體例所製得之一軟性薄膜太陽能電池自一吸收層朝一附著層的縱深成分分布(depth profile); 圖6是一SIMS,說明經本發明軟性薄膜太陽能電池之製法的一比較例所製得之一軟性薄膜太陽能電池自一吸收層朝一第一電極單元的縱深成分分布; 圖7一外部量子效率(external quantum efficiency;以下稱EQE)對波長曲線圖,說明本發明該具體例與該比較例之不同波長下的外部量子效率; 圖8是一電流密度(current density;J)對電壓(V)曲線圖,說明本發明該具體例的電性分析;及 圖9是一電流密度(J)對電壓(V)曲線圖,說明本發明該比較例的電性分析。
2:雲母基板
3:附著層
4:第一電極單元
5:吸收層
6:緩衝層
7:透明導電層
8:第二電極單元
81:Al層
Claims (6)
- 一種軟性薄膜太陽能電池的製法,其實質是由以下步驟所組成:一步驟(a),於一含有鹼金屬元素的雲母基板之上形成一附著層;一步驟(b),於該附著層上形成一第一電極單元;一步驟(c),濺射一由Cu、In、Ga與A所構成之四元靶材以於該第一電極單元上形成一含有一Cu、In、Ga、A與鹼金屬元素之組成並呈黃銅礦晶相的吸收層;一步驟(d),於該吸收層上形成一緩衝層;一步驟(e),於該緩衝層上形成一透明導電層;及一步驟(f),於該透明導電層上形成一第二電極單元;其中,該步驟(c)之四元靶材中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合;及其中,於實施該步驟(c)時的一基板溫度是介於450℃至650℃間,以經由該基板溫度提供一熱能令該雲母基板內的鹼金屬元素透過該熱能朝上擴散至該吸收層,致使該吸收層之組成含有自該雲母基板朝上擴散的鹼金屬元素。
- 如請求項1所述的軟性薄膜太陽能電池的製法,其中,該步驟(a)之雲母基板內與該步驟(c)之吸收層內的鹼金屬元素是至少一選自由下列所構成之群組的鹼金屬元素:鉀、鈉。
- 如請求項1所述的軟性薄膜太陽能電池的製法,其中,該 步驟(c)之四元靶材中的A是Se。
- 一種軟性薄膜太陽能電池,其實質上是由以下元件所組成:一雲母基板,含有鹼金屬元素;一附著層,形成於該雲母基板之上;一第一電極單元,形成於該附著層上;一吸收層,形成於該第一電極單元上,且含有一Cu、In、Ga、A與鹼金屬元素之組成並呈一呈黃銅礦晶相;一緩衝層,形成於該吸收層上;一透明導電層,形成於該緩衝層上;及一第二電極單元,形成於該透明導電層上;其中,該吸收層中的A是一選自由下列所構成之群組的元素:S、Se,及前述元素的組合;及其中,該吸收層是經濺射一由Cu、In、Ga與A所構成之四元靶材所製得;及其中,濺射該四元靶材時所執行的一基板溫度是介於450℃至650℃間,以經由該基板溫度提供一熱能令該雲母基板內的鹼金屬元素透過該熱能朝上擴散至該吸收層,致使該吸收層之組成含有自該雲母基板朝上擴散的鹼金屬元素。
- 如請求項4所述的軟性薄膜太陽能電池,其中,該雲母基板與該吸收層內的鹼金屬元素是至少一選自由下列所構成之群組的鹼金屬元素:鉀、鈉。
- 如請求項4所述的軟性薄膜太陽能電池,其中,該吸收層 中的A是Se。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107146182A TWI688112B (zh) | 2018-12-20 | 2018-12-20 | 軟性薄膜太陽能電池的製法及其製品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107146182A TWI688112B (zh) | 2018-12-20 | 2018-12-20 | 軟性薄膜太陽能電池的製法及其製品 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI688112B true TWI688112B (zh) | 2020-03-11 |
TW202025507A TW202025507A (zh) | 2020-07-01 |
Family
ID=70766862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107146182A TWI688112B (zh) | 2018-12-20 | 2018-12-20 | 軟性薄膜太陽能電池的製法及其製品 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI688112B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101258610A (zh) * | 2005-07-22 | 2008-09-03 | 本田技研工业株式会社 | 黄铜矿型太阳能电池 |
TW201824579A (zh) * | 2016-12-30 | 2018-07-01 | 財團法人工業技術研究院 | 化合物太陽能電池以及光吸收層的製作方法 |
-
2018
- 2018-12-20 TW TW107146182A patent/TWI688112B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101258610A (zh) * | 2005-07-22 | 2008-09-03 | 本田技研工业株式会社 | 黄铜矿型太阳能电池 |
TW201824579A (zh) * | 2016-12-30 | 2018-07-01 | 財團法人工業技術研究院 | 化合物太陽能電池以及光吸收層的製作方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202025507A (zh) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6096790B2 (ja) | 光電池のための導電性基材 | |
CN104396020B (zh) | 用于类似铜铟亚盐酸太阳能电池的光伏器件的后接触结构 | |
KR101908475B1 (ko) | 산화막 버퍼층을 포함하는 czts계 박막 태양전지 및 이의 제조방법 | |
TW201108425A (en) | Solar cell and fabrication method thereof | |
US20170243999A1 (en) | Solar cell | |
WO2011074685A1 (ja) | Cis系薄膜太陽電池の製造方法 | |
CN108172645A (zh) | 一种CIGS/CdTe叠层太阳能电池及其制作方法 | |
CN106653946B (zh) | 一种碲化镉薄膜太阳能电池吸收层的沉积方法 | |
CN103548153B (zh) | 具有均匀的Ga分布的CIGS薄膜的制造方法 | |
CN103999236B (zh) | 太阳能电池及其制造方法 | |
TWI688112B (zh) | 軟性薄膜太陽能電池的製法及其製品 | |
CN103855249B (zh) | 可用作太阳能电池吸收层的基于黄铜矿的材料的铟溅射方法和材料 | |
JP2014506391A (ja) | 太陽電池、及び太陽電池の製造方法 | |
JP2000012883A (ja) | 太陽電池の製造方法 | |
CN113228304B (zh) | 光电转换元件及光电转换元件的制造方法 | |
JP2015504611A (ja) | 電子ビーム照射を利用したモリブデン薄膜の伝導度の向上方法 | |
CN103999243B (zh) | 利用简化的共蒸发法来制造用于太阳能电池的cigs 薄膜的方法及利用该方法制造的用于太阳能电池的cigs 薄膜 | |
KR102057234B1 (ko) | Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지 | |
KR20170036606A (ko) | 이중 광흡수층을 포함하는 czts계 박막 태양전지 | |
TWI634669B (zh) | 大面積薄膜太陽能電池的製法 | |
CN103872156B (zh) | 多层堆叠的光吸收薄膜与其制造方法及太阳能电池 | |
CN102496645A (zh) | 一种铜铟镓硒薄膜太阳能电池及其制备方法 | |
US20120080306A1 (en) | Photovoltaic device and method for making | |
TWI443840B (zh) | 四元化合物薄膜及其製作方法 | |
KR102596328B1 (ko) | Czts계 박막 태양전지 광흡수층의 제조방법, 이로부터 제조되는 czts계 박막 태양전지 광흡수층 |