TWI687937B - Establishing method of chromosome abnormality detection model, chromosome abnormality detection system, and chromosome abnormality detection method - Google Patents
Establishing method of chromosome abnormality detection model, chromosome abnormality detection system, and chromosome abnormality detection method Download PDFInfo
- Publication number
- TWI687937B TWI687937B TW108105869A TW108105869A TWI687937B TW I687937 B TWI687937 B TW I687937B TW 108105869 A TW108105869 A TW 108105869A TW 108105869 A TW108105869 A TW 108105869A TW I687937 B TWI687937 B TW I687937B
- Authority
- TW
- Taiwan
- Prior art keywords
- chromosome
- image
- target
- abnormality detection
- chromosomes
- Prior art date
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明是有關於一種醫療資訊分析模型、系統以及方法,特別是一種染色體異常檢測模型、染色體異常檢測系統以及染色體異常檢測方法。 The invention relates to a medical information analysis model, system and method, in particular to a chromosome abnormality detection model, chromosome abnormality detection system and chromosome abnormality detection method.
染色體異常檢查大多用於遺傳疾病篩檢,或血癌和淋巴癌等癌細胞變異偵測。其中遺傳疾病篩檢主要為孕婦於懷孕過程中皆會接受相關的檢測,因胎兒同時攜帶父親的精細胞與母親的卵細胞經過細胞減數分裂而來的染色體,因此每次胚胎生命的發生過程中,有可能產生胚胎之染色體突變,需藉由檢測胎兒染色體異常與否確認胎兒的健康狀態。 Chromosomal abnormality examinations are mostly used for genetic disease screening or cancer cell mutation detection such as blood cancer and lymphoma. Among them, genetic disease screening is mainly for pregnant women to receive relevant tests during pregnancy. Because the fetus carries the chromosomes of the father's sperm cells and the mother's egg cells through meiosis, so each time the embryonic life occurs It is possible to produce chromosomal mutations in the embryo. It is necessary to confirm the health status of the fetus by detecting the abnormality of the fetal chromosome.
染色體異常一般可分為染色體數目異常、染色體結構異常以及染色體拼湊型異常。其中染色體數目異常為生殖細胞行減數分裂時,若發生某個染色體不分離(nondisjunction)現象時,便會導致精子或卵細胞染色體數 目的異常,受孕之後就成為染色體數目為單倍體或多倍體的胚胎,而生出畸型的胎兒。常見的染色體數目異常包含三染色體21症(唐氏症)、三染色體18症(艾德華氏症)及單染色體X症(特娜氏症)等。染色體結構異常為染色體構造有一處或多處以上的缺損、異常組合等情況所造成。而較常見的染色體拼湊型異常有46,XX/47,XX,+21的唐氏症拼湊體、45,X/46,XX、45,X/46,XY或45,X/46,X,i(Xq)為透納氏症的拼湊體。一般來說為含有部分正常染色體細胞的拼湊體,其症狀通常要比單一純粹的染色體異常為輕。 Chromosomal abnormalities can generally be divided into abnormal chromosome number, abnormal chromosome structure and abnormal patchwork chromosome. Among them, the abnormal chromosome number is the meiosis of the germ cells. If a nondisjunction phenomenon occurs, the chromosome number of sperm or egg cells will be caused. The purpose is abnormal. After conception, it becomes an embryo with a haploid or polyploid chromosome number, and a malformed fetus is born. Common chromosome abnormalities include trisomy 21 (Down's disease), trisomy 18 (Edward's disease), and monochromosome X (Terner's disease). Abnormal chromosome structure is caused by one or more defects or abnormal combination of chromosome structure. The more common chromosomal patchwork abnormalities are 46, XX/47, XX, +21 Down syndrome patchwork, 45, X/46, XX, 45, X/46, XY or 45, X/46, X, i(Xq) is a patchwork of Turner's disease. Generally speaking, it is a patchwork of cells with some normal chromosomes, and the symptoms are usually lighter than a single pure chromosome abnormality.
習知的染色體異常檢測方式為拍攝染色體細胞分裂中期影像後,由檢驗人員進行人工排列為染色體核型圖,再以此判斷染色體是否出現單倍體或多倍體以判斷是否出現染色體數目異常,以及染色體是否具有脫失、環狀、倒位或錯位的狀況以判斷是否出現染色體結構異常,是以染色體異常檢測的評估結果在不同檢驗人員間存在極大的差異,且過程也較為繁瑣耗時。因此,如何發展出一種具有高度準確率及快速檢測之染色體異常檢測系統,實為一具有商業價值之技術課題。 The conventional chromosomal abnormality detection method is to take a chromosomal cell division mid-phase image, and the tester manually arranges the chromosome karyotype map, and then judges whether the chromosome is haploid or polyploid to determine whether the chromosome number is abnormal. And whether the chromosomes are out of shape, circular, inverted or misaligned to determine whether there is a chromosomal structural abnormality, the evaluation results of chromosomal abnormality detection vary greatly among different inspectors, and the process is also tedious and time-consuming. Therefore, how to develop a chromosomal abnormality detection system with high accuracy and rapid detection is actually a technical topic with commercial value.
有鑒於此,本發明之一目的為提供染色體異常檢測模型、染色體異常檢測方法以及染色體異常檢測系統,其可客觀且準確的判斷一受試者是否存在染色體異常的狀況,並可藉此進行疾病分類和風險評估。 In view of this, one object of the present invention is to provide a chromosome abnormality detection model, a chromosome abnormality detection method, and a chromosome abnormality detection system, which can objectively and accurately determine whether a subject has a chromosome abnormality condition, and can thereby carry out a disease Classification and risk assessment.
本發明之一態樣是在於提供一種染色體異常檢測模型,包含以下建立步驟:取得參照資料庫、進行影像轉換步驟、進行初步分類步驟、進行特徵選取步驟以及進行訓練步驟。所述參照資料庫包含複數個參照染色體細胞分裂中期影像。所述影像轉換步驟係利用非監督式學習法分類器將參照染色體細胞分裂中期影像中23對染色體進行排列,以得到複數個參照染色體核型影像。所述初步分類步驟係依據參照染色體核型影像中的染色體條數進行分類,若染色體條數為46條,分類為染色體數目正常;若該色體條數為大於或小於46條,則分類為染色體數目異常。所述特徵選取步驟係利用特徵選取模組分析參照染色體核型影像後以得到至少一影像特徵值。所述訓練步驟係將前述之至少一影像特徵值透過卷積神經網路學習分類器進行訓練而達到收斂,以得到所述染色體異常檢測模型,其中所述染色體異常檢測模型係用以判斷受試者是否具有染色體結構異常或染色體拼湊型異常。 One aspect of the present invention is to provide a chromosome abnormality detection model, which includes the following building steps: obtaining a reference database, performing image conversion steps, performing preliminary classification steps, performing feature selection steps, and performing training steps. The reference database contains a plurality of metaphase images of reference chromosome cells. In the image conversion step, an unsupervised learning method classifier is used to arrange 23 pairs of chromosomes in the reference chromosome cell division metaphase image to obtain a plurality of reference chromosome karyotype images. The preliminary classification step is based on the number of chromosomes in the reference karyotype image. If the number of chromosomes is 46, the number of chromosomes is normal; if the number of chromosomes is greater than or less than 46, the classification is classified as The number of chromosomes is abnormal. The feature selection step is to use the feature selection module to analyze the reference karyotype image to obtain at least one image feature value. The training step is to train the at least one image feature value through a convolutional neural network learning classifier to achieve convergence to obtain the chromosome abnormality detection model, wherein the chromosome abnormality detection model is used to judge the subject Does the person have abnormal chromosomal structure or abnormal patchwork?
依據前述之染色體異常檢測模型,其中非監督式學習法分類器可為生成對抗神經網絡(Generative Adversarial Network,GAN)。 According to the aforementioned chromosome abnormality detection model, the unsupervised learning classifier can be a Generative Adversarial Network (GAN).
依據前述之染色體異常檢測模型,其中至少一影像特徵值可包含染色體大小、染色體位置或染色體形狀。 According to the aforementioned chromosome abnormality detection model, at least one image feature value may include chromosome size, chromosome position or chromosome shape.
依據前述之染色體異常檢測模型,其中卷積神經網路學習分類器可為Inception-ResNet-v2卷積神經網路或Inception V3卷積神經網路。 According to the aforementioned chromosome abnormality detection model, the convolutional neural network learning classifier may be an Inception-ResNet-v2 convolutional neural network or an Inception V3 convolutional neural network.
本發明之另一態樣是在於提供一種染色體異常檢測方法,其包含下述步驟。提供一如前段所述之染色體異常檢測模型。提供受試者之目標染色體細胞分裂中期影像。利用所述非監督式學習法分類器將所述目標染色體細胞分裂中期影像中23對染色體進行排列,以得到目標染色體核型影像。利用前述之染色體異常檢測模型分析前述之目標染色體核型影像,以判斷受試者是否具有染色體異常。 Another aspect of the present invention is to provide a chromosome abnormality detection method, which includes the following steps. Provide a chromosomal abnormality detection model as described in the previous paragraph. Provide the subject's target chromosomal cell division mid-phase image. The unsupervised learning method classifier is used to arrange 23 pairs of chromosomes in the target chromosome cell division metaphase image to obtain a target chromosome karyotype image. The aforementioned chromosomal abnormality detection model is used to analyze the aforementioned target karyotype image to determine whether the subject has a chromosomal abnormality.
依據前述之染色體異常檢測方法,其中染色體異常可包含染色體數目異常、染色體結構異常或染色體拼湊型異常。較佳地,染色體數目異常可包含受試者之目標染色體為單倍體或多倍體,染色體結構異常可包含受試者之目標染色體為染色體缺失、環狀染色體、染色體轉位、染色體倒轉或染色體重複。 According to the aforementioned chromosomal abnormality detection method, the chromosomal abnormality may include abnormality of chromosome number, abnormality of chromosome structure or abnormality of chromosome patchwork. Preferably, the abnormal chromosome number may include the subject's target chromosome as a haploid or polyploid, and the abnormal chromosome structure may include the subject's target chromosome as a chromosome deletion, circular chromosome, chromosome translocation, chromosome inversion or Chromosome duplication.
本發明之又一態樣是在於提供一種染色體異常檢測系統,包含影像擷取單元以及非暫態機器可讀媒體。影像擷取單元用以取得受試者的目標染色體細胞分裂中期影像。非暫態機器可讀媒體訊號連接影像擷取單元,其中非暫態機器可讀媒體用以儲存一程式,當前述之程式由一處理單元執行時係用以判斷受試者是否具有染色體異常,且前述之程式包含參照資料庫取得模組、參照影像轉換模組、參照初步分類模組、參照特徵選取模組、訓練模組、目標影像轉換模組、目標初步分類模組、目標特徵選取模組及比對模組。參照資料庫取得模組用以取得一參照資料庫,且前述之參照資料庫係由複數個參照染色體細胞分裂中期影像所建立。參 照影像轉換模組,其係利用非監督式學習法分類器將參照染色體細胞分裂中期影像中23對染色體進行排列,以取得複數個參照染色體核型影像。參照初步分類模組,用以將參照染色體核型影像依據參照染色體條數進行分類,若參照染色體條數為46條,分類為染色體數目正常,若參照染色體條數為大於或小於46條,則分類為染色體數目異常。參照特徵選取模組用以分析參照染色體核型影像後以得到至少一參照影像特徵值。訓練模組用以將至少一參照影像特徵值透過卷積神經網路學習分類器訓練達到收斂,以得到染色體異常檢測模型。目標影像轉換模組其係利用非監督式學習法分類器將目標染色體細胞分裂中期影像中23對染色體進行排列,以得到目標染色體核型影像。目標初步分類模組用以將目標染色體核型影像依據目標染色體條數進行分類,若目標染色體條數為46條,分類為染色體數目正常;若目標染色體條數為大於或小於46條,則分類為染色體數目異常。目標特徵選取模組用以分析目標染色體核型影像後以得至少一目標影像特徵值。比對模組用以將目標影像特徵值以所述染色體異常檢測模型進行分析以得一目標影像特徵值權重數據,並依據目標影像特徵值權重數據判斷受試者是否具有染色體結構異常或染色體拼湊型異常。 Another aspect of the present invention is to provide a chromosome abnormality detection system including an image capturing unit and a non-transitory machine-readable medium. The image capturing unit is used to obtain the target chromosomal cell division metaphase image of the subject. The non-transitory machine-readable medium signal is connected to the image capturing unit, wherein the non-transitory machine-readable medium is used to store a program, and when the aforementioned program is executed by a processing unit, it is used to determine whether the subject has a chromosomal abnormality, And the aforementioned program includes reference database acquisition module, reference image conversion module, reference preliminary classification module, reference feature selection module, training module, target image conversion module, target preliminary classification module, target feature selection module Group and comparison module. The reference database obtaining module is used to obtain a reference database, and the aforementioned reference database is created by a plurality of reference chromosome cell division metaphase images. Ginseng According to the image conversion module, it uses an unsupervised learning method classifier to arrange 23 pairs of chromosomes in the reference chromosome cell division metaphase image to obtain a plurality of reference chromosome karyotype images. Refer to the preliminary classification module to classify the reference chromosome karyotype image according to the number of reference chromosomes. If the number of reference chromosomes is 46, the classification is normal. If the number of reference chromosomes is greater than or less than 46, then Classified as abnormal chromosome number. The reference feature selection module is used to analyze the reference chromosome karyotype image to obtain at least one reference image feature value. The training module is used to train at least one reference image feature value through the convolutional neural network to learn the classifier to achieve convergence, so as to obtain a chromosome abnormality detection model. The target image conversion module uses an unsupervised learning method classifier to arrange 23 pairs of chromosomes in the target chromosome cell division metaphase image to obtain the target chromosome karyotype image. The target preliminary classification module is used to classify the target chromosome karyotype image according to the number of target chromosomes. If the number of target chromosomes is 46, the classification is normal. If the number of target chromosomes is greater than or less than 46, the classification The number of chromosomes is abnormal. The target feature selection module is used to analyze the target karyotype image to obtain at least one target image feature value. The comparison module is used to analyze the target image feature value with the chromosome abnormality detection model to obtain a target image feature value weight data, and determine whether the subject has abnormal chromosome structure or chromosome patching according to the target image feature value weight data Type is abnormal.
依據前述之染色體異常檢測系統,其中非監督式學習法分類器可為生成對抗神經網絡(Generative Adversarial Network,GAN)。 According to the aforementioned chromosome abnormality detection system, the unsupervised learning classifier can be a Generative Adversarial Network (GAN).
依據前述之染色體異常檢測系統,其中至少一參照影像特徵值可包含染色體大小、染色體位置或染色體形狀,至少一目標影像特徵值可包含染色體大小、染色體位置或染色體形狀。 According to the aforementioned chromosome abnormality detection system, at least one reference image feature value may include chromosome size, chromosome position or chromosome shape, and at least one target image feature value may include chromosome size, chromosome position or chromosome shape.
依據前述之染色體異常檢測系統,其中卷積神經網路學習分類器可為Inception-ResNet-v2卷積神經網路或Inception V3卷積神經網路。 According to the aforementioned chromosome abnormality detection system, the convolutional neural network learning classifier may be an Inception-ResNet-v2 convolutional neural network or an Inception V3 convolutional neural network.
依據前述之染色體異常檢測系統,其中非暫態機器可讀媒體可更包含一評估模組,用以依據目標影像特徵值權重數據計算受試者具有染色體異常的風險值。 According to the aforementioned chromosomal abnormality detection system, the non-transitory machine-readable medium may further include an evaluation module for calculating the risk value of the chromosomal abnormality of the subject based on the target image feature value weighting data.
藉此,本發明之染色體異常檢測模型、染色體異常檢測系統以及染色體異常檢測方法透過將目標染色體細胞分裂中期影像自動化地轉換為目標染色體核型影像,並利用目標特徵選取模組分析目標染色體核型影像後以得至少一目標影像特徵值的方式可有效降低染色體異常檢測時因不同判斷者之主觀意識所產生的誤差。再者,透過具有深度神經網路學習功能之染色體異常檢測模型不僅能有效提升染色體異常檢測的準確度與敏感度,並可大幅縮短染色體異常的判定時間,使本發明之染色體異常檢測模型、染色體異常檢測系統以及染色體異常檢測方法在染色體異常檢測方面更有效率。 In this way, the chromosomal abnormality detection model, chromosomal abnormality detection system and chromosomal abnormality detection method of the present invention automatically convert the target chromosomal cell division metaphase image into the target karyotype image, and use the target feature selection module to analyze the target chromosome karyotype Obtaining at least one target image feature value after the image can effectively reduce the error caused by the subjective consciousness of different judges in the detection of chromosome abnormality. Furthermore, the chromosome abnormality detection model with deep neural network learning function can not only effectively improve the accuracy and sensitivity of chromosome abnormality detection, but also greatly shorten the judgment time of chromosome abnormality, making the chromosome abnormality detection model and chromosome of the present invention Abnormal detection systems and chromosomal abnormality detection methods are more efficient in detecting chromosomal abnormalities.
上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容 並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。 The above summary of the invention aims to provide a simplified summary of the present disclosure so that the reader can have a basic understanding of the present disclosure. Summary of this invention It is not a complete overview of the disclosure, and it is not intended to point out important/critical elements of embodiments of the invention or to define the scope of the invention.
100‧‧‧染色體異常檢測模型之建立步驟 100‧‧‧ Steps for establishing chromosome abnormality detection model
110、120、130、140、150‧‧‧步驟 110, 120, 130, 140, 150‧‧‧ steps
200‧‧‧染色體異常檢測方法 200‧‧‧ Chromosome abnormality detection method
210、220、230、240‧‧‧步驟 210, 220, 230, 240 ‧‧‧ steps
300‧‧‧染色體異常檢測系統 300‧‧‧ Chromosome abnormality detection system
400‧‧‧影像擷取單元 400‧‧‧Image capture unit
500‧‧‧非暫態機器可讀媒體 500‧‧‧non-transitory machine-readable media
510‧‧‧參照資料庫取得模組 510‧‧‧Refer to the database to obtain the module
520‧‧‧參照影像轉換模組 520‧‧‧Reference image conversion module
530‧‧‧參照初步分類模組 530‧‧‧Refer to the preliminary classification module
540‧‧‧參照特徵選取模組 540‧‧‧Reference feature selection module
550‧‧‧訓練模組 550‧‧‧Training module
560‧‧‧目標影像轉換模組 560‧‧‧Target image conversion module
570‧‧‧目標初步分類模組 570‧‧‧Preliminary classification module
580‧‧‧目標特徵選取模組 580‧‧‧ target feature selection module
590‧‧‧比對模組 590‧‧‧ Comparison module
610‧‧‧目標染色體細胞分裂中期影像 610‧‧‧The image of metaphase of target chromosome cell division
620‧‧‧目標染色體核型影像 620‧‧‧ Target karyotype image
700、800‧‧‧卷積神經網路學習分類器 700, 800 ‧‧‧ Convolutional Neural Network Learning Classifier
701、801‧‧‧目標影像特徵值權重數據 701, 801‧‧‧ target image feature value weight data
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示依照本發明之一實施方式之一種染色體異常檢測模型之建立步驟流程圖;第2圖繪示依照本發明另一實施方式之一種染色體異常檢測方法之步驟流程圖;第3圖繪示依照本發明再一實施方式之一種染色體異常檢測系統之方塊圖;第4圖繪示目標染色體細胞分裂中期影像轉換為目標染色體核型影像的結果圖;第5圖繪示本發明之一實施方式之一實施例之染色體異常檢測模型之卷積神經網路學習分類器的架構示意圖;第6圖繪示本發明之一實施方式之另一實施例之染色體異常檢測模型之卷積神經網路學習分類器的架構示意圖;以及第7圖為本發明之染色體異常檢測模型用於判斷受試者之染色體異常的混淆矩陣。 In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious and understandable, the drawings are described as follows: Figure 1 illustrates the establishment of a chromosome abnormality detection model according to one embodiment of the present invention Step flow chart; Figure 2 shows a step flow chart of a chromosome abnormality detection method according to another embodiment of the present invention; Figure 3 shows a block diagram of a chromosome abnormality detection system according to yet another embodiment of the present invention; 4 is a diagram showing a result of conversion of a target chromosomal cell division metaphase image into a target karyotype image; FIG. 5 is a convolutional neural network learning classifier of a chromosome abnormality detection model according to an embodiment of the invention FIG. 6 is a schematic diagram of a convolutional neural network learning classifier of a chromosome abnormality detection model according to another example of an embodiment of the present invention; and FIG. 7 is a chromosome abnormality detection model of the present invention. Confusion matrix used to judge the chromosomal abnormality of the subject.
下述將更詳細討論本發明各實施方式。然而,此實施方式可為各種發明概念的應用,可被具體實行在各種不同的特定範圍內。特定的實施方式是僅以說明為目的,且不受限於揭露的範圍。 The embodiments of the present invention will be discussed in more detail below. However, this embodiment can be an application of various inventive concepts and can be specifically implemented in various specific ranges. The specific embodiments are for illustrative purposes only, and are not limited to the scope of disclosure.
請參照第1圖,繪示依照本發明之一實施方式之一種染色體異常檢測模型之建立步驟100流程圖。本發明之染色體異常檢測模型之建立步驟100包含步驟110、步驟120、步驟130、步驟140和步驟150,建立後的染色體異常檢測模型可用以判斷受試者是否具有染色體數目異常、染色體結構異常或染色體拼湊型異常。
Please refer to FIG. 1, which shows a flowchart of a
步驟110是取得參照資料庫,所述參照資料庫包含複數個參照染色體細胞分裂中期影像。在非分裂期的細胞,其染色質多以30nm至300nm的狀態分布於細胞核中,當細胞進入有絲分裂期時,染色體才會開始逐步緊密排列。而細胞有絲分裂中期(metaphase)時,細胞的核膜完全消失不見,紡錘絲開始變得清晰。每個染色體上的著絲點分別附著至紡錘絲(或星射線),著絲點受其兩極拉力開始上下移動,最後兩極拉力達到均衡,著絲點均排列於細胞中央的赤道板上,為染色體的清晰度達到最高的時點。是以在取得參照染色體細胞分裂中期影像前,先藉由施打激素使參照受試者的細胞進入細胞分裂中期後,再抽取參照受試者的特定細胞,並藉由染色和顯微鏡觀察取得參照染色體細胞分裂中期影像。 Step 110 is to obtain a reference database, which includes a plurality of reference chromosome cell division metaphase images. In the non-dividing phase, the chromatin is mostly distributed in the nucleus from 30nm to 300nm. When the cell enters the mitotic phase, the chromosomes will begin to be gradually arranged closely. In the metaphase of the cell, the nuclear membrane of the cell disappeared completely, and the spindle filament became clear. The centromere on each chromosome is attached to the spindle filament (or star ray) respectively. The centromere begins to move up and down under the tension of its two poles, and finally the tension of the two poles reaches equilibrium. The centromeres are arranged on the equatorial plate in the center of the cell. Chromosome intelligibility reached the highest point. Therefore, before obtaining the image of the reference chromosome cell division, the reference subject's cells are entered into the cell division phase by administering hormones, and then the specific cells of the reference subject are extracted, and the reference is obtained by staining and microscopic observation. Chromosomal metaphase imaging.
步驟120是進行影像轉換步驟,係利用一非監督式學習法分類器將參照染色體細胞分裂中期影像中23對染色體進行排列,以得到複數個參照染色體核型(karyotype)影像。參照染色體核型影像係將前述的參照染色體細胞分裂中期影像,根據染色體的長度、著絲點位置、長短臂比例、隨體的有無等特徵,對染色體進行分析、比較、排序和編號後所得到的影像。所述非監督式學習法分類器可為生成對抗神經網絡(Generative Adversarial Network,GAN)。 Step 120 is an image conversion step. An unsupervised learning method classifier is used to arrange 23 pairs of chromosomes in the reference chromosome cell division metaphase image to obtain a plurality of reference chromosome karyotype images. The reference chromosome karyotype image system is obtained by analyzing, comparing, sorting and numbering chromosomes according to the characteristics of chromosome length, centromere position, ratio of long and short arms, presence or absence of satellite, etc. Image. The unsupervised learning method classifier may be a Generative Adversarial Network (GAN).
步驟130是進行一初步分類步驟,係依據參照染色體核型影像中的染色體條數進行分類,若染色體條數為46條,分類為染色體數目正常;若染色體條數為大於或小於46條,則分類為染色體數目異常。 Step 130 is a preliminary classification step, which is based on the number of chromosomes in the reference karyotype image. If the number of chromosomes is 46, the number of chromosomes is normal; if the number of chromosomes is greater than or less than 46, then Classified as abnormal chromosome number.
步驟140是進行特徵選取步驟,係利用特徵選取模組分析參照染色體核型影像後以取得至少一影像特徵值。其中至少一影像特徵值可包含染色體大小、染色體位置或染色體形狀。 Step 140 is a feature selection step. The feature selection module analyzes the reference karyotype image to obtain at least one image feature value. The at least one image feature value may include chromosome size, chromosome position or chromosome shape.
步驟150是進行訓練步驟,係將前述之至少一影像特徵值透過卷積神經網路學習分類器進行訓練而達到收斂,以得到所述染色體異常檢測模型。其中所述卷積神經網路學習分類器可為Inception-ResNet-v2卷積神經網路或Inception V3卷積神經網路。 Step 150 is a training step, which is to train the at least one image feature value through a convolutional neural network learning classifier to achieve convergence, so as to obtain the chromosome abnormality detection model. The convolutional neural network learning classifier may be an Inception-ResNet-v2 convolutional neural network or an Inception V3 convolutional neural network.
請參照第2圖,繪示依照本發明另一實施方式之一種染色體異常檢測方法200之步驟流程圖。本發明之染色
體異常檢測方法200包含步驟210、步驟220、步驟230和步驟240。
Please refer to FIG. 2, which illustrates a flowchart of a method for detecting a
步驟210是提供染色體異常檢測模型,而染色體異常檢測模型係經由前述步驟110至步驟150所建立。
Step 210 is to provide a chromosome abnormality detection model, and the chromosome abnormality detection model is established through the foregoing
步驟220是提供受試者之目標染色體細胞分裂中期影像,在取得目標染色體細胞分裂中期影像前,先藉由施打激素使受試者的細胞進入細胞分裂中期後,再抽取受試者的特定細胞,並藉由染色和顯微鏡觀察取得目標染色體細胞分裂中期影像。 Step 220 is to provide the image of the subject's target chromosomal cell division. Before obtaining the target chromosomal cell division image, the subject's cells are entered into the cell division phase by hormone administration, and then the subject's specific image is extracted. Cells, and through the staining and microscope observation to obtain the target chromosome cell division in the middle image.
步驟230利用非監督式學習法分類器將目標染色體細胞分裂中期影像中23對染色體進行排列,以取得目標染色體核型影像。所述目標染色體核型影像係將前述的目標染色體細胞分裂中期影像,根據染色體的長度、著絲點位置、長短臂比例、隨體的有無等特徵,對染色體進行分析、比較、排序和編號後所得到的影像。所述非監督式學習法分類器可為生成對抗神經網絡(Generative Adversarial Network,GAN)。 Step 230 uses an unsupervised learning method classifier to arrange 23 pairs of chromosomes in the target chromosome cell division metaphase image to obtain the target chromosome karyotype image. The target chromosome karyotype imaging system analyzes, compares, sorts and numbers chromosomes according to the characteristics of chromosome length, centromere position, ratio of long and short arms, presence or absence of satellite, etc. The resulting image. The unsupervised learning method classifier may be a Generative Adversarial Network (GAN).
步驟240是利用染色體異常檢測模型分析所述目標染色體核型影像,以判斷受試者是否具有染色體異常。其中染色體異常可包含染色體數目異常、染色體結構異常或染色體拼湊型異常。較佳地,染色體數目異常可包含受試者之目標染色體為單倍體或多倍體,染色體結構異常可包含受試者之目標染色體為染色體缺失、環狀染色體、染色體轉位、染色體倒轉或染色體重複。 Step 240 is to analyze the target chromosome karyotype image using a chromosome abnormality detection model to determine whether the subject has a chromosome abnormality. The chromosomal abnormalities may include abnormal chromosome number, abnormal chromosome structure or abnormal patchwork type. Preferably, the abnormal chromosome number may include the subject's target chromosome as a haploid or polyploid, and the abnormal chromosome structure may include the subject's target chromosome as a chromosome deletion, circular chromosome, chromosome translocation, chromosome inversion or Chromosome duplication.
藉此,本發明之染色體異常檢測模型與染色體異常檢測方法透過將目標染色體細胞分裂中期影像自動化地轉換為目標染色體核型影像,並利用特徵選取模組分析目標染色體核型影像後以得至少一影像特徵值的方式可有效降低染色體異常檢測時因不同判斷者之主觀意識所產生的誤差。再者,透過具有深度神經網路學習功能之染色體異常檢測模型不僅能有效提升染色體異常檢測的準確度與敏感度,並可大幅縮短染色體異常的判定時間,使本發明之染色體異常檢測模型以及染色體異常檢測方法在染色體異常檢測方面更有效率。 In this way, the chromosomal abnormality detection model and chromosomal abnormality detection method of the present invention can automatically convert the target chromosomal cell division metaphase image into the target karyotype image, and analyze the target karyotype image using the feature selection module to obtain at least The method of image feature value can effectively reduce the error caused by the subjective consciousness of different judges in the detection of chromosome abnormality. Furthermore, the chromosome abnormality detection model with deep neural network learning function can not only effectively improve the accuracy and sensitivity of chromosome abnormality detection, but also greatly shorten the judgment time of chromosome abnormality, making the chromosome abnormality detection model and chromosome of the present invention Anomaly detection methods are more efficient in detecting chromosome abnormalities.
請再參照第3圖和第4圖,第3圖繪示依照本發明再一實施方式之一種染色體異常檢測系統300之方塊圖,第4圖繪示目標染色體細胞分裂中期影像610轉換為目標染色體核型影像620的結果圖。本發明之染色體異常檢測系統300包含影像擷取單元400和非暫態機器可讀媒體500。染色體異常檢測系統300可用以判斷受試者是否具有染色體數目異常、染色體結構異常或染色體拼湊型異常。
Please refer to FIGS. 3 and 4 again. FIG. 3 shows a block diagram of a chromosome
影像擷取單元400用以取得受試者的目標染色體細胞分裂中期影像610。影像擷取單元可為一搭配顯微鏡之取像裝置,用以拍攝顯微鏡所觀察到的染色體影像。
The
非暫態機器可讀媒體500訊號連接影像擷取單元400,其中非暫態機器可讀媒體用以儲存一程式,當前述之程式由一處理單元執行時係用以評估受試者是否具有染色體異常,其中前述之程式包含參照資料庫取得模組510、
參照影像轉換模組520、參照初步分類模組530、參照特徵選取模組540、訓練模組550、目標影像轉換模組560、目標初步分類模組570、目標特徵選取模組580及比對模組590。
The non-transitory machine-
參照資料庫取得模組510用以取得一參照資料庫,且前述之參照資料庫係由複數個參照染色體細胞分裂中期影像所建立。
The reference
參照影像轉換模組520,其係利用非監督式學習法分類器將參照染色體細胞分裂中期影像中23對染色體進行排列,以取得複數個參照染色體核型影像。所述非監督式學習法分類器可為生成對抗神經網絡。
The reference
參照初步分類模組530用以將參照染色體核型影像依據參照染色體條數進行分類。若參照染色體條數為46條,分類為染色體數目正常;若參照染色體條數為大於或小於46條,則分類為染色體數目異常。較佳地,染色體數目異常可包含受試者之目標染色體為單倍體或多倍體。
The reference
參照特徵選取模組540用以分析參照染色體核型影像後以取得至少一參照影像特徵值。所述至少一參照影像特徵值可包含染色體大小、染色體位置或染色體形狀。
The reference
訓練模組550用以將至少一參照影像特徵值透過卷積神經網路學習分類器訓練達到收斂,以得到染色體異常檢測模型。所述卷積神經網路學習分類器可為Inception-ResNet-v2卷積神經網路或Inception V3卷積神經網路。
The
目標影像轉換模組560係利用非監督式學習法分類器將目標染色體細胞分裂中期影像610中23對染色體進行排列,以取得目標染色體核型影像620。所述非監督式學習法分類器可為生成對抗神經網絡。
The target
目標初步分類模組570用以將目標染色體核型影像依據目標染色體條數進行分類。若目標染色體條數為46條,分類為染色體數目正常;若目標染色體條數為大於或小於46條,則分類為染色體數目異常。較佳地,染色體數目異常可包含受試者之目標染色體為單倍體或多倍體。
The target
目標特徵選取模組580用以分析目標染色體核型影像後以得至少一目標影像特徵值。所述至少一目標影像特徵值可包含染色體大小、染色體位置或染色體形狀。
The target
比對模組590用以將目標影像特徵值以所述染色體異常檢測模型進行分析以得一目標影像特徵值權重數據,並依據目標影像特徵值權重數據判斷受試者是否具有染色體結構異常或染色體拼湊型異常。較佳地,染色體結構異常可包含受試者之目標染色體為染色體缺失、環狀染色體、染色體轉位、染色體倒轉或染色體重複。
The
此外,非暫態機器可讀媒體500可更包含一評估模組(圖未繪示),用以依據目標影像特徵值權重數據進一步計算受試者具有染色體異常的風險值。
In addition, the non-transitory machine-
根據上述實施方式,以下提出具體試驗例並配合圖式予以詳細說明。 According to the above-mentioned embodiment, specific test examples are presented below and explained in detail in conjunction with the drawings.
本發明所使用的參照資料庫為中國醫藥大學附設醫院(China Medical University Hospital,CMUH)所蒐集的回溯性去連結化之受檢者臨床內容,為經中國醫藥大學暨附設醫院研究倫理委員會核准之臨床試驗計劃,其編號為:CMUH107-REC3-151。前述之參照資料庫包含30000筆受檢者的參照染色體細胞分裂中期影像,且前述之參照染色體細胞分裂中期影像的所屬受檢者性別並無特別限制,年齡亦沒有特別之區間。 The reference database used in the present invention is the retrospective delinked clinical content of the subject collected by China Medical University Hospital (CMUH), which was approved by the Research Ethics Committee of China Medical University and Affiliated Hospital The clinical trial plan is numbered CMUH107-REC3-151. The aforementioned reference database contains 30,000 images of the reference chromosome metaphase cell division, and the gender of the subject to which the aforementioned reference chromosome cell division metaphase image belongs is not particularly limited, and there is no specific age range.
本發明之染色體異常檢測模型在取得參照資料庫後,各參照染色體細胞分裂中期影像將利用一參照影像轉換模組,將各參照染色體細胞分裂中期影像以非監督式學習法分類器將各參照染色體細胞分裂中期影像中23對染色體進行排列,以得到複數個參照染色體核型影像。 After obtaining the reference database in the chromosome abnormality detection model of the present invention, each reference chromosome cell division mid-phase image will use a reference image conversion module to convert each reference chromosome cell division mid-phase image by an unsupervised learning method classifier to classify each reference chromosome In the mid-phase cell division image, 23 pairs of chromosomes are arranged to obtain a plurality of reference chromosome karyotype images.
詳細而言,由於目前的深度神經網路模型在運作上需要大量的訓練資料(Training Data,即本發明之染色體異常檢測模型的各參照染色體細胞分裂中期影像)來達成穩定收斂及高度的分類準確率,倘若訓練資料的數目不夠充足將會使深度神經網路產生過擬合現象(Overfitting)而導致判斷結果的誤差值過高,致使深度神經網路模型的可信度較低。為了解決前述問題,本發明之染色體異常檢測模型另包含一影像前處理步驟,將各參照染色體核型影像進行進 行黑白對比度校正,並將影像數值歸一化,使影像數值介於0到1。 In detail, because the current deep neural network model requires a large amount of training data (Training Data, that is, the mid-phase image of each reference chromosome cell division of the chromosome abnormality detection model of the present invention) to achieve stable convergence and a high degree of classification criteria To be sure, if the number of training data is not sufficient, the deep neural network will cause overfitting (Overfitting) and the error value of the judgment result will be too high, resulting in a low reliability of the deep neural network model. In order to solve the aforementioned problems, the chromosome abnormality detection model of the present invention further includes an image pre-processing step, which is to carry out each reference chromosome karyotype image. Perform black-and-white contrast correction and normalize the image value so that the image value is between 0 and 1.
先進行初步分類步驟,以判斷受檢者是否具有染色體數目異常的狀況,其係依據各參照染色體核型影像中的染色體條數進行分類。若染色體條數為46條,分類為染色體數目正常;若染色體條數為大於或小於46條,則分類為染色體數目異常。 A preliminary classification step is first performed to determine whether the subject has an abnormal number of chromosomes, which is classified according to the number of chromosomes in each reference chromosome karyotype image. If the number of chromosomes is 46, the number of chromosomes is classified as normal; if the number of chromosomes is greater or less than 46, the number of chromosomes is classified as abnormal.
接著,各參照染色體核型影像將以特徵選取模組進行分析,以得至少一影像特徵值。詳細而言,特徵選取模組可進一步區別各參照染色體核型影像中的染色體大小、染色體位置或染色體形狀之影像特徵值。 Then, each reference chromosome karyotype image will be analyzed with a feature selection module to obtain at least one image feature value. In detail, the feature selection module can further distinguish image feature values of chromosome size, chromosome position or chromosome shape in each reference chromosome karyotype image.
接著,前述之影像特徵值將透過一卷積神經網路學習分類器進行訓練而達到收斂,以得本發明之染色體異常檢測模型。在本試驗例中,染色體異常檢測模型將應用於判斷受試者是否具有染色體數目異常、染色體結構異常或染色體拼湊型異常。而卷積神經網路學習分類器可為Inception-ResNet-v2卷積神經網路或Inception V3卷積神經網路。 Next, the aforementioned image feature values will be trained through a convolutional neural network learning classifier to achieve convergence, so as to obtain the chromosome abnormality detection model of the present invention. In this test example, the chromosome abnormality detection model will be used to determine whether the subject has abnormal chromosome number, abnormal chromosome structure, or abnormal patchwork type. The convolutional neural network learning classifier can be Inception-ResNet-v2 convolutional neural network or Inception V3 convolutional neural network.
請參照第5圖,其係繪示本發明之染色體異常檢測模型之卷積神經網路學習分類器700的架構示意圖。在第5圖的試驗例中,卷積神經網路學習分類器700為Inception-ResNet-v2卷積神經網路,其包含複數個卷積層(Convolution)、複數個最大池化層(MaxPool)、複數個平
均池化層(AvgPool)以及複數個級聯層(Concat),以對影像特徵值進行訓練與分析。
Please refer to FIG. 5, which is a schematic diagram of the convolutional neural
詳細而言,Inception-ResNet-v2卷積神經網路是基於ImageNet可視化數據資料庫的大規模視覺辨識卷積神經網路,且ImageNet可視化數據資料庫裡面的影像資料皆為二維之彩色圖像,因此習知的GoogLeNet卷積神經網路模型在其第一卷積層中具有RGB三通道之濾波器。然而,各參照染色體核型影像的原始影像檔案皆為三維之灰階影像,是以本發明之染色體異常檢測模型進一步將包含RGB三通道之濾波器的GoogLeNet卷積神經網路模型透過算術平均法而轉換為單一通道,並將隨機梯度下降法(Stochastic Gradient Descent,SGD)應用於本發明之染色體異常檢測模型的預訓練模型神經網路中,以優化其訓練過程,其訓練次數可為100期(Epochs)及採用96Mini-Batch Size之梯度下降法,並透過改變初始學習率(Learning Rates)以進行調變,其中學習率是對神經網路進行訓練時控制權重(weight)和偏差(bias)變化的重要參數,是以本發明之染色體異常檢測模型透過調整學習率的數值可進一步確保損失函數(Loss Function)可達穩定收斂。 In detail, the Inception-ResNet-v2 convolutional neural network is a large-scale visual recognition convolutional neural network based on the ImageNet visualization data database, and the image data in the ImageNet visualization data database are two-dimensional color images. Therefore, the conventional GoogLeNet convolutional neural network model has RGB three-channel filters in its first convolutional layer. However, the original image files of each reference chromosome karyotype image are three-dimensional grayscale images. The chromosome abnormality detection model of the present invention further uses the GoogLeNet convolutional neural network model including RGB three-channel filters through arithmetic averaging Convert to a single channel and apply Stochastic Gradient Descent (SGD) to the pre-trained model neural network of the chromosome abnormality detection model of the present invention to optimize its training process. The number of training sessions can be 100 (Epochs) and the gradient descent method using 96Mini-Batch Size, and by adjusting the initial learning rate (Learning Rates) to adjust, where the learning rate is the weight and bias of the neural network training The important parameter of change is that the chromosomal abnormality detection model of the present invention can further ensure the stable convergence of the loss function by adjusting the value of the learning rate.
在本發明之染色體異常檢測模型對影像特徵值進行訓練的過程中,各參照染色體核型影像的影像特徵值進行二層卷積層及一層最大池化層(MaxPool)處理,以將所提取之影像特徵值進行最大輸出,並再次重複前述之二層卷積層與一層最大池化層輸出後,利用複數個卷積層進行並行塔 (parallel towers)訓練,以完成影像特徵值的初級訓練(Inception)。 In the process of training the image feature values of the chromosome abnormality detection model of the present invention, the image feature values of each reference chromosome karyotype image are processed by two layers of convolution layers and a layer of maximum pooling (MaxPool) to extract the extracted images Eigenvalues are used for maximum output, and after repeating the output of the above two convolutional layers and one maximum pooling layer again, multiple convolutional layers are used for parallel towers (parallel towers) training to complete the initial training of image feature values (Inception).
在完成前述之初級訓練後,各參照染色體核型影像的影像特徵值將進行10次(10×)、20次(20×)與10次(10×)的不同深度、不同階層與不同態樣之殘差(Residual)模塊訓練,以對各參照染色體核型影像的影像特徵值進行訓練並達到收斂。詳細而言,由於Inception-ResNet卷積神經網路在經過複數個階層的權重運算後,因為每一殘差模塊均對各標準化足內側位X光影像資料的影像特徵值進行不同的運算與判斷,致使誤差累積,因此Inception-ResNet卷積神經網路的訓練將會把特定階層的節點運算值拉回到該階層的輸入端再次進行運算,以防止卷積神經網路學習分類器700對前述之影像特徵值進行多層的權重運算訓練後發生梯度消失的退化現象,以及避免誤差累積導致資訊遺失,並可有效提升卷積神經網路學習分類器700的訓練效率。
After completing the aforementioned primary training, the image feature values of each reference karyotype image will be performed 10 times (10×), 20 times (20×) and 10 times (10×) at different depths, different levels and different appearances Residual module training to train the image feature values of each reference chromosome karyotype image and achieve convergence. In detail, since the Inception-ResNet convolutional neural network undergoes the weight calculation of multiple layers, because each residual module performs different calculations and judgments on the image feature values of each standardized medial foot X-ray image data , Resulting in accumulation of errors, so the training of the Inception-ResNet convolutional neural network will pull the operation value of the node of a specific level back to the input of the level to perform the operation again to prevent the convolutional neural network from learning the
在完成深層且重複之殘差模塊訓練後,將依序以一層卷積層、一平均池化層、一取代全局平均池化層(Global Average Pooling 2D,GloAvePool2D)以及一線性整流單元訓練層(Rectified Linear Unit,ReLU)對收斂之影像特徵值進行最終訓練與處理,藉以判斷受試者之染色體異常情況。其中,平均池化層可先對完成殘差模塊訓練之影像特徵值進行計算,以求各影像特徵值的平均值,取代全局平均池化層則可對卷積神經網路學習分類器700的整
體網路架構進行正則化(Regularization)處理,防止卷積神經網路學習分類器700在追求低誤差之訓練模式下發生過擬合現象,而導致判斷結果的誤差值過高,最後,線性整流單元訓練層則進一步對完成訓練後之影像特徵值進行激活,並輸出一目標影像特徵值權重數據701,以進行後續的比對與分析。前述之線性整流單元訓練層可避免足畸形檢測模型輸出的目標影像特徵值權重數據701趨近於零或趨近於無限大,以利於後續比對步驟的進行,進而提升本發明之染色體異常檢測模型的判斷準確率。
After completing the deep and repeated training of the residual module, a convolutional layer, an average pooling layer, a global average pooling layer (GloAvePool2D) and a linear rectification unit training layer (Rectified Linear Unit (ReLU) performs final training and processing on the converged image feature values to judge the chromosomal abnormality of the subject. Among them, the average pooling layer can first calculate the image feature values of the residual module training to obtain the average value of each image feature value. Instead of the global average pooling layer, the
接著,前述受試者之染色體異常狀況判斷結果將進一步整合於參照資料庫中,以對本發明之染色體異常檢測模型進行優化,進而使本發明之染色體異常檢測模型的訓練效果及判斷準確度進一步提升。 Next, the results of the aforementioned subjects’ chromosomal abnormality judgment will be further integrated into the reference database to optimize the chromosomal abnormality detection model of the present invention, thereby further improving the training effect and judgment accuracy of the chromosomal abnormality detection model of the present invention. .
請再參照第6圖,其繪示本發明之染色體異常檢測模型之卷積神經網路學習分類器800的架構示意圖。在第6圖的試驗例中,卷積神經網路學習分類器800為Inception V3卷積神經網路,其包含複數個卷積層(Convolution)、複數個平均池化層(AvgPool)、複數個最大池化層(MaxPool)以及複數個級聯層(Concat),並利用丟棄層(Dropout)、全連結層(Fully connected)和歸一化層(Softmax)解決機器學習上過擬合的問題,以對影像特徵值進行訓練與分析。
Please refer to FIG. 6 again, which shows a schematic diagram of the architecture of the convolutional neural
單層的神經網路會因為參數過多,而導致機器學習上過擬合的問題。Inception V3卷積神經網路為基於 大濾波器尺寸分解卷積網路的因式分解,以平行式參數降階,既可解決過擬合的問題,又可透過增加網路深度,來增加參數的數目進而更近似原本欲近似的數學模型。 A single-layer neural network will cause over-fitting in machine learning due to too many parameters. Inception V3 convolutional neural network is based on Large filter size decomposes the factorization of the convolutional network and reduces the order with parallel parameters, which can not only solve the problem of overfitting, but also increase the number of parameters by increasing the depth of the network to more closely approximate the original mathematical model.
在本發明之染色體異常檢測模型對影像特徵值進行訓練的過程中,各參照染色體核型影像的影像特徵值分別進行一層平均池化層和一層卷積層;五層卷積層;三層卷積層;一層卷積層運算後,將各組運算的特徵矩陣數值以級聯層疊合。之後再重複2次分別進行一層平均池化層和一層卷積層;五層卷積層;三層卷積層;一層卷積層運算後,並將各組運算的特徵矩陣數值以級聯層疊合。再分別進行一層最大池化層;三層卷積層;一層卷積層運算後,將各組運算的特徵矩陣數值以級聯層疊合。之後再重複4次分別進行一層平均池化層和一層卷積層;五層卷積層;三層卷積層和一層卷積層運算後,並將各組運算的特徵矩陣數值以級聯層疊合。再進行一層平均池化層、二層卷積層、一層全連結層和一層規一化層運算,運算的特徵矩陣數值再重複2次分別進行一層平均池化層和一層卷積層;三層卷積層和一層級聯層;二層卷積層和一層級聯層;一層卷積層運算後,將各組運算的特徵矩陣數值以級聯層疊合。最後再進行一層平均池化層、一層丟棄層、一層全連結層和一層規一化層運算後,輸出一目標影像特徵值權重數據801,以得到訓練好的染色體異常檢測模型。
In the process of training the image feature values of the chromosome abnormality detection model of the present invention, the image feature values of each reference chromosome karyotype image are respectively subjected to one layer of average pooling layer and one layer of convolution layer; five layers of convolution layer; three layers of convolution layer; After the operation of a convolutional layer, the feature matrix values of each group of operations are stacked in cascade. Then repeat 2 times to perform one layer of average pooling layer and one layer of convolutional layer; five layers of convolutional layer; three layers of convolutional layer; one layer of convolutional layer after operation, and cascade the feature matrix values of each group of operations. Then perform a maximum pooling layer; three convolutional layers; one layer of convolutional layers, and then cascade the feature matrix values of each group of operations. Then repeat 4 times to perform an average pooling layer and a convolutional layer; five convolutional layers; three convolutional layers and one convolutional layer, and cascade the feature matrix values of each group of operations. Then perform an average pooling layer, two convolutional layers, a fully connected layer and a regularization layer operation. The calculated feature matrix values are repeated 2 times to perform an average pooling layer and a convolutional layer; three convolutional layers And a layer of cascading layers; two layers of convolutional layers and a layer of cascading layers; after the operation of a layer of convolutional layers, the feature matrix values of each group of operations are stacked in cascade. Finally, after performing an average pooling layer, a discarding layer, a fully connected layer, and a regularization layer, a target image feature
接著,前述受試者之染色體異常狀況判斷結果將進一步整合於參照資料庫中,以對本發明之染色體異常檢 測模型進行優化,進而使本發明之染色體異常檢測模型的訓練效果及判斷準確度進一步提升。 Next, the judgment results of the aforementioned subjects' chromosomal abnormalities will be further integrated into the reference database to detect the chromosomal abnormalities of the present invention The test model is optimized to further improve the training effect and judgment accuracy of the chromosome abnormality detection model of the present invention.
請再參照第7圖,為本發明之染色體異常檢測模型用於判斷受試者之染色體異常的混淆矩陣。於第7圖的試驗例中,建立染色體異常檢測模型的卷積神經網路學習分類器為第6圖繪示之卷積神經網路學習分類器800來判斷受試者的染色體是否異常,並將結果分為正常和異常。其中橫軸為預測標籤,縱軸為實際標籤,可將混淆矩陣區分為真陽性(True Positive,TP)、真陰性(True Negative,TN)、偽陽性(False Positive,FP)和偽陰性(False Negative,FN)四部分,並依據TP、TN、FP和FN的數據計算本發明之染色體異常檢測模型的正確率、靈敏度、特異度、陽性預測值和陰性預測值。其中正確率的計算方式為(TP+TN)/(TP+FP+TN+FN),靈敏度的計算方式為TP/(TP+FN),特異度的計算方式為TN/(TN+FP),陽性預測值的計算方式為TP/(TP+FP),陰性預測值的計算方式為TN/(FN+TN)。
Please refer to FIG. 7 again for the confusion matrix of the chromosome abnormality detection model of the present invention for judging the chromosome abnormality of the subject. In the test example in Figure 7, the convolutional neural network learning classifier that establishes the chromosome abnormality detection model is the convolutional neural
如第7圖的結果顯示,TP區塊的受試者數量為206人,TN區塊的受試者數量為201人,FP區塊的受試者數量為3人,FN區塊的受試者數量為0人。經計算後,本發明之染色體異常檢測模型用於判斷受試者之染色體異常之預測結果如表一所示。 As shown in the results in Figure 7, the number of subjects in the TP block is 206, the number of subjects in the TN block is 201, the number of subjects in the FP block is 3, and the subjects in the FN block The number of people is 0 people. After calculation, the chromosomal abnormality detection model of the present invention is used to judge the prediction result of the chromosomal abnormality of the subject as shown in Table 1.
由上述結果顯見本發明之染色體異常檢測模型可用以精準的判斷受試者是否具有染色體異常狀況,且染色體異常狀況可包含染色體數目異常、染色體結構異常和染色體拼湊型異常。 It is obvious from the above results that the chromosomal abnormality detection model of the present invention can be used to accurately determine whether a subject has a chromosomal abnormality condition, and the chromosomal abnormality condition may include abnormality in chromosome number, abnormality in chromosome structure, and abnormality in chromosome patchwork.
藉此,本發明之染色體異常檢測系統可有效提升染色體異常檢測的準確度與敏感度,並可縮短受試者是否具有染色體異常的評估時間,從原始影像輸入到判讀結果,平均只需0.1-1秒即可完成,使其運用更為廣泛。 In this way, the chromosomal abnormality detection system of the present invention can effectively improve the accuracy and sensitivity of chromosomal abnormality detection, and can shorten the evaluation time of whether the subject has chromosomal abnormality. From the original image input to the interpretation result, the average is only 0.1- It can be completed in 1 second, making it more widely used.
然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by way of implementation, it is not intended to limit the present invention. Any person who is familiar with this art can make various modifications and retouching without departing from the spirit and scope of the present invention, so the protection of the present invention The scope shall be determined by the scope of the attached patent application.
300:染色體異常檢測系統 300: Chromosome abnormality detection system
400:影像擷取單元 400: image capture unit
500:非暫態機器可讀媒體 500: non-transitory machine-readable media
510:參照資料庫取得模組 510: Refer to the database to obtain the module
520:參照影像轉換模組 520: Refer to image conversion module
530:參照初步分類模組 530: Refer to the preliminary classification module
540:參照特徵選取模組 540: Reference feature selection module
550:訓練模組 550: Training module
560:目標影像轉換模組 560: Target image conversion module
570:目標初步分類模組 570: Target Initial Classification Module
580:目標特徵選取模組 580: Target feature selection module
590:比對模組 590: Comparison module
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/515,520 US20200111212A1 (en) | 2018-10-05 | 2019-07-18 | Chromosome Abnormality Detecting Model, Detecting System Thereof, And Method For Detecting Chromosome Abnormality |
EP19189642.2A EP3633682A1 (en) | 2018-10-05 | 2019-08-01 | Chromosome abnormality detecting model, detecting system thereof, and method for detecting chromosome abnormality |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107135294 | 2018-10-05 | ||
TW107135294 | 2018-10-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI687937B true TWI687937B (en) | 2020-03-11 |
TW202015067A TW202015067A (en) | 2020-04-16 |
Family
ID=67911746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108105869A TWI687937B (en) | 2018-10-05 | 2019-02-21 | Establishing method of chromosome abnormality detection model, chromosome abnormality detection system, and chromosome abnormality detection method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110265087A (en) |
TW (1) | TWI687937B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112037185A (en) * | 2020-08-21 | 2020-12-04 | 湖南自兴智慧医疗科技有限公司 | Chromosome split phase image screening method and device and terminal equipment |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220343178A1 (en) * | 2019-09-25 | 2022-10-27 | Presagen Pty Ltd | Method and system for performing non-invasive genetic testing using an artificial intelligence (ai) model |
CN111105032B (en) * | 2019-11-28 | 2022-08-30 | 华南师范大学 | Chromosome structure abnormality detection method, system and storage medium based on GAN |
US12008755B2 (en) * | 2020-03-17 | 2024-06-11 | National Guard Health Affairs | Chromosomal enhancement and automatic detection of chromosomal abnormalities using chromosomal ideograms |
CN111652167A (en) * | 2020-06-09 | 2020-09-11 | 四川大学 | A method and system for intelligent evaluation of chromosome karyotype images |
CN112036237A (en) * | 2020-07-22 | 2020-12-04 | 江苏医像信息技术有限公司 | Chromosome chimera identification and judgment method and system and chromosome karyotype analysis method |
CN112037174B (en) * | 2020-08-05 | 2024-03-01 | 湖南自兴智慧医疗科技有限公司 | Chromosome abnormality detection method, chromosome abnormality detection device, chromosome abnormality detection apparatus, and computer-readable storage medium |
CN112487941B (en) * | 2020-11-26 | 2023-03-14 | 华南师范大学 | Method, system and storage medium for identifying chromosome cluster and chromosome instance |
CN112711983B (en) * | 2020-12-08 | 2024-06-21 | 湖南自兴智慧医疗科技有限公司 | Nuclear analysis system, method, electronic device, and readable storage medium |
CN114841294B (en) * | 2022-07-04 | 2022-10-28 | 杭州德适生物科技有限公司 | Classifier model training method and device for detecting chromosome structure abnormality |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103384725A (en) * | 2010-12-23 | 2013-11-06 | 塞昆纳姆股份有限公司 | Fetal genetic variation detection |
CN105814574A (en) * | 2013-10-04 | 2016-07-27 | 塞昆纳姆股份有限公司 | Methods and processes for non-invasive assessment of genetic variations |
TW201638815A (en) * | 2015-01-18 | 2016-11-01 | 美國加利福尼亞大學董事會 | Method and system for determining cancer status |
US20180032665A1 (en) * | 2011-06-24 | 2018-02-01 | Sequenom, Inc. | Methods and processes for non invasive assessment of a genetic variation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100068701A1 (en) * | 2008-09-12 | 2010-03-18 | Yamada N Alice | Chromosome labeling method |
WO2013059967A1 (en) * | 2011-10-28 | 2013-05-02 | 深圳华大基因科技有限公司 | Method for detecting micro-deletion and micro-repetition of chromosome |
WO2013192355A1 (en) * | 2012-06-19 | 2013-12-27 | Health Discovery Corporation | Computer-assisted karyotyping |
CN104017858B (en) * | 2013-02-28 | 2019-04-09 | 翁炳焕 | A kind of chromosomal abnormal karyotype intercompartmental quality assessment map and preparation method |
US11479812B2 (en) * | 2015-05-11 | 2022-10-25 | Natera, Inc. | Methods and compositions for determining ploidy |
CN107885975A (en) * | 2016-09-30 | 2018-04-06 | 有劲生物科技股份有限公司 | Non-invasive fetal sexual characteristic abnormality detection system |
-
2019
- 2019-02-21 TW TW108105869A patent/TWI687937B/en active
- 2019-02-21 CN CN201910129658.5A patent/CN110265087A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103384725A (en) * | 2010-12-23 | 2013-11-06 | 塞昆纳姆股份有限公司 | Fetal genetic variation detection |
US20180032665A1 (en) * | 2011-06-24 | 2018-02-01 | Sequenom, Inc. | Methods and processes for non invasive assessment of a genetic variation |
CN105814574A (en) * | 2013-10-04 | 2016-07-27 | 塞昆纳姆股份有限公司 | Methods and processes for non-invasive assessment of genetic variations |
TW201638815A (en) * | 2015-01-18 | 2016-11-01 | 美國加利福尼亞大學董事會 | Method and system for determining cancer status |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112037185A (en) * | 2020-08-21 | 2020-12-04 | 湖南自兴智慧医疗科技有限公司 | Chromosome split phase image screening method and device and terminal equipment |
Also Published As
Publication number | Publication date |
---|---|
CN110265087A (en) | 2019-09-20 |
TW202015067A (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI687937B (en) | Establishing method of chromosome abnormality detection model, chromosome abnormality detection system, and chromosome abnormality detection method | |
WO2020168511A1 (en) | Chromosome abnormality detection model, chromosome abnormality detection system, and chromosome abnormality detection method | |
US20200111212A1 (en) | Chromosome Abnormality Detecting Model, Detecting System Thereof, And Method For Detecting Chromosome Abnormality | |
US11436493B2 (en) | Chromosome recognition method based on deep learning | |
WO2020024127A1 (en) | Bone age assessment and height prediction model, system thereof and prediction method therefor | |
CN109117826B (en) | A vehicle recognition method based on multi-feature fusion | |
CN106248559B (en) | A kind of five sorting technique of leucocyte based on deep learning | |
CN111179273A (en) | A method and system for automatic segmentation of leukocyte nucleus and cytoplasm based on deep learning | |
TWI684997B (en) | Establishing method of bone age assessment and height prediction model, bone age assessment and height prediction system, and bone age assessment and height prediction method | |
CN111127431A (en) | Dry eye disease grading evaluation system based on regional self-adaptive multitask neural network | |
CN110728312B (en) | A dry eye classification system based on regional adaptive attention network | |
CN113782184B (en) | A stroke-assisted assessment system based on pre-learning of facial key points and features | |
CN108711148A (en) | A kind of wheel tyre defect intelligent detecting method based on deep learning | |
CN111539308A (en) | A device for comprehensive evaluation of embryo quality based on deep learning | |
CN113658174A (en) | Microkaryotic image detection method based on deep learning and image processing algorithm | |
CN113378831A (en) | Mouse embryo organ identification and scoring method and system | |
KR20200136004A (en) | Method for detecting cells with at least one malformation in a cell sample | |
CN110969616A (en) | Method and device for evaluating oocyte quality | |
CN111414930B (en) | Deep learning model training method and device, electronic equipment and storage medium | |
CN117877744A (en) | Construction method and system of auxiliary reproductive children tumor onset risk prediction model | |
CN117352164A (en) | Multimodal tumor detection and diagnosis platform based on artificial intelligence and its processing method | |
CN114821176B (en) | Viral encephalitis classification system for MR (magnetic resonance) images of children brain | |
CN114861771A (en) | Defect classification method of industrial CT image based on feature extraction and deep learning | |
CN116977648A (en) | Identification method and system for vegetable soybean phenotype information based on target detection | |
US20220058371A1 (en) | Classification of cell nuclei |