TWI683513B - Power converter and control method - Google Patents
Power converter and control method Download PDFInfo
- Publication number
- TWI683513B TWI683513B TW107140964A TW107140964A TWI683513B TW I683513 B TWI683513 B TW I683513B TW 107140964 A TW107140964 A TW 107140964A TW 107140964 A TW107140964 A TW 107140964A TW I683513 B TWI683513 B TW I683513B
- Authority
- TW
- Taiwan
- Prior art keywords
- converter
- resonant
- resonance
- frequency
- switching
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係關於一具有諧振式轉換器的電源轉換器及其控制方法,尤指一種可以偵測到諧振式轉換器的實際諧振頻率並加快其響應速度的相關技術。 The invention relates to a power converter with a resonant converter and its control method, in particular to a related technology that can detect the actual resonant frequency of the resonant converter and speed up its response speed.
已知的一架構為具有諧振槽轉換器的電源轉換器是如圖1所示,其包含一交流對直流轉換器10和一直流對直流轉換器,而直流對直流轉換器是由具有諧振槽轉換器所構成,該交流對直流轉換器10輸入為交流電源轉換為一高壓的直流電源,在經由直流對直流轉換器的具有諧振槽轉換器將高壓的直流電源轉換為低壓的直流電源。
A known power converter with a resonant tank converter is shown in FIG. 1, which includes an AC-to-
該直流對直流轉換器是由具有諧振槽轉換器23構成,如圖1所示是其中一種具有諧振槽轉換器23架構,主要具有一切換電路11、一一次側諧振槽12、一變壓器13、一二次側諧振槽14、一整流電路15。切換電路11輸入端是一高壓電源並連接著一次側諧振槽12,一次側諧振槽12連接著變壓器13,而變壓器13連接著二次側諧振槽14,而此兩諧振槽可得到兩個諧振頻率;而此諧振頻率又分兩諧振頻率,第一諧振頻率fr
為一較高頻之諧振頻率;第二諧振頻率fm為較低頻之諧振頻率。
The DC-DC converter is composed of a
該具有諧振槽轉換器利用頻率調變的方式達到穩壓;當負載變重時,頻率由高頻往低頻移動以調節電壓達到穩壓的機制。 The converter with a resonant tank uses frequency modulation to achieve voltage regulation; when the load becomes heavier, the frequency moves from high frequency to low frequency to adjust the voltage to achieve voltage regulation.
該具有諧振槽轉換器之切換頻率操作於第一諧振頻率上,減少轉換器操作於各區域造成較大的切換損失與導通損失,當切換頻率接近第一諧振頻率時,具有零電壓切換的特性,且功率開關關閉時可降低額外的環流損失於諧振槽中,也減少此時的切換損失,以提升轉換器的效率。 The switching frequency of the converter with a resonant tank operates at the first resonant frequency, which reduces the large switching loss and conduction loss caused by the converter operating in each area. When the switching frequency is close to the first resonant frequency, it has the characteristics of zero voltage switching And, when the power switch is closed, additional circulating current loss can be reduced in the resonant tank, and the switching loss at this time can also be reduced to improve the efficiency of the converter.
針對具有諧振槽轉換器操作於諧振頻率上的技術以一先前技術(參照專利文獻1)進行說明,係對於第一諧振頻率偵測方法需先送一切換頻率可使諧振電流呈現正弦波,此切換頻率為第一諧振頻率,得知第一諧振頻率後將此設為參考頻率,以此調整交流對直流轉換器輸出電壓,使轉換器的切換頻率維持在諧振頻率上且達到穩壓,提升整體電源轉換器的效率。 The technology for operating the resonant tank converter at the resonant frequency is described with a prior art (refer to Patent Document 1). For the first resonant frequency detection method, a switching frequency needs to be sent first to make the resonant current exhibit a sine wave. The switching frequency is the first resonant frequency. After learning the first resonant frequency, set this as the reference frequency to adjust the output voltage of the AC-to-DC converter, so that the switching frequency of the converter is maintained at the resonant frequency and the voltage regulation is reached. Overall power converter efficiency.
針對具有諧振槽轉換器操作於第一諧振頻率上的技術以另一先前技術(參照專利文獻2)進行說明,係對於第一諧振頻率偵測方法以線上偵測電流的變化以調整切換頻率,使切換頻率操作於第一諧振頻率上,提升轉換器的效率。 The technology with the resonant tank converter operating at the first resonant frequency is described with another prior art (refer to Patent Document 2). The first resonant frequency detection method detects the change of current on the line to adjust the switching frequency. The switching frequency is operated at the first resonance frequency, and the efficiency of the converter is improved.
Zih-Jie Su and Yen-Shin Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” IEEE Conference Publications, Publication Year: 2014, pp.5422-5428. Zih-Jie Su and Yen-Shin Lai, “On-line DC-link voltage control of LLC resonant converter for server power applications,” IEEE Conference Publications, Publication Year: 2014, pp.5422-5428.
TW I617126 TW I617126
本發明主要目的在提供一種包含具有諧振槽的電源轉換器及其控制方法,其根據諧振槽轉換器的工作狀態以偵測實際的第一諧振頻率,再使轉換器的切換頻率趨近或等於實際的第一諧振頻率,藉此達到效率的提升。 The main object of the present invention is to provide a power converter including a resonant tank and a control method thereof, which detects the actual first resonant frequency according to the working state of the resonant tank converter, and then makes the switching frequency of the converter approach or equal to The actual first resonance frequency, thereby achieving an increase in efficiency.
為達成本發明之技術係上述需具有諧振槽的電源轉換器包含:一交流對直流轉換器,具有一交流電源輸入端、一直流電源輸出端和一控制端;一直流對直流轉換器,具有一直流電源輸入端、一直流電源輸出端、一直流對直流轉換器控制器、一諧振電流零交越點偵測、一諧振電流峰值檢測。該諧振電流零交越點偵測與峰值檢測分別與具有諧振槽轉換器、直流對直流轉換器控制器做連接,以分別取得一零交越點偵測和峰值檢測的方波電壓訊號,偵測兩方波電壓的上升緣以計算此段時間,得知此段時間為實際第一諧振週期的四分之一,再由直流對直流轉換器控制器換算成實際的第一諧振頻率與當下的切換頻率做運算,並將此補償量傳送至交流對 直流轉換器的控制端,以改變交流對直流轉換器的輸出電壓,進而控制具有諧振槽轉換器的切換頻率。 In order to achieve the cost of the invention, the above-mentioned power converter that requires a resonant tank includes: an AC-to-DC converter with an AC power input, a DC power output and a control terminal; a DC-to-DC converter with A DC power input terminal, a DC power output terminal, a DC-DC converter controller, a resonance current zero-crossing point detection, and a resonance current peak detection. The resonant current zero-crossing point detection and peak detection are respectively connected with a controller with a resonant tank converter and a DC-DC converter to obtain a square wave voltage signal of a zero-crossing point detection and peak detection, respectively. Measure the rising edge of the two square wave voltages to calculate this period of time, knowing that this period of time is one quarter of the actual first resonance period, and then converted by the DC-DC converter controller into the actual first resonance frequency and the current To calculate the switching frequency of The control end of the DC converter to change the output voltage of the AC to DC converter, thereby controlling the switching frequency of the converter with a resonant tank.
前述偵測的方波電壓訊號是由具有諧振槽轉換器的諧振電流,經過零交越點偵測、峰值檢測所產生兩方波電壓訊號,並擷取此兩方波電壓訊號之上升緣之間的時間,以線上計算的方式得知實際的第一諧振週期,得知實際的第一諧振週期與當下的切換週期做運算並經過一可調電壓控制器單元產生一調整交流對直流轉換器輸出電壓的參考值,而經由調整交流對直流轉換器的輸出電壓控制轉換器的切換頻率趨近或等於第一諧振頻率,以提升效率。 The aforementioned square wave voltage signal is generated by the resonant current of the converter with a resonant tank through zero-crossing point detection and peak detection to generate two square wave voltage signals, and extract the rising edge of the two square wave voltage signals The time between, the actual first resonance period is obtained by online calculation, the actual first resonance period and the current switching period are calculated, and an adjustable AC to DC converter is generated by an adjustable voltage controller unit The reference value of the output voltage, and the switching frequency of the converter is controlled to be close to or equal to the first resonant frequency by adjusting the output voltage of the AC-to-DC converter to improve efficiency.
本發明之另一目的在於提供一種加快具有諧振頻率追蹤功能的響應速度,當直流對直流控制器將轉換器的切換頻率趨近或等於第一諧振頻率,此時已不是傳統式以頻率調變達到穩壓,而是利用調整交流對直流轉換器的輸出電壓以達到直流對直流轉換器輸出端穩定的電壓。 Another object of the present invention is to provide a faster response speed with a resonant frequency tracking function. When the DC-to-DC controller approaches the converter switching frequency close to or equal to the first resonant frequency, frequency modulation is no longer the traditional method. To achieve voltage stabilization, the output voltage of the AC-to-DC converter is adjusted to achieve a stable voltage at the output end of the DC-to-DC converter.
前述發明主要根據諧振式轉換器輸出端電壓回授至控制器所產的誤差值做模式控制,在穩態時誤差值較低,模式控制模組使轉換器切換頻率趨近或等於第一諧振頻率為線上諧振頻率追蹤模組;在負載變動時誤差值較大,模式判斷模組會判斷為需要利用頻率調變模組達到快速的穩壓,進以提升輸出端的響應速度。 The aforementioned invention mainly performs mode control based on the error value output from the output voltage of the resonant converter to the controller. In the steady state, the error value is low. The mode control module makes the converter switching frequency approach or equal to the first resonance The frequency is the online resonant frequency tracking module; when the load changes, the error value is large, and the mode judgment module will judge that the frequency modulation module needs to be used to achieve fast voltage regulation, so as to improve the response speed of the output end.
為了能更進一步瞭解本發明為達成預定目的所採取之技術及功效,請參閱以下有關本發明之詳細說明與附圖,以佐證本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology and effects of the present invention to achieve the intended purpose, please refer to the following detailed description and drawings of the present invention to prove the purpose, features and characteristics of the present invention, which can be obtained in depth and specific For the sake of understanding, the attached drawings are provided for reference and explanation only, and are not intended to limit the present invention.
Vac‧‧‧交流輸入電壓 V ac ‧‧‧ AC input voltage
Vbus‧‧‧交流對直流的輸出電壓 Vbus‧‧‧AC to DC output voltage
S1‧‧‧第一功率開關 S1‧‧‧ First power switch
S2‧‧‧第二功率開關 S2‧‧‧second power switch
S3‧‧‧第三功率開關 S3‧‧‧third power switch
S4‧‧‧第四功率開關 S4‧‧‧The fourth power switch
S5‧‧‧第五功率開關 S5‧‧‧ fifth power switch
S6‧‧‧第六功率開關 S6‧‧‧ sixth power switch
S7‧‧‧第七功率開關 S7‧‧‧ seventh power switch
S8‧‧‧第八功率開關 S8‧‧‧Eighth power switch
Cr1‧‧‧一次側諧振電容 Cr1‧‧‧primary resonance capacitor
Lr1‧‧‧一次側諧振電感 Lr1‧‧‧primary resonance inductor
Cr2‧‧‧二次側諧振電容 Cr2‧‧‧Secondary side resonance capacitor
Lr2‧‧‧二次側諧振電感 Lr2‧‧‧secondary resonant inductor
Cr11‧‧‧一次側第一諧振電容 Cr11‧‧‧ Primary resonance capacitor
Cr12‧‧‧一次側第二諧振電容 Cr12‧‧‧primary second resonant capacitor
Cr21‧‧‧二次側第一諧振電容 Cr21‧‧‧Second Side Resonance Capacitor
Cr22‧‧‧二次側第二諧振電容 Cr22‧‧‧Second resonant capacitor on the secondary side
T‧‧‧變壓器 T‧‧‧Transformer
CT‧‧‧電流檢測器 CT‧‧‧current detector
Vout‧‧‧諧振式轉換器輸出電壓 Vout‧‧‧Resonant converter output voltage
NP‧‧‧變壓器一次側繞組 NP‧‧‧Transformer primary winding
Ns1‧‧‧變壓器二次側第一繞組 Ns1‧‧‧Transformer secondary side first winding
Co‧‧‧輸出電容 Co‧‧‧ Output capacitance
Vout_FB‧‧‧輸出電壓回授 Vout_FB‧‧‧Output voltage feedback
Vout_ref‧‧‧輸出電壓回授參考值 Vout_ref‧‧‧Output voltage feedback reference value
Vgs1~Vgs8 S1~S8‧‧‧閘極訊號 Vgs1~Vgs8 S1~S8 ‧‧‧Gate signal
t1‧‧‧零交越點偵測方波電壓訊號上升緣時間 t1‧‧‧Zero crossing point detection square wave voltage signal rising edge time
t2‧‧‧峰值檢測方波電壓訊號上升緣時間 t2‧‧‧Peak detection square wave voltage signal rising edge time
Tr‧‧‧諧振週期 Tr‧‧‧Resonance period
Ts‧‧‧切換週期 Ts‧‧‧ switching cycle
10‧‧‧交流對直流轉換器 10‧‧‧AC to DC converter
11‧‧‧切換電路 11‧‧‧Switch circuit
12‧‧‧一次側諧振槽 12‧‧‧primary resonance tank
13‧‧‧變壓器 13‧‧‧Transformer
14‧‧‧二次側諧振槽 14‧‧‧Secondary side resonance tank
15‧‧‧整流電路 15‧‧‧Rectifier circuit
16‧‧‧零交越點偵測 16‧‧‧Zero crossing detection
17‧‧‧線上諧振頻率計算單元 17‧‧‧ Online resonance frequency calculation unit
18‧‧‧峰值檢測 18‧‧‧Peak detection
19‧‧‧閘極訊號產生器 19‧‧‧Gate signal generator
20‧‧‧交流對直流轉換器控制器 20‧‧‧AC to DC converter controller
21‧‧‧可調電壓控制器單元 21‧‧‧Adjustable voltage controller unit
22‧‧‧直流對直流轉換器控制器 22‧‧‧DC to DC converter controller
23‧‧‧具有諧振槽轉換器 23‧‧‧With resonant tank converter
24‧‧‧全橋切換電路 24‧‧‧Full bridge switching circuit
25‧‧‧第一種一次側諧振槽 25‧‧‧The first primary resonance tank
26‧‧‧第一種二次側諧振槽 26‧‧‧The first secondary side resonance tank
27‧‧‧全橋整流電路 27‧‧‧Full bridge rectifier circuit
28‧‧‧第一種具有諧振槽轉換器 28‧‧‧The first converter with resonant tank
29‧‧‧半橋切換電路 29‧‧‧ Half-bridge switching circuit
30‧‧‧第二種一次側諧振槽 30‧‧‧Second primary resonance tank
31‧‧‧第二種二次側諧振槽 31‧‧‧Second secondary resonance tank
32‧‧‧半橋整流電路 32‧‧‧Half-bridge rectifier circuit
33‧‧‧第二種具有諧振槽轉換器 33‧‧‧The second converter with resonant tank
34‧‧‧控制器 34‧‧‧Controller
35‧‧‧線上諧振頻率追蹤模組 35‧‧‧Online resonance frequency tracking module
36‧‧‧頻率調變模組 36‧‧‧ Frequency Modulation Module
37‧‧‧模式控制模組 37‧‧‧Mode control module
第1圖係為本發明電源轉換器一電路圖;第2圖係為本發明電源轉換器又一較佳實施例的電路圖;第3圖係為本發明電源轉換器又一較佳實施例的電路圖;第4圖係為本發明可調電壓控制器單元方塊圖;第5圖係為另一發明的操作方塊圖; Figure 1 is a circuit diagram of the power converter of the present invention; Figure 2 is a circuit diagram of another preferred embodiment of the power converter of the present invention; Figure 3 is a circuit diagram of another preferred embodiment of the power converter of the present invention Figure 4 is a block diagram of the adjustable voltage controller unit of the present invention; Figure 5 is an operation block diagram of another invention;
茲有關本發明之技術內容及詳細說明,配合圖式說明如下: The technical content and detailed description of the present invention are explained as follows in conjunction with the drawings:
請參閱第2圖係為本發明電源轉換器第一較佳實施例之電路圖。包括一交流對直流轉換器10、一直流對直流轉換器具有第一種具有諧振槽轉換器28;其中,該交流對直流轉換器具有一交流輸入電壓Vac、一直流輸出電源Vbus與一交流對直流轉換器控制器20。其架構主要由交流輸入電源端輸入市電交流電壓轉換為高壓的直流電壓,再經由直流電源輸出
端輸出至Vbus上。
Please refer to FIG. 2 for a circuit diagram of the first preferred embodiment of the power converter of the present invention. It includes an AC-to-
在本實施例中,該直流對直流轉換器為第一種具有諧振槽轉換器28,其具有全橋切換電路24、第一種一次側諧振槽25,一變壓器13,第一種二次側諧振槽26,一直流對直流轉換器控制器22、一零交越點偵測16、一峰值檢測18、一線上諧振頻率計算單元17和一閘極訊號產生器19。該全橋切換電路中S1~S4的功率開關的開關訊號由閘極訊號產生器19所產生並控制,而全橋切換電路24連接著第一種一次側諧振槽25,其此一次側諧振槽之中包含一一次側諧振電感Lr1,一一次側諧振電容Cr1與一激磁電感Lm,激磁電感而是使用變壓器13的激磁電感Lm;而變壓器13連接著第一種二次側諧振槽26,此二次側諧振槽之中包含一二次側諧振電感Lr2、一二次側諧振電容Cr2,其第一種二次側諧振槽26連接著此轉換器的全橋整流電路27。
In this embodiment, the DC-to-DC converter is the first converter with a
在本實施例中,利用電流檢測器CT擷取諧振槽中的諧振電流並連接零交越點偵測16與峰值檢測18;而此兩偵測將會產生兩方波電壓訊號,此時零交越點偵測16所產生的方波電壓訊號上升緣為t1,峰值檢測18所產生的方波電壓訊號上升緣為t2,再經由線上諧振頻率計算單元17擷取t1、t2此段時間並做計算,而此段時間為實際的第一諧振週期的四分之一。
In this embodiment, the current detector CT is used to capture the resonant current in the resonant tank and connect the zero
第4圖控制方塊圖表示在經由線上諧振頻率計算單元17所得知實際諧振週期Tr後,並與當時的切換週期做計算,所得到的誤差值進入一控制器34,出來的補償量將與原本交流對直流轉換器輸出電壓參考值運算,並傳至交流對直流轉換器控制器20,以改變交流對直流轉換器的輸出電壓,利用調整輸出電壓使諧振式轉換器的切換頻率做調變趨近或等於第一諧振頻率,以達到效率提升的效果。
FIG. 4 shows a control block diagram after the actual resonance period T r calculating unit 17 via the line that the resonant frequency, and the switching cycle time to do the calculation, the resulting value of the error enters a
請參閱第3圖係為本發明電源轉換器第二較佳實施例之電路圖。在本實施例中,該直流對直流轉換器由第二種具有諧振槽轉換器33所組成,其具有一半橋切換電路29、第二種一次側諧振槽30,一變壓器13,第二種二次側諧振槽31,一半橋整流電路32,一直流對直流轉換器控制器22、一零交越點偵測16、一峰值檢測18、一線上諧振頻率計算單元17和一閘極訊號產生器19。該半橋切換電路29中S1、S2的功率開關的開關訊號由閘極訊號產生器19所產生並控制,而半橋切換電路29連接著第二種一次側諧振槽30,其第二種一次側諧振槽之中包含一一次側諧振電感Lr1,一一次側第一諧振電容Cr11、一一次側第二諧振電容Cr12與一激磁電感Lm,激磁電感而是使用變壓器13的激磁電感Lm;而變壓器13連接著第二種二次側諧振槽31,第二種二次側諧振槽之中包含一二次側諧振電感Lr2、一二次側第一諧振電容Cr21、一二次側第二諧振電容
Cr22,其第二種二次側諧振槽31連接著半橋整流電路32。其於動作狀態接與實施例一相同。
Please refer to FIG. 3 for a circuit diagram of a second preferred embodiment of the power converter of the present invention. In this embodiment, the DC-to-DC converter is composed of a
前述的發明技術諧振頻率追蹤主要用於具有諧振槽的轉換器操作於穩態時,並控制轉換器的切換頻率,使其操作趨近或等於諧振頻率,以提高效率;當輸出負載變動時,因轉換器的切換頻率已固定無法以頻率調變達到穩壓的動作,導致需以調整交流對直流轉換器的輸出電壓才可達到穩壓,而此響應速度相對是較慢的。本專利提出另一發明以解決上述之問題,主要目的在於加速在負載快速變動的暫態響應。 The aforementioned invention technology resonant frequency tracking is mainly used when the converter with a resonant tank operates in a steady state, and controls the switching frequency of the converter to make its operation approach or equal to the resonant frequency to improve efficiency; when the output load fluctuates, Because the switching frequency of the converter has been fixed and the frequency regulation can not be used to achieve voltage regulation, the output voltage of the AC to DC converter needs to be adjusted to achieve voltage regulation, and the response speed is relatively slow. This patent proposes another invention to solve the above-mentioned problems. The main purpose is to accelerate the transient response to rapid changes in load.
請參閱第5圖係為結合諧振頻率追蹤與加快暫態響應速度的方塊圖,其包含一線上諧振頻率追蹤模組35、一頻率調變模組36和一模式控制模組37,而線上諧振頻率追蹤模組35為以上所述的諧振頻率追蹤發明技術。
Please refer to Figure 5 for a block diagram of combining resonance frequency tracking and speeding up transient response speed, which includes an online resonance
在判斷切換不同模組主要是由模式控制模組37所決定。模式控制模組是由回授具有諧振槽的轉換器輸出電壓回授與輸出電壓參考值做相減,並得到輸出電壓誤差值。在一般穩態時,模式控制模組中的S切換變數為0,表示此時為執行線上諧振頻率追蹤模組35,當輸出電壓誤差值大於誤差值上限值,表示負載正在大幅度的變動,S切換變數將為1並將模式切換至頻率調變模組36,以具有諧振槽的轉換器的直流對直流轉換器控制器22利用切換頻率的變動以達到輸出電壓穩
壓的動作;而當負載停止變動時,輸出電壓的誤差值漸漸的變小與原訂的誤差值下限值做比較,如小於S切換變數將變為0,回到執行線上諧振頻率追蹤模組35。
It is mainly determined by the
由以上兩發明可知,諧振頻率追蹤對於電源轉換器穩態時,因實際上具有諧振槽轉換器的元件的誤差與電路上所產生的寄生效應皆會影響實際的第一諧振頻率,並操作於實際的第一諧振頻率以提升效率;在負載變動暫態響應模式控制模組以模式切換的方式,加快諧振頻率追蹤所造成較慢的響應速度。 As can be seen from the above two inventions, when the resonant frequency tracking is stable for the power converter, the actual first resonant frequency will be affected by the error of the component with the resonant tank converter and the parasitic effects generated on the circuit, and operate at The actual first resonant frequency improves efficiency; in the transient response mode of load change, the control module uses mode switching to speed up the slower response speed caused by the resonant frequency tracking.
Vac‧‧‧交流輸入電壓 V ac ‧‧‧ AC input voltage
10‧‧‧交流對直流轉換器 10‧‧‧AC to DC converter
11‧‧‧切換電路 11‧‧‧Switch circuit
12‧‧‧一次側諧振槽 12‧‧‧primary resonance tank
13‧‧‧變壓器 13‧‧‧Transformer
14‧‧‧二次側諧振槽 14‧‧‧Secondary side resonance tank
15‧‧‧整流電路 15‧‧‧Rectifier circuit
16‧‧‧零交越點偵測 16‧‧‧Zero crossing detection
17‧‧‧線上諧振頻率計算單元 17‧‧‧ Online resonance frequency calculation unit
18‧‧‧峰值檢測 18‧‧‧Peak detection
19‧‧‧閘極訊號產生器 19‧‧‧Gate signal generator
20‧‧‧交流對直流轉換器控制器 20‧‧‧AC to DC converter controller
21‧‧‧可調電壓控制器單元 21‧‧‧Adjustable voltage controller unit
22‧‧‧交流對直流轉換器控制器 22‧‧‧AC to DC converter controller
23‧‧‧具有諧振式轉換器 23‧‧‧With resonant converter
Vbus‧‧‧交流對直流的輸出電壓 V bus ‧‧‧AC to DC output voltage
S1‧‧‧第一功率開關 S1‧‧‧ First power switch
S2‧‧‧第二功率開關 S2‧‧‧second power switch
S3‧‧‧第三功率開關 S3‧‧‧third power switch
S4‧‧‧第四功率開關 S4‧‧‧The fourth power switch
S5‧‧‧第五功率開關 S5‧‧‧ fifth power switch
S6‧‧‧第六功率開關 S6‧‧‧ sixth power switch
S7‧‧‧第七功率開關 S7‧‧‧ seventh power switch
S8‧‧‧第八功率開關 S8‧‧‧Eighth power switch
CT‧‧‧電流檢測器 CT‧‧‧current detector
Vout‧‧‧諧振式轉換器輸出電壓 V out ‧‧‧Resonant converter output voltage
NP‧‧‧變壓器一次側繞組 N P ‧‧‧ Primary winding of transformer
Ns1‧‧‧變壓器二次側繞組 N s1 ‧‧‧ transformer secondary winding
Co‧‧‧輸出電容 C o ‧‧‧ output capacitance
T‧‧‧變壓器 T‧‧‧Transformer
Vgs1~Vgs8 S1~S8‧‧‧閘極訊號 V gs1 ~V gs8 S1~S8‧‧‧Gate signal
t1‧‧‧零交越點偵測方波電壓訊號上升緣時間點 t 1 ‧‧‧ Zero crossing point detection square wave voltage signal rising edge time point
t2‧‧‧峰值檢測方波電壓訊號上升緣時間點 t 2 ‧‧‧ Peak detection square wave voltage signal rising edge time
Tr‧‧‧諧振週期 T r ‧‧‧ resonance period
Ts‧‧‧切換週期 T s ‧‧‧ switching cycle
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140964A TWI683513B (en) | 2018-11-19 | 2018-11-19 | Power converter and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140964A TWI683513B (en) | 2018-11-19 | 2018-11-19 | Power converter and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI683513B true TWI683513B (en) | 2020-01-21 |
TW202021248A TW202021248A (en) | 2020-06-01 |
Family
ID=69942376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107140964A TWI683513B (en) | 2018-11-19 | 2018-11-19 | Power converter and control method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI683513B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI760788B (en) * | 2020-07-13 | 2022-04-11 | 大陸商光寶電子(廣州)有限公司 | Converter with half-bridge circuit |
TWI767432B (en) * | 2020-12-01 | 2022-06-11 | 產晶積體電路股份有限公司 | Zero-voltage switching power control system |
US11594976B2 (en) | 2020-06-05 | 2023-02-28 | Delta Electronics, Inc. | Power converter and control method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI800101B (en) * | 2021-11-16 | 2023-04-21 | 致茂電子股份有限公司 | Ac-dc power conversion module and driving method thereof |
US11855530B1 (en) * | 2022-08-05 | 2023-12-26 | Monolithic Power Systems, Inc. | Resonant converter with multiple resonant tank circuits |
TWI861718B (en) * | 2023-02-10 | 2024-11-11 | 台達電子工業股份有限公司 | Resonant converter and resonant conversion circuitry |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM449408U (en) * | 2012-11-08 | 2013-03-21 | Chung Shan Inst Of Science | Secondary-side series resonance full-bridge DC/DC converter |
TW201433074A (en) * | 2012-12-07 | 2014-08-16 | Apple Inc | A hysteretic-mode pulse frequency modulated (HM-PFM) resonant AC to DC converter |
US20150180353A1 (en) * | 2013-12-19 | 2015-06-25 | Fsp Technology Inc. | Power conversion apparatus |
CN105186892A (en) * | 2014-05-27 | 2015-12-23 | 晶宝智电科技有限公司 | Digital AD/DC power converter |
-
2018
- 2018-11-19 TW TW107140964A patent/TWI683513B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM449408U (en) * | 2012-11-08 | 2013-03-21 | Chung Shan Inst Of Science | Secondary-side series resonance full-bridge DC/DC converter |
TW201433074A (en) * | 2012-12-07 | 2014-08-16 | Apple Inc | A hysteretic-mode pulse frequency modulated (HM-PFM) resonant AC to DC converter |
US20150180353A1 (en) * | 2013-12-19 | 2015-06-25 | Fsp Technology Inc. | Power conversion apparatus |
CN105186892A (en) * | 2014-05-27 | 2015-12-23 | 晶宝智电科技有限公司 | Digital AD/DC power converter |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11594976B2 (en) | 2020-06-05 | 2023-02-28 | Delta Electronics, Inc. | Power converter and control method thereof |
TWI801891B (en) * | 2020-06-05 | 2023-05-11 | 台達電子工業股份有限公司 | Power converter and control method thereof |
US11777417B2 (en) | 2020-06-05 | 2023-10-03 | Delta Electronics, Inc. | Power converter and control method thereof |
TWI760788B (en) * | 2020-07-13 | 2022-04-11 | 大陸商光寶電子(廣州)有限公司 | Converter with half-bridge circuit |
TWI767432B (en) * | 2020-12-01 | 2022-06-11 | 產晶積體電路股份有限公司 | Zero-voltage switching power control system |
Also Published As
Publication number | Publication date |
---|---|
TW202021248A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI683513B (en) | Power converter and control method | |
TWI670919B (en) | Power supply with resonant converter and control method thereof | |
Fei et al. | Two-stage 48 V-12 V/6 V-1.8 V voltage regulator module with dynamic bus voltage control for light-load efficiency improvement | |
Mallik et al. | Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter | |
Kim et al. | A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system | |
US11356015B2 (en) | Modular medium voltage fast chargers | |
US10079545B2 (en) | Current resonant type DC voltage converter, control integrated circuit, and current resonant type DC voltage conversion method | |
Kim et al. | Analysis and design of a multioutput converter using asymmetrical PWM half-bridge flyback converter employing a parallel–series transformer | |
CN103703664B (en) | Method for controlling resonant mode power supply and circuit for resonant mode power supply with controller | |
US10044278B2 (en) | Power conversion device | |
Gong et al. | 6.6 kW three-phase interleaved totem pole PFC design with 98.9% peak efficiency for HEV/EV onboard charger | |
CN104375039B (en) | Testing system for isolation type direct-current transformer | |
Baggio et al. | Isolated interleaved-phase-shift-PWM DC-DC ZVS converter | |
US8854018B2 (en) | Control circuit for reducing touch current of a power converter and operation method thereof | |
TW201424240A (en) | AC-DC resonant converter that provides high efficiency and high power density | |
CN105141135B (en) | The control method of multi-channel parallel full-bridge LLC converters in a kind of cascading power source system | |
WO2014169821A1 (en) | Apparatus and method for resonant converters | |
EP2975753B1 (en) | A three-level converter | |
Luo et al. | Voltage-mode variable-frequency controlled LLC resonant power factor correction converter and its accurate numerical calculation analysis | |
Tawfik et al. | Single-stage isolated ac/ac converter with phase-shifted controller | |
Lokesha et al. | LLC resonant converter design and development | |
TWI617126B (en) | Power converter and control method thereof | |
Reddy et al. | Fixed frequency control of LCL-T resonant power converter with capacitive output filter | |
Zhou et al. | Hybrid Control Strategy for Single-Stage Interleaved Totem-Pole LLC AC–DC Converter With Input and Output Power Decoupling | |
US9407150B2 (en) | High efficiency zero-voltage switching (ZVS) assistance circuit for power converter |