TWI670842B - Monolithically integrated resistive memory using integrated-circuit foundry compatible processes - Google Patents
Monolithically integrated resistive memory using integrated-circuit foundry compatible processes Download PDFInfo
- Publication number
- TWI670842B TWI670842B TW104104033A TW104104033A TWI670842B TW I670842 B TWI670842 B TW I670842B TW 104104033 A TW104104033 A TW 104104033A TW 104104033 A TW104104033 A TW 104104033A TW I670842 B TWI670842 B TW I670842B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal layer
- substrate
- metal
- memory device
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
本發明涉及使用積體電路鑄造相容製程的單石積體電阻式記憶體,提供電阻式記憶體的單石積體,其具有利用積體電路鑄造製程的互補式金屬氧化物半導體。提供一種記憶體裝置,其包括基材和單石堆疊,該基材包含一個或多個互補式金屬氧化物半導體裝置和形成於該基材上的第一絕緣體層。該單石堆疊包含作為單石製程的一部分而被製造在該第一絕緣體層上方的多個層。該多個層包含第一金屬層、第二絕緣體層、和第二金屬層。電阻式記憶體裝置結構是形成在該第二絕緣體層內以及在該一個或多個互補式金屬氧化物半導體裝置的熱預算內。該電阻式記憶體裝置結構被實現為支柱裝置或通孔裝置。此外,該第一金屬層耦合至該第二金屬層。 The present invention relates to a monolithic resistive memory using an integrated circuit casting compatible process, and a monolithic body of a resistive memory having a complementary metal oxide semiconductor using an integrated circuit casting process. A memory device is provided that includes a substrate and a monolithic stack comprising one or more complementary metal oxide semiconductor devices and a first insulator layer formed on the substrate. The single stone stack includes a plurality of layers fabricated over the first insulator layer as part of a single stone process. The plurality of layers includes a first metal layer, a second insulator layer, and a second metal layer. A resistive memory device structure is formed within the second insulator layer and within a thermal budget of the one or more complementary metal oxide semiconductor devices. The resistive memory device structure is implemented as a pillar device or a via device. Additionally, the first metal layer is coupled to the second metal layer.
Description
本申請主張2014年2月6日提交的美國臨時專利申請號61/937,412的優先權權益,其發明名稱為“MONOLITHICALLY INTEGRATED RESISTIVE MEMORY USING INTEGRATED-CIRCUIT FOUNDRY COMPATIBLE PROCESSES”,本申請並涉及到2013年9月23日提交的美國專利申請第14/034,390號,其為2012年8月14日提交的美國專利申請第13/58,5759號(現為2013年10月29日獲准的美國專利第8,569,172號)的延續;上述文件中的每一者為了各種目的而引用各自的全文而作為參考明確地併入本文。 The present application claims priority to U.S. Provisional Patent Application No. 61/937,412, filed on Feb. 6, 2014, entitled s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s U.S. Patent Application Serial No. 14/034,390, filed on Aug. 23, which is incorporated herein by reference to U.S. Patent Application Serial No. 13/58, No. 5,759, filed on Aug. Continuation; each of the above-referenced documents is hereby incorporated by reference in its entirety for all purposes in its entirety.
一般來說,本發明涉及電子記憶體,例如,本發明描述可以使用積體電路鑄造相容製程來製造的單石積體電阻式記憶體。 In general, the present invention relates to electronic memory. For example, the present invention describes a monolithic resistive memory that can be fabricated using an integrated circuit casting compatible process.
電阻式記憶體裝置意味著在積體電路技術 領域內的最近革新。雖然這種技術的多數還在開發階段,用在已提出的電阻式記憶體裝置以及其製造的各種技術概念已經被發明人所展示。發明人相信,各種電阻式記憶體技術以及用於製造各種電阻式記憶體裝置的各種技術展現了令人信服的證據以在半導體電子工業的競爭技術之上保持顯著的優勢。 Resistive memory device means integrated circuit technology Recent innovations in the field. Although most of this technology is still in the development stage, various technical concepts used in the proposed resistive memory device and its manufacture have been exhibited by the inventors. The inventors believe that various resistive memory technologies and various techniques for fabricating various resistive memory devices exhibit convincing evidence to maintain significant advantages over competing technologies in the semiconductor electronics industry.
隨著時間推移,科技的進步已提供可以在半導體晶片的給定幾何面積上製造半導體裝置(例如電晶體)的數量上的增加。提高半導體裝置數量的意味著增加半導體晶片以及相關聯的電子裝置的記憶體容量以及處理能力。 Over time, advances in technology have provided an increase in the number of semiconductor devices (e.g., transistors) that can be fabricated on a given geometric area of a semiconductor wafer. Increasing the number of semiconductor devices means increasing the memory capacity and processing power of semiconductor wafers and associated electronic devices.
鑒於上述情况,發明人期望繼續開發電阻式記憶體技術的實際利用和製造。 In view of the above, the inventors desire to continue to develop the practical use and manufacture of resistive memory technology.
以下呈現本發明的簡要概述以提供本發明一些面向的基本理解。此概述不是本發明的詳盡概況。其既不旨在標識說明書的關鍵或重要元素,也不在於描繪本說明書中,或在申請專利範圍的任何範圍中的任何特定實施例的範圍。其目的在於以簡化形式呈現本說明書的一些概念,作為呈現本公開更詳細描述的前言。 A brief summary of the invention is presented below to provide a basic understanding of some aspects of the invention. This summary is not an exhaustive overview of the invention. They are not intended to identify key or critical elements of the specification, nor the scope of any particular embodiments in the scope of the application. The intention is to present some concepts of the present invention in a simplified form as a
對於使用積體電路鑄造相容製程的單石積體電阻式記憶體,提供了題述發明的多個面向。一個實施例涉及一種記憶裝置,其包括基材,該基材包含一個或多個互補式金屬氧化物半導體裝置和形成於該基材上的第一 絕緣體層。該記憶體裝置還包括單石堆疊,其包含作為單石製程的一部分而被製造在該第一絕緣體層上方的多個層。該多個層可包括第一金屬層(例如,第一金屬化層)、第二絕緣體層、和第二金屬層(例如,第二金屬化層)。電阻式記憶體裝置結構可以形成在第二絕緣體層內。在多種實施例中,該電阻式記憶體裝置結構是在該一個或多個互補式金屬氧化物半導體裝置的熱預算內的情况下而形成。在進一步的實施例中,電阻式記憶體裝置結構可以至少部分地實現作為支柱裝置。在其他實施例中,該第一金屬層的至少第一部分可耦合到該第二金屬層的至少第二部分。 For the single-rock integrated resistive memory using the integrated circuit casting compatible process, a number of aspects of the inventive invention are provided. One embodiment relates to a memory device including a substrate comprising one or more complementary metal oxide semiconductor devices and a first formed on the substrate Insulator layer. The memory device also includes a single stone stack comprising a plurality of layers fabricated over the first insulator layer as part of a single stone process. The plurality of layers can include a first metal layer (eg, a first metallization layer), a second insulator layer, and a second metal layer (eg, a second metallization layer). The resistive memory device structure can be formed within the second insulator layer. In various embodiments, the resistive memory device structure is formed under the thermal budget of the one or more complementary metal oxide semiconductor devices. In a further embodiment, the resistive memory device structure can be implemented at least in part as a strut device. In other embodiments, at least a first portion of the first metal layer can be coupled to at least a second portion of the second metal layer.
根據一些實施方式,該第一金屬層和該第二金屬層之間定義的距離可以實質上類似於該第二金屬層和第三金屬層之間的距離。換句話說,該層間介電質的厚度不會為了容納第二絕緣體層中的電阻式記憶體裝置結構的形成而改變。因此,本文所討論的實施例與現有的積體電路(IC)設計是相容的。 According to some embodiments, the distance defined between the first metal layer and the second metal layer may be substantially similar to the distance between the second metal layer and the third metal layer. In other words, the thickness of the interlayer dielectric does not change to accommodate the formation of the resistive memory device structure in the second insulator layer. Thus, the embodiments discussed herein are compatible with existing integrated circuit (IC) designs.
在一些實施方式中,電阻式記憶體裝置結構可以在攝氏450度或更低的溫度下所製造。在一些實施例中,互補式金屬氧化物半導體電路層可以使用相較於二氧化矽具有高相對介電常數的閘極介電材料。在一個實施例中,互補式金屬氧化物半導體裝置所使用的閘極介電材料可以是Applied Materials Producer®Black Diamond®的(HBD3)低k介電質(例如k<=3.0)。 In some embodiments, the resistive memory device structure can be fabricated at temperatures of 450 degrees Celsius or less. In some embodiments, the complementary metal oxide semiconductor circuit layer may use a gate dielectric material having a high relative dielectric constant compared to cerium oxide. In one embodiment, the gate dielectric material used in the complementary metal oxide semiconductor device may be a low-k dielectric (HBD3) of Applied Materials Producer® Black Diamond® (eg, k<=3.0).
在記憶體裝置結構至少部分實現為支柱裝 置的實施例中,該支柱裝置可包含形成在第一金屬層頂部的(接觸材料的)支柱式結構和設置在該支柱式結構的頂部上的軸環式結構。軸環式結構可以包括設置在該支柱式結構上方的疊層狀結構中的兩個或更多層的材料。在一個或多個實施例中,軸環式結構的橫截面可以大於支柱式結構。在一些實施例中,該兩個或更多層可以包含設置在第二圓柱式結構上方的圓柱式結構中的第一層。第二圓柱式結構在第一表面接觸第二金屬層,而第二表面耦合到該第一圓柱式結構。在此實施方式中,第一圓柱式結構具有接觸該支柱式結構的第一側和接觸該第二圓柱式結構的第二表面的第二側。該第一表面和該第二表面可位於該第二圓柱式結構的相對側。 The memory device structure is at least partially implemented as a pillar In one embodiment, the strut device can include a strut structure (contacting material) formed on top of the first metal layer and a collar structure disposed on top of the strut structure. The collar structure may comprise two or more layers of material disposed in a laminate structure above the strut structure. In one or more embodiments, the cross-section of the collar structure can be larger than the strut structure. In some embodiments, the two or more layers may comprise a first layer disposed in a cylindrical structure above the second cylindrical structure. The second cylindrical structure contacts the second metal layer at the first surface and the second surface is coupled to the first cylindrical structure. In this embodiment, the first cylindrical structure has a first side that contacts the strut structure and a second side that contacts the second surface of the second cylindrical structure. The first surface and the second surface can be located on opposite sides of the second cylindrical structure.
另一個實施例涉及一種製造記憶體裝置的方法。在多種實施例中,此方法可以是一種鑄造相容的方法(例如,不論是現有或將來的變化,其都與至少一個積體電路鑄造的製造製程相一致)。該方法可以包括製造可包括多層的單石堆疊。製造多層可以在基材的熱預算內所進行。在一個實施例中,基材可以是包括在其中或其上形成的一個或多個CMOS裝置的基材。另外,製造該多層可包括提供包含一個或多個互補式金屬氧化物半導體裝置的基材以及在該基材上方製造第一絕緣體層。該方法還可以包括於該第一絕緣體層上方製造第一金屬層。另外,該方法可以包括在第一金屬層上方製造層間介電材料層以及在該層間介電材料層內製造電阻式記憶體裝置結構,其可以包 含形成支柱裝置。此外,該方法可以包括於該電阻式記憶體裝置結構上方製造第二金屬層。 Another embodiment relates to a method of fabricating a memory device. In various embodiments, the method can be a cast compatible method (e.g., whether it is an existing or future variation, which is consistent with at least one integrated circuit casting manufacturing process). The method can include fabricating a monolithic stack that can include multiple layers. The fabrication of multiple layers can be carried out within the thermal budget of the substrate. In one embodiment, the substrate can be a substrate comprising one or more CMOS devices formed therein or thereon. Additionally, fabricating the multilayer can include providing a substrate comprising one or more complementary metal oxide semiconductor devices and fabricating a first insulator layer over the substrate. The method can also include fabricating a first metal layer over the first insulator layer. Additionally, the method can include fabricating an interlayer dielectric material layer over the first metal layer and fabricating a resistive memory device structure within the interlayer dielectric material layer, which can include Contains a pillar forming device. Additionally, the method can include fabricating a second metal layer over the resistive memory device structure.
根據另一實施方式,製造單石堆疊可以包含在大約攝氏450度的溫度下製造該單石堆疊。在進一步實施例中,該溫度可以是攝氏450度或更低。在多個實施例中,所述單石堆疊的製造可包含在由:大約攝氏450度至約400度、大約攝氏400度至大約350度、和大約攝氏300度至約350度所組成的範圍群組中所選擇的一個溫度範圍下製造單石堆疊。 According to another embodiment, fabricating a monolithic stack may comprise fabricating the monolithic stack at a temperature of approximately 450 degrees Celsius. In a further embodiment, the temperature can be 450 degrees Celsius or less. In various embodiments, the fabrication of the monolithic stack can comprise a range consisting of: about 450 degrees Celsius to about 400 degrees Celsius, about 400 degrees Celsius to about 350 degrees Celsius, and about 300 degrees Celsius to about 350 degrees Celsius. A single stone stack is fabricated at a selected temperature range in the group.
再一實施例涉及一種記憶體單元,其可以包括基材,該基材包括一個或多個互補式金屬氧化物半導體裝置和形成於該基材上的第一絕緣體層。該記憶體裝置還可包含單石堆疊,其包括作為單石製程的一部分而被製造在該第一絕緣體層上方的多個層。該多個層可包含形成在基材的頂面上的第一金屬層、形成在該第一金屬層上的第一導電層、第二絕緣體層、和第二金屬層。電阻式記憶體裝置結構可以形成在該第二絕緣體層內以及在該一個或多個互補式金屬氧化物半導體裝置的熱預算內。此外,該第一金屬層耦合到該第二金屬層。 Yet another embodiment is directed to a memory cell that can include a substrate including one or more complementary metal oxide semiconductor devices and a first insulator layer formed on the substrate. The memory device can also include a single stone stack including a plurality of layers fabricated over the first insulator layer as part of a single stone process. The plurality of layers may include a first metal layer formed on a top surface of the substrate, a first conductive layer, a second insulator layer, and a second metal layer formed on the first metal layer. A resistive memory device structure can be formed within the second insulator layer and within a thermal budget of the one or more complementary metal oxide semiconductor devices. Additionally, the first metal layer is coupled to the second metal layer.
又一實施例涉及一種記憶體裝置,其包括基材,該基材包含一個或多個互補式金屬氧化物半導體裝置和形成於該基材上的第一絕緣體層。該記憶體裝置還包括單石堆疊,其包含作為單石製程的一部分而被製造在該第一絕緣體層上方的多個層。該多個層可包含第一金屬 層、第二絕緣體層、和第二金屬層。電阻式記憶體裝置結構可以在該一個或多個互補式金屬氧化物半導體裝置的熱預算內的情况下形成在該第二絕緣體層內。該電阻式記憶體裝置結構可以被實現作為通孔裝置。此外,該第一金屬層耦合到該第二金屬層。 Yet another embodiment is directed to a memory device including a substrate comprising one or more complementary metal oxide semiconductor devices and a first insulator layer formed on the substrate. The memory device also includes a single stone stack comprising a plurality of layers fabricated over the first insulator layer as part of a single stone process. The plurality of layers may comprise a first metal a layer, a second insulator layer, and a second metal layer. A resistive memory device structure can be formed within the second insulator layer with the thermal budget of the one or more complementary metal oxide semiconductor devices. The resistive memory device structure can be implemented as a via device. Additionally, the first metal layer is coupled to the second metal layer.
另一個實施例涉及一種製造記憶體裝置的方法。該方法可以包括製造單石堆疊,其包括多個層,其中該製造是在基材的熱預算內所進行。該製造可包括提供包含一個或多個互補式金屬氧化物半導體裝置的基材以及在該基材上方製造第一絕緣體層。另外,該製造可包括於該第一絕緣體層上方製造第一金屬層以及在該第一金屬層上製造層間介電材料層。該製造還包括可以在該層間介電材料層內製造電阻式記憶體裝置結構,該製造包括形成通孔裝置以及於該電阻式記憶體裝置結構上方製造第二金屬層。 Another embodiment relates to a method of fabricating a memory device. The method can include fabricating a monolithic stack comprising a plurality of layers, wherein the manufacturing is performed within a thermal budget of the substrate. The fabrication can include providing a substrate comprising one or more complementary metal oxide semiconductor devices and fabricating a first insulator layer over the substrate. Additionally, the fabricating can include fabricating a first metal layer over the first insulator layer and fabricating an interlayer dielectric material layer on the first metal layer. The fabricating further includes fabricating a resistive memory device structure within the layer of interlayer dielectric material, the fabricating comprising forming a via device and fabricating a second metal layer over the resistive memory device structure.
又一實施例涉及一種記憶體單元,其包括基材,該基材包含一個或多個互補式金屬氧化物半導體裝置、以及形成於該基材上的第一絕緣體層。記憶體單元包括單石堆疊,單石堆疊包括作為單石製程的一部分而被製造在該第一絕緣體層上方的多個層。該多個層包含形成在基材的頂面上的第一金屬層、形成在該第一金屬層上的第一導電層、第二絕緣體層、和第二金屬層。電阻式記憶體裝置結構是形成在該第二絕緣體層內以及在該一個或多個互補式金屬氧化物半導體裝置的熱預算內。該電阻式記憶 體裝置結構可以被實現作為通孔裝置。此外,該第一金屬層耦合到該第二金屬層。 Yet another embodiment is directed to a memory cell including a substrate comprising one or more complementary metal oxide semiconductor devices, and a first insulator layer formed on the substrate. The memory unit includes a single stone stack including a plurality of layers fabricated over the first insulator layer as part of a single stone process. The plurality of layers include a first metal layer formed on a top surface of the substrate, a first conductive layer, a second insulator layer, and a second metal layer formed on the first metal layer. A resistive memory device structure is formed within the second insulator layer and within a thermal budget of the one or more complementary metal oxide semiconductor devices. Resistive memory The body device structure can be implemented as a through hole device. Additionally, the first metal layer is coupled to the second metal layer.
下列的描述和附圖闡述本說明書的某些示例面向。然而,這些方面僅表示本說明書中的原理可被採用的各種方式中的一部分。本說明書的其它優點和新穎的特徵將隨著本說明書的後續詳細描述結合附圖而變得明白。 The following description and the annexed drawings set forth some example aspects of this specification. However, these aspects are only a part of the various ways in which the principles in this specification can be employed. Other advantages and novel features of the present invention will become apparent from the Detailed Description of the Drawing.
100,200,300,400‧‧‧記憶體單元 100,200,300,400‧‧‧ memory unit
102‧‧‧互補式金屬氧化物半導體層 102‧‧‧Complementary metal oxide semiconductor layer
104‧‧‧單石堆疊 104‧‧‧Single stone stacking
106,204,408‧‧‧第一絕緣體層 106,204,408‧‧‧First insulator layer
108,206‧‧‧第一金屬層 108,206‧‧‧First metal layer
110,210,412‧‧‧第二絕緣體層 110,210,412‧‧‧second insulator layer
112,212‧‧‧第二金屬層 112,212‧‧‧Second metal layer
114,214‧‧‧電阻式記憶體裝置結構 114,214‧‧‧Resistive memory device structure
202‧‧‧基材 202‧‧‧Substrate
208‧‧‧第一導電栓塞 208‧‧‧First conductive plug
302,402‧‧‧M3金屬層 302,402‧‧‧M3 metal layer
304‧‧‧M6金屬層 304‧‧‧M6 metal layer
306‧‧‧V3接觸 306‧‧‧V3 contact
308,410‧‧‧M4金屬層 308,410‧‧‧M4 metal layer
310‧‧‧V4接觸 310‧‧‧V4 contact
312,404‧‧‧M5金屬層 312, 404‧‧‧M5 metal layer
314‧‧‧V5接觸 314‧‧‧V5 contact
316‧‧‧支柱式裝置 316‧‧‧ pillar device
318‧‧‧記憶體元件 318‧‧‧ memory components
320‧‧‧支柱 320‧‧‧ pillar
322‧‧‧軸環 322‧‧‧ collar
324‧‧‧切換材料層 324‧‧‧Switch material layer
326‧‧‧主動金屬層 326‧‧‧Active metal layer
328‧‧‧阻障材料層 328‧‧‧Disability material layer
330‧‧‧頂蓋 330‧‧‧Top cover
406‧‧‧導電栓塞 406‧‧‧ Conductive embolization
414‧‧‧通孔式裝置 414‧‧‧through-hole device
416‧‧‧通孔式裝置之第一部分 416‧‧‧The first part of the through-hole device
418‧‧‧通孔式裝置之第二部分 418‧‧‧The second part of the through-hole device
420‧‧‧栓塞 420‧‧ ‧ embolization
422A‧‧‧第一雙端記憶體單元 422A‧‧‧First double-ended memory unit
422B‧‧‧第二雙端記憶體單元 422B‧‧‧Second double-ended memory unit
500,600,700‧‧‧方法 500,600,700‧‧‧ method
502,504,506,508,510,512,514,602,604,606‧‧‧步驟 502, 504, 506, 508, 510, 512, 514, 602, 604, 606 ‧ ‧ steps
608,610,612,614,616,618,620,622,624,626‧‧‧步驟 608, 610, 612, 614, 616, 618, 620, 622, 624, 626 ‧ ‧ steps
628,630,702,704,706,708,710,712,714,716‧‧‧步驟 628, 630, 702, 704, 706, 708, 710, 712, 714, 716 ‧ ‧ steps
718,720,722,724,726,728,730,732‧‧‧步驟 718, 720, 722, 724, 726, 728, 730, 732 ‧ steps
800,900‧‧‧控制環境 800,900‧‧‧Control environment
802‧‧‧記憶體單元陣列 802‧‧‧ memory cell array
804‧‧‧列控制器 804‧‧‧ column controller
806‧‧‧行控制器 806‧‧‧ row controller
808‧‧‧時脈源 808‧‧‧ clock source
810‧‧‧位址暫存器 810‧‧‧ address register
812‧‧‧輸入/輸出緩衝器 812‧‧‧Input/Output Buffer
814‧‧‧命令介面 814‧‧‧ command interface
816‧‧‧狀態機 816‧‧‧ state machine
902‧‧‧電腦 902‧‧‧ computer
904‧‧‧處理單元 904‧‧‧Processing unit
906‧‧‧系統記憶體 906‧‧‧System Memory
908‧‧‧系統匯流排 908‧‧‧System Bus
910‧‧‧揮發性記憶體 910‧‧‧ volatile memory
912‧‧‧非揮發性記憶體 912‧‧‧ Non-volatile memory
914‧‧‧碟盤儲存 914‧‧‧Disk storage
916‧‧‧介面 916‧‧‧ interface
918‧‧‧操作系統 918‧‧‧ operating system
920‧‧‧應用程序 920‧‧‧Applications
924‧‧‧程式模組 924‧‧‧Program Module
926‧‧‧程式數據 926‧‧‧ program data
928‧‧‧輸入裝置 928‧‧‧Input device
930‧‧‧介面埠 930‧‧‧Interface
934‧‧‧適配器 934‧‧‧Adapter
935‧‧‧編解碼器 935‧‧‧ codec
936‧‧‧輸出裝置 936‧‧‧output device
938‧‧‧遠程電腦 938‧‧‧Remote computer
940‧‧‧記憶體儲存裝置 940‧‧‧Memory storage device
942‧‧‧網路埠 942‧‧‧Network Information
944‧‧‧通信連接 944‧‧‧Communication connection
發明的許多層面、實施例,目的和優點將從後續的詳細描述結合圖式中相同的參考符號所指向的相應部份而清楚明白。在本說明書中,許多特定細節被闡述以便提供本發明的完全理解。然而,應該明白的是,題述發明的某些面向可以不用這些具體細節或利用其它方法、組件、材料等情况下而實施。在其他實例中,公知的結構和裝置是以方塊圖的形式顯示,以幫助描述題述發明。 The various aspects, embodiments, and advantages of the invention will be apparent from the In the present specification, numerous specific details are set forth to provide a complete understanding of the invention. However, it should be understood that certain aspects of the subject invention may be practiced without these specific details or other methods, components, materials, and the like. In other instances, well-known structures and devices are shown in the form of block diagrams to help describe the subject invention.
第1圖根據本發明的一個或多個實施例,說明使用積體電路鑄造相容製程的示例記憶體單元的方塊圖。 1 is a block diagram illustrating an exemplary memory cell using an integrated circuit casting compatible process, in accordance with one or more embodiments of the present invention.
第2圖根據本發明的一個或多個實施例,說明使用積體電路鑄造相容製程的另一示例記憶體單元的方塊圖。 2 is a block diagram illustrating another example memory cell using an integrated circuit casting compatible process, in accordance with one or more embodiments of the present invention.
第3圖根據本發明的一個或多個實施例,說明在製造記憶體裝置的示例記憶體結構中的中間階段的截面方塊圖,根據本主題公開的一個或多個實施例。 3 is a cross-sectional block diagram illustrating an intermediate stage in an exemplary memory structure for fabricating a memory device, in accordance with one or more embodiments of the subject disclosure, in accordance with one or more embodiments of the present invention.
第4圖根據本發明的一個或多個實施例,說明在製造記憶體裝置的另一示例記憶體結構中的中間階段的截面方塊圖。 Figure 4 illustrates a cross-sectional block diagram of an intermediate stage in another exemplary memory structure for fabricating a memory device, in accordance with one or more embodiments of the present invention.
第5圖根據本發明的多種面向,說明一個示例且非限制的使用積體電路鑄造相容製程的包括電阻式記憶體的記憶體單元的製造方法的流程圖。 Figure 5 is a flow chart illustrating an exemplary and non-limiting method of fabricating a memory cell including a resistive memory using an integrated circuit casting compatible process in accordance with various aspects of the present invention.
第6圖根據本發明的多種面向,說明一個示例且非限制的製造記憶體單元的方法的流程圖,該記憶體單元包括形成作為支柱裝置的單石積體電阻式記憶體的記憶體。 Figure 6 is a flow diagram illustrating an exemplary and non-limiting method of fabricating a memory cell including a memory forming a monolithic resistive memory as a pillar device, in accordance with various aspects of the present invention.
第7圖根據本發明的多種面向,說明一個示例且非限制的製造記憶體單元的方法的流程圖,該記憶體單元包括形成作為通孔裝置的單石積體電阻式記憶體。 Figure 7 is a flow diagram illustrating an exemplary and non-limiting method of fabricating a memory cell including a monolithic resistive memory formed as a via device in accordance with various aspects of the present invention.
第8圖說明有利於一個或多個所公開實施例的實現的樣本操作環境的方塊圖。 Figure 8 illustrates a block diagram of a sample operating environment that facilitates implementation of one or more of the disclosed embodiments.
第9圖說明可以結合多種實施例來實現的示例計算環境的方塊圖。 Figure 9 illustrates a block diagram of an example computing environment that can be implemented in connection with various embodiments.
本發明涉及用於數位或多級資訊儲存的雙端記憶體單元。在一些實施例中,所述雙端記憶體單元可包括電阻式技術,諸如阻變雙端記憶體單元(resistive-switching two-terminal memory cell)。阻變雙端記憶體單元(也被稱為阻變記憶體單元或阻變記憶體),如這裏所使用的,包括具有在兩個導電接觸之間有主動區的導 電接觸的電路元件。雙端記憶體裝置的主動區,在具有阻變記憶體的情况下,表現出多個穩定或半穩定電阻狀態,而每個電阻狀態都具有不同的電阻值。此外,所述多個狀態中的各個可響應於施加在所述兩個導電接觸的合適電信號而被形成或啟動。合適的電信號可以是電壓值、電流值、電壓或電流極性、電或磁場等或其合適的組合。示例性的阻變雙端記憶體裝置,雖然非全面,但可包括電阻式隨機存取記憶體(RRAM)。 The present invention relates to a double-ended memory unit for digital or multi-level information storage. In some embodiments, the double-ended memory unit can include a resistive technique, such as a resistive-switching two-terminal memory cell. A resistive double-ended memory cell (also referred to as a resistive memory cell or a resistive memory), as used herein, includes a guide having an active region between two conductive contacts Electrically contacted circuit components. The active region of the double-ended memory device exhibits a plurality of stable or semi-stable resistance states with resistive memory, and each of the resistance states has a different resistance value. Moreover, each of the plurality of states can be formed or activated in response to a suitable electrical signal applied to the two conductive contacts. Suitable electrical signals may be voltage values, current values, voltage or current polarities, electrical or magnetic fields, etc., or suitable combinations thereof. An exemplary resistive double-ended memory device, although not comprehensive, may include resistive random access memory (RRAM).
題述公開的實施例可提供一個絲狀基記憶體單元(filamentary-based memory cell)。絲狀基記憶體單元的一個實施例可以包括:接觸材料層(例如,p型(或n型)的矽(Si)支承層(例如,p型或n型多晶矽,p型多晶矽鍺等))、包括多個缺陷位置的電阻切換層(RSL)、以及主動金屬層,以促進粒子(例如,能够響應於合適的領域或其他合適的刺激而被離子化的金屬離子和原子,或類似的粒子)在RSL內、或邊界處產生。在適當的偏壓條件(例如,編程電壓)下,粒子(例如,金屬離子、能够被離子化的原子等)可遷移到RSL內的缺陷位置,以提供形成離子到RSL的細絲。在去除偏壓條件下,在RSL中由離子所形成的導電細絲的至少一部分變形。在一些實施例中,在不存在具有高電阻的偏壓條件下,細絲的變形可包括被捕獲在缺陷位置內的粒子(例如,金屬離子),其成為中性粒子(例如,金屬原子)。在其它實施例中,細絲的變形可以包括在RSL內顆粒的分散(或部分分散),其響應 於偏壓條件而打破由細絲所提供的導電路徑。在又其他實施例中,所述細絲的變形可以是響應於另一種合適的物理機制,或前述的適當組合。 The disclosed embodiments provide a filamentary-based memory cell. One embodiment of the filament-based memory unit can include: a contact material layer (eg, a p-type (or n-type) germanium (Si) support layer (eg, p-type or n-type polysilicon, p-type polysilicon, etc.)) a resistance switching layer (RSL) comprising a plurality of defect locations, and an active metal layer to promote particles (eg, metal ions and atoms that can be ionized in response to a suitable field or other suitable stimulus, or similar particles) ) is generated within the RSL, or at the boundary. Under appropriate bias conditions (eg, programming voltage), particles (eg, metal ions, atoms that can be ionized, etc.) can migrate to defect sites within the RSL to provide filaments that form ions into the RSL. At least a portion of the conductive filaments formed by the ions in the RSL are deformed under bias removal conditions. In some embodiments, in the absence of bias conditions with high electrical resistance, deformation of the filaments can include particles (eg, metal ions) that are trapped within the defect location, which become neutral particles (eg, metal atoms). . In other embodiments, the deformation of the filaments may include dispersion (or partial dispersion) of the particles within the RSL, the response of which The conductive path provided by the filament is broken under bias conditions. In still other embodiments, the deformation of the filaments can be in response to another suitable physical mechanism, or a suitable combination of the foregoing.
RSL(其在本領域中也可以被當作電阻切換介質(RSM))可以包括,例如,未摻雜的非晶矽層、具有本質特性的半導體層、矽之次氧化物(例如,SiOx,其中,x具有介於0.1和2之間的值)、非化學計量的氧化物、金屬氧化物(例如氧化鋅)等。RSL的適合材料的其他示例可以包括SiXGeYOZ(其中X、Y和Z各自是合適的正整數)、氧化矽(例如,SiON,其中N是一個適當的正整數),非晶矽(a-Si)、非晶矽鍺(a-SiGe)、TaOB(其中B為合適的正整數)、HfOC(其中C為合適的正整數)、TiOD(其中D是合適的正整數)等等,或其合適的組合。 RSL (which may also be considered as a resistance switching medium (RSM) in the art) may include, for example, an undoped amorphous germanium layer, a semiconductor layer having intrinsic properties, and a suboxide of germanium (eg, SiOx, Wherein x has a value between 0.1 and 2), a non-stoichiometric oxide, a metal oxide (such as zinc oxide), and the like. Other examples of suitable materials for RSL may include Si X Ge Y O Z (where X, Y, and Z are each a suitable positive integer), yttrium oxide (eg, SiO N , where N is a suitable positive integer), amorphous矽 (a-Si), amorphous yttrium (a-SiGe), TaO B (where B is a suitable positive integer), HfO C (where C is a suitable positive integer), TiO D (where D is a suitable positive Integer) and so on, or a suitable combination thereof.
活性金屬層的示例可包括但不限於:銀(Ag)、金(Au)、鈦(Ti)、氮化鈦(TIN)或鈦的其它適合的化合物、鎳(Ni)、銅(Cu)、鋁(Al)、鉻(Cr)、鉭(Ta)、鐵(Fe)、錳(Mn)、鎢(W)、釩(V)、鈷(Co)、鉑(Pt)和鈀(Pd)。其它合適的導電材料,以及前述或類似材料的化合物或組合,在本題述發明的一些面向中可以被用於主動金屬層。在一些實施例中,由鈦、氮化鈦等物所構成的阻擋材料薄層可設置在RSL和主動金屬層(例如,銀、鋁等)之間。關於類似於前述示例的本發明其他實施例的細節可以在以下已經獲准專利的美國專利申請中找到:2007年10月19日申請的美國專利申請號11/875,541 和2009年10月8日申請的美國專利申請號12/575,921,以及其它在此引用的文件。上述文件中的每一者在此通過引用各自全文並為了各種目的而併入本文。 Examples of the active metal layer may include, but are not limited to, silver (Ag), gold (Au), titanium (Ti), titanium nitride (TIN), or other suitable compound of titanium, nickel (Ni), copper (Cu), Aluminum (Al), chromium (Cr), tantalum (Ta), iron (Fe), manganese (Mn), tungsten (W), vanadium (V), cobalt (Co), platinum (Pt), and palladium (Pd). Other suitable electrically conductive materials, as well as compounds or combinations of the foregoing or similar materials, may be used in the active metal layer in some aspects of the subject invention. In some embodiments, a thin layer of barrier material composed of titanium, titanium nitride, or the like may be disposed between the RSL and the active metal layer (eg, silver, aluminum, etc.). The details of other embodiments of the present invention, which are similar to the foregoing examples, can be found in the U.S. Patent Application Serial No. 11/875,541, filed on Oct. 19, 2007. And U.S. Patent Application Serial No. 12/575,921, filed on Oct. 8, 2009, and other references herein. Each of the above-identified documents is hereby incorporated by reference in its entirety in its entirety for the purposes of the disclosure.
根據各種本發明揭露的實施例中,所揭露的阻變裝置可以由與鑄造相容過程一致的方式所製造。如本文中所使用的,鑄造相容是指具有與在業界的半導體製造廠(諸如臺灣積體電路製造公司及其他公司)中以半導體為基礎的裝置的製造相關的物理限制一致。物理限制包括晶片以及在給定製程步驟前該晶片上所建構的材料和金屬的熱預算(例如,最大操作溫度)。例如,在晶片包括一個或多個金屬層或建構體,並且裝置模型需要金屬層保持在嚴格位置公差的可行性下,熱預算可能由金屬的軟化溫度所設定以避免損失金屬的剛性。其它物理限制可以包括:CMOS、nMOS、或pMOS中合適者的製造限制、特定金屬化方案的製造工具組(例如,可用於鋁、銅等的蝕刻/掩蔽/開槽工具組)限制、或需要特殊製程處理的物理性質(例如,銅的分散性、金屬和半導電材料等的氧化性質等)、或其他業界鑄造的限制等。因此,「鑄造相容」的字語意指與至少一個業界半導體製造廠的製程限制一致。 In accordance with various disclosed embodiments of the present invention, the disclosed resistive device can be fabricated in a manner consistent with the casting compatible process. As used herein, casting compatible refers to having physical limitations associated with the manufacture of semiconductor-based devices in semiconductor fabrication facilities in the industry, such as Taiwan Semiconductor Manufacturing Corporation and others. Physical limitations include the wafer and the thermal budget (eg, maximum operating temperature) of the materials and metals constructed on the wafer prior to the custom process step. For example, where the wafer includes one or more metal layers or constructs, and the device model requires the metal layer to remain at tight position tolerances, the thermal budget may be set by the softening temperature of the metal to avoid loss of metal stiffness. Other physical limitations may include: manufacturing constraints of suitable ones in CMOS, nMOS, or pMOS, manufacturing tool sets for a particular metallization scheme (eg, etch/mask/grooving tool sets that may be used for aluminum, copper, etc.) limitations, or Physical properties of special process processes (eg, dispersibility of copper, oxidative properties of metals and semiconducting materials, etc.), or other industry casting limitations. Therefore, the term "cast compatible" means consistent with the process limitations of at least one industry semiconductor manufacturer.
為了編程細絲為基礎的阻變記憶體單元,合適的編程電壓可被應用於記憶體單元(例如電阻切換層)而造成可變長寬的導電路徑或細絲形成在記憶體單元中相對高電阻的部分。這會導致記憶體單元從相對高的電阻狀態切換到一個或多個相對低的電阻狀態。在一些阻變裝置 中,抹除處理可以由將導電細絲(至少一部分)變形而實現,使所述存儲單元可從低電阻狀態返回到高電阻狀態。在記憶體中,這樣的狀態變化可以關聯到二進制位或多重二進位個別的狀態。對於多個記憶體單元的陣列,記憶體單元的字、字節、頁、嵌段等可以被編程或抹除來代表二進位資訊的零或一,並藉由在一段時間內保留這些狀態而影響存儲二進位資訊。在多種實施例中,多級資訊(例如,多個位)可被存儲在各自的記憶體單元中。 In order to program a filament-based resistive memory cell, a suitable programming voltage can be applied to the memory cell (eg, a resistance switching layer) to cause a variable length and width of the conductive path or filament formation in the memory cell. The part of the resistor. This can cause the memory cells to switch from a relatively high resistance state to one or more relatively low resistance states. In some resistive devices The erase process can be accomplished by deforming the conductive filaments (at least a portion) such that the memory cells can return from a low resistance state to a high resistance state. In memory, such state changes can be associated with binary or multiple binary individual states. For an array of multiple memory cells, the words, bytes, pages, blocks, etc. of the memory cells can be programmed or erased to represent zero or one of the binary information, and by retaining these states for a period of time Affects storage binary information. In various embodiments, multiple levels of information (eg, multiple bits) may be stored in respective memory units.
儘管電阻式記憶體仍然在發展階段,發明人相信,電阻式記憶體將取代傳統的NAND和NOR快閃記憶裝置,以及取代其他記憶體裝置。發明人已觀察到,電阻式記憶體的發展已經遇到了實際製造的瓶頸,也就是相關裝置(例如,線上製造產品的前端)的熱預算限制。熱預算是指在特定的溫度操作期間,轉移到晶片的熱能總量。在製造所述電阻式記憶體的製程中,舉例來說,會希望不要對互補式金屬氧化物半導體(CMOS)裝置施加過量的熱量等而產生不利影響。因此,在基板內的CMOS裝置可以根據CMOS晶片或基材將熱預算限制加到記憶體元件的製造(例如,通過後端線上製程的方式)。同樣地,舉例來說,應該在積體電路中的電阻式記憶體裝置的製造期間考慮熱預算限制。為了解决熱預算的限制,一些技術已經試圖使電阻式記憶體從CMOS電路中分離。因此,在一些情况下,電阻式記憶體形成在與其上形成有CMOS電路的晶片分離的晶片上。形成所述電阻式記憶體之後,晶片 可以被(翻轉倒置並)結合到CMOS電路。發明人意識到,上述方式會帶來額外的成本以及與製造電阻式記憶體相關的其他挑戰。 Although resistive memory is still in the development stage, the inventors believe that resistive memory will replace traditional NAND and NOR flash memory devices, as well as replace other memory devices. The inventors have observed that the development of resistive memory has encountered bottlenecks in actual manufacturing, that is, thermal budget limitations of related devices (eg, the front end of in-line manufactured products). Thermal budget refers to the total amount of thermal energy transferred to a wafer during a particular temperature operation. In the process of manufacturing the resistive memory, for example, it may be desirable not to apply an excessive amount of heat or the like to a complementary metal oxide semiconductor (CMOS) device to adversely affect. Thus, a CMOS device within a substrate can add thermal budget constraints to the fabrication of memory components in accordance with a CMOS wafer or substrate (eg, by way of a back-end line process). Likewise, for example, thermal budget constraints should be considered during the fabrication of resistive memory devices in integrated circuits. In order to address the limitations of thermal budgets, some techniques have attempted to separate resistive memory from CMOS circuits. Therefore, in some cases, the resistive memory is formed on a wafer separated from the wafer on which the CMOS circuit is formed. After forming the resistive memory, the wafer It can be (turned upside down and combined) into a CMOS circuit. The inventors have realised that the above approach introduces additional cost and other challenges associated with fabricating resistive memory.
與電阻式記憶體的積體相關聯的另一挑戰是來自所述電阻式記憶體製程的電漿損傷。可能有大量的複雜塑化製程在電漿損傷的角度來看會影響CMOS電路。發明人相信,至少還有一些電漿損傷問題沒有被成功解决。 Another challenge associated with the integration of resistive memory is plasma damage from the resistive memory process. There may be a large number of complex plasticizing processes that affect the CMOS circuit from the perspective of plasma damage. The inventors believe that at least some of the plasma damage problems have not been successfully resolved.
對於CMOS電路的頂部上的電阻式記憶體的單石積體的另一個挑戰或限制包括使用現有後端線上製程的能力。現有後端線上製程的使用可以减輕或避免在電阻式記憶體的製造過程中後端佈線裏的RC延遲(其中“R”是金屬線電阻而“C”是在層間介電電容)的改動。舉例來說,RC延遲的變化可能使電氣模型變得無用。例如,一些技術使用客製化製程來將記憶體製造整合到線路製程的後端。CMOS電路可在後端中具有佈線的多個層,並且發明人已知的一些技術嘗試將記憶體元件整合到後端。這個過程是複雜的,並且到現在為止,不能在未顯著改變後端線上製程的情况下進行。在此所揭露的一個或多個面向可結合現有的後端線上製程或其上的改進的至少一個子集。此外,所公開的面向可以符合這種製程的熱預算限制。 Another challenge or limitation to the single-rock inclusion of resistive memory on top of a CMOS circuit includes the ability to use existing back-end line processes. The use of existing back-end line processes can alleviate or avoid RC delays in the back-end wiring during the fabrication of resistive memory (where "R" is the metal line resistance and "C" is the interlayer dielectric capacitance) . For example, changes in RC delay may make the electrical model useless. For example, some technologies use a custom process to integrate memory manufacturing into the back end of the line process. CMOS circuits can have multiple layers of wiring in the back end, and some techniques known to the inventors attempt to integrate memory elements into the back end. This process is complex and, until now, cannot be done without significantly changing the back-end line process. One or more of the aspects disclosed herein are directed to at least a subset of improvements that can be combined with existing backend line processes or thereon. In addition, the disclosed aspects are subject to thermal budget constraints that may be consistent with such processes.
一種積體電路(IC)的鑄造包括各種為了將電阻式記憶體併入後端線上製程的各種設備及程序。本公開內容的發明人相當熟悉與其關聯的後端材料相容性問 題。所述一個或多個所公開的面向可以用相對於其它電阻式記憶體的製造製程來說的一個相對簡單的方式,執行製造電阻式記憶體裝置的製程。例如,記憶體堆疊,如本文中所討論的,與其他記憶體製造程序所使用的20或30個附加層相比,在一些實施例中,記憶體堆疊可以只增加一個或兩個附加層。這可以顯著降低與作為後端線上製程製造電阻式記憶體相關聯的成本、複雜性和製程開銷。另外,相對於其他工序,各種本發明的面向可以輕易地縮放到下一個世代節點(例如,便於更小的記憶體單元,和因此更大的晶片密度)。 The casting of an integrated circuit (IC) includes various devices and programs for incorporating resistive memory into the back-end line process. The inventors of the present disclosure are quite familiar with the compatibility of the backend materials associated with them. question. The one or more disclosed aspects can be used to fabricate a resistive memory device in a relatively simple manner relative to other resistive memory fabrication processes. For example, a memory stack, as discussed herein, in some embodiments, the memory stack can add only one or two additional layers, as compared to 20 or 30 additional layers used by other memory fabrication programs. This can significantly reduce the cost, complexity, and process overhead associated with manufacturing resistive memory as a back-end on-line process. In addition, the various aspects of the present invention can be easily scaled to the next generation node (e.g., to facilitate smaller memory cells, and thus greater wafer density) relative to other processes.
此外,一個或多個本發明的面向可以通過用於將電阻式記憶體單石積體到前端線上製程的產品(例如CMOS基材)的一個或多個公開的製程,而達到更小的晶片尺寸和更低的成本。此外,可使用標準的IC鑄造相容製造程序進行電阻式記憶體裝置的製造。多種實施例也可以在單石積體(例如,通過CMOS裝置)之後不變更設計而實現,以考慮寄生結構的改變。寄生結構是裝置(例如,記憶體裝置)中的一部分,其將結構重組為不同的半導體裝置,這可能會導致裝置進入非計畫中的操作。此外,在至少一個公開的實施例中,提供了一種製造製程的產品(例如,記憶體裝置),其可包括在一個CMOS電路的電阻式記憶體的單石積體。此外,該製造方法可以在進一步的實施例中包括積體電路鑄造相容製程(例如,新的或不同的製程不是必要的。然而在替代的實施例中,此製程的進一 步改進不應被排除在本發明的各種方面的範圍之外)。此外,所公開的面向可以在不超過約攝氏450度的溫度下進行。例如,該溫度可以是攝氏450度或更低。多種面向可以在由:大約攝氏450度至約400度、大約攝氏400度至大約350度、和大約攝氏300度至約350度所組成的範圍群組中所選擇的一個溫度範圍下進行。 In addition, one or more of the present invention faces a smaller wafer size for one or more disclosed processes that can be used to process a resistive memory monolith to a front-end process (eg, a CMOS substrate). And lower costs. In addition, the fabrication of resistive memory devices can be performed using standard IC casting compatible manufacturing procedures. Various embodiments may also be implemented without changing the design after a monolithic body (eg, by a CMOS device) to account for changes in parasitic structure. The parasitic structure is part of a device (eg, a memory device) that reorganizes the structure into different semiconductor devices, which may cause the device to enter an unplanned operation. Moreover, in at least one disclosed embodiment, a manufacturing process product (eg, a memory device) is provided that can include a monolithic body of resistive memory in a CMOS circuit. Moreover, the fabrication method may include an integrated circuit casting compatible process in further embodiments (eg, a new or different process is not necessary. However, in an alternative embodiment, the process is further Step improvements should not be excluded from the scope of the various aspects of the invention). Moreover, the disclosed aspects can be performed at temperatures not exceeding about 450 degrees Celsius. For example, the temperature can be 450 degrees Celsius or lower. The plurality of faces may be performed at a temperature range selected from the group consisting of: about 450 degrees Celsius to about 400 degrees Celsius, about 400 degrees Celsius to about 350 degrees Celsius, and about 300 degrees Celsius to about 350 degrees Celsius.
現在參考圖式,第1圖根據本發明的一個或多個實施例,說明使用積體電路鑄造相容製程的示例記憶體單元100的方塊圖。記憶體單元100可以包括互補式金屬氧化物半導體(CMOS)層102和單石堆疊104。在各種實施例中,CMOS層102可以包括記憶體驅動器電路、處理邏輯、閘陣列、通信層、有線或無線通信電路等、或前述的適當組合。 Referring now to the drawings, FIG. 1 illustrates a block diagram of an exemplary memory cell 100 using an integrated circuit casting compatible process in accordance with one or more embodiments of the present invention. The memory cell 100 can include a complementary metal oxide semiconductor (CMOS) layer 102 and a single stone stack 104. In various embodiments, CMOS layer 102 can include memory driver circuitry, processing logic, gate arrays, communication layers, wired or wireless communication circuitry, and the like, or a suitable combination of the foregoing.
例如,在一個實施例中,可以提供基材,其包括在其中形成的一個或多個CMOS裝置。在一個替代實施例中,一個或多個CMOS裝置可以製造在該基材上或內。在另一個實施例中,可提供該基材,其中形成有一個或多個CMOS裝置,並且還包括在該基材上或內製造一個或多個附加CMOS裝置。 For example, in one embodiment, a substrate can be provided that includes one or more CMOS devices formed therein. In an alternate embodiment, one or more CMOS devices can be fabricated on or in the substrate. In another embodiment, the substrate can be provided in which one or more CMOS devices are formed, and further comprising fabricating one or more additional CMOS devices on or in the substrate.
在製造單石堆疊104之前,可以在CMOS層102上方形成第一絕緣層106。所述單石堆疊104可包括依序製造在CMOS層102上方的多個層。在一些實施例中,單石堆疊104也可以形成在第一絕緣層106上方,而在至少一個替代實施例中,單石堆疊104可至少部分形成 在第一絕緣層106之中。此外,一個或多個附加的層,雖然沒有特別示出,可根據替代實施例(例如,參見第2圖和第3圖以及下文)而被包括在單石堆疊104中。 A first insulating layer 106 may be formed over the CMOS layer 102 prior to fabrication of the single stone stack 104. The single stone stack 104 can include a plurality of layers that are sequentially fabricated over the CMOS layer 102. In some embodiments, a single stone stack 104 may also be formed over the first insulating layer 106, while in at least one alternative embodiment, the single stone stack 104 may be at least partially formed. In the first insulating layer 106. Moreover, one or more additional layers, although not specifically shown, may be included in the single stone stack 104 in accordance with alternative embodiments (eg, see Figures 2 and 3 and below).
根據一些實施例,所述單石堆疊104的多個層可包括第一金屬層108、第二絕緣層110、和第二金屬層112。第一金屬層108可以由第一金屬(例如,鎢、鋁、銀、金、貴金屬、或類似的金屬、或上述的合適合金)製成。第二金屬層112可以由第二金屬(例如,在一個實施例中是含有氮化鈦的鋁)形成。另外,電阻式記憶體裝置結構114可以製造在第二絕緣層110內。電阻式記憶體裝置結構114可以產生第一金屬層108和第二金屬層112之間的接觸。 According to some embodiments, the plurality of layers of the single stone stack 104 may include a first metal layer 108, a second insulating layer 110, and a second metal layer 112. The first metal layer 108 may be made of a first metal (eg, tungsten, aluminum, silver, gold, precious metal, or the like, or a suitable alloy of the foregoing). The second metal layer 112 may be formed of a second metal (eg, aluminum, which in one embodiment is titanium nitride). Additionally, the resistive memory device structure 114 can be fabricated within the second insulating layer 110. The resistive memory device structure 114 can create a contact between the first metal layer 108 and the second metal layer 112.
所述電阻式記憶體裝置結構114可以在CMOS層102的熱預算內來製造。例如,電阻式記憶體裝置結構114可以在攝氏450度或更低的溫度下製造。根據一個實施例,該溫度可以是攝氏450度或更低。在多個實施例中,所述電阻式存儲裝置結構的製造可包含在由:大約攝氏450度至約400度、大約攝氏400度至大約350度、和大約攝氏300度至約350度所組成的範圍群組中所選擇的一個溫度範圍下製造。 The resistive memory device structure 114 can be fabricated within the thermal budget of the CMOS layer 102. For example, the resistive memory device structure 114 can be fabricated at temperatures of 450 degrees Celsius or less. According to one embodiment, the temperature may be 450 degrees Celsius or lower. In various embodiments, the fabrication of the resistive memory device structure can be comprised of: from about 450 degrees Celsius to about 400 degrees Celsius, about 400 degrees Celsius to about 350 degrees Celsius, and about 300 degrees Celsius to about 350 degrees Celsius. Manufactured within a range of temperatures selected in the range group.
發明人相信介電常數施加了限制,而因此用低的熱預算建構電阻式記憶體裝置可以提供相較於其他高溫記憶體製造製程來說較低的製造成本,因為該其他高溫記憶體的製造程序具有高溫元件,如上所述,而必須與 CMOS分開製造,並且不會作為該CMOS晶片的單石製程。作為一個示例,用於CMOS裝置的閘極介電材料可以是Applied Materials Producer Black Diamond(HBD3)的低k電介質(例如,K<=3.0),然而本發明不侷限於該示例。 The inventors believe that the dielectric constant imposes limitations, and thus the construction of a resistive memory device with a low thermal budget can provide lower manufacturing costs compared to other high temperature memory fabrication processes because of the fabrication of such other high temperature memories. The program has high temperature components, as described above, and must be CMOS is manufactured separately and does not act as a single stone process for the CMOS wafer. As an example, the gate dielectric material for the CMOS device may be a low-k dielectric of Applied Materials Producer Black Diamond (HBD3) (eg, K <= 3.0), although the invention is not limited to this example.
在一個實施方式中,電阻式記憶體元件結構114可以保留在第一金屬層108和第二金屬層112之間所定義的距離。例如,當電阻式記憶體裝置結構114形成時,第一金屬層108和第二金屬層112之間的距離保持近似相同。換句話說,如果在所建立的製造程序中,最後會包含電阻式記憶體裝置結構114,第一金屬層108和第二金屬層112之間的距離也不會明顯變大。在一些實施例中,第一金屬層108和第二金屬層112之間的距離與第二金屬層112和第三金屬(未示出,但可參見例如第3圖和4及下文)之間的距離是相同的。 In one embodiment, the resistive memory element structure 114 may remain at a defined distance between the first metal layer 108 and the second metal layer 112. For example, when the resistive memory device structure 114 is formed, the distance between the first metal layer 108 and the second metal layer 112 remains approximately the same. In other words, if the resistive memory device structure 114 is to be included in the established fabrication process, the distance between the first metal layer 108 and the second metal layer 112 will not significantly increase. In some embodiments, the distance between the first metal layer 108 and the second metal layer 112 is between the second metal layer 112 and the third metal (not shown, but see, for example, Figures 3 and 4 and below) The distance is the same.
在一個面向中,電阻式記憶體裝置結構114可以實現成支柱式裝置。例如,支柱式裝置可以包括形成在第一金屬層108上的電阻式記憶體裝置結構114的第一部分。支柱式裝置還可以包括由多個相鄰材料(例如,所述第二部分包括多個相鄰材料的層)形成的第二部分(例如,過大層)。在一些實施例中,材料層為圓柱形,並大致上是同心的,例如第一圓柱和第二圓柱。然而本發明並不限於此實施例。支柱式裝置的第二部分可以接觸第二金屬層112。此外,在至少一個實施例中,第一部分可具有圓柱狀或近似圓柱狀、多邊形或近似多邊形等的橫截面(例 如,從頂部或底部看的時候),其具有已定義的周長。此外,第二部分可具有比第一部份的定義周長較大的周長(例如,較大直徑、較大半徑等)。在一個或多個實施例中,第一部分可以是具有第一直徑的圓柱(或近似圓柱),而第二部分可以包括由該第一部份上方的一個或多個相鄰材料所形成的一系列圓柱(或近似圓柱),並具有比所述支柱裝置的第一部分的第一直徑還大的至少一個附加的直徑。 In one aspect, the resistive memory device structure 114 can be implemented as a strut device. For example, the strut device can include a first portion of the resistive memory device structure 114 formed on the first metal layer 108. The strut device can also include a second portion (eg, an oversized layer) formed from a plurality of adjacent materials (eg, the second portion includes a plurality of layers of adjacent materials). In some embodiments, the layers of material are cylindrical and substantially concentric, such as a first cylinder and a second cylinder. However, the invention is not limited to this embodiment. The second portion of the strut device can contact the second metal layer 112. Moreover, in at least one embodiment, the first portion may have a cross section of a cylindrical shape or a substantially cylindrical shape, a polygonal shape, or an approximately polygonal shape (example) For example, when viewed from the top or bottom, it has a defined perimeter. Additionally, the second portion can have a larger perimeter than the defined perimeter of the first portion (eg, a larger diameter, a larger radius, etc.). In one or more embodiments, the first portion can be a cylinder having a first diameter (or approximately a cylinder) and the second portion can include a one formed from one or more adjacent materials above the first portion A series of cylinders (or approximately cylindrical) and having at least one additional diameter that is greater than a first diameter of the first portion of the strut device.
在其他實施例中,如同這裏所使用的,稱為“圓柱”的結構或裝置可替代地或另外地包括多邊形或近似多邊形的形狀。在另一實例中,稱為圓柱的結構或裝置可替代地或另外地包括卵圓形或近似卵圓形的形狀。此外,這樣的結構或裝置可以替換地具有圓錐形狀、近似圓錐形狀等,以此類推。在另一實例中,這樣的結構或裝置可以是近似多邊形(例如,具有至少一個部分圓形邊緣的多邊形、或具有至少一個部份圓角、或多個部分圓邊、或多個部分圓角的多邊形,或前述的組合)。在另一實例中,該結構或裝置可具有至少一個非直線的側,如曲線側。在進一步的實例中,該結構或裝置可以具有一些非尖銳邊或一些非尖銳側。在又一實例中,該結構或裝置可以是近似多邊形的物體、具有至少一個非直線側的凸多邊形、或具有至少一個非尖銳邊的凸多邊形。在一些實施例中,橫截面的面積可以基本上是類似的或不同的。因此,應該理解的是,結構或裝置的特定幾何形狀的參考應被認為是說明性的,而不應被解釋為用於限制本發明。 In other embodiments, as used herein, a structure or device referred to as a "cylinder" may alternatively or additionally include a polygonal or approximately polygonal shape. In another example, a structure or device referred to as a cylinder may alternatively or additionally include an oval or approximately oval shape. Moreover, such structures or devices may alternatively have a conical shape, an approximately conical shape, and the like, and so on. In another example, such a structure or device may be approximately polygonal (eg, a polygon having at least one partially rounded edge, or having at least one partial fillet, or multiple partial rounded edges, or multiple partial rounded corners) Polygon, or a combination of the aforementioned). In another example, the structure or device can have at least one non-linear side, such as a curved side. In a further example, the structure or device may have some non-sharp edges or some non-sharp sides. In yet another example, the structure or device can be an approximately polygonal object, a convex polygon having at least one non-linear side, or a convex polygon having at least one non-sharp edge. In some embodiments, the area of the cross section may be substantially similar or different. Therefore, it should be understood that the reference to the particular structure of the structure or device should be considered as illustrative and should not be construed as limiting the invention.
在一個實例中,支柱式裝置的第二部分可以包括(例如,具有比該支柱式裝置的第一部份更大的直徑或周長的軸環)第一圓柱,其可具有位在該第一圓柱的相對端的第一側和第二側。支柱式裝置可包括第二圓柱,其可具有位在該第二圓柱的相對側的第一表面和第二表面。第一圓柱的第一側可接觸支柱式裝置(例如,支柱)的第一部份,而該第一圓柱的第二側可接觸第二圓柱的第二表面。第二圓柱的第一側可以接觸第二金屬層112(例如,參見第3圖的切出部份318及下文)。 In one example, the second portion of the strut device can include a first cylinder (eg, a collar having a larger diameter or circumference than the first portion of the strut device), which can have a position a first side and a second side of opposite ends of a cylinder. The strut device can include a second cylinder that can have a first surface and a second surface that are located on opposite sides of the second cylinder. The first side of the first cylinder can contact the first portion of the strut device (eg, the strut) and the second side of the first cylinder can contact the second surface of the second cylinder. The first side of the second cylinder may contact the second metal layer 112 (see, for example, the cut-out portion 318 of Figure 3 and below).
根據實施例,所述電阻式記憶體裝置結構114可在包括支柱結構的支柱式裝置中實現。該支柱結構可以由導電材料所形成。在一些實施例中,支柱結構可包括稜柱結構(平行基底),其具有如圓形、近似多邊形、卵圓形等的橫切面圖案。在一個實例中,第一圓柱是由切換材料所形成,並且第二圓柱是由另一導電材料所形成。在一個面向中,支柱結構的導電材料和所述第二圓柱是不同的材料。然而,根據一些面向,支柱結構的材料和第二圓柱可以是相同的材料或相似的材料。 According to an embodiment, the resistive memory device structure 114 can be implemented in a post-type device that includes a strut structure. The pillar structure can be formed of a conductive material. In some embodiments, the strut structure can include a prismatic structure (parallel base) having a cross-sectional pattern such as a circle, an approximately polygonal shape, an oval shape, and the like. In one example, the first cylinder is formed from a switching material and the second cylinder is formed from another electrically conductive material. In one facing, the conductive material of the pillar structure and the second cylinder are different materials. However, depending on some aspects, the material of the strut structure and the second cylinder may be the same material or a similar material.
根據一個實施方式中,支柱式裝置可以至少部分地由通孔(其藉由在其他材料中形成孔洞、空隙等而產生)所形成,並填充有一種或多種材料或材料層(而在這樣的情况下,也可以在此稱為通孔裝置)。在一個實施例中,可通過填充該通孔(例如,填充該孔洞、空隙等的一個子集)的至少一個子集的材料至少部份地形成支柱式 裝置。在進一步的實施例中,支柱式裝置可包括通孔襯墊,該襯墊是由沉積在藉由該通孔所露出的其它材料的表面上方的材料所形成。該通孔襯墊材料可以選自:氧化矽(SiOx)、SiOx和氧化鈦(TiOx)的化合物、以及SiOx和氧化鋁(AlOx)的化合物、或類似材料,或其合適的組合。根據一個實施方式中,通孔設備可以被填充(在該襯墊材料上),其所選擇的材料包括:鋁、鋁和銅、含有氮化鈦的鋁、含有鈦或氮化鈦的鋁、氮化鈦、鋁和銅或氮化鈦、或其適當的組合,或者類似的材料。 According to one embodiment, the strut device may be formed at least in part by a through hole (which is created by forming holes, voids, etc. in other materials) and filled with one or more layers of material or material (in such a In this case, it may also be referred to herein as a through hole device. In one embodiment, the pillars may be at least partially formed by filling at least a subset of the vias (eg, filling a subset of the holes, voids, etc.) Device. In a further embodiment, the strut device can include a via liner formed from a material deposited over a surface of other material exposed through the via. The via liner material may be selected from the group consisting of cerium oxide (SiOx), a compound of SiOx and titanium oxide (TiOx), and a compound of SiOx and aluminum oxide (AlOx), or the like, or a suitable combination thereof. According to one embodiment, the via device may be filled (on the liner material), the materials selected of which include: aluminum, aluminum and copper, aluminum containing titanium nitride, aluminum containing titanium or titanium nitride, nitrogen Titanium, aluminum and copper or titanium nitride, or a suitable combination thereof, or a similar material.
在一些實施方式中,回到參照支柱式裝置的第二部分,第一圓柱可具有第一厚度而第二圓柱可具有與第一厚度不同的第二厚度。因此,第一圓柱可以比第二圓柱厚。然而,根據其他面向,第一圓柱可以比第二圓柱更薄。 In some embodiments, returning to the second portion of the reference strut device, the first cylinder can have a first thickness and the second cylinder can have a second thickness that is different than the first thickness. Therefore, the first cylinder can be thicker than the second cylinder. However, depending on the other orientation, the first cylinder can be thinner than the second cylinder.
第2圖根據本發明的一個或多個實施例,說明使用積體電路鑄造相容製程的另一示例記憶體單元的方塊圖。記憶體單元200可包括基材202、第一絕緣層204、以及形成在該第一絕緣層204和該基材202的頂面上方的第一金屬層206。在多種本發明的實施例中,基材202可以是具有一個或多個CMOS相容的裝置的互補式金屬氧化物半導體(CMOS)基材。此外,第一金屬層206可以由鎢、鋁、或類似材料形成。 2 is a block diagram illustrating another example memory cell using an integrated circuit casting compatible process, in accordance with one or more embodiments of the present invention. The memory cell 200 can include a substrate 202, a first insulating layer 204, and a first metal layer 206 formed over the first insulating layer 204 and a top surface of the substrate 202. In various embodiments of the invention, substrate 202 can be a complementary metal oxide semiconductor (CMOS) substrate having one or more CMOS compatible devices. Further, the first metal layer 206 may be formed of tungsten, aluminum, or the like.
在多種實施例中,CMOS層102可包括記憶體驅動器電路、處理邏輯、閘陣列等。例如,在一個實施 例中,可以提供基材202,其包括在其中形成的一個或多個CMOS裝置。在一個替代實施例中,一個或多個CMOS裝置可以至少一部分在基材內或一部分在基材上方而製造。在另一個實施例中,可提供該基材,其中形成有一個或多個CMOS裝置,並且還包括在該基材上或內製造一個或多個附加CMOS裝置。 In various embodiments, CMOS layer 102 can include memory driver circuitry, processing logic, gate arrays, and the like. For example, in one implementation In an example, a substrate 202 can be provided that includes one or more CMOS devices formed therein. In an alternate embodiment, one or more CMOS devices can be fabricated with at least a portion of the substrate or a portion over the substrate. In another embodiment, the substrate can be provided in which one or more CMOS devices are formed, and further comprising fabricating one or more additional CMOS devices on or in the substrate.
在一些實施例中,第一導電栓塞208可形成在第一絕緣層204內。第一導電栓塞208(例如,鎢)可以電氣連接基材202和第一金屬層206。 In some embodiments, the first conductive plug 208 can be formed within the first insulating layer 204. A first conductive plug 208 (eg, tungsten) can electrically connect the substrate 202 and the first metal layer 206.
第二絕緣層210可形成在第一金屬層206的頂面上。第二金屬層212可形成在第二絕緣層210上方。第一金屬層206、第二金屬層212、以及後續的金屬層可由金屬形成。另外,電阻式記憶體裝置結構214可在第二絕緣層210內而形成。此外,如圖所示,電阻式記憶體裝置結構214可以在第一金屬層206和至少一部分第一絕緣層204內形成。電阻式記憶體裝置結構214可以產生第一金屬層206和第二金屬層212之間的接觸。根據在此討論的多種面向,電阻式記憶體裝置結構214可使用積體電路鑄造相容製程形成(例如,使用現有的積體電路鑄造工具)。 The second insulating layer 210 may be formed on a top surface of the first metal layer 206. The second metal layer 212 may be formed over the second insulating layer 210. The first metal layer 206, the second metal layer 212, and the subsequent metal layer may be formed of a metal. Additionally, the resistive memory device structure 214 can be formed within the second insulating layer 210. Moreover, as shown, the resistive memory device structure 214 can be formed within the first metal layer 206 and at least a portion of the first insulating layer 204. The resistive memory device structure 214 can create contact between the first metal layer 206 and the second metal layer 212. Resistive memory device structures 214 can be formed using integrated circuit casting compatible processes (e.g., using existing integrated circuit casting tools), depending on the various aspects discussed herein.
根據一個面向,形成電阻式記憶體裝置結構214可包括保持在第一金屬層206和第二金屬層212之間定義的距離。例如,在形成該電阻式記憶體裝置結構214時,用於分隔第一金屬層206和第二金屬層212的距離維持在該電阻式記憶體裝置結構214形成前大約相同的距 離。 Forming the resistive memory device structure 214 according to one aspect can include maintaining a defined distance between the first metal layer 206 and the second metal layer 212. For example, when forming the resistive memory device structure 214, the distance for separating the first metal layer 206 from the second metal layer 212 is maintained at approximately the same distance before the resistive memory device structure 214 is formed. from.
根據另一個實施方式,電阻式記憶體裝置結構214可實現為通孔式裝置的形式。通孔式裝置可以是許多不同結構中的一個,其包含但不限於通孔結構(例如,孔洞、空隙等)、通道、貫穿等等。所述通孔結構可以襯有鋁、銅、銀、合適的化合物,或其前述合適的組合。在一些實施例中,所述通孔結構的襯裏可以是在藉由通孔結構/通道/貫穿等所露出的表面上方具有基本上均勻厚度的沉積該厚度可以是20奈米或更小,在一些實施例中,可以是包括從一組範圍選擇的厚度:約15奈米至約20奈米、約10奈米至約15奈米、約5奈米至約10奈米的、和小於約1奈米至約5奈米。另外,通孔結構可包括由導電材料製造的至少一部分。 According to another embodiment, the resistive memory device structure 214 can be implemented in the form of a through-hole device. The through-hole device can be one of many different configurations including, but not limited to, via structures (eg, holes, voids, etc.), channels, penetrations, and the like. The via structure may be lined with aluminum, copper, silver, a suitable compound, or a suitable combination of the foregoing. In some embodiments, the liner of the via structure may be a deposition having a substantially uniform thickness over a surface exposed by a via structure/channel/through or the like, which may be 20 nm or less, in In some embodiments, it may be comprised of a thickness selected from a range of ranges: from about 15 nm to about 20 nm, from about 10 nm to about 15 nm, from about 5 nm to about 10 nm, and less than about 1 nanometer to about 5 nanometers. Additionally, the via structure can include at least a portion that is fabricated from a conductive material.
第3圖根據本發明的一個或多個實施例,說明在製造記憶體裝置的示例記憶體結構300中的中間階段的截面方塊圖。記憶體結構300可包括電阻式記憶體。根據多種替代性或附加的面向,記憶體結構300的一個或多個垂直的接觸,例如,V4接觸310,可以用支柱式裝置或通孔式裝置取代。相應地,記憶體結構300不受限於第3圖中所示出的支柱式裝置的數個位置。 FIG. 3 illustrates a cross-sectional block diagram of an intermediate stage in an exemplary memory structure 300 for fabricating a memory device, in accordance with one or more embodiments of the present invention. The memory structure 300 can include a resistive memory. One or more vertical contacts of memory structure 300, such as V4 contact 310, may be replaced with a strut device or a through-hole device, depending on a variety of alternative or additional aspects. Accordingly, the memory structure 300 is not limited to a number of positions of the strut type device shown in FIG.
應當指出,記憶體架構300被示出建置在第一組金屬(M3金屬層302)和第二組金屬(M6金屬層304)之間。為了簡單起見,包含在M3金屬層302下面(例如,金屬M1、金屬M2、閘級元件、CMOS電路等等)的 記憶體結構300的各種組件並沒有示出或說明。另外,M6金屬層304上方的附加金屬層可被包括在記憶體結構300之中,但為了簡單起見並沒有示出或說明。 It should be noted that the memory architecture 300 is shown to be disposed between a first set of metals (M3 metal layer 302) and a second set of metals (M6 metal layer 304). For simplicity, it is included under the M3 metal layer 302 (eg, metal M1, metal M2, gate level components, CMOS circuitry, etc.) The various components of memory structure 300 are not shown or described. Additionally, an additional metal layer over the M6 metal layer 304 can be included in the memory structure 300, but is not shown or described for the sake of simplicity.
第一組垂直接觸(V3接觸306)可將M3金屬層302的部分連接到第三組金屬(M4金屬層308)的部分。另外,第二組垂直接觸(V4接觸310)可將M3的金屬層302的部分連接到第四組金屬(M5金屬層312)的部分。另外,V4接觸310的另一組(雖然未具體示出)可以將M4金屬層308的部分連接到M5金屬層312的部分。另外,第三組垂直接觸(V5接觸314)可將M5的金屬層312的部分連接到M6金屬層304的部分。 The first set of vertical contacts (V3 contact 306) may connect portions of the M3 metal layer 302 to portions of the third set of metals (M4 metal layer 308). Additionally, a second set of vertical contacts (V4 contacts 310) may connect portions of the metal layer 302 of M3 to portions of the fourth set of metals (M5 metal layers 312). Additionally, another set of V4 contacts 310 (although not specifically shown) may connect portions of the M4 metal layer 308 to portions of the M5 metal layer 312. Additionally, a third set of vertical contacts (V5 contacts 314) may connect portions of the metal layer 312 of M5 to portions of the M6 metal layer 304.
M4金屬層308部份和M5金屬層312部分之間所繪示的是記憶體元件318。根據一個實施方式,記憶體元件可以是支柱式裝置316。應當指出的是,雖然支柱式裝置316被繪示在M4金屬層308和M5金屬層312之間,一個或多個支柱式裝置可以形成在記憶體結構300內的其他地方。例如,一個或多個支柱式裝置可以形成在M3金屬層302和M4金屬層308之間、M5金屬層312和M6金屬層304之間、或在其它組金屬之間、或其他金屬後端層之間(未示出)。 Between the M4 metal layer 308 portion and the M5 metal layer 312 portion is depicted a memory element 318. According to one embodiment, the memory element can be a strut device 316. It should be noted that while the strut device 316 is illustrated between the M4 metal layer 308 and the M5 metal layer 312, one or more post devices may be formed elsewhere within the memory structure 300. For example, one or more post-type devices may be formed between the M3 metal layer 302 and the M4 metal layer 308, between the M5 metal layer 312 and the M6 metal layer 304, or between other sets of metals, or other metal back end layers. Between (not shown).
此外,支柱式裝置可以形成在多組金屬之間。例如,至少一個支柱式裝置可以形成在M4金屬層308和M5金屬層312之間,而至少另一支柱式裝置可以形成在M5金屬層312和M6金屬層304之間、或可形成在其他 金屬之間。因此,支柱式裝置可以夾置在任意合適的金屬層之間,其包括任何適當的其他後端金屬層,雖然為了簡單起見並未未示出或說明該金屬層。 Additionally, a strut-type device can be formed between sets of metals. For example, at least one strut device may be formed between the M4 metal layer 308 and the M5 metal layer 312, and at least another strut device may be formed between the M5 metal layer 312 and the M6 metal layer 304, or may be formed in other Between metal. Thus, the strut-type device can be sandwiched between any suitable metal layers, including any suitable other back-end metal layers, although the metal layers are not shown or described for the sake of simplicity.
在製造該些組金屬之間(例如,在M4金屬層308和M5金屬層312之間)的記憶體元件的製程期間的過程中,可以在不改變至少一些公開的實施例中的金屬層之間的間隔(例如,在後端線上製程模型等之中所定義)的情况下進行記憶體元件318的製造。例如,在這樣的實施例中,各個M4金屬層308和各個M5金屬層312之間的高度可以是基本上和M3金屬層302與M4金屬層308之間的高度相同。另外,在一個支柱式裝置形成記憶體元件318的實施例中(其例如,在至少一個這樣的實施例中可包括一個支柱(PL)和軸環(CL)),所述支柱式裝置的總高度可以是和在放置記憶體元件前各個M4金屬層308和各個M5金屬層312之間的間隙相同或本質上相同。以這種方式中,可以繼續使用現有的介電質(例如,在放置記憶體元件或支柱式裝置之前各個金屬層之間所使用的介電質)。另外,在積體電路中所使用的各種其它現有製程可以繼續被使用來製造示例記憶體結構300。 During the manufacturing process of the memory element between the set of metal layers (eg, between the M4 metal layer 308 and the M5 metal layer 312), the metal layer in at least some of the disclosed embodiments may not be altered. The manufacture of the memory element 318 is performed with an interval (for example, defined in a back-end line process model or the like). For example, in such an embodiment, the height between each of the M4 metal layers 308 and each of the M5 metal layers 312 may be substantially the same as the height between the M3 metal layer 302 and the M4 metal layer 308. Additionally, in an embodiment in which a strut device forms a memory component 318 (which may include, for example, in one at least one such embodiment, a post (PL) and a collar (CL)), the total of the strut device The height may be the same or substantially the same as the gap between each of the M4 metal layer 308 and each of the M5 metal layers 312 prior to placement of the memory component. In this manner, existing dielectrics (e.g., dielectrics used between the various metal layers prior to placement of the memory or pillar devices) can continue to be used. Additionally, various other existing processes used in integrated circuits may continue to be used to fabricate the example memory structure 300.
在多種公開的實施例中,電阻式記憶體裝置可以單石積體在基材的頂部上。在進一步的實施例中,基材可以是具有一個或多個CMOS相容的裝置的CMOS基材。在一個或多個其它實施例中,公開的記憶體裝置可以是與現有的CMOS製造技術部分或完全相容的阻變雙端記 憶體裝置。因此,一些或所有所公開的記憶體裝置可以用低製造成本、有限的再加工等等而製造,從而達成發明人相信可以製造的高密度和高效率的雙端記憶體,並可以與其他記憶體設備或製程技術相比存在較少的製造問題而推向市場。 In various disclosed embodiments, the resistive memory device can be monolithic on top of the substrate. In a further embodiment, the substrate can be a CMOS substrate having one or more CMOS compatible devices. In one or more other embodiments, the disclosed memory device can be a resistive double-ended note that is partially or fully compatible with existing CMOS fabrication techniques. Recalling the device. Thus, some or all of the disclosed memory devices can be fabricated with low manufacturing cost, limited rework, etc., to achieve high density and high efficiency double-ended memory that the inventors believe can be fabricated, and can be combined with other memories. Body equipment or process technology is brought to market compared to fewer manufacturing problems.
為了說明,用於積體電阻式記憶體一些製程可能會導致介電質厚度或後端臨界尺寸的改變並因此,記憶體裝置的電容可能會改變。因此,這些其他製程的電氣設計文件必須跟著改變,造成珍貴資源(例如,時間、成本等等)的消耗。本文所公開的一個或多個方面藉由添加或形成在CMOS電路的頂部的電阻式記憶體而最小化這些變化。另外,在層間介電質(ILD)的厚度被保持與後端金屬層之間的相同(或類似)(例如,作為示出的M4的金屬層308和M5的金屬層312),以减輕或避免改變金屬層的電容,其與由相關的電氣設計模型假設的電容進行比較。 To illustrate, some processes for integrated resistive memory may result in changes in dielectric thickness or back-end critical dimensions and, therefore, the capacitance of the memory device may change. Therefore, the electrical design documents of these other processes must be changed to cause consumption of precious resources (eg, time, cost, etc.). One or more aspects disclosed herein minimize these variations by adding or forming resistive memory on top of the CMOS circuit. In addition, the thickness of the interlayer dielectric (ILD) is maintained the same (or similar) as that between the back end metal layers (for example, as the metal layer 308 of the M4 and the metal layer 312 of the M5) to mitigate Or avoid changing the capacitance of the metal layer, which is compared to the capacitance assumed by the associated electrical design model.
此外,記憶體元件318的切出部份(虛線圓)所示,支柱式裝置(其可以放置在各個組的金屬之間)可包括支柱320(標示為PL)和軸環322(標記為CL)。例如,支柱320可以被放置,接著可放置包括一個或多個組件(例如,一個或多個軸環元件)的軸環322。在一個實例中,該軸環組件可以是圓柱、多邊形橫截面、具有圓柱形橫截面的三維物體等等。在一個面向中,軸環可包括單一材料形成的單一三維物件。在另一個方面,軸環可具 有堆疊或放置在彼此頂部的多個包括至少一個完全不同材料的物件。在另一面向,軸環可具有多個物件,其中至少一個近似於幾何橫截面(例如圓柱),但不是真正的幾何形狀。 In addition, as shown by the cut-out portion of the memory element 318 (dashed circle), the strut device (which may be placed between the metals of each group) may include a post 320 (labeled PL) and a collar 322 (labeled CL) ). For example, the struts 320 can be placed, and then a collar 322 including one or more components (eg, one or more collar elements) can be placed. In one example, the collar assembly can be a cylinder, a polygonal cross section, a three dimensional object having a cylindrical cross section, and the like. In one orientation, the collar can comprise a single three-dimensional object formed from a single material. In another aspect, the collar can have There are a plurality of articles comprising at least one completely different material stacked or placed on top of each other. In the other direction, the collar can have multiple objects, at least one of which approximates a geometric cross section (eg, a cylinder), but is not a true geometry.
在多種實施例中,如第3圖所示,軸環322可包括電阻切換材料層324,例如未摻雜的非晶矽材料層、非化學計量氧化矽等。軸環322還可以包括主動金屬層326(例如,銀、金、鋁、貴金屬等、前述的合金,或其合適的組合)。在各種實施例中,軸環322可包括在電阻切換材料和主動金屬材料層之間的薄阻障材料層328,如鈦、鎢、氮化鈦等。在多種實施例中,頂蓋330可以是導電材料(例如,鈦,鎢,氮化鈦等)。阻障材料層328或頂蓋330可以是金屬栓塞,在替代或額外實施例中(例如鎢栓塞),可在記憶體元件318和部分的金屬層M5(或在替代實施例中的其它合適的金屬層)之間提供電氣接觸。例如,在將支柱320和軸環322的其他材料形成在通孔洞之後,鎢栓塞可以藉由將鎢填充在通孔洞所剩餘的任何空間而形成。 In various embodiments, as shown in FIG. 3, collar 322 can include a layer of resistive switching material 324, such as an undoped layer of amorphous germanium material, non-stoichiometric tantalum oxide, and the like. The collar 322 may also include an active metal layer 326 (eg, silver, gold, aluminum, precious metal, etc., alloys of the foregoing, or suitable combinations thereof). In various embodiments, the collar 322 can include a thin barrier material layer 328 between the resistance switching material and the active metal material layer, such as titanium, tungsten, titanium nitride, and the like. In various embodiments, the cap 330 can be a conductive material (eg, titanium, tungsten, titanium nitride, etc.). The barrier material layer 328 or cap 330 may be a metal plug, in an alternative or additional embodiment (eg, a tungsten plug), may be in the memory element 318 and a portion of the metal layer M5 (or other suitable in an alternate embodiment) Electrical contact is provided between the metal layers). For example, after the pillar 320 and other materials of the collar 322 are formed in the via hole, the tungsten plug can be formed by filling tungsten in any space remaining in the via hole.
在一個實施方式中,軸環的圓柱或其他物件可以是不同的大小。例如,第一圓柱可以比第二圓柱厚。在另一實例中,第一圓柱可以比第二圓柱薄。在這樣的實施例中,藉由將支柱式裝置316打散為具有不同直徑(或周長,對於非幾何形狀來說)的多個層的子集,可以最大限度地减少沿著側壁的漏流路徑以及可以達成更好的材料 封裝。在至少一個實施例中,支柱320可以由相同尺寸、大致相同尺寸、或不同尺寸的多個材料來形成。 In one embodiment, the cylinder or other item of the collar may be of different sizes. For example, the first cylinder can be thicker than the second cylinder. In another example, the first cylinder can be thinner than the second cylinder. In such an embodiment, leakage along the sidewalls can be minimized by breaking the strut device 316 into a subset of multiple layers having different diameters (or perimeters, for non-geometric shapes). Flow path and better material can be achieved Package. In at least one embodiment, the struts 320 can be formed from a plurality of materials of the same size, substantially the same size, or different sizes.
支柱320可包括導電材料,例如p型多晶矽、p型多晶、矽鍺等。在一些實施例中,軸環322的底部層(例如,第一圓柱的至少一部分)是一個切換材料(例如,本文所述的RSL或RSM)。然而,在其他實施例中,切換材料可以是在軸環322的不同層中(例如,中間層等)。另外,在軸環322的頂部(例如,第二圓柱的至少一個部分)可以是導電材料所形成的導電連接。 The struts 320 can include a conductive material such as p-type polycrystalline germanium, p-type polycrystalline, germanium, and the like. In some embodiments, the bottom layer of collar 322 (eg, at least a portion of the first cylinder) is a switching material (eg, RSL or RSM described herein). However, in other embodiments, the switching material can be in a different layer of the collar 322 (eg, an intermediate layer, etc.). Additionally, a top portion of the collar 322 (eg, at least a portion of the second cylinder) can be an electrically conductive connection formed by a conductive material.
根據本發明的一個或多個面向,所使用的材料是低熱預算的材料,其不影響在45奈米節點以下的積體電路的CMOS鑄造(例如,高k閘介電金屬閘極製程或其他)。例如,選擇用於支柱320和軸環322的材料可在與記憶體結構300相關聯的CMOS電路的熱預算內進行處理。此外,該材料可在現有的金屬層空間模型內被處理。另外,單元製程可與小節點相容而不會影響CMOS電路。 In accordance with one or more aspects of the present invention, the material used is a low thermal budget material that does not affect CMOS casting of integrated circuits below the 45 nm node (eg, high k gate dielectric metal gate process or other ). For example, the materials selected for the struts 320 and collar 322 can be processed within the thermal budget of the CMOS circuitry associated with the memory structure 300. In addition, the material can be processed within existing metal layer space models. In addition, the cell process is compatible with small nodes without affecting the CMOS circuitry.
在一個實施例中,記憶體結構300可藉由在CMOS基材上方形成第一絕緣層,並在第一絕緣層上方形成M3金屬層302來製造。M3金屬層302可以藉由圖案化和蝕刻、開槽和填充、通孔蝕刻和填充等形成為一個或多個區段的M3金屬層302。第二絕緣層形成在M3金屬層302上方,且在該第二絕緣層內形成有一個或多個通孔洞。一個或多個通孔洞可由導電材料填充,以形成第一組導電栓塞306。可以在第二絕緣層和導電栓塞306上方形 成M4金屬層308。在第一實施例中,支柱式裝置316的各個層可以在M4金屬層408上方被沉積、圖案化及蝕刻,以形成支柱式裝置316,其可被嵌埋在第三絕緣層中並被研磨,使得第三絕緣層和支柱式裝置316的頂表面基本上共面。在第二實施例中,可以在M4金屬層308上方形成第三絕緣層,而一組通孔、溝槽、凹槽等可形成在該第三絕緣層中。通孔/溝槽/凹槽可以和支柱式裝置316的各個層一起反覆沉積。附加的絕緣材料可以被沉積並研磨到各個支柱式裝置316層的頂面,或者替代地支柱式裝置316的各個層的頂表面可以被研磨而與第三絕緣層的頂面齊平。M5金屬層312可接著被沉積並分段而形成M5金屬層312的多個區段。第四絕緣層可以被沉積在M5金屬層上方,且一個或多個附加的導電通孔314可形成在該第四絕緣層內。此外,M6金屬層304可接著被沉積並分段而形成M6金屬層304的多個區段。 In one embodiment, the memory structure 300 can be fabricated by forming a first insulating layer over a CMOS substrate and forming an M3 metal layer 302 over the first insulating layer. The M3 metal layer 302 can be formed into one or more sections of the M3 metal layer 302 by patterning and etching, trenching and filling, via etching and filling, and the like. A second insulating layer is formed over the M3 metal layer 302, and one or more via holes are formed in the second insulating layer. One or more vias may be filled with a conductive material to form a first set of conductive plugs 306. Square on the second insulating layer and the conductive plug 306 Form M4 metal layer 308. In a first embodiment, various layers of pillar-type device 316 may be deposited, patterned, and etched over M4 metal layer 408 to form pillar-type device 316 that may be embedded in a third insulating layer and ground The top surface of the third insulating layer and the strut device 316 is substantially coplanar. In the second embodiment, a third insulating layer may be formed over the M4 metal layer 308, and a set of vias, trenches, grooves, and the like may be formed in the third insulating layer. The vias/grooves/grooves may be deposited back and forth with the various layers of the strut device 316. Additional insulating material may be deposited and ground to the top surface of each of the strut devices 316, or alternatively the top surface of the various layers of the strut device 316 may be ground to be flush with the top surface of the third insulating layer. The M5 metal layer 312 can then be deposited and segmented to form a plurality of segments of the M5 metal layer 312. A fourth insulating layer may be deposited over the M5 metal layer, and one or more additional conductive vias 314 may be formed within the fourth insulating layer. Additionally, the M6 metal layer 304 can then be deposited and segmented to form multiple sections of the M6 metal layer 304.
參考第3圖,一些電阻式記憶體裝置可採用夾置在兩個金屬後端層之間的支柱和軸環式結構。將支柱裝置打散成至少兩個同心圓柱層的目的是為了可以儘量减少沿著側壁的漏流路徑和達成更好的材料封裝。然而,記憶體裝置可能受限於微影,因為其和縮放有關。在第3圖的記憶體裝置結構的至少一些實施例中,確立記憶體裝置316的技術節點的尺寸可以是在支柱和軸環(或頂圓柱)之間提供電氣接觸的表面面積。 Referring to Fig. 3, some resistive memory devices may employ pillars and collar structures sandwiched between two metal back end layers. The purpose of breaking up the strut device into at least two concentric cylindrical layers is to minimize leakage paths along the sidewalls and achieve better material encapsulation. However, memory devices may be limited to lithography because it is related to scaling. In at least some embodiments of the memory device structure of FIG. 3, the size of the technical node that establishes the memory device 316 can be the surface area that provides electrical contact between the post and the collar (or top cylinder).
在本領域中,這種確立記憶體單元的技術 節點的尺寸通常被稱為關鍵尺寸。此術語在本揭露通篇中都以相同的含義而被使用。然而應當理解的是,術語不應當被解釋為將本揭露或所附的申請專利範圍限制於特定的實施例或特定尺寸。因為一些實施例將具有由一個關鍵尺寸(例如,支柱320和軸環322之間的電氣接觸表面面積)所確立的技術節點,而其它實施例的技術節點是由另一個關鍵尺寸(例如,由用於記憶體裝置而作為電極的金屬層和記憶體裝置的切換層所共用的電氣接觸表面面積;參見第4圖和下文)所確立的技術節點。此外,應該理解的是,由於所公開的記憶體裝置可以在一些實施例中可縮放為20奈米以下,且在其他實施例中,甚至降到1奈米的技術節點,因此關鍵尺寸不限定於特定的數量。 In the art, this technique of establishing a memory unit The size of a node is often referred to as a critical dimension. This term is used in the same meaning throughout the disclosure. It should be understood, however, that the terms are not to be construed as limiting the scope of the disclosure or the appended claims. Because some embodiments will have a technology node established by one critical dimension (eg, electrical contact surface area between strut 320 and collar 322), while the technical nodes of other embodiments are by another critical dimension (eg, by The electrical contact surface area common to the memory device and the metal layer of the electrode and the switching layer of the memory device; see the technical node established in Figure 4 and below). Moreover, it should be understood that since the disclosed memory device can be scaled to less than 20 nanometers in some embodiments, and even to a technical node of 1 nanometer in other embodiments, the critical dimensions are not limited For a specific quantity.
此外,對於雙端記憶體單元(例如,RRAM等)來說,縮放到更小的形貌可能會變得相當昂貴。藉由在此所公開的一個或多個面向,雙端記憶體單元在製造設備中的的可擴展性能够在不需要更先進的微影技術的情况下擴大。例如,可利用藉由支柱變成通孔所形成的結構,其中該裝置尺寸是由薄底部電極層(例如,由薄膜厚度控制)和通孔襯墊(例如,由薄膜厚度控制)之間的接觸面積所控制。本文所公開的一個或多個面向也可以有效地使雙端記憶體在CMOS上藉由使用相同或更低的成本和較低解析度的微影工具進行縮放。 In addition, scaling to a smaller topography can become quite expensive for a double-ended memory unit (eg, RRAM, etc.). With one or more aspects disclosed herein, the scalability of the dual-ended memory cell in a manufacturing device can be expanded without the need for more advanced lithography techniques. For example, a structure formed by a struts becoming through holes can be utilized, wherein the device dimensions are contact between a thin bottom electrode layer (eg, controlled by film thickness) and a via pad (eg, controlled by film thickness). Area controlled. One or more of the aspects disclosed herein can also effectively scale double-ended memory on CMOS by using the same or lower cost and lower resolution lithography tools.
第4圖根據本發明的一個或多個實施例,說明在製造記憶體裝置的另一示例記憶體結構中的中間階 段的截面方塊圖。應當注意,類似於第3圖的記憶體結構300,記憶體結構400被示出建置在第一組金屬(M3金屬層402)和第二組金屬(M5金屬層404)之間。為了簡單起見,包含在M3金屬層402(例如,金屬M1、金屬M2、閘級元件、CMOS電路等等)下方的記憶體結構400的各種組件並沒有示出或說明。另外,M5金屬層404上方的多組金屬可被包括在記憶體結構400之中,但為了簡單起見並沒有示出或說明。在多種實施例中,金屬層402、404、410可以作為字線、位元線、源線、數據線、或用於記憶體結構400的選擇線等,或前述的適當組合。 4 is an illustration of an intermediate stage in another example memory structure for fabricating a memory device, in accordance with one or more embodiments of the present invention. Sectional block diagram of the segment. It should be noted that, similar to the memory structure 300 of FIG. 3, the memory structure 400 is shown to be disposed between a first set of metals (M3 metal layer 402) and a second set of metals (M5 metal layer 404). For the sake of simplicity, the various components of memory structure 400 included under M3 metal layer 402 (eg, metal M1, metal M2, gate level components, CMOS circuitry, etc.) are not shown or described. Additionally, multiple sets of metal over the M5 metal layer 404 can be included in the memory structure 400, but are not shown or described for the sake of simplicity. In various embodiments, metal layers 402, 404, 410 can be used as word lines, bit lines, source lines, data lines, or select lines for memory structure 400, etc., or a suitable combination of the foregoing.
在多種實施例中,一個或多個金屬層402,404,410可以被分段成各個金屬層402、404、420的多個區段。例如,M5金屬層404(或M3金屬層402、M4金屬層410、或第4圖中沒有繪示的其他金屬層)可被分段為M5金屬層404的多個相應區段。在一些公開的實施例中,區段的第一子集可以被連接到記憶體架構400的控制電路(例如,電源、接地、感測電路等等),且可以將分段的第二子集可以從與控制電路而與(直接)接觸電氣隔離,並且保持浮動。因此,在一些實施例中,M5金屬層404的一個區段可以作為電子部件(例如,記憶體單元)的浮動(例如,無動力、無接地等)接觸,然而在其他實施例中,M5金屬層404的區段可以藉由控制電路或感測電路來驅動,從而作為電子元件的控制接觸或感測接觸,或兩者。金屬層區段402、404、410可以藉由圖案化和蝕刻各個金屬層 402、404、410形成各個區段之間的通孔並利用絕緣材料填充通孔、在各個區段之間形成凹槽並利用絕緣體材料填充凹槽等,或上述的適當組合而形成。 In various embodiments, one or more metal layers 402, 404, 410 can be segmented into multiple segments of respective metal layers 402, 404, 420. For example, the M5 metal layer 404 (or the M3 metal layer 402, the M4 metal layer 410, or other metal layers not shown in FIG. 4) may be segmented into a plurality of corresponding segments of the M5 metal layer 404. In some disclosed embodiments, a first subset of segments may be connected to control circuitry (eg, power, ground, sense circuitry, etc.) of memory architecture 400, and a second subset of segments may be It can be electrically isolated from (direct) contact with the control circuit and remains floating. Thus, in some embodiments, a segment of the M5 metal layer 404 can be in contact (eg, unpowered, ungrounded, etc.) in contact with an electronic component (eg, a memory cell), while in other embodiments, the M5 metal The segments of layer 404 can be driven by control circuitry or sensing circuitry to act as a control contact or sense contact for the electronic component, or both. Metal layer segments 402, 404, 410 can be patterned and etched by various metal layers 402, 404, 410 form a through hole between the respective segments and fill the through hole with an insulating material, form a groove between the respective segments, fill the groove with an insulator material, or the like, or a suitable combination of the above.
記憶體結構400可包括基材,基材具有形成於其中或其上的一個或多個CMOS裝置(未示出)。在一些公開的實施例中,一個或多個金屬層和中間絕緣層可以形成(例如,沉積等)在基板的頂面上和M3金屬層402下方。這些金屬層和中間絕緣層可以被圖案化、蝕刻、研磨、開槽等,以形成合適的電子裝置或電子電路。電路可對CMOS裝置的子集提供電氣接觸。在一些實施例中,電路可對CMOS裝置的子集提供周邊電子裝置或功能等。然而,在其他實施例中,記憶體結構400在基材和M3金屬層402之間可不具有中間層,或具有一些但不是所有的上述中間層,或者是具有一些但不是所有的合適的電子裝置或電子電路,以實現所需的電子裝置。 The memory structure 400 can include a substrate having one or more CMOS devices (not shown) formed therein or thereon. In some disclosed embodiments, one or more metal layers and intermediate insulating layers may be formed (eg, deposited, etc.) on the top surface of the substrate and below the M3 metal layer 402. These metal layers and intermediate insulating layers can be patterned, etched, ground, slotted, etc. to form suitable electronic devices or electronic circuits. The circuit can provide electrical contact to a subset of the CMOS devices. In some embodiments, the circuitry can provide peripheral electronics or functionality or the like to a subset of the CMOS devices. However, in other embodiments, the memory structure 400 may have no intermediate layer between the substrate and the M3 metal layer 402, or some but not all of the intermediate layers described above, or some, but not all, suitable electronic devices. Or an electronic circuit to achieve the desired electronic device.
在進一步的實施例中,第一絕緣層408可以形成(例如,沉積,等等)在M3金屬層402上方。一個或多個導電栓塞406(例如,鎢)可在第一絕緣層408中形成。導電栓塞406可以連接M3金屬層402的各個部分和另一組金屬(M4金屬層410)的相關部分。在一個實施例中,導電栓塞406可以藉由產生第一絕緣層408內的通孔而形成,並且利用選擇的導電材料(例如,鎢等)填充至少部分的通孔。用於形成導電栓塞406的其它機制被視為是本發明公開的範圍之內,例如在第一絕緣層408內 形成凹槽並利用選擇用於導電栓塞406的材料填充凹槽。雖然導電栓塞406被描繪為具有垂直側,但是應當理解,這僅用於說明目的,並且其它幾何形狀(或非幾何形狀)也可以被實現。諸如適合的傾斜側、弧形側、不規則側、非幾何側等等。 In a further embodiment, the first insulating layer 408 can be formed (eg, deposited, etc.) over the M3 metal layer 402. One or more conductive plugs 406 (eg, tungsten) may be formed in the first insulating layer 408. Conductive plug 406 can connect various portions of M3 metal layer 402 and associated portions of another set of metals (M4 metal layer 410). In one embodiment, the conductive plug 406 can be formed by creating a via in the first insulating layer 408 and filling at least a portion of the via with a selected conductive material (eg, tungsten, etc.). Other mechanisms for forming the conductive plug 406 are considered to be within the scope of the present disclosure, such as within the first insulating layer 408. A groove is formed and the groove is filled with a material selected for the conductive plug 406. While the conductive plug 406 is depicted as having a vertical side, it should be understood that this is for illustrative purposes only, and other geometries (or non-geometry) may also be implemented. Such as suitable inclined sides, curved sides, irregular sides, non-geometric sides, and the like.
可以在第一絕緣層408上方形成附加金屬層(M4金屬層410)。在一個實施例中,M4金屬層410的至少一個子集可以形成為與導電栓塞406直接電氣接觸。在進一步的實施例中,如上所述,M4金屬層410可以被分段為多個金屬層區段。在多種實施例中,M4金屬層410可以是由多種金屬材料(例如,氮化鈦,鎢,鋁等)或是由導電含矽材料(例如,p型多晶矽、p型矽鍺、摻雜的矽鍺等等)所形成的導電層。 An additional metal layer (M4 metal layer 410) may be formed over the first insulating layer 408. In one embodiment, at least a subset of the M4 metal layer 410 can be formed in direct electrical contact with the conductive plug 406. In a further embodiment, as described above, the M4 metal layer 410 can be segmented into a plurality of metal layer segments. In various embodiments, the M4 metal layer 410 can be made of a variety of metallic materials (eg, titanium nitride, tungsten, aluminum, etc.) or conductive germanium-containing materials (eg, p-type polysilicon, p-type germanium, doped矽锗, etc.) The conductive layer formed.
第二絕緣層412可被形成(例如,沉積)在M4金屬層410上方。第二絕緣層412中所形成者可以是通孔式裝置414(例如,通孔、通道、貫穿等)。在一個或多個實施例中,通孔式裝置414也可以被形成通過M4金屬層410並進入第一絕緣層408。應當指出的是,雖然通孔式裝置414被示出在M4金屬層410的一部分和M5金屬層404的一部分之間,一個或多個通孔式裝置可以包括在記憶體結構400內的其他地方。例如,一個或一個以上的通孔式裝置可以位於M3金屬層402和M4金屬層410之間、M3金屬層402和M5金屬層404之間、M5金屬層404和M6金屬層(未示出)之間、或在其它組的金屬後端層 (未示出)之間、一個揭露的金屬層和一個未揭露的金屬層之間,或在至少一個實施例中,位於金屬層和金屬互連之間(例如,與導電栓塞406和金屬層電氣接觸、或在兩個導電栓塞之間、或一些其它合適的定向)。 A second insulating layer 412 can be formed (eg, deposited) over the M4 metal layer 410. The one formed in the second insulating layer 412 may be a through-hole device 414 (eg, vias, vias, throughs, etc.). In one or more embodiments, the via device 414 can also be formed through the M4 metal layer 410 and into the first insulating layer 408. It should be noted that although the via device 414 is shown between a portion of the M4 metal layer 410 and a portion of the M5 metal layer 404, one or more via devices may be included elsewhere within the memory structure 400. . For example, one or more via devices may be located between M3 metal layer 402 and M4 metal layer 410, between M3 metal layer 402 and M5 metal layer 404, M5 metal layer 404 and M6 metal layer (not shown). Metal backend layer between, or in other groups Between (not shown), between a exposed metal layer and an unexposed metal layer, or in at least one embodiment, between the metal layer and the metal interconnect (eg, with conductive plugs 406 and metal layers) Electrical contact, or between two conductive plugs, or some other suitable orientation).
此外,附加的通孔式裝置可以包含在多組金屬層之間。例如,至少一個通孔式裝置可以形成在M4金屬層410和M5金屬層404之間,以及至少另一個通孔式裝置可以形成在M5金屬層404和M6金屬層(未圖示)之間、或可形成在其他金屬或金屬層之間。因此,通孔式裝置可以夾在任意合適的金屬層之間,其包括任何其他後端金屬層,雖然為了簡單起見並未示出或說明此等金屬層。 Additionally, additional via devices can be included between sets of metal layers. For example, at least one via device may be formed between the M4 metal layer 410 and the M5 metal layer 404, and at least another via device may be formed between the M5 metal layer 404 and the M6 metal layer (not shown), Or it can be formed between other metals or metal layers. Thus, the via device can be sandwiched between any suitable metal layers, including any other back metal layers, although such metal layers are not shown or described for the sake of simplicity.
通孔式裝置可以利用合適的蝕刻技術、開槽技術、或用於去除堆疊半導體膜或層的材料的至少一個子集的類似技術而形成。類似於第3圖所述的記憶體結構300,在至少一些公開的實施例中,在將通孔裝置插入至金屬互連組之間(例如,在M4金屬層410和M5金屬層404之間)的製造過程中,金屬層之間的間隔不會變寬或變窄,或基本上不會變寬或變窄。例如,各個M4金屬層410和各個M5金屬層404之間的高度可以保持不變或基本上不變。為了說明,通孔式裝置的高度可具有和在放置通孔式裝置前的各個M4金屬層410和各個M5金屬層404之間的高度相同或基本上相同的總高度。以這種方式中,可以使用現有的介電質(例如,在放置通孔式裝置之前各個金屬層組之間所使用的介電質)而不用改變或基本上不用改變 金屬層之間預期的電容。另外,在積體電路的製造中所使用的各種其它現有製程可以繼續被使用來製造示例記憶體結構400。 The via device can be formed using a suitable etching technique, a grooving technique, or a similar technique for removing at least a subset of the materials of the stacked semiconductor film or layer. Similar to the memory structure 300 described in FIG. 3, in at least some of the disclosed embodiments, the via device is inserted between the metal interconnect groups (eg, between the M4 metal layer 410 and the M5 metal layer 404) During the manufacturing process, the spacing between the metal layers does not become wider or narrower, or does not substantially widen or narrow. For example, the height between each of the M4 metal layers 410 and the respective M5 metal layers 404 may remain constant or substantially unchanged. To illustrate, the height of the through-hole device can have the same or substantially the same overall height as the height between each of the M4 metal layer 410 and each of the M5 metal layers 404 prior to placement of the via device. In this manner, existing dielectrics can be used (eg, dielectrics used between sets of metal layers prior to placement of the via-type device) without changing or substantially changing. The expected capacitance between the metal layers. Additionally, various other existing processes used in the fabrication of integrated circuits may continue to be used to fabricate the example memory structure 400.
如圖所示,在一些公開的實施例中,通孔式裝置414可包括互相交叉的水平部分(或近似水平的部分)與垂直部分(或近似垂直的部分)。在第一實施例中,第二絕緣層412可形成為初始高度,其基本上等於通孔式裝置414的水平部分的底面。在形成通孔式裝置414之後,第二絕緣層412的進一步沉積可以為M5金屬層404的底面帶來第二絕緣層412。其它實施例可利用其它的步驟來實現上述或類似的定向。 As shown, in some disclosed embodiments, the through-hole device 414 can include horizontal portions (or approximately horizontal portions) and vertical portions (or approximately vertical portions) that intersect each other. In the first embodiment, the second insulating layer 412 may be formed to an initial height that is substantially equal to the bottom surface of the horizontal portion of the through-hole device 414. After the via device 414 is formed, further deposition of the second insulating layer 412 may bring the second insulating layer 412 to the bottom surface of the M5 metal layer 404. Other embodiments may utilize other steps to achieve the above or similar orientation.
一旦形成第二絕緣層412,通孔(或者例如,溝槽、凹槽等)可形成在該第二絕緣層412內,以在所繪示的垂直部分處形成間隙。通孔式裝置414(或多個通孔裝置)可能會導致各個絕緣層或金屬層的側壁部份被暴露。藉由利用通孔式裝置414的各個層填充所述被暴露的側壁部分的至少一個子集,雙端記憶體單元可以沿著相對於第4圖的定向來說非垂直的方向(例如,水平方向、大致水平方向、傾斜方向等等)而形成。例如,在至少一些實施例中,第一雙端記憶體單元422A可以被形成(左側虛線橢圓)在通孔式裝置左側和M4金屬層410的交叉處,而第二雙端記憶體單元422B可形成在通孔式裝置414右側和M4金屬層410的交叉處。舉例來說,通孔式裝置414的形成可以包括藉由第一材料的薄膜沉積或其它合適 的技術形成第一部分416。由通孔所形成的剩餘空間的至少一個子集可以被通孔式裝置414的第二部分418所填充,其中,第二部分418包括第二材料,其可不同於第一材料。 Once the second insulating layer 412 is formed, vias (or, for example, trenches, grooves, etc.) may be formed in the second insulating layer 412 to form a gap at the depicted vertical portion. The via device 414 (or a plurality of via devices) may cause portions of the sidewalls of the respective insulating or metal layers to be exposed. By filling at least a subset of the exposed sidewall portions with respective layers of via devices 414, the double-ended memory cells can be in a non-perpendicular direction (eg, horizontal) relative to the orientation of FIG. Formed in directions, substantially horizontal, oblique, etc.). For example, in at least some embodiments, the first double-ended memory cell 422A can be formed (left dashed ellipse) at the intersection of the left side of the via device and the M4 metal layer 410, while the second double-ended memory cell 422B can It is formed at the intersection of the right side of the via device 414 and the M4 metal layer 410. For example, the formation of the via device 414 can include thin film deposition by the first material or other suitable The technique forms the first portion 416. At least a subset of the remaining space formed by the vias may be filled by the second portion 418 of the via device 414, wherein the second portion 418 includes a second material that may be different than the first material.
在多種實施方式中,第二部分418是電阻切換材料層,例如未摻雜的非晶矽材料層、非化學計量氧化矽等。在一個實施例中,電阻切換材料層可以作為雙端記憶體單元422A、422B的非揮發性切換元件。第一部分416可以是主動金屬層(例如,銀、金、鋁等),其用作用於雙端記憶體單元422A、422B共同的第一電極。通孔式裝置414還可以包括在第一部分416和第二部分418之間的薄阻障材料層,諸如鈦、鎢、氮化鈦等。另外,M4金屬層410的各個子集可以被獨立地控制、感測等,以對雙端記憶體單元422A,422B提供獨立和各個第二電極,從而能够在其上獨立操作。 In various embodiments, the second portion 418 is a layer of a resistance switching material, such as an undoped layer of amorphous germanium material, non-stoichiometric yttrium oxide, and the like. In one embodiment, the layer of resistive switching material can serve as a non-volatile switching element for the double ended memory cells 422A, 422B. The first portion 416 can be an active metal layer (eg, silver, gold, aluminum, etc.) that acts as a first electrode common to the dual-ended memory cells 422A, 422B. The via device 414 can also include a thin barrier material layer between the first portion 416 and the second portion 418, such as titanium, tungsten, titanium nitride, and the like. Additionally, various subsets of M4 metal layers 410 can be independently controlled, sensed, etc. to provide separate and respective second electrodes to the double-ended memory cells 422A, 422B, thereby enabling independent operation thereon.
在多種實施例中,栓塞420可以形成在通孔式裝置414和M5金屬層404之間。栓塞420可以由導電材料(例如,鈦,鎢,氮化鈦等)形成。根據一個面向,通孔式裝置可以使用鎢栓塞製程形成,以連接鋁、銅、其適合的化合物或合金,或者任何其它合適的金屬化方案。例如,如本文所討論的,鎢栓塞可用於製造金屬接觸。根據一個面向,第二絕緣層412可形成為具有基本上相當於M5金屬層404的底面(無論是形成通孔式裝置414前或後)的高度,且通孔可形成在第二絕緣層412內,並可往下形 成且暴露通孔式裝置414的頂面。鎢栓塞可以藉由使用鎢填充通孔洞而形成,使得通孔式裝置414的頂面可以與栓塞420直接電氣接觸。在一些實施例中,第二絕緣層412的頂面可以被研磨,以提供與第二絕緣層412的頂面齊平或基本上齊平的栓塞420頂面。M5金屬層404可以接著被沉積在栓塞420和第二絕緣層412的頂面上方,使得M5金屬層404的至少一個子集是與栓塞420電氣接觸。因此,M5金屬層404中的至少該子集可以藉由栓塞420而與通孔式裝置414的頂面電氣接觸。 In various embodiments, the plug 420 can be formed between the through-hole device 414 and the M5 metal layer 404. The plug 420 can be formed of a conductive material (eg, titanium, tungsten, titanium nitride, etc.). According to one aspect, the through-hole device can be formed using a tungsten plug process to join aluminum, copper, a suitable compound or alloy thereof, or any other suitable metallization scheme. For example, as discussed herein, tungsten plugs can be used to make metal contacts. According to one aspect, the second insulating layer 412 may be formed to have a height substantially corresponding to the bottom surface of the M5 metal layer 404 (whether before or after the via device 414 is formed), and the via hole may be formed in the second insulating layer 412 Inside and down The top surface of the via device 414 is exposed and exposed. The tungsten plug can be formed by filling the via with tungsten such that the top surface of the via 414 can be in direct electrical contact with the plug 420. In some embodiments, the top surface of the second insulating layer 412 can be ground to provide a top surface of the plug 420 that is flush or substantially flush with the top surface of the second insulating layer 412. An M5 metal layer 404 can then be deposited over the top surface of the plug 420 and the second insulating layer 412 such that at least a subset of the M5 metal layer 404 is in electrical contact with the plug 420. Thus, at least the subset of the M5 metal layer 404 can be in electrical contact with the top surface of the via device 414 by the plug 420.
如上述提到的,通孔式裝置414可以沿著非垂直的角度方向(例如,傾斜角等)形成一個或多個雙端記憶體單元422A、422B。記憶體單元422A、422B可以在第一部分416和第二部分418與M4金屬層410的左側子集和右子集的各個交界處被創建。其結果是,雙端子記憶體單元422A、422B的關鍵尺寸可由有利於通過各個交界處的電傳導性的最小共同表面積所建立。在一個實施例中,最小的電氣接觸表面面積可以(分別)是M4金屬層410的側壁表面,其與通孔式裝置414(如各個虛線卵圓內所描繪)的第二部分418的各個子集直接電氣接觸。因此,控制M4金屬層厚度可有效地縮放相應的各個雙端記憶體單元422A,422B。此外,此厚度可利用薄膜厚度的技術來控制,並在至少一些實施例中,可以在不利用微影技術縮放印刷的特徵的情况下實現。相較於第3圖,例如,可以將M4金屬層410的層形成得比第3圖的M4金屬層308更 薄,以將雙端記憶體單元422A、422B形成作為較小的技術節點。根據一個面向,M4層越薄,裝置就越小。因此,記憶體裝置可以通過控制金屬底部電極的厚度而縮放,例如,其可被控制到低於50埃或5奈米。然而在其他實施例中,更薄或更厚(例如,20奈米、1奈米等)的M4層也是可以被預期的。底電極層的材料的示例可以包括:鎢、鋁等,或其合適的組合。 As mentioned above, the via device 414 can form one or more double ended memory cells 422A, 422B along a non-perpendicular angular direction (eg, a tilt angle, etc.). Memory cells 422A, 422B may be created at respective junctions of the first portion 416 and the second portion 418 with the left and right subsets of the M4 metal layer 410. As a result, the critical dimensions of the two-terminal memory cells 422A, 422B can be established by a minimum common surface area that facilitates electrical conductivity through the various junctions. In one embodiment, the smallest electrical contact surface area may (respectively) be the sidewall surface of the M4 metal layer 410, which is associated with the respective portions of the second portion 418 of the via device 414 (as depicted in each dashed oval) Set direct electrical contact. Thus, controlling the thickness of the M4 metal layer effectively scales the respective respective double-ended memory cells 422A, 422B. Moreover, this thickness can be controlled using techniques of film thickness and, in at least some embodiments, can be accomplished without scaling the printed features using lithography. Compared to FIG. 3, for example, the layer of the M4 metal layer 410 can be formed more than the M4 metal layer 308 of FIG. Thin to form the double-ended memory cells 422A, 422B as smaller technology nodes. According to one aspect, the thinner the M4 layer, the smaller the device. Thus, the memory device can be scaled by controlling the thickness of the metal bottom electrode, for example, it can be controlled to less than 50 angstroms or 5 nanometers. In other embodiments, however, thinner or thicker (e.g., 20 nm, 1 nm, etc.) M4 layers are also contemplated. Examples of the material of the bottom electrode layer may include: tungsten, aluminum, or the like, or a suitable combination thereof.
另外,第3圖的支柱式裝置316可以被改變為第4圖的通孔式裝置414。在一些實施例中,通孔式裝置414的襯裏可包括選擇和切換層。另外,通孔式裝置414的軸環材料可包括單純的導電材料。對於支柱變成通孔襯裏層的材料示例可以包含:氧化矽(SiOx)、SiOx和氧化鈦(TiOx)的化合物、以及SiOx和氧化鋁(AlOx)的化合物等,或其合適的組合。用於填充支柱層的材料示例可以包括:鋁、鋁和銅的化合物、鋁、鈦和氮化鈦的化合物、以及鋁和銅、鋁和銅或氮化鈦的組合。頂部電極(例如,第1圖的第二金屬層112)的材料示例可以包括但不限於:鋁、氮化鈦、或鋁和氮化鈦的其它合適的化合物。在一些實例中,頂部電極可以由許多其它材料所形成,其包括:鉭(Ta)、氮化鉭、銅等,或其適當的組合。 In addition, the strut device 316 of FIG. 3 can be changed to the through-hole device 414 of FIG. In some embodiments, the lining of the through-hole device 414 can include a selection and switching layer. Additionally, the collar material of the through-hole device 414 can comprise a simple conductive material. Examples of the material for the pillar to become the through-hole backing layer may include: a compound of cerium oxide (SiOx), SiOx, and titanium oxide (TiOx), a compound of SiOx and aluminum oxide (AlOx), or the like, or a suitable combination thereof. Examples of the material for filling the pillar layer may include: a compound of aluminum, aluminum, and copper, a compound of aluminum, titanium, and titanium nitride, and a combination of aluminum and copper, aluminum, and copper or titanium nitride. Examples of materials for the top electrode (eg, the second metal layer 112 of FIG. 1) may include, but are not limited to, aluminum, titanium nitride, or other suitable compounds of aluminum and titanium nitride. In some examples, the top electrode can be formed from a number of other materials including: tantalum (Ta), tantalum nitride, copper, and the like, or a suitable combination thereof.
如圖所示,通孔可以都是通過(或在一些實施例中部分地通過)第二電極金屬(例如,M4金屬層410)。關鍵尺寸可以是在第二電極金屬(例如,M4金屬層410)與通孔式裝置414之間直接電氣接觸的表面區域。此 外,此表面區域可藉由限制通過單元的電流密度而影響雙端記憶體單元422A、422B的電阻率。因為通孔可以形成為具有各種橫截面形狀或大小,用於通孔式裝置414的通孔形狀/尺寸也可影響此關鍵尺寸表面面積,從而影響雙端記憶體單元422A、422B的電阻率。因此,在至少一個實施例中,關鍵尺寸可以藉由控制用於通孔示裝置414的通孔尺寸或形狀而被至少部份調整。 As shown, the vias may all pass (or in some embodiments partially pass) a second electrode metal (eg, M4 metal layer 410). The critical dimension may be a surface area that is in direct electrical contact between the second electrode metal (eg, M4 metal layer 410) and the via device 414. this In addition, this surface region can affect the resistivity of the double-ended memory cells 422A, 422B by limiting the current density through the cell. Because the vias can be formed to have various cross-sectional shapes or sizes, the shape/size of the vias for the via device 414 can also affect this critical dimension surface area, thereby affecting the resistivity of the dual-ended memory cells 422A, 422B. Thus, in at least one embodiment, the critical dimension can be at least partially adjusted by controlling the size or shape of the via for the via display 414.
根據一些實施方式,通孔可鑽孔通過多個底部電極(BE)堆疊(例如,多個金屬層),其可允許三個(或其他數量)裝置被包括在相同的通孔中。根據一些面向,底部電極可以是半導體。在進一步的實施例中,沿著雙端子記憶體單元422A、422B的傾斜角度的定向可以被選擇,以提供增强的電場(E-field),其相對於平面裝置來說可以减少通孔的形式(例如,寬度或長度)。 According to some embodiments, the vias may be drilled through a plurality of bottom electrode (BE) stacks (eg, multiple metal layers) that may allow three (or other number) devices to be included in the same via. According to some aspects, the bottom electrode can be a semiconductor. In a further embodiment, the orientation along the tilt angle of the two-terminal memory cells 422A, 422B can be selected to provide an enhanced electric field (E-field) that can reduce the form of the vias relative to the planar device (for example, width or length).
根據一個或多個所公開的面向,記憶體裝置結構可利用較小的CMOS裝置並能提高記憶體效率。此外,本文所公開的多種面向的記憶體裝置結構可以使用在大多數IC鑄造廠已經存在的材料而製造。此外,積體方案可以使裝置結構縮放至5奈米,而不需要使用典型的為5奈米(或更小)的技術節點的製造工具集(例如,不需要再加工)。例如,使用44奈米或193奈米的微影工具集,可使用所公開的面向製作20奈米以下的裝置。 In accordance with one or more of the disclosed aspects, a memory device structure can utilize smaller CMOS devices and can increase memory efficiency. Moreover, the various oriented memory device structures disclosed herein can be fabricated using materials that are already present in most IC foundries. In addition, the integrated solution can scale the device structure to 5 nm without the need to use a typical manufacturing tool set of 5 nanometers (or less) of technology nodes (eg, no further processing is required). For example, using a 44 nm or 193 nm lithography tool set, the disclosed device can be used to make devices below 20 nm.
根據一個實施方式,支柱式裝置或通孔式裝置可以包括呈現為選擇器裝置(如Crossbar FAST(TM) 的選擇裝置)的一種或多種材料。在一些實施例中,選擇器裝置可以包括選擇器層,其可以是具有揮發、雙極性切換特性的非化學計量材料。選擇層的合適材料的示例可包括:SiOX、TiOX、AlOX、WOX、TiXNYOZ等,或其適當組合,其中,x、y和z可以是合適的非化學計量的值。在本發明的至少一個實施例中,選擇器層可以在製造過程中摻雜金屬,以達到目標電阻或電導特性。如上所述,選擇器裝置可以包括離子導體層1或離子導體層2。離子導體層1或離子導體層2可包括固態電解質(例如,銀-鍺-硫、銅-鍺-硫、銀-鍺-碲、銅-鍺-碲等)、金屬氧化物合金(例如,AgSiO2等等),或類似物。 According to one embodiment, the strut device or through-hole device may comprise one or more materials that are presented as a selector device, such as a selection device for Crossbar FAST (TM). In some embodiments, the selector device can include a selector layer, which can be a non-stoichiometric material having volatile, bipolar switching characteristics. Examples of suitable materials for the selection layer may include: SiO X , TiO X , AlO X , WO X , Ti X N Y O Z, etc., or suitable combinations thereof, wherein x, y, and z may be suitable non-stoichiometric value. In at least one embodiment of the invention, the selector layer can be doped with metal during the fabrication process to achieve target resistance or conductance characteristics. As described above, the selector device may include the ion conductor layer 1 or the ion conductor layer 2. The ion conductor layer 1 or the ion conductor layer 2 may include a solid electrolyte (for example, silver-antimony-sulfur, copper-antimony-sulfur, silver-antimony-rhenium, copper-antimony-rhenium, etc.), a metal oxide alloy (for example, AgSiO). 2 etc.), or the like.
鑒於前文所述的示例性圖例,根據所公開的主題而實現的製程方法將藉由參照以下流程圖而更容易理解。雖然為了簡化說明目的,本方法被示意和描述為一系列的方塊。但應理解並瞭解,所請求的標的不受方框順序限制,因為一些方塊可能以不同的順序存在或與其他本文所描繪和說明的其它方塊同時出現。此外,要實現本文所描述的方法並非所有示意的方塊都是必須。另外,應該進一步理解,說明書整體所公開的方法能够被存儲在製造品上,以便將這些方法傳輸和轉移至電子裝置。術語「製造品」,如同習知,意在涵蓋可從任何電腦可讀裝置、裝置結合載體,或存儲媒介可存取的電腦程式。 In view of the exemplary illustrations described above, the process methods implemented in accordance with the disclosed subject matter will be more readily understood by reference to the following flowchart. Although the method has been illustrated and described as a series of blocks for purposes of illustration. It should be understood and understood, however, that the claimed subject matter is not limited by the order of the blocks, as some blocks may be present in a different order or in conjunction with other blocks depicted and described herein. Moreover, not all illustrated blocks are required to implement the methods described herein. In addition, it should be further understood that the methods disclosed in the entire specification can be stored on an article of manufacture to transfer and transfer the methods to the electronic device. The term "article of manufacture", as is conventional, is intended to encompass a computer program accessible from any computer-readable device, device-incorporated carrier, or storage medium.
第5圖根據本發明的多種面向,說明一個示例且非限制的使用積體電路鑄造相容製程的包括電阻式 記憶體的記憶體單元的製造方法500的流程圖。在步驟502,方法500可以包括製造單石堆疊,其包括在基材上方的多個層。該單石堆疊作為單石製程的一部分而可被製造在包含互補金屬氧化物半導體電路層的基材上方。另外,製造多層可以在基材的熱預算內所進行。 Figure 5 illustrates an exemplary and non-limiting use of an integrated circuit casting compatible process including resistive in accordance with various aspects of the present invention. A flowchart of a method 500 of manufacturing a memory cell. At 502, method 500 can include fabricating a monolithic stack comprising a plurality of layers over a substrate. The monolithic stack can be fabricated over a substrate comprising a complementary metal oxide semiconductor circuit layer as part of a single stone process. In addition, the manufacture of multiple layers can be carried out within the thermal budget of the substrate.
因此,在步驟504,製造該單石堆疊可以包括提供基板,其包含一個或多個互補金屬氧化物半導體(CMOS)裝置。例如,在一個實施例中,基材可以被設置為包括形成在其中的一個或多個CMOS裝置。在一個替代實施例中,一個或多個CMOS裝置可以至少部份製造在基材內或基材上方。在另一個實施例中,基材可被提供而具有一個或多個預先存在的CMOS裝置,並且方法500可以進一步包括在基材內、基材上或基材上方製造一個或多個附加的CMOS裝置。 Accordingly, at step 504, fabricating the monolithic stack can include providing a substrate comprising one or more complementary metal oxide semiconductor (CMOS) devices. For example, in one embodiment, the substrate can be configured to include one or more CMOS devices formed therein. In an alternate embodiment, one or more CMOS devices can be fabricated at least partially within or over the substrate. In another embodiment, a substrate can be provided with one or more pre-existing CMOS devices, and method 500 can further include fabricating one or more additional CMOSs within, on, or over the substrate. Device.
在步驟506,第一絕緣體層被製造在基材上方,而在步驟508,第一金屬層被製造在第一絕緣體層上方。第一絕緣體層可經配置而將基材與第一金屬層電氣隔離。 At step 506, a first insulator layer is fabricated over the substrate, and at step 508, a first metal layer is fabricated over the first insulator layer. The first insulator layer can be configured to electrically isolate the substrate from the first metal layer.
在步驟510,層間介電材料層被製作在第一金屬層上方。另外,在步驟512,電阻式記憶體裝置結構可被製造在層間介電材料層內。例如,電阻式記憶體裝置可以被實現為與至少第一金屬層電氣接觸的支柱式裝置。根據另一示例,電阻式記憶體裝置可以被實現為通孔式裝置。另外,在本示例中,通孔裝置可以被形成為與至少第 一金屬層電氣接觸。 At step 510, an interlayer dielectric material layer is formed over the first metal layer. Additionally, at step 512, the resistive memory device structure can be fabricated within the layer of interlayer dielectric material. For example, a resistive memory device can be implemented as a strut-type device in electrical contact with at least a first metal layer. According to another example, the resistive memory device can be implemented as a through-hole device. In addition, in the present example, the through hole device may be formed to be at least A metal layer is in electrical contact.
在步驟514,第二金屬層被製造在電阻式存儲裝置結構上方。在多種實施方式中,第一金屬層和第二金屬層之間的距離可以實質上類似於第二金屬層和第三金屬層之間的距離。在其他實施例中,方法500可形成電阻式記憶體裝置結構,同時保持第一金屬層和第二金屬層之間的目標距離(例如,由電氣設計模型所建立的預定距離)。 At step 514, a second metal layer is fabricated over the resistive memory device structure. In various embodiments, the distance between the first metal layer and the second metal layer can be substantially similar to the distance between the second metal layer and the third metal layer. In other embodiments, method 500 can form a resistive memory device structure while maintaining a target distance between the first metal layer and the second metal layer (eg, a predetermined distance established by an electrical design model).
根據一個實施方式,製造單石堆疊可以包括在大約攝氏450度的溫度下製造單石堆疊。在一個具體實施方式中,可在大約攝氏400和450度之間的溫度下製造單石堆疊。在另一個實施方式中,可在大約攝氏350和400度之間的溫度下製造該單石堆疊。在又一個實施方式中,可在大約攝氏300和350度之間的溫度下製造單石堆疊。 According to one embodiment, fabricating a monolithic stack may include fabricating a monolithic stack at a temperature of approximately 450 degrees Celsius. In a specific embodiment, a single stone stack can be fabricated at temperatures between about 400 and 450 degrees Celsius. In another embodiment, the monolithic stack can be fabricated at temperatures between about 350 and 400 degrees Celsius. In yet another embodiment, a single stone stack can be fabricated at temperatures between about 300 and 350 degrees Celsius.
第6圖根據本發明的多種面向,說明一個示例且非限制的製造記憶體單元的方法600的流程圖,記憶體單元包括形成作為支柱裝置的單石積體電阻式記憶體。在一些實施例中,第6圖的方法600可用於製造例如第1圖的記憶體單元100。在其他實施例中,方法600可用於製造第3圖的記憶體結構300。 6 is a flow diagram illustrating an exemplary and non-limiting method 600 of fabricating a memory cell including a monolithic resistive memory formed as a pillar device, in accordance with various aspects of the present invention. In some embodiments, the method 600 of FIG. 6 can be used to fabricate the memory unit 100 of FIG. 1, for example. In other embodiments, method 600 can be used to fabricate memory structure 300 of FIG.
方法600在步驟602開始,提供一種基材。基材可以是第1圖的CMOS 102或第3圖的M3金屬層302的一個子集。在一個實施例中,所提供的基材具有形成在 其中的一個或多個CMOS裝置。在一個替代實施例中,一個或多個CMOS裝置可被製造在基材上或內。在進一步的實施例中,基材可被設置為包括形成在其中的一個或多個CMOS裝置,且進一步的,一個或多個附加的CMOS裝置可被製造在基材上或內。 The method 600 begins at step 602 by providing a substrate. The substrate may be a subset of the CMOS 102 of Figure 1 or the M3 metal layer 302 of Figure 3. In one embodiment, the provided substrate has a One or more of the CMOS devices. In an alternate embodiment, one or more CMOS devices can be fabricated on or in a substrate. In a further embodiment, the substrate can be configured to include one or more CMOS devices formed therein, and further, one or more additional CMOS devices can be fabricated on or in the substrate.
在步驟604,第一金屬層被設置在基材上方。在一些實施例中,第一金屬層可以是第1圖的CMOS 102或第3圖的M3金屬層304的子集。例如,第一金屬層(例如,M3金屬層304)被設置作為基材的一部分。在另一實例中,第一金屬層(例如,M3金屬層304)被形成在包含一個或多個CMOS裝置的基材的頂部上。根據一個實施方式,在第一金屬層形成在基材上方前,絕緣層(例如,層間介電)被設置在基材上,而第一金屬層則形成在絕緣層上方。 At step 604, a first metal layer is disposed over the substrate. In some embodiments, the first metal layer can be a subset of CMOS 102 of FIG. 1 or M3 metal layer 304 of FIG. For example, a first metal layer (eg, M3 metal layer 304) is provided as part of the substrate. In another example, a first metal layer (eg, M3 metal layer 304) is formed on top of a substrate comprising one or more CMOS devices. According to one embodiment, before the first metal layer is formed over the substrate, an insulating layer (eg, interlayer dielectric) is disposed on the substrate, and a first metal layer is formed over the insulating layer.
在步驟606,第一金屬層可被層間介電質覆蓋。層間介電質例如可以是第1圖的第一絕緣層106或是第一絕緣體層。層間介電質被用於電氣絕緣金屬層。在一個或多個實施例中,層間介電質是用於電氣分離記憶體裝置中圖案化導線(例如,金屬字線、位元線、數據線、源線、選擇線等等)的緊密間隔陣列的介電材料。層間介電質可以包括具有相對低的(例如,接近1)介電常數k的絕緣體。具有低介電常數k可以盡可能减少在相鄰金屬線之間的電容耦合(例如,電氣交叉信號或影響)。根據一個面向,低k介電質是具有介電常數k低於3.9(二氧化矽的 k值)的介電材料。 At step 606, the first metal layer can be covered by an interlayer dielectric. The interlayer dielectric may be, for example, the first insulating layer 106 of FIG. 1 or the first insulator layer. The interlayer dielectric is used for the electrically insulating metal layer. In one or more embodiments, the interlayer dielectric is a closely spaced space for electrically separating patterned traces (eg, metal word lines, bit lines, data lines, source lines, select lines, etc.) in a memory device. The dielectric material of the array. The interlayer dielectric can include an insulator having a relatively low (eg, close to 1) dielectric constant k. Having a low dielectric constant k minimizes capacitive coupling (eg, electrical crossover signals or effects) between adjacent metal lines. According to one aspect, the low-k dielectric has a dielectric constant k of less than 3.9 (cerium oxide) k value) of dielectric material.
在步驟608,通孔可被形成通過層間介電質或被形成於其內。通孔可以是,例如,接觸、垂直接觸、導體等等。在一個實施方式中,通孔可在層間介電質的至少一部分內形成。在步驟610,通孔可由導電材料所填充。例如,填充有導電材料的通孔可以是第3圖的V3接觸306。根據多個實施方式,通孔式裝置可以利用合適的蝕刻技術、開槽技術、或用於去除堆疊半導體膜或層的材料的類似技術而形成。 At step 608, vias may be formed through or formed within the interlayer dielectric. The vias can be, for example, contacts, vertical contacts, conductors, and the like. In one embodiment, the vias may be formed in at least a portion of the interlayer dielectric. At step 610, the vias may be filled with a conductive material. For example, the via filled with the conductive material may be the V3 contact 306 of FIG. According to various embodiments, the via device can be formed using suitable etching techniques, slotting techniques, or similar techniques for removing materials of stacked semiconductor films or layers.
在步驟612,第二金屬層可形成在層間介電質和通孔的上方。第二金屬層可以是第3圖的M4金屬層308。根據一個實施方式,第二金屬層可被圖案化。 At step 612, a second metal layer can be formed over the interlayer dielectric and the via. The second metal layer may be the M4 metal layer 308 of FIG. According to one embodiment, the second metal layer can be patterned.
根據一些實施方式,形成第二金屬層可包括在第二金屬層中形成一個或多個不連續(例如,區段)。在一個實施例中,不連續性可藉由在第二金屬層的子集之間創建一個或多個通孔來創建。在另一個實施例中,不連續性可以通過圖案化第二金屬層來形成,例如,可以設置遮罩在第二金屬層(例如,M4層)上方,但不設置在包括不連續性的第二金屬層區域的上方。第二金屬層可以接著被蝕刻,以去除遮罩未覆蓋的材料,從而提供不連續性。此後,可移除遮罩。根據一個實施例,在第二金屬層中的不連續性可以由介電材料所填充。 According to some embodiments, forming the second metal layer can include forming one or more discontinuities (eg, segments) in the second metal layer. In one embodiment, the discontinuity can be created by creating one or more vias between the subset of second metal layers. In another embodiment, the discontinuity may be formed by patterning the second metal layer, for example, a mask may be disposed over the second metal layer (eg, the M4 layer), but not included in the discontinuity Above the area of the two metal layers. The second metal layer can then be etched to remove material that is not covered by the mask, thereby providing discontinuities. Thereafter, the mask can be removed. According to an embodiment, the discontinuity in the second metal layer may be filled by a dielectric material.
在步驟614,可以形成導電材料層。在步驟616,導電柱材料層可以被圖案化以形成導電結構(例如, 支柱裝置,支柱式裝置等)。在步驟618,被圖案化的導電結構可由層間介電質所填充。此外,在步驟620,層間介電可以被平坦化,以至少暴露導電結構的頂面。 At step 614, a layer of electrically conductive material can be formed. At step 616, the layer of conductive pillar material can be patterned to form a conductive structure (eg, Pillar device, pillar device, etc.). At step 618, the patterned conductive structure can be filled with an interlayer dielectric. Additionally, at step 620, the interlayer dielectric can be planarized to expose at least the top surface of the conductive structure.
在步驟622,材料堆疊沉積有包含各個材料層。例如,該材料堆疊可包括電阻切換材料層,例如未摻雜的非晶矽材料層、非化學計量氧化矽等。材料堆疊還可以包括主動金屬層(例如,銀、金、鋁等)。此外,材料堆疊可包括電阻切換材料和主動金屬材料層之間的阻障材料層,如鈦、鎢、氮化鈦等。在多種實施例中,頂蓋可以是導電材料(例如,鈦,鎢,氮化鈦等)所組成。在步驟624,材料堆疊可以被圖案化,以創建軸環式結構。在一個或多個實施例中,材料堆疊可以被圖案化和蝕刻,以在上述步驟616和618的導電結構的頂部上形成材料堆疊結構。此外,材料堆疊結構可被形成為具有第一周長,其不同於導電結構的第二周長的長度。此周長長度的差異(材料堆疊具有第一周長長度,且堆疊在具有第二周長長度的導電結構的頂部上)可以减少材料堆疊結構附近的漏電流,並在絕緣介電層內提供更好的材料封裝。 At step 622, the material stack is deposited with layers of various materials. For example, the stack of materials can include a layer of resistive switching material, such as an undoped layer of amorphous tantalum material, non-stoichiometric tantalum oxide, and the like. The material stack may also include an active metal layer (eg, silver, gold, aluminum, etc.). Additionally, the material stack can include a barrier material layer between the resistance switching material and the active metal material layer, such as titanium, tungsten, titanium nitride, and the like. In various embodiments, the cap may be comprised of a conductive material (eg, titanium, tungsten, titanium nitride, etc.). At step 624, the material stack can be patterned to create a collar structure. In one or more embodiments, the stack of materials can be patterned and etched to form a stack of materials on top of the conductive structures of steps 616 and 618 above. Additionally, the material stack structure can be formed to have a first perimeter that is different than the length of the second perimeter of the conductive structure. This difference in length of the perimeter (the material stack has a first perimeter length and is stacked on top of the conductive structure having a second perimeter length) can reduce leakage current near the material stack and provide within the insulating dielectric layer Better material packaging.
在步驟626,方法600可以包括使用另一個層間介電層填充。接著,在步驟628,平坦化以暴露材料堆疊結構的頂面。此外,在步驟630,第三金屬層(例如,第3圖的M5金屬層312)被形成在材料堆疊結構的頂面和其他層間介電層的上方。根據一個實施方式,第三金屬層可被圖案化、蝕刻和填充(使用絕緣材料),以形成各個第 三金屬層區段。 At step 626, method 600 can include filling with another interlayer dielectric layer. Next, at step 628, planarization is performed to expose the top surface of the material stack. Further, at step 630, a third metal layer (eg, M5 metal layer 312 of FIG. 3) is formed over the top surface of the material stack and other interlayer dielectric layers. According to one embodiment, the third metal layer can be patterned, etched, and filled (using an insulating material) to form each Three metal layer segments.
如本文所述,支柱材料層可包括支柱裝置,其可包含形成在金屬層頂部的(接觸材料的)支柱式結構和設置在支柱式結構頂部上的軸環式結構。軸環式結構可包括設置在支柱式結構上方的堆疊狀結構裏的兩個或更多層材料。軸環式結構的橫截面可以大於支柱式結構(例如,如上所述,具有較大的周長)。在一些實施例中,兩個或更多的層可以包括設置在第二圓柱式結構上方的圓柱式結構中的第一層。第二圓柱式結構在第一表面接觸金屬層,而第二表面耦合到第一圓柱式結構。根據這一實施方式,第一圓柱式結構具有接觸支柱式結構的第一側和接觸第二圓柱式結構的第二表面的第二側。第一表面和第二表面可位於第二圓柱狀結構的相對側。 As described herein, the strut material layer can include a strut device that can include a strut structure (of the contact material) formed on top of the metal layer and a collar structure disposed on top of the strut structure. The collar structure can include two or more layers of material disposed in a stacked structure above the strut structure. The collar structure may have a cross section that is larger than the strut structure (eg, as described above, having a larger circumference). In some embodiments, two or more layers may include a first layer disposed in a cylindrical structure above the second cylindrical structure. The second cylindrical structure contacts the metal layer on the first surface and the second surface is coupled to the first cylindrical structure. According to this embodiment, the first cylindrical structure has a first side that contacts the strut structure and a second side that contacts the second surface of the second cylindrical structure. The first surface and the second surface may be located on opposite sides of the second cylindrical structure.
根據另一個實施方式,電阻式記憶體裝置結構可包括支柱裝置。支柱裝置可包括支柱結構,其包括導電材料、第一覆蓋材料層和第二覆蓋材料層,其中第一覆蓋材料層包含切換材料,且第二覆蓋材料層包含主動導體材料。根據這一實施方式,第一覆蓋材料層的特徵在於第一厚度,而第二覆蓋材料層的特徵在於與第一厚度不同的第二厚度。 According to another embodiment, the resistive memory device structure can include a strut device. The strut device can include a strut structure including a conductive material, a first cover material layer, and a second cover material layer, wherein the first cover material layer comprises a switching material and the second cover material layer comprises an active conductor material. According to this embodiment, the first covering material layer is characterized by a first thickness and the second covering material layer is characterized by a second thickness different from the first thickness.
第7圖根據本發明的多種面向,說明一個示例且非限制的製造記憶體單元的方法的流程圖,記憶體單元包括形成作為通孔裝置的單石積體電阻式記憶體。第7圖的方法700可以利用來製造,例如,第2圖的記憶體 單元200和/或第4圖的記憶體結構400。 Figure 7 is a flow diagram illustrating an exemplary and non-limiting method of fabricating a memory cell including a monolithic resistive memory formed as a via device in accordance with various aspects of the present invention. The method 700 of FIG. 7 can be utilized to fabricate, for example, the memory of FIG. Unit 200 and/or memory structure 400 of FIG.
在步驟702提供一個基材。在一個實施例中,所提供的基材具有形成在其中的一個或多個CMOS裝置。在一個替代實施例中,一個或多個CMOS裝置可以製造在基材上或內。在進一步的實施例中,可提供基材,其中形成有一個或多個CMOS裝置,並且還可在基材上或內製造一個或多個附加CMOS裝置。 A substrate is provided at step 702. In one embodiment, the provided substrate has one or more CMOS devices formed therein. In an alternate embodiment, one or more CMOS devices can be fabricated on or in a substrate. In a further embodiment, a substrate can be provided in which one or more CMOS devices are formed, and one or more additional CMOS devices can also be fabricated on or in the substrate.
在步驟704,第一金屬層設置於基材上方。在一些實施例中,第一金屬層是第4圖的M3金屬層404。例如,第一金屬層(例如,M3金屬層404)可被設置作為基材的一部分。在另一實例中,第一金屬層(例如,M3金屬層404)可被形成在包含一個或多個CMOS裝置的基材的頂部上。根據一個實施方式,在基材上方形成第一金屬層之前,絕緣層(例如,層間介電質)被設置在基材上方,而第一金屬層形成在絕緣層上方。 At step 704, a first metal layer is disposed over the substrate. In some embodiments, the first metal layer is the M3 metal layer 404 of FIG. For example, a first metal layer (eg, M3 metal layer 404) can be provided as part of the substrate. In another example, a first metal layer (eg, M3 metal layer 404) can be formed on top of a substrate comprising one or more CMOS devices. According to one embodiment, an insulating layer (eg, an interlayer dielectric) is disposed over the substrate prior to forming the first metal layer over the substrate, and a first metal layer is formed over the insulating layer.
在步驟706,第一層間介電質可被形成在第一金屬層上方。層間介電質可用於電氣絕緣金屬層。進一步的,層間介電質詳細來說是一種用於電氣分離緊密間隔互連線(例如,金屬層)的介電材料。層間介電可以包括絕緣體,其具有盡可能低(例如,越接近1越好)的介電常數。具有低介電常數k可以盡可能减少在相鄰金屬線之間的電容耦合(例如,串擾)。根據一個面向,低k介電質是具有介電常數k低於3.9(二氧化矽的k值)的介電材料。 At step 706, a first interlayer dielectric can be formed over the first metal layer. The interlayer dielectric can be used for electrically insulating metal layers. Further, the interlayer dielectric is in detail a dielectric material for electrically separating closely spaced interconnect lines (eg, metal layers). The interlayer dielectric may include an insulator having a dielectric constant that is as low as possible (eg, closer to 1 as possible). Having a low dielectric constant k minimizes capacitive coupling (eg, crosstalk) between adjacent metal lines. According to one aspect, the low-k dielectric is a dielectric material having a dielectric constant k of less than 3.9 (k value of cerium oxide).
在步驟708,通孔可被形成通過層間介電 質。根據多個實施方式,通孔式裝置可以利用合適的蝕刻技術、開槽技術、或用於去除堆疊半導體膜或層的材料的類似技術而形成。通孔可以是,例如,接觸、垂直接觸、導體等等。在一個實施方式中,通孔可在層間介電質的至少一部分內形成。在步驟710,通孔可由導電材料所填充。例如,填充有導電材料的通孔可以是第4圖的V3接觸406。 At step 708, the vias may be formed through the interlayer dielectric quality. According to various embodiments, the via device can be formed using suitable etching techniques, slotting techniques, or similar techniques for removing materials of stacked semiconductor films or layers. The vias can be, for example, contacts, vertical contacts, conductors, and the like. In one embodiment, the vias may be formed in at least a portion of the interlayer dielectric. At step 710, the vias may be filled with a conductive material. For example, the via filled with the conductive material may be the V3 contact 406 of FIG.
在步驟712,第二金屬層可形成在層間介電質和通孔的上方。第二金屬層可以是第4圖的M4金屬層408。根據一個實施方式,第二金屬層可被圖案化。 At step 712, a second metal layer can be formed over the interlayer dielectric and the via. The second metal layer may be the M4 metal layer 408 of FIG. According to one embodiment, the second metal layer can be patterned.
在步驟714,可以形成另一個層間介電層。另一個層間介電層可被形成在第二金屬層上方,並且可以被用於將第二金屬層從後續的層電氣隔離。 At step 714, another interlayer dielectric layer can be formed. Another interlayer dielectric layer can be formed over the second metal layer and can be used to electrically isolate the second metal layer from subsequent layers.
在步驟716,第二通孔可被形成通過另一個層間絕緣層的一部分和第二金屬層的一部分。在步驟718,第二通孔的側壁可被加襯。根據一個實施方式,側壁是被電阻切換材料層加襯。 At step 716, a second via may be formed through a portion of another interlayer insulating layer and a portion of the second metal layer. At step 718, the sidewalls of the second via may be lined. According to one embodiment, the side walls are lined with a layer of resistance switching material.
在步驟720,第二通孔的剩餘部分由金屬材料所填充。在一個實施例中,用於填充第二通孔的剩餘部分的金屬材料可以是主動金屬。在另一個實施例中,第二金屬層可以由主動金屬來形成,並且在這樣的情况下,用於填充第二通孔的剩餘部分的金屬材料可以選自鋁、鋁和銅、含氮化鈦的鋁、含鈦或氮化鈦的鋁、氮化鈦、鋁和銅或氮化鈦,或其適當的組合。在步驟722,其他層間介電質和第二通孔的頂部可被平坦化。 At step 720, the remainder of the second via is filled with a metallic material. In one embodiment, the metal material used to fill the remaining portion of the second via may be an active metal. In another embodiment, the second metal layer may be formed of an active metal, and in such a case, the metal material for filling the remaining portion of the second via may be selected from aluminum, aluminum, and copper, including titanium nitride. Aluminum, titanium or titanium nitride-containing aluminum, titanium nitride, aluminum and copper or titanium nitride, or a suitable combination thereof. At step 722, the other interlayer dielectrics and the tops of the second vias may be planarized.
在步驟724,平坦化的層間介電質和第二通孔可以被第三層間介電質覆蓋。此外,在步驟726,第三通孔形成在第三層間介電質中。第三通孔可朝向被填充的第二通孔頂面而向下形成。 At step 724, the planarized interlayer dielectric and the second via may be covered by a third interlayer dielectric. Further, at step 726, a third via is formed in the third interlayer dielectric. The third through hole may be formed downward toward the top surface of the second through hole to be filled.
在步驟728,第三通孔填充有金屬材料。例如,金屬材料可以是鎢或類似的材料。在步驟730,第三層間介電質和第三通孔被平坦化,以暴露鎢材料。另外,在步驟732,第三金屬層被形成。第三金屬層可根據一個面向而被圖案化。 At step 728, the third via is filled with a metallic material. For example, the metallic material can be tungsten or a similar material. At step 730, the third interlayer dielectric and the third via are planarized to expose the tungsten material. Additionally, at step 732, a third metal layer is formed. The third metal layer can be patterned according to one face.
本文所提供的是電阻式記憶體的單石積體,其具有利用積體電路鑄造製程的CMOS。所公開的面向在熱預算和電漿損傷上是可接受的,其可基於多種設計考量。此外,如本文所討論的連接方案已利用積體電路鑄造的多種方案而被提供,根據一個面向,多種方案是利用鎢栓塞製程以連接到鋁、銅、或任何其它的金屬化方案。此外,通過使用所公開的面向,對於電路中的其他裝置的設計規則和電氣模式,就算有也只會造成一點影響。此外,相對於其他製程,一個或多個所公開的面向具有較低的成本、較低的寄生考量,以及更小的晶片大小。 Provided herein is a monolithic body of resistive memory having a CMOS that utilizes an integrated circuit casting process. The disclosed aspects are acceptable in terms of thermal budget and plasma damage, which can be based on a variety of design considerations. Moreover, the connection schemes as discussed herein have been provided using a variety of schemes for integrated circuit casting, according to one aspect, multiple schemes utilizing a tungsten plug process to connect to aluminum, copper, or any other metallization scheme. Moreover, by using the disclosed aspects, the design rules and electrical modes for other devices in the circuit can only have a small impact. Moreover, one or more of the disclosed aspects have lower cost, lower parasitic considerations, and smaller wafer sizes relative to other processes.
在各種本發明的實施例中,所公開的記憶體結構可被用作具有CPU或微電腦的獨立或積體嵌入式存儲裝置。一些實施例可以被實現成,舉例來說,作為電腦記憶體的部分(例如,隨機存取記憶體、高速緩衝記憶體、唯讀記憶體、儲存記憶體等)。其它可實施的實施例, 例如,作為可携式記憶體裝置。合適的可携式記憶體裝置的示例可包括諸如可移除記憶體、安全數位(SD)卡、通用串列匯流排(USB)儲存器棒、緊密閃存(CF)卡等,或前述的合適組合。(例如,參見第8圖和9及下文)。 In various embodiments of the invention, the disclosed memory structure can be used as an independent or integrated embedded memory device with a CPU or microcomputer. Some embodiments may be implemented, for example, as part of a computer memory (eg, random access memory, cache memory, read only memory, storage memory, etc.). Other implementable embodiments, For example, as a portable memory device. Examples of suitable portable memory devices may include, for example, removable memory, secure digital (SD) cards, universal serial bus (USB) memory sticks, compact flash (CF) cards, etc., or suitable for the foregoing. combination. (See, for example, Figures 8 and 9 and below).
NAND FLASH可被採用於緊密型快閃裝置、USB裝置、SD卡、固態硬碟(SSD)、和存儲等級儲存器、也可被用於其他形式。雖然NAND已經在過去十年中證明促進驅動縮減到更小的裝置和較高的晶片密度的成功的技術,隨著技術按比例縮小至舊25奈米(nm)的記憶體單元的技術,一些結構、性能和可靠性問題也變得明顯。這樣的考慮已經在所公開面向中解决。 NAND FLASH can be used in compact flash devices, USB devices, SD cards, solid state drives (SSDs), and storage class storage, and can be used in other forms as well. While NAND has proven successful in the past decade to drive reduced technology to smaller devices and higher wafer densities, as technology scales down to the old 25 nanometer (nm) memory cell technology, some Structural, performance and reliability issues have also become apparent. Such considerations have been addressed in the disclosed aspects.
為了提供所公開主題的各個面向的上下文、第8圖、以及下面的討論中,旨在對於其中所公開的主題可以被實現或處理的各種面向的環境提供簡要、合適的說明。雖然在半導體結構和製程方法的一般上下文中已經說明了用於製造和操作這種結構的主題,本領域的技術人員將認知,本發明也可以與其它結構或製程方法的組合來實現。此外,本領域的技術人員將理解,所公開程序可被實現於處理系統或電腦處理器(不論是單獨電腦或結合主電腦(例如,第9圖及後文中的電腦902)),其可包括單一處理器或多個處理器電腦系統、小型計算裝置、大型電腦、以至於個人電腦、手持式電腦裝置(例如,PDA、智慧電話、手錶),以微處理器為基礎或可編程消費或工業電子產品等。所說明的方面也可以被實現於分散式計算環 境,其中任務是通過通信網路連接的遠程處理裝置來執行。然而,本發明的某些或全部面向能被實施在單機電子設備,諸如記憶卡、快閃記憶體模組、可移除記憶體等。在分散式計算環境中,程式模組可以同時位於本地和遠程記憶體儲存模組或裝置中。 To provide a context-specific context for the disclosed subject matter, FIG. 8, and the following discussion, a brief, suitable description is provided for various aspects of the environment in which the disclosed subject matter can be implemented or processed. Although the subject matter for making and operating such structures has been described in the general context of semiconductor structures and process methods, those skilled in the art will appreciate that the invention can be practiced in combination with other structures or process methods. Moreover, those skilled in the art will appreciate that the disclosed program can be implemented in a processing system or computer processor (whether it is a separate computer or in conjunction with a host computer (eg, computer 902 in FIG. 9 and hereinafter)), which can include Single processor or multiple processor computer systems, small computing devices, large computers, even personal computers, handheld computer devices (eg, PDAs, smart phones, watches), microprocessor-based or programmable consumer or industrial Electronic products, etc. The illustrated aspects can also be implemented in a decentralized computing loop The task is performed by a remote processing device connected via a communication network. However, some or all aspects of the present invention can be implemented in stand-alone electronic devices such as memory cards, flash memory modules, removable memory, and the like. In a decentralized computing environment, program modules can be located in both local and remote memory storage modules or devices.
第8圖說明根據本發明的面向中用於記憶體單元陣列802的示例操作和控制環境800的方塊圖。在本發明的至少一個面向中,記憶單元陣列802可以包括多種記憶體單元技術。具體來說,如本文所述,記憶體單元陣列802可包括具有整流特性的電阻式切換記憶體單元。 Figure 8 illustrates a block diagram of an example operational and control environment 800 for a memory cell array 802 in accordance with the present invention. In at least one aspect of the present invention, memory cell array 802 can include a variety of memory cell technologies. In particular, as described herein, memory cell array 802 can include a resistive switching memory cell having rectifying characteristics.
列控制器804或行控制器806可以形成於鄰近記憶體單元陣列802。而且,行控制器806可以電性耦合於記憶體單元陣列802的位元線。行控制器806可以控制各個位元線、施加適當的編程、抹除或讀出電壓至選定的位元線。 Column controller 804 or row controller 806 can be formed adjacent to memory cell array 802. Moreover, row controller 806 can be electrically coupled to bit lines of memory cell array 802. Row controller 806 can control individual bit lines, apply appropriate programming, erase or sense voltages to selected bit lines.
列控制器804可被形成於鄰近行控制器806,且電性連接於記憶體單元陣列802的字線。列控制器804可以利用合適的選擇電壓選擇記憶體單元的特定列。此外,列控制器804可以藉由施加合適的電壓於所選擇的字線以利於編程、抹除或讀取操作。 Column controller 804 can be formed adjacent row controller 806 and electrically coupled to word lines of memory cell array 802. Column controller 804 can select a particular column of memory cells with a suitable selection voltage. In addition, column controller 804 can facilitate programming, erase or read operations by applying a suitable voltage to the selected word line.
時脈源808能够提供各自的時脈脈衝,以便對於列控制器804和行控制器806的讀、寫及編程操作校時。時脈源808可以進一步便於字線或位元線的選擇,以響應於由操作和控制環境800所接收的外部或內部命 令。輸入/輸出緩衝器812可以透過I/O緩衝器或其他I/O通訊介面的方式被連接至外部主設備,例如電腦或其它處理裝置(未示出,但可見例如第9圖的電腦902及後文)。輸入/輸出緩衝器812可以被配置為接收寫入數據、接收抹除指令、輸出讀出的數據、及接收位址數據和命令數據,以及作為各自的指令的位址數據。藉由位址暫存器810,位址數據可以被轉移至列控制器804及行控制器806。此外,輸入數據可經由信號輸入線傳遞到記憶體單元陣列802,且可經由信號輸出線從記憶體單元陣列802接收輸出數據。輸入數據可從主設備接收,且輸出數據可以經由I/O緩衝器傳送到主設備。 Clock source 808 can provide respective clock pulses for timing of read, write, and program operations for column controller 804 and row controller 806. The clock source 808 can further facilitate selection of word lines or bit lines in response to external or internal lives received by the operating and control environment 800. make. The input/output buffer 812 can be connected to an external host device, such as a computer or other processing device, through an I/O buffer or other I/O communication interface (not shown, but for example, the computer 902 of FIG. 9 and epilogue). Input/output buffer 812 can be configured to receive write data, receive erase instructions, output read data, and receive address data and command data, as well as address data for respective instructions. The address data can be transferred to the column controller 804 and the row controller 806 by the address register 810. Additionally, input data can be passed to the memory cell array 802 via the signal input lines and output data can be received from the memory cell array 802 via the signal output lines. Input data can be received from the master device and the output data can be transferred to the master device via the I/O buffer.
從主設備接收的命令可以被提供到命令介面814。命令介面814可以被配置為接收來自主設備的外部控制信號,並且確定輸入到輸入/輸出緩衝器812的數據是否為寫入數據、命令或位址。輸入的命令可以被傳送到狀態機816。 Commands received from the master device can be provided to the command interface 814. The command interface 814 can be configured to receive an external control signal from the master device and determine if the data input to the input/output buffer 812 is a write data, command, or address. The entered commands can be passed to state machine 816.
狀態機816可以被配置為管理記憶體單元陣列802的編程和重新編程。狀態機816經由輸入/輸出緩衝器812和命令介面814從主設備接收命令,並管理讀取、寫入、抹除、數據輸入、數據輸出,以及和記憶體單元陣列802相關的類似功能。在一些面向中,狀態機816可以發送和接收關於各種命令的成功接收或執行的確認和負面確認。 State machine 816 can be configured to manage programming and reprogramming of memory cell array 802. State machine 816 receives commands from the host device via input/output buffer 812 and command interface 814 and manages read, write, erase, data input, data output, and similar functions associated with memory cell array 802. In some aspects, state machine 816 can send and receive acknowledgments and negative acknowledgments regarding successful receipt or execution of various commands.
為了實現讀取、寫入、抹除、輸入、輸出 等功能,狀態機816可以控制時脈源808。時脈源808的控制可以造成輸出脈衝配置為促進列控制器804和行控制器806實施特定功能。輸出脈衝可以藉由(例如)行控制器806而被傳送到選定的位元線、或藉由(例如)列控制器804而被傳送到選定的字線。 For read, write, erase, input, and output The state machine 816 can control the clock source 808. Control of the clock source 808 can cause the output pulses to be configured to facilitate the column controller 804 and row controller 806 to perform particular functions. The output pulses can be transmitted to the selected bit line by, for example, row controller 806 or to the selected word line by, for example, column controller 804.
結合第8圖,下面描述的系統和製程可以在硬體中實現,例如單個積體電路(IC)晶片、多個IC、專用積體電路(ASIC)等。另外,出現在各製程中的部分或全部製程方塊的順序不應該被認為是限制性的。而應當理解的是,一些製程方塊可以用各種順序來執行,並不是所有可能順序都可在此明確說明。 In conjunction with FIG. 8, the systems and processes described below can be implemented in hardware, such as a single integrated circuit (IC) die, multiple ICs, dedicated integrated circuits (ASIC), and the like. In addition, the order of some or all of the process blocks appearing in each process should not be considered limiting. It should be understood that some process blocks may be performed in various sequences, and not all possible sequences may be explicitly recited herein.
參考第9圖,用於實現所要求保護的主題的多種面向的適當操作環境900包括電腦902。電腦902包括處理單元904、系統記憶體906、編解碼器935、以及系統匯流排908。系統匯流排908耦合系統元件到處理單元904,系統元件包括但不限於系統記憶體906。處理單元904可以是任意各種可使用的處理器。雙微處理器和其他多處理器結構也可以被利用作為處理單元904。 Referring to FIG. 9, a plurality of orientation-oriented appropriate operating environments 900 for implementing the claimed subject matter include a computer 902. Computer 902 includes processing unit 904, system memory 906, codec 935, and system bus 908. System bus 908 couples system components to processing unit 904, which includes, but is not limited to, system memory 906. Processing unit 904 can be any of a variety of processors that can be used. Dual microprocessors and other multiprocessor architectures can also be utilized as processing unit 904.
系統匯流排908可以是任何若干類型的匯流排結構,其包括記憶體匯流排或記憶體控制器、外圍匯流排或外部匯流排、或使用任何各種可用匯流排結構的本地匯流排,其包括但不限於:工業標準架構(ISA)、微通道架構(MSA)、擴展式ISA(EISA)、智能驅動器電子(IDE)、VESA本地匯流排(VLB)、周邊元件互連(PCI)、 卡匯流排、通用串行匯流排(USB)、高級圖形埠(AGP)、個人電腦記憶卡國際協定匯流排(PCMCIA)、火線(IEEE 1394)、以及小型電腦系統介面(SCSI)。 System bus 908 can be any number of types of bus bar structures including memory bus or memory controllers, peripheral bus bars or external bus bars, or local bus bars using any of a variety of available bus bar structures, including but Not limited to: Industry Standard Architecture (ISA), Micro Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Card bus, Universal Serial Bus (USB), Advanced Graphics (AGP), Personal Computer Memory Card International Compact Bus (PCMCIA), Firewire (IEEE 1394), and Small Computer System Interface (SCSI).
在多個實施例中,系統記憶體906包括揮發性記憶體910和非揮發性記憶體912,其可以使用一個或多個所公開的記憶體結構。基本輸入/輸出系統(BIOS)被存儲在非揮發性記憶體912中,BIOS包含用以在電腦902內的元件之間傳輸資訊(例如,在啟動期間)的基本常式。此外,根據本發明,編解碼器935可以包括編碼器或解碼器的至少其中一個,其中,編碼器或解碼器的至少其中一個可以由硬體、軟體、或硬體和軟體的組合而組成。雖然,編解碼器935被描繪為獨立的組件,編解碼器935可被包含在非揮發性記憶體912內。 In various embodiments, system memory 906 includes volatile memory 910 and non-volatile memory 912, which may use one or more of the disclosed memory structures. A basic input/output system (BIOS) is stored in non-volatile memory 912, which contains the basic routine for transferring information between elements within computer 902 (e.g., during startup). Further, according to the present invention, the codec 935 may include at least one of an encoder or a decoder, wherein at least one of the encoder or the decoder may be composed of hardware, software, or a combination of hardware and software. Although codec 935 is depicted as a separate component, codec 935 can be included in non-volatile memory 912.
通過說明的方式而非限制,非揮發性記憶體912可以包括唯讀記憶體(ROM)、可編程ROM(PROM)、電氣可編程ROM(EPROM)、電氣可抹除可編程ROM(EEPROM)、或快閃記憶體。在至少一些公開的實施例中,非揮發性記憶體912可以使用一個或多個所公開的記憶體結構。此外,非揮發性記憶體912可以是電腦記憶體(例如,物理性積體電腦902或其主板)、或可移除記憶體。所公開的實施例的合適的可移除記憶體的實例可包括安全數位(SD)卡、緊密閃存(CF)卡、通用串行匯流排(USB)記憶棒等而實現。揮發性記憶體910包括高速緩存記憶體或隨機存取記憶體(RAM),其作為外部高速緩衝 記憶體,並且還可以採用在多個實施例中的一個或多個所公開的記憶體結構。通過說明而非限制的方式,RAM可以許多形式使用,諸如靜態RAM(SRAM)、動態RAM(DRAM)、同步DRAM(SDRAM)、雙數據速率SDRAM(DDR SDRAM)、和增强型SDRAM(ESDRAM)等等。 By way of illustration and not limitation, non-volatile memory 912 may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), Or flash memory. In at least some of the disclosed embodiments, the non-volatile memory 912 can use one or more of the disclosed memory structures. In addition, the non-volatile memory 912 can be a computer memory (eg, a physical integrated computer 902 or its motherboard), or a removable memory. Examples of suitable removable memory of the disclosed embodiments can be implemented including a secure digital (SD) card, a compact flash (CF) card, a universal serial bus (USB) memory stick, and the like. Volatile memory 910 includes cache memory or random access memory (RAM) as an external cache Memory, and one or more of the disclosed memory structures in various embodiments may also be employed. By way of illustration and not limitation, RAM can be used in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), and enhanced SDRAM (ESDRAM). Wait.
電腦902還可以包括可移除/不可移除、揮發性/揮發性電腦儲存媒介。第9圖示出,例如,碟盤儲存914。碟盤儲存914包括但不限於裝置如:磁性碟盤驅動器、固態碟盤(SSD)、軟式碟盤驅動器、磁帶驅動器、Jaz驅動器、Zip驅動器、LS-100驅動器、快閃卡、或記憶棒。此外,碟盤儲存914可包括儲存媒介,其單獨或組合於其他儲存媒介,其包括但不限於光碟驅動器例如:壓縮光碟ROM裝置(CD-ROM)、CD可記錄驅動器(CD-R驅動器)、CD可重寫驅動器(CD-RW驅動器)或數位通用光碟ROM驅動器(DVD-ROM)。為便於碟盤儲存914連接至系統匯流排908,一般使用諸如介面916的可移除或不可移除介面。可以理解,碟盤儲存914可以儲存關於用戶的資訊。這樣的資訊可以被儲存在或提供到伺服器或用戶裝置上運行的應用程序。在一個實施例中,用戶可被通知(例如,透過輸出裝置936)被儲存到碟盤儲存914和/或發送到伺服器或應用程序的資訊類型。用戶有機會以選擇加入或選擇退出具有這樣收集和/或共享於伺服器或應用程序(例如,透過輸入裝置928)的資訊。 Computer 902 may also include removable/non-removable, volatile/volatile computer storage media. Figure 9 shows, for example, disk storage 914. Disk storage 914 includes, but is not limited to, a device such as a magnetic disk drive, a solid state disk (SSD), a floppy disk drive, a tape drive, a Jaz drive, a Zip drive, an LS-100 drive, a flash card, or a memory stick. In addition, the disc storage 914 can include storage media, either alone or in combination with other storage media, including but not limited to optical disc drives such as compact disc ROM devices (CD-ROMs), CD recordable drives (CD-R drives), CD rewritable drive (CD-RW drive) or digital versatile CD ROM drive (DVD-ROM). To facilitate the connection of the disk storage 914 to the system bus 908, a removable or non-removable interface such as interface 916 is typically used. It will be appreciated that the disc storage 914 can store information about the user. Such information can be stored or provided to an application running on a server or user device. In one embodiment, the user may be notified (eg, via output device 936) the type of information that is stored to the disc storage 914 and/or sent to the server or application. The user has the opportunity to opt-in or opt-out of information having such collection and/or sharing with a server or application (e.g., via input device 928).
但是應當理解的是,第9圖描述軟體,其 作為用戶和在合適的操作環境900中描述的基本電腦資源之間的中介。這樣的軟體包括操作系統918。操作系統918可以儲存在碟盤儲存914上,其作用是控制和分配電腦902的資源。應用程序920藉由操作系統918利用資源的管理,其透過例如啟動/關閉處理表等的程式模組924、程式數據926,其儲存於系統記憶體906中或碟盤儲存914上。但是應當理解,所要求保護的主題可以用各種操作系統或操作系統的組合來實現。 However, it should be understood that Figure 9 depicts the software, which As an intermediary between the user and the basic computer resources described in the appropriate operating environment 900. Such software includes an operating system 918. Operating system 918 can be stored on disk storage 914 for controlling and distributing resources of computer 902. The application 920 utilizes the management of resources by the operating system 918, which is stored in the system memory 906 or on the disk storage 914 by a program module 924 such as a startup/shutdown processing table or program data 926. However, it should be understood that the claimed subject matter can be implemented in various operating systems or combinations of operating systems.
用戶通過輸入裝置928輸入命令或資訊輸入到電腦902。輸入裝置928包括,但不限於指向裝置例如:滑鼠、軌跡球、感應筆、觸摸墊、鍵盤、麥克風、操縱桿、遊戲手把、衛星天線、掃描器、TV調節卡、數位相機、數位攝影機、網路攝影機等等。這些和其他輸入裝置經由介面埠930通過系統匯流排908連接到處理單元904。介面埠930包括例如:串行埠、平行埠、遊戲埠,以及通用串行匯流排(USB)。輸出裝置936使用一些相同類型的埠作為輸入裝置928。因此,舉例而言,USB埠可以用來提供輸入到電腦902,並從電腦902向輸出裝置936輸出資訊。提供輸出適配器934以說明存在一些輸出裝置,如顯示器、揚聲器、和列印機以及其他需要特別的適配器的輸出裝置。輸出適配器934包括,透過列舉方式但不限制,影像和音效卡,其提供輸出裝置936和系統匯流排908之間的連接手段。應當注意的是,其他裝置或系統的裝置同時提供輸入和輸出能力,例如遠程電腦938。 The user inputs a command or information through the input device 928 to the computer 902. Input device 928 includes, but is not limited to, pointing devices such as: mouse, trackball, sensor pen, touch pad, keyboard, microphone, joystick, game handle, satellite dish, scanner, TV adjustment card, digital camera, digital camera , webcams, and more. These and other input devices are coupled to processing unit 904 via system bus 908 via interface bus 930. The interface 930 includes, for example, a serial port, a parallel port, a game pad, and a universal serial bus (USB). Output device 936 uses some of the same type of ports as input device 928. Thus, for example, a USB port can be used to provide input to the computer 902 and output information from the computer 902 to the output device 936. Output adapter 934 is provided to illustrate the presence of some output devices such as displays, speakers, and printers, as well as other output devices that require special adapters. The output adapter 934 includes, by way of example but not limitation, an image and sound card that provides a means of connection between the output device 936 and the system bus 908. It should be noted that devices of other devices or systems provide both input and output capabilities, such as remote computer 938.
電腦902可以在網路環境中操作使用邏輯連接至一或多個遠程電腦,如遠程電腦938。遠程電腦938可以是個人電腦、伺服器、路由器、網路PC、工作站、基於微處理器的電器,同級裝置、智慧電話、平板電腦、或其他網路節點,並且通常包括許多元件的描述相對於電腦902。出於簡潔的目的,僅圖示具有遠程電腦938的記憶體儲存裝置940。遠程電腦938通過網路介面942邏輯連接到電腦902,然後經由通信連接944相連。網路介面942包括有線或無線通信網路,例如局域網路(LAN)和廣域網路(WAN)和蜂巢網路。LAN技術包括光纖分散式數據介面(FDDI)、銅分散式數據介面(CDDI)、乙太網、訊標環(Token Ring)等。WAN技術包括,但不限於,點對點鏈接、電路切換交換網路,例如整合服務數位網路(ISDN)及其變體、分組交換網路、以及數位用戶線(DSL)。 Computer 902 can operate in a network environment using logical connections to one or more remote computers, such as remote computer 938. The remote computer 938 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device, a smart phone, a tablet, or other network node, and typically includes a description of a number of components relative to Computer 902. For the sake of brevity, only the memory storage device 940 having the remote computer 938 is illustrated. Remote computer 938 is logically coupled to computer 902 via network interface 942 and then coupled via communication connection 944. Network interface 942 includes wired or wireless communication networks such as local area networks (LANs) and wide area networks (WANs) and cellular networks. LAN technologies include Fiber Decentralized Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring, and others. WAN technologies include, but are not limited to, point-to-point links, circuit switched switching networks such as Integrated Services Digital Network (ISDN) and variants thereof, packet switched networks, and Digital Subscriber Line (DSL).
通信連接944指的是用來將網路介面942連接到系統匯流排908的硬體/軟體。雖然通信連接944被圖示以清楚說明內部電腦902,其也可以是外部的電腦902。用於連接到網路介面942時必要的硬體/軟體包括,僅作為示例用途,內部和外部技術,諸如:包括常規電話級數據機的數據機、電纜數據機和DSL數據機、ISDN適配器、以及有線和無線乙太網卡、集線器、和路由器。 Communication connection 944 refers to the hardware/software used to connect network interface 942 to system bus 908. Although communication connection 944 is illustrated to clearly illustrate internal computer 902, it can also be an external computer 902. Hardware/software necessary for connection to the network interface 942 includes, by way of example only, internal and external technologies such as data machines including conventional telephone-grade data machines, cable modems and DSL modems, ISDN adapters, And wired and wireless Ethernet cards, hubs, and routers.
本公開的所說明的方面也可以被實施在分散式計算環境其中某些任務是通過通信網路鏈接的遠程處理裝置而執行。在分散式計算環境中,程式模組或儲存的 資訊、指令等可以位於本地或遠程記憶體儲存裝置中。 The illustrated aspects of the present disclosure can also be implemented in a distributed computing environment where certain tasks are performed by remote processing devices that are linked through a communications network. In a decentralized computing environment, program modules or stored Information, instructions, etc. can be located in local or remote memory storage devices.
此外,可以理解,本文描述的各種部件可以包括電路,其可以包括元件和合適的值的電路元件,以實現本發明的各實施例。此外,可以理解的是許多各種組件可在一個或多個積體電路晶片上實現。例如,在一個實施例中,一組的組件可以在單個的IC晶片來實現。在其他實施例中,一或多個各別組件被製造或在單獨的IC晶片實現。 In addition, it is to be understood that the various components described herein can include circuitry that can include components and circuit components of suitable values to implement various embodiments of the present invention. Moreover, it will be appreciated that many of the various components can be implemented on one or more integrated circuit wafers. For example, in one embodiment, a set of components can be implemented on a single IC wafer. In other embodiments, one or more of the individual components are fabricated or implemented in a separate IC wafer.
如本文中所使用的,術語「組件」、「系統」、「結構」等意在指向電腦或電子相關的實體、或硬體、硬體和軟體的組合、軟體(例如,執行中的)、或韌體。例如,組件可以是一或多個電晶體、記憶體單元、電晶體或記憶體單元的配置、閘極陣列、可編程閘極陣列、專用積體電路、控制器、處理器、在處理器上運行的程式,利用半導體記憶體存取或介面程序或應用的可執行物件、電腦等,或其合適的組合。組件可以包括可抹除編程(例如程序指令至少部份儲存於可抹除記憶體)或硬編程(例如,程序指令在製造時燒入不可抹除記憶體)。 As used herein, the terms "component," "system," "structure," and the like are intended to mean a computer or an electronic related entity, or a combination of hardware, hardware, and software, software (eg, in execution), Or firmware. For example, the component can be one or more of a transistor, a memory cell, a transistor or a memory cell configuration, a gate array, a programmable gate array, a dedicated integrated circuit, a controller, a processor, on a processor The running program utilizes a semiconductor memory access or interface program or an executable object of the application, a computer, etc., or a suitable combination thereof. Components may include erasable programming (eg, program instructions are at least partially stored in erasable memory) or hard programming (eg, program instructions are burned into non-erasable memory at the time of manufacture).
通過說明的方式,從記憶體和處理器同時執行的程序可以是組件。如另一個示例,結構可包括電子硬體(例如,平行或串行電晶體)、處理指令和處理器的配置,其以適合的電子硬體配置的方式而實現的處理指令。另外,結構可以包括單個元件(例如,電晶體、閘極陣列等)或元件的配置(例如,電晶體的平行或串行配置、連 接程式電路的閘極陣列、電源線、電性接地、輸入信號線和輸出信號線等等)。系統可以包括一個或多個元件,以及一或多個結構。示例性系統可以包括切換方塊結構,其包括跨過輸入/輸出線且通過閘電晶體,以及電源、信號產生器、通信匯流排、控制器、I/O介面、位址暫存器等等。但是應當理解,某些重疊定義是可預期的,以及結構或系統可以是獨立的元件、或另一個結構、系統的元件等。 By way of illustration, a program that is executed concurrently from a memory and a processor can be a component. As another example, the structure may include processing instructions for electronic hardware (eg, parallel or serial transistors), processing instructions, and processor configurations that are implemented in a suitable electronic hardware configuration. In addition, the structure may include a single component (eg, a transistor, a gate array, etc.) or a configuration of components (eg, a parallel or serial configuration of the transistor, connected Gate array of the circuit, power line, electrical ground, input signal line and output signal line, etc.). A system can include one or more components, as well as one or more structures. An exemplary system can include a switching block structure that includes across a input/output line and through a gate transistor, as well as a power supply, a signal generator, a communication bus, a controller, an I/O interface, an address register, and the like. However, it should be understood that certain overlapping definitions are contemplated, and that the structure or system can be a separate component, or another structure, a component of a system, or the like.
除了上述之外,所公開的標的可以被實現為方法、設備、或使用通常製造的製造製品、對於產生硬體的編程或工程技術、韌體、軟體、或其任何適當組合,以控制電子裝置以實現公開的標的。其中本文中使用的術語「設備」和「製品」意在包含電子裝置、半導體裝置、電腦、或可從任何電腦可讀裝置、載體、或媒體存取的電腦程式。電腦可讀媒體可以包括硬體媒體或軟體媒體。此外,媒體可以包括非臨時性媒體或傳輸媒體。在一個實例中,非臨時性媒體可以包括電腦可讀的硬體媒體。電腦可讀硬體媒體的具體示例可包括但不限於:磁儲存裝置(例如,硬碟,軟碟,磁條等)、光碟(例如,壓縮光碟(CD)、數位通用光碟(DVD)等)、智慧卡、和快閃記憶體裝置(例如,卡,棒,鍵驅動等)。電腦可讀傳輸媒體可包括載波等。當然,本領域的技術人員將瞭解到在不偏離本發明標的的範圍或精神下做出許多修改。 In addition to the above, the disclosed subject matter can be implemented as a method, apparatus, or use of a commonly manufactured article of manufacture, programming or engineering techniques for producing hardware, firmware, software, or any suitable combination thereof to control an electronic device. To achieve the disclosed subject matter. The terms "device" and "article of manufacture" as used herein are intended to encompass an electronic device, a semiconductor device, a computer, or a computer program accessible from any computer-readable device, carrier, or media. Computer readable media can include hardware or software media. In addition, the media may include non-transitory media or transmission media. In one example, the non-transitory media can include computer readable hardware media. Specific examples of computer readable hardware media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, magnetic strips, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVD), etc.) , smart cards, and flash memory devices (eg, cards, sticks, key drives, etc.). The computer readable transmission medium can include a carrier wave or the like. Of course, those skilled in the art will appreciate that many modifications can be made without departing from the scope or spirit of the invention.
以上所描述的包括本發明的示例。當然,為了描述本發明,不可能描述元件或方法的每個可想到的 組合,但本領域的通常技術人員可瞭解到,許多本發明的進一步組合和排列是可能的。因此,所公開的主題旨在涵蓋落入本公開的精神和範圍內的所有此類更改、修改和變化。此外,對於術語「包括」的範圍,「包括」、「包含」或「具有」及其變體不論是被用於在詳細說明或申請專利範圍中,此術語旨在是包括性的方式,其類似於術語「包括」的用法,如同其在申請專利範圍中用作為連接詞時所被解讀的。 What has been described above includes examples of the invention. Of course, for the purpose of describing the invention, it is not possible to describe every conceivable element or method. Combinations, but one of ordinary skill in the art will appreciate that many further combinations and permutations of the present invention are possible. Accordingly, the disclosed subject matter is intended to cover all such modifications, modifications and variations In addition, the term "comprising", "including" or "having" and its variants, whether used in the context of the detailed description or claim, is intended to be inclusive. Similar to the use of the term "including", as it is interpreted as a conjunction in the scope of the patent application.
此外,單詞「示例性」在本文中用於表示用作示例、實例或說明。本文中描述為「示例性」的任何面向或設計並不一定要被解釋為較佳於或勝過其他面向或設計。而是,詞語示例性的使用旨在以具體方式呈現概念。如本申請中使用的,術語「或」意在表示包括性的「或」而不是排他性的「或」。也就是說,除非另有指定,或從上下文清楚可見,「X使用A或B」旨在表示任何自然的包括性排列。也就是說,如果X使用A;X使用B;或X同時採用A和B,則「X採用A或B」能滿足任何上述實例。此外,冠詞「一」和「一個」用在本申請和所附申請專利範圍一般應被解釋為表示「一或多個」,除非另有指定或從上下文中明確得知其針對於單數形式。 Further, the word "exemplary" is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, the exemplary use of words is intended to present concepts in a specific manner. As used in this application, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". That is, unless otherwise specified, or clearly visible from the context, "X uses A or B" is intended to mean any natural inclusive permutation. That is, if X uses A; X uses B; or X uses both A and B, then "X employs A or B" can satisfy any of the above examples. In addition, the articles "a" and "an" are used in the claims and the claims
此外,詳細說明中的一些部分已被呈現在在電子記憶體的資料位元的演算法或程序操作中。這些程序說明或表示,是指這些本領域中具有通常知識者所使用的機制以有效地傳達他們的工作實質給其他本領域中的知 識同樣熟練者。在此,一種製程或程序一般來說是被設想為導致期望的結果的一系列自我一致的行為。該行為是那些需要物理量的物理操縱者。典型地,儘管非必要,這些量採用能够被存儲、傳輸、組合、比較、和/或以其他方式操縱的電或磁信號的形式。 Moreover, some of the detailed description has been presented in the algorithm or program operation of the data bits in the electronic memory. These program descriptions or representations refer to the mechanisms used by those of ordinary skill in the art to effectively convey the substance of their work to other knowledge in the art. Know the same skilled person. Here, a process or procedure is generally a series of self-consistent behaviors that are conceived to result in a desired result. This behavior is a physical manipulator that requires physical quantities. Typically, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and/or otherwise manipulated, although not necessarily.
已經證明,主要出於公共使用的原因,這些信號意指位元、值、元素、符號、字符、術語、數字等。然而,應當記住,所有這些和類似的術語都將與恰當的物理量相關聯並且僅僅是應用於這些量的方便的標籤。除非特別聲明,否則或可從前述討論中明顯推得,應該理解,在本公開的整體主題中,利用諸如處理、計算、複製、模仿、確定、或發送,以及類似的術語的討論內容,指的是處理系統的動作及程序,或類似的消費或工業電子裝置或機器,其將資訊或信號表示為在電子裝置的電路、暫存器或記憶體內的物理(電性或電子)量操作或轉換成其它在機器或電腦系統記憶體或暫存器或其他此資訊儲存、傳送或顯示裝置內近似地表現為物理量的數據或信號。 These signals have been shown to mean bits, values, elements, symbols, characters, terms, numbers, etc., primarily for reasons of public use. However, it should be borne in mind that all of these and similar terms are associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise, or explicitly derived from the foregoing discussion, it should be understood that in the overall subject matter of the present disclosure, the use of terms such as processing, computing, copying, iding, determining, or transmitting, and similar terms refers to Is the action and procedure of a processing system, or a similar consumer or industrial electronic device or machine that represents information or signals as physical (electrical or electronic) operations in the circuitry, registers or memory of an electronic device or Converted to other data or signals that approximate physical quantities within a machine or computer system memory or scratchpad or other such information storage, transmission or display device.
在關於由上述組件、結構、電路、製程程序等所執行的各種功能,所述用於描述這些元件的術語(包括提及的「手段」)都旨在對應於(除非特別指出)任何執行所述元件(例如,功能等效)的指定功能的元件,即使在結構上不等效於所公開的結構,其進行在此處說明的實施例示例面向中的功能。另外,雖然特定特徵可能已經被相對於數個實例中之僅僅一個所公開,這些特徵可以與其 他實例的一或多個其它特徵組合,這對於任何給定或特定的應用來說可能是期望的和有利的。也應理解,實施例包括系統,以及具有用於執行各種程序的動作或事件的電腦可執行指令的電腦可讀媒體。 The terms used to describe these elements (including the "means" referred to) are intended to correspond to (unless specifically indicated) any execution of the various functions performed by the components, structures, circuits, processes, etc. described above. An element of a specified function of an element (e.g., functionally equivalent), even if it is not structurally equivalent to the disclosed structure, performs the aspect-oriented function of the example embodiments described herein. Additionally, although certain features may have been disclosed with respect to only one of several instances, these features may One or more other feature combinations of his instances may be desirable and advantageous for any given or particular application. It should also be understood that the embodiments include systems, and computer readable media having computer executable instructions for performing the acts or events of the various programs.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461937412P | 2014-02-07 | 2014-02-07 | |
US61/937,412 | 2014-02-07 | ||
US14/587,711 US10096653B2 (en) | 2012-08-14 | 2014-12-31 | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
US14/587,711 | 2014-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201543662A TW201543662A (en) | 2015-11-16 |
TWI670842B true TWI670842B (en) | 2019-09-01 |
Family
ID=55221006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104104033A TWI670842B (en) | 2014-02-07 | 2015-02-06 | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI670842B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11038108B2 (en) * | 2019-05-24 | 2021-06-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Step height mitigation in resistive random access memory structures |
US20230299068A1 (en) * | 2022-03-21 | 2023-09-21 | Apple Inc. | Control Signal Route Through Backside Layers for High Performance Standard Cells |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155784A1 (en) * | 2008-12-24 | 2010-06-24 | Scheuerlein Roy E | Three-Dimensional Memory Structures Having Shared Pillar Memory Cells |
US20120250395A1 (en) * | 2011-04-04 | 2012-10-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Selector type electronic device |
-
2015
- 2015-02-06 TW TW104104033A patent/TWI670842B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155784A1 (en) * | 2008-12-24 | 2010-06-24 | Scheuerlein Roy E | Three-Dimensional Memory Structures Having Shared Pillar Memory Cells |
US20120250395A1 (en) * | 2011-04-04 | 2012-10-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Selector type electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW201543662A (en) | 2015-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104835910B (en) | Scalable silicon-based resistive memory device | |
US10096653B2 (en) | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes | |
CN105047682B (en) | Integrated resistor formula memory in back-end metal layer | |
US9768234B2 (en) | Resistive memory architecture and devices | |
CN111868927B (en) | Self-selecting memory array with horizontal access lines | |
EP1916722B1 (en) | Carbon filament memory and fabrication method | |
US10134984B1 (en) | Two-terminal memory electrode comprising a non-continuous contact surface | |
KR102277861B1 (en) | Memory cell with resistance and its formation | |
US20170338282A1 (en) | Memory module with unpatterned storage material | |
CN113632229B (en) | Gap oxide and via formation techniques | |
TWI670842B (en) | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes | |
CN104835911B (en) | Monolithically integrated resistive memory using integrated circuit foundry compatible processes | |
WO2014209745A1 (en) | Conductive oxide random access memory (coram) cell and method of fabricating same | |
US9466795B2 (en) | Memory cells with recessed electrode contacts | |
CN116963509A (en) | Forming memory cells in a three-dimensional memory array using atomic layer deposition | |
CN117596897A (en) | Pillar and word line plate architecture for memory arrays | |
KR20160110012A (en) | Resistive memory architecture and devices |