TWI669713B - Memory device and control method thereof - Google Patents
Memory device and control method thereof Download PDFInfo
- Publication number
- TWI669713B TWI669713B TW107124017A TW107124017A TWI669713B TW I669713 B TWI669713 B TW I669713B TW 107124017 A TW107124017 A TW 107124017A TW 107124017 A TW107124017 A TW 107124017A TW I669713 B TWI669713 B TW I669713B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage node
- voltage
- self
- memory device
- random access
- Prior art date
Links
Landscapes
- Dram (AREA)
Abstract
本發明提供一種記憶體裝置,包括一記憶體陣列;一開關裝置,設於一第一電壓節點與一第二電壓節點之間,且該第二電壓節點耦接該記憶體陣列;以及一控制器,輸出一更新模式訊號、一更新觸發訊號,以及一預啟動訊號。其中,該記憶體裝置回應該更新模式訊號而進入一自更新模式;在該自更新模式下,該記憶體裝置回應該更新觸發訊號而對該記憶體陣列進行自更新操作;在該自更新模式下,該控制器在輸出該更新觸發訊號之前先輸出該預啟動訊號,該開關裝置回應該預啟動訊號而導通開啟用以使該第二電壓節點的電位向該第一電壓節點的電位增加。The present invention provides a memory device including a memory array, a switching device disposed between a first voltage node and a second voltage node, and the second voltage node coupled to the memory array; and a control The device outputs an update mode signal, an update trigger signal, and a pre-start signal. The memory device should update the mode signal and enter a self-updating mode; in the self-updating mode, the memory device should update the trigger signal to perform a self-updating operation on the memory array; in the self-updating mode The controller outputs the pre-start signal before outputting the update trigger signal. The switch device returns to the pre-start signal and turns on to increase the potential of the second voltage node to the potential of the first voltage node.
Description
本發明係有關於記憶體裝置,特別是有關於該記憶體裝置進入自更新模式的控制方法。The present invention relates to a memory device, and more particularly to a control method for the memory device to enter a self-refresh mode.
動態隨機存取記憶體(Dynamic Random Access Memory: DRAM)於現今很常被使用在各種電子裝置之中。DRAM係屬於揮發性記憶體(Volatile Memory),換句話說,在失去電源的狀態下,DRAM亦會失去其儲存的狀態。因為儲存在DRAM內部的資料會因為內部漏電流的影響而逐漸衰退或無效,為維持其內部有效的資料,因此DRAM需要持續且週期性地去更新其內部的資料位元。Dynamic Random Access Memory (DRAM) is commonly used in various electronic devices today. DRAM is a volatile memory (Volatile Memory). In other words, in the state of losing power, DRAM will lose its stored state. Because the data stored in the DRAM is gradually degraded or invalid due to the internal leakage current, in order to maintain its internal valid data, the DRAM needs to continuously and periodically update its internal data bits.
DRAM在自更新模式下操作時,大部分的時間都處於閒置狀態。第1圖為一記憶體裝置內漏電流路徑示意圖。如第1圖所示,記憶體裝置100包括由正電源VP以及負電源VN所供電的一解碼器102,該解碼器102透過一字元線104耦接至一電晶體110的閘極端,並且該電晶體110係耦接於一字元線106及一儲存單元電容108之間,而該儲存單元電容108係耦接於該電晶體110與一埋層平板電壓(buried plate voltage)VPL之間。When DRAM operates in self-refresh mode, most of the time is idle. Figure 1 is a schematic diagram of a leakage current path in a memory device. As shown in FIG. 1, the memory device 100 includes a decoder 102 powered by a positive power supply VP and a negative power supply VN, the decoder 102 being coupled to a gate terminal of a transistor 110 via a word line 104, and The transistor 110 is coupled between a word line 106 and a storage unit capacitor 108, and the storage unit capacitor 108 is coupled between the transistor 110 and a buried plate voltage VPL. .
因為該正電源VP的電壓很高,即使記憶體裝置100沒有執行操作,從該正電源VP流經解碼器102而到該負電源VN的一漏電流路徑112,使得漏電流仍會持續存在。一種省電的方法是將正電源VP的電壓在記憶體裝置100進入自更新模式前預先降低,雖然上述方法可使得漏電流路徑112上的該漏電流變小,但若該正電源VP無法在一等待時間tXSR內恢復到原本的電位,那麼在該正電源VP尚未達到該記憶體裝置100的正常操作電壓的情況下,就收到外部裝置的指令而執行動作,係會使得該記憶體裝置100產生錯誤。Since the voltage of the positive power source VP is high, even if the memory device 100 does not perform an operation, the positive current source VP flows through the decoder 102 to a leakage current path 112 of the negative power source VN, so that the leakage current continues to exist. One method of power saving is to reduce the voltage of the positive power supply VP before the memory device 100 enters the self-refresh mode, although the above method can make the leakage current on the leakage current path 112 small, but if the positive power supply VP cannot When the waiting time tXSR returns to the original potential, if the positive power source VP has not reached the normal operating voltage of the memory device 100, an external device command is received to perform an action, which causes the memory device to be activated. 100 caused an error.
因為該漏電流源自於記憶體裝置100內部,為了減少該漏電流的問題,又不影響原本該記憶體裝置的操作,本發明提供了一種新的架構,利用一開關裝置將該記憶體陣列內部的正電源VP與該記憶體陣列外部的正電源VP隔開並且降壓,並利用一預先開啟的機制來恢復該記憶體陣列內部的正電源VP。Since the leakage current originates from inside the memory device 100, in order to reduce the leakage current without affecting the operation of the memory device, the present invention provides a new architecture for using the switching device to store the memory array. The internal positive power supply VP is separated from the positive power supply VP outside the memory array and stepped down, and a pre-opening mechanism is utilized to recover the positive power supply VP inside the memory array.
依據本發明一實施例之記憶體裝置,包括一記憶體陣列;一開關裝置,設於一第一電壓節點與一第二電壓節點之間,且該第二電壓節點耦接該記憶體陣列;以及一控制器,輸出一更新模式訊號、一更新觸發訊號,以及一預啟動訊號。其中,該記憶體裝置回應該更新模式訊號而進入一自更新模式;在該自更新模式下,該記憶體裝置回應該更新觸發訊號而對該記憶體陣列進行自更新操作;在該自更新模式下,在該記憶體裝置進行該自更新操作之後,該控制器在重新輸出該更新觸發訊號之前先輸出該預啟動訊號,該開關裝置回應該預啟動訊號而導通開啟用以使該第二電壓節點的電位向該第一電壓節點的電位增加。A memory device according to an embodiment of the present invention includes a memory array, a switching device disposed between a first voltage node and a second voltage node, and the second voltage node coupled to the memory array; And a controller that outputs an update mode signal, an update trigger signal, and a pre-start signal. The memory device should update the mode signal and enter a self-updating mode; in the self-updating mode, the memory device should update the trigger signal to perform a self-updating operation on the memory array; in the self-updating mode After the self-updating operation is performed by the memory device, the controller outputs the pre-start signal before re-outputting the update trigger signal, and the switch device responds to the pre-start signal and turns on to enable the second voltage. The potential of the node increases toward the potential of the first voltage node.
依據本發明一實施例之記憶體裝置的控制方法,該記憶體裝置包括一記憶體陣列,設於一第一電壓節點與一第二電壓節點之間的一開關裝置,並且該第二電壓節點耦接該記憶體陣列,以及可輸出一更新模式訊號、一更新觸發訊號以及一預啟動訊號的一控制器,且該記憶體裝置回應該更新模式訊號而進入一自更新模式;該控制方法包括:在該自更新模式下,在該記憶體裝置進行該自更新操作之後,該控制器重新輸出該預啟動訊號而將該開關裝置開啟導通,使得該第二電壓節點的電位向該第一電壓節點的電位增加;之後,該控制器輸出該更新觸發訊號使該記憶體裝置對該記憶體陣列做自更新操作。According to a method of controlling a memory device according to an embodiment of the present invention, the memory device includes a memory array, a switching device disposed between a first voltage node and a second voltage node, and the second voltage node The controller is coupled to the memory array and outputs a refresh mode signal, an update trigger signal, and a pre-start signal, and the memory device returns to the self-updating mode by updating the mode signal; the control method includes After the self-updating mode is performed, the controller re-outputs the pre-start signal and turns the switching device on, so that the potential of the second voltage node is toward the first voltage. The potential of the node is increased; afterwards, the controller outputs the update trigger signal to cause the memory device to perform a self-updating operation on the memory array.
第2圖為本揭露實施例之記憶體裝置示意圖。如第2圖所示,記憶體裝置200包括一記憶體陣列202、一開關裝置204、一控制器206、一電壓箝制器208、一去耦電容(decoupling capacitor)210、一電源電荷泵(charge pump circuit)212,以及一邏輯裝置214。記憶體陣列202係包括複數個記憶體單元,用以儲存有效的位元資料。記憶體裝置200更包括在第2圖中沒有繪示的列解碼器(column decoder)、行解碼器(row decoder),以及時序控制電路。其中,在該記憶體裝置200處於一自更新模式時,依據控制器206輸出的一更新觸發訊號REFRI,該時序控制器、列解碼器及行解碼器會配合執行對該記憶體陣列的自更新(self-refresh)動作。記憶體陣列202亦可表示為記憶體庫(memory bank)的形式。開關裝置204,設於一第一電壓節點VPP與一第二電壓節點VPPA之間,且該第二電壓節點VPPA耦接記憶體陣列202。該第二電壓節點VPPA例如是透過提供電能給該列解碼器及/或行解碼器等,而與該記憶體陣列耦接。FIG. 2 is a schematic diagram of a memory device according to an embodiment of the present disclosure. As shown in FIG. 2, the memory device 200 includes a memory array 202, a switching device 204, a controller 206, a voltage clamp 208, a decoupling capacitor 210, and a power charge pump (charge). Pump circuit 212, and a logic device 214. The memory array 202 includes a plurality of memory cells for storing valid bit data. The memory device 200 further includes a column decoder, a row decoder, and a timing control circuit which are not shown in FIG. When the memory device 200 is in a self-updating mode, the timing controller, the column decoder, and the row decoder cooperate to perform self-updating of the memory array according to an update trigger signal REFRI output by the controller 206. (self-refresh) action. Memory array 202 can also be represented in the form of a memory bank. The switching device 204 is disposed between a first voltage node VPP and a second voltage node VPPA, and the second voltage node VPPA is coupled to the memory array 202. The second voltage node VPPA is coupled to the memory array, for example, by providing power to the column decoder and/or row decoder or the like.
控制器206可輸出一更新模式訊號SRMOD、前述的更新觸發訊號REFRI,以及一預啟動訊號PRESR。其中,記憶體裝置200回應控制器206所輸出的該更新模式訊號SRMOD而進入前述自更新模式。在該自更新模式下,記憶體裝置200回應該更新觸發訊號REFRI而對記憶體陣列202進行自更新操作。邏輯裝置214依據控制器206所輸出的該更新模式訊號SRMOD以及該預啟動訊號PRESR,用以控制開關裝置204。在該自更新模式下,邏輯裝置214若未接到該預啟動訊號PRESR,則控制該開關裝置214成為關閉(turn-off)狀態。在該自更新模式下,在該控制器206輸出更新觸發訊號REFRI且該記憶體裝置200進行該自更新操作之後,若控制器206要再重新輸出該更新觸發訊號REFRI,則會先輸出該預啟動訊號PRESR,使開關裝置204回應該預啟動訊號PRESR而導通開啟(turn-on),用以使該第二電壓節點VPPA的電位向該第一電壓節點VPP的電位增加。當控制器206停止輸出更新模式訊號SRMOD使記憶體裝置200離開該自更新模式時,邏輯裝置214係控制開關裝置204使其開啟導通,使得記憶體陣列202得以執行一般讀寫的動作。The controller 206 can output an update mode signal SRMOD, the aforementioned update trigger signal REFRI, and a pre-start signal PRESR. The memory device 200 enters the self-updating mode in response to the update mode signal SRMOD output by the controller 206. In the self-updating mode, the memory device 200 should update the trigger signal REFRI to perform a self-updating operation on the memory array 202. The logic device 214 controls the switching device 204 according to the update mode signal SRMOD output by the controller 206 and the pre-activation signal PRESR. In the self-updating mode, if the logic device 214 does not receive the pre-start signal PRESR, the switching device 214 is controlled to be in a turn-off state. In the self-updating mode, after the controller 206 outputs the update trigger signal REFRI and the memory device 200 performs the self-updating operation, if the controller 206 is to re-output the update trigger signal REFRI, the pre-output will be output first. The start signal PRESR is caused to cause the switching device 204 to return to the pre-start signal PRESR and turn on-turn to increase the potential of the second voltage node VPPA to the potential of the first voltage node VPP. When the controller 206 stops outputting the update mode signal SRMOD to cause the memory device 200 to leave the self-refresh mode, the logic device 214 controls the switching device 204 to turn on, so that the memory array 202 can perform the general read and write operations.
電壓箝制器208設於該第一電壓節點VPP與該第二電壓節點VPPA之間;在開關裝置204關閉時,用以使得該第二電壓節點VPPA的電位保持在一參考電壓之上。去耦電容210耦接於該第一電壓節點VPP與一接地之間,在開關裝置204導通開啟時,用以迅速恢復該第一電壓節點VPP的電位。電源電荷泵212耦接於電源電壓VDD1與該第一電壓節點VPP之間,並在開關裝置204導通開啟時,用以將該第一電壓節點VPP的電位拉升至一額定電壓。The voltage clamp 208 is disposed between the first voltage node VPP and the second voltage node VPPA; when the switching device 204 is turned off, the potential of the second voltage node VPPA is maintained above a reference voltage. The decoupling capacitor 210 is coupled between the first voltage node VPP and a ground to quickly restore the potential of the first voltage node VPP when the switching device 204 is turned on. The power supply charge pump 212 is coupled between the power supply voltage VDD1 and the first voltage node VPP, and is used to pull the potential of the first voltage node VPP to a rated voltage when the switching device 204 is turned on.
第3圖為本揭露實施例第2圖之開關裝置204及邏輯裝置214的電路示意圖。在本實施例中,如第3圖所示,開關裝置204例如包括一反相器300及一PMOS電晶體302,其中PMOS電晶體302耦接於該第一電壓節點VPP與該第二電壓節點VPPA之間,且該PMOS電晶體302的閘極端與該反相器300的輸出端相耦接,而該反相器300的輸入端用以接收來自於邏輯裝置214所輸出的控制訊號SWEN。在本實施例中,邏輯裝置214例如包括一反及閘304(NAND gate)以及一反相器306。其中,該反及閘304的第一輸入端與該反相器306的輸出端相耦接,而該反相器306的輸入端係接收從控制器206而來的預啟動訊號PRESR;該反及閘304的第二輸入端係接收從控制器206而來的更新模式訊號SRMOD;該反及閘304的輸出端(即為邏輯裝置214的輸出端)與開關裝置204相耦接,用以控制開關裝置204的開啟或關閉。FIG. 3 is a circuit diagram of the switching device 204 and the logic device 214 according to the second embodiment of the present disclosure. In the present embodiment, as shown in FIG. 3, the switching device 204 includes, for example, an inverter 300 and a PMOS transistor 302. The PMOS transistor 302 is coupled to the first voltage node VPP and the second voltage node. Between the VPPAs, the gate terminal of the PMOS transistor 302 is coupled to the output terminal of the inverter 300, and the input terminal of the inverter 300 is configured to receive the control signal SWEN output from the logic device 214. In the present embodiment, the logic device 214 includes, for example, a NAND gate 304 and an inverter 306. The first input end of the NAND gate 304 is coupled to the output end of the inverter 306, and the input end of the inverter 306 receives the pre-start signal PRESR from the controller 206; The second input of the gate 304 receives the update mode signal SRMOD from the controller 206; the output of the inverse gate 304 (ie, the output of the logic device 214) is coupled to the switching device 204 for The opening or closing of the switching device 204 is controlled.
第4圖為本揭露實施例第2圖記憶體裝置的第二電壓節點VPPA的電位與複數個控制訊號的時序關係圖。參照第4圖,在控制器206輸出更新狀態訊號SRMOD之前,更新狀態訊號SRMOD具有低準位,由於預啟動訊號PRESR亦為低準位,依據上述第3圖邏輯裝置214的邏輯電路,邏輯裝置214會輸出高準位的控制訊號SWEN。該高準位的控制訊號SWEN再經過開關裝置204內的反相器300而變為低準位,使得PMOS電晶體302開啟導通,亦即開關裝置204開啟導通。Fig. 4 is a timing chart showing the relationship between the potential of the second voltage node VPPA and the plurality of control signals of the memory device of the second embodiment of the present invention. Referring to FIG. 4, before the controller 206 outputs the update status signal SRMOD, the update status signal SRMOD has a low level. Since the pre-start signal PRESR is also a low level, according to the logic circuit of the logic device 214 of FIG. 3, the logic device. 214 will output a high level control signal SWEN. The high level control signal SWEN then goes through the inverter 300 in the switching device 204 to become a low level, so that the PMOS transistor 302 is turned on, that is, the switching device 204 is turned on.
在控制器206輸出更新狀態訊號SRMOD之後,記憶體裝置200進入自更新模式。此時,由於更新狀態訊號SRMOD由低準位變為高準位,但預啟動訊號PRESR仍維持於原來的低準位,使得邏輯裝置214所輸出控制訊號SWEN變為低準位,並使開關裝置204關閉,而中斷了第一電壓節點VPP與第二電壓節點VPPA的電性耦接。接著,在自更新模式下,控制器206輸出更新觸發訊號REFRI,使得記憶體陣列202開始執行自更新操作(時間區間A)。在時間區間A之後,由於記憶體陣列202內部的漏電流(即第1圖所示之漏電流路徑112),第二電壓節點VPPA的電位會逐漸降低,直到電壓箝制器208將第二電壓節點VPPA的電位限制在一參考電壓400為止(時間區間B、C)。After the controller 206 outputs the update status signal SRMOD, the memory device 200 enters the self-updating mode. At this time, since the update status signal SRMOD changes from the low level to the high level, the pre-start signal PRESR remains at the original low level, causing the control signal SWEN outputted by the logic device 214 to become a low level and the switch The device 204 is turned off, and the electrical coupling of the first voltage node VPP and the second voltage node VPPA is interrupted. Next, in the self-updating mode, the controller 206 outputs an update trigger signal REFRI such that the memory array 202 begins performing a self-updating operation (time interval A). After the time interval A, due to the leakage current inside the memory array 202 (ie, the leakage current path 112 shown in FIG. 1), the potential of the second voltage node VPPA will gradually decrease until the voltage clamp 208 will be the second voltage node. The potential of the VPPA is limited to a reference voltage of 400 (time interval B, C).
接著,在自更新模式下,控制器206輸出預啟動訊號PRESR(成為高準位),此時由於更新模式訊號SRMOD已為高準位,故邏輯裝置214內的反及閘304所輸出的控制訊號SWEN變為高準位,而使開關裝置204內的PMOS電晶體302開啟導通。在此因為去耦電容210的電位與第一電壓節點VPP的電位相等,致使第二電壓節點VPPA的電位可增加至第一電壓節點VPP的電位(時間區間D)。接著,電源電荷泵212偵測到第一電壓節點VPP的電位仍未達到記憶體裝置200運作時的一額定電壓402而啟動,並將第一電壓節點VPP與第二電壓節點VPPA的電位拉升至該額定電壓402(時間區間D~E之間)。Then, in the self-updating mode, the controller 206 outputs the pre-start signal PRESR (becomes a high level). At this time, since the update mode signal SRMOD is already at the high level, the output of the inverse gate 304 in the logic device 214 is controlled. The signal SWEN becomes a high level, and the PMOS transistor 302 in the switching device 204 is turned on. Here, since the potential of the decoupling capacitor 210 is equal to the potential of the first voltage node VPP, the potential of the second voltage node VPPA can be increased to the potential of the first voltage node VPP (time interval D). Then, the power supply charge pump 212 detects that the potential of the first voltage node VPP has not reached a rated voltage 402 when the memory device 200 operates, and pulls up the potential of the first voltage node VPP and the second voltage node VPPA. Up to the rated voltage 402 (between time intervals D and E).
在第二電壓節點VPPA的電位達到該額定電壓402之後,在時間區間A1,當控制器206再輸出更新觸發訊號REFRI時,同時停止輸出預啟動訊號PRESR,由於預啟動訊號PRESR由高準位變成低準位,對應的控制訊號SWEN也由高準位變成低準位,使得開關裝置204關閉,並且記憶體陣列202開始執行下一周期的自更新操作(時間區間A1)。由於上述記憶體陣列202執行自更新操作時的時間區間B、C佔了該自更新周期總時間的95%以上,亦即記憶體陣列202處於閒置(idle)狀態,因此本發明揭露的上述記憶體裝置及其控制方法可有效降低該漏電流(即第1圖所示之漏電流路徑112),而達到省電的目的。並且,為了確保如在時間區間A1開始進行的自更新操作能夠正確完成,故控制器206在時間區間A1重新輸出更新觸發訊號REFRI之前,先行輸出預啟動訊號PRESR,將開關裝置204開啟,使得第二電壓節點VPPA的電壓能夠迅速回升。After the potential of the second voltage node VPPA reaches the rated voltage 402, in the time interval A1, when the controller 206 outputs the update trigger signal REFRI again, the output pre-start signal PRESR is stopped at the same time, because the pre-start signal PRESR is changed from the high level to the high level. At the low level, the corresponding control signal SWEN also changes from the high level to the low level, causing the switching device 204 to be turned off, and the memory array 202 begins to perform the self-updating operation of the next cycle (time interval A1). Since the time interval B, C when the memory array 202 performs the self-updating operation accounts for more than 95% of the total time of the self-refresh period, that is, the memory array 202 is in an idle state, the above-mentioned memory disclosed by the present invention The body device and its control method can effectively reduce the leakage current (ie, the leakage current path 112 shown in FIG. 1), and achieve the purpose of power saving. In addition, in order to ensure that the self-updating operation started in the time interval A1 can be correctly completed, the controller 206 outputs the pre-start signal PRESR first, and turns on the switching device 204, so that the controller 206 turns off the update trigger signal REFRI in the time interval A1. The voltage of the VPPA of the two voltage nodes can rise rapidly.
第5圖為本揭露實施例第2圖記憶體裝置離開自更新模式的第二電壓節點VPPA的電位與複數個控制訊號的時序圖。如第5圖所示,當記憶裝置200需離開自更新模式而執行一般讀寫指令時,控制器206會先輸出更新狀態訊號SRMOD(時間區間C轉換為時間區間F),使得記憶體裝置200離開自更新模式,而進入一般工作模式。此時,由於更新狀態訊號SRMOD變為低準位,使得邏輯裝置214內的反及閘304所輸出的控制訊號SWEN變為高準位,且開關裝置204內的PMOS電晶體302導通。此時,因為去耦電容210的電位與第一電壓節點VPP的電位相等,使得第二電壓節點VPPA的電位可增加至第一電壓節點VPP的電位(時間區間F的第1段斜率較大的斜線)。接著,電源電荷泵212偵測到第一電壓節點VPP的電位仍未達到記憶體裝置200運作時的一額定電壓402,而啟動電荷泵功能,將第一電壓節點VPP與第二電壓節點VPPA的電位拉升至該額定電壓402(時間區間F的第2段斜率較小的斜線及第3段水平線)。在第二電壓節點VPPA的電位達到該額定電壓402,亦即達到記憶體裝置200的工作電壓之後,記憶體陣列200接收控制器206所輸出的指令訊號CMD而開始執行讀寫的動作(時間區間G)。在時間區間F,由於必須等待第二電壓節點VPPA的電位回升至該額定電壓402,因此需在一等待時間tXSR之後,控制器206才可輸出指令訊號CMD,以避免記憶體陣列202因工作電壓過低而造成的錯誤。FIG. 5 is a timing diagram of the potential of the second voltage node VPPA and the plurality of control signals of the memory device leaving the self-refresh mode according to the second embodiment of the present disclosure. As shown in FIG. 5, when the memory device 200 needs to leave the self-refresh mode to execute a general read/write command, the controller 206 first outputs the update status signal SRMOD (the time interval C is converted to the time interval F), so that the memory device 200 is enabled. Leave the self-updating mode and enter the normal working mode. At this time, since the update status signal SRMOD becomes a low level, the control signal SWEN outputted by the inverse gate 304 in the logic device 214 becomes a high level, and the PMOS transistor 302 in the switching device 204 is turned on. At this time, since the potential of the decoupling capacitor 210 is equal to the potential of the first voltage node VPP, the potential of the second voltage node VPPA can be increased to the potential of the first voltage node VPP (the first stage of the time interval F has a larger slope) Slash). Then, the power supply charge pump 212 detects that the potential of the first voltage node VPP has not reached a rated voltage 402 when the memory device 200 is operating, and activates the charge pump function to connect the first voltage node VPP with the second voltage node VPPA. The potential is pulled up to the rated voltage 402 (the oblique line of the second stage of the time interval F is smaller and the third horizontal line). After the potential of the second voltage node VPPA reaches the rated voltage 402, that is, after the operating voltage of the memory device 200 is reached, the memory array 200 receives the command signal CMD output by the controller 206 to start the reading and writing operation (time interval). G). In the time interval F, since it is necessary to wait for the potential of the second voltage node VPPA to rise to the rated voltage 402, the controller 206 can output the command signal CMD after a waiting time tXSR to avoid the memory array 202 from operating voltage. An error caused by being too low.
第6圖為本揭露實施例第2圖之記憶體裝置的控制流程圖。記憶體裝置200在收到控制器206所輸出一更新模式訊號SRMOD之後,進入自更新模式,並且開關裝置204關閉(S600)。步驟S600係中斷第一電壓節點VPP與第二電壓節點VPPA的電性耦接,並且第二電壓節點VPPA的電位因為記憶體陣列202內部的漏電流而逐漸降低。在自更新模式下,在記憶體陣列202進行自更新操作之後,控制器206重新輸出一預啟動訊號PRESR,使開關裝置204導通(S602)。步驟S602係將第二電壓節點VPPA的電位增加至第一電壓節點VPP的電位,並搭配電源電荷泵212的運作,以完成記憶體陣列202執行自更新前的前置作業(使第一電壓節點VPP的電位達到一額定電壓402),避免記憶體陣列202因為第一電壓節點VPP的電位過低,而造成執行自更新時的錯誤。接著,控制器206輸出一更新觸發訊號REFRI,使得記憶體陣列202執行自更新,並同時將開關裝置204再次關閉(S604)。由於記憶體陣列202自更新的一週期中,大部分時間係處於閒置狀態,因此步驟S604將開關裝置204關閉係可達到減少漏電流的目的。若記憶體裝置200需繼續執行下一周期的自更新操作,則控制器206再次輸出更新觸發訊號REFRI,即由步驟604再次回到步驟602。若要離開自更新模式,則控制器206停止輸出更新狀態訊號SRMOD,使得記憶體裝置200離開自更新模式,並且開關裝置204開啟導通(S606)。步驟S606係使得第二電壓節點VPPA的電位達到額定電壓402,讓記憶體裝置200可在充足的電壓下執行一般讀寫指令的動作。Figure 6 is a control flow chart of the memory device of the second embodiment of the present disclosure. After receiving the update mode signal SRMOD outputted by the controller 206, the memory device 200 enters the self-updating mode, and the switching device 204 is turned off (S600). Step S600 interrupts the electrical coupling of the first voltage node VPP and the second voltage node VPPA, and the potential of the second voltage node VPPA gradually decreases due to the leakage current inside the memory array 202. In the self-updating mode, after the self-updating operation is performed by the memory array 202, the controller 206 re-outputs a pre-start signal PRESR to turn on the switching device 204 (S602). Step S602 is to increase the potential of the second voltage node VPPA to the potential of the first voltage node VPP, and cooperate with the operation of the power charge pump 212 to complete the pre-operation before the memory array 202 performs self-updating (making the first voltage node The potential of the VPP reaches a rated voltage of 402), avoiding the error in the memory array 202 due to the low potential of the first voltage node VPP. Next, the controller 206 outputs an update trigger signal REFRI such that the memory array 202 performs self-updating and simultaneously turns off the switching device 204 (S604). Since the memory array 202 is in an idle state for a long period of time from the update, the step S604 turns off the switching device 204 to reduce the leakage current. If the memory device 200 needs to continue to perform the self-updating operation of the next cycle, the controller 206 outputs the update trigger signal REFRI again, that is, step 604 returns to step 602 again. To leave the self-updating mode, the controller 206 stops outputting the update status signal SRMOD, causing the memory device 200 to leave the self-updating mode, and the switching device 204 is turned on (S606). Step S606 is such that the potential of the second voltage node VPPA reaches the rated voltage 402, so that the memory device 200 can perform the operation of the general read/write command at a sufficient voltage.
雖然本發明的實施例如上述所描述,我們應該明白上述所呈現的只是範例,而不是限制。依據本實施例上述示範實施例的許多改變是可以在沒有違反發明精神及範圍下被執行。因此,本發明的廣度及範圍不該被上述所描述的實施例所限制。更確切地說,本發明的範圍應該要以以下的申請專利範圍及其相等物來定義。While the embodiments of the invention have been described above, it is to be understood that Many variations of the above-described exemplary embodiments in accordance with the present embodiments can be performed without departing from the spirit and scope of the invention. Therefore, the breadth and scope of the invention should not be limited Rather, the scope of the invention should be defined by the following claims and their equivalents.
100‧‧‧記憶體裝置100‧‧‧ memory device
102‧‧‧解碼器102‧‧‧Decoder
104‧‧‧字元線104‧‧‧ character line
106‧‧‧位元線106‧‧‧ bit line
108‧‧‧儲存單元電容108‧‧‧Storage unit capacitance
110‧‧‧電晶體110‧‧‧Optoelectronics
112‧‧‧漏電流路徑112‧‧‧Leakage current path
200‧‧‧記憶體裝置200‧‧‧ memory device
202‧‧‧記憶體陣列202‧‧‧Memory array
204‧‧‧開關裝置204‧‧‧Switching device
206‧‧‧控制器206‧‧‧ Controller
208‧‧‧電壓箝制器208‧‧‧Voltage clamp
210‧‧‧去耦電容210‧‧‧Decoupling capacitor
212‧‧‧電源電荷泵212‧‧‧Power Charge Pump
214‧‧‧邏輯裝置214‧‧‧Logical device
300‧‧‧反相器300‧‧‧Inverter
302‧‧‧PMOS電晶體302‧‧‧PMOS transistor
304‧‧‧反及閘(NAND gate)304‧‧‧ NAND gate
306‧‧‧反相器306‧‧‧Inverter
400‧‧‧參考電壓400‧‧‧reference voltage
402‧‧‧額定電壓402‧‧‧Rated voltage
SRMOD‧‧‧更新模式訊號SRMOD‧‧‧ update mode signal
SWEN‧‧‧控制訊號SWEN‧‧‧ control signal
REFRI‧‧‧更新觸發訊號REFRI‧‧‧Update trigger signal
PRESR‧‧‧預啟動訊號PRESR‧‧‧ pre-start signal
VDD1‧‧‧電源電壓VDD1‧‧‧Power supply voltage
VN‧‧‧負電源VN‧‧‧Negative power supply
VP‧‧‧正電源VP‧‧‧ positive power supply
VPP‧‧‧第一電壓節點VPP‧‧‧ first voltage node
VPPA‧‧‧第二電壓節點VPPA‧‧‧second voltage node
VPL‧‧‧埋層平板電壓VPL‧‧‧ buried layer voltage
第1圖為記憶體裝置內漏電流路徑示意圖。 第2圖為本揭露實施例之記憶體裝置示意圖。 第3圖為本揭露實施例第2圖之開關裝置及邏輯裝置的電路示意圖。 第4圖為本揭露實施例第2圖記憶體裝置的第二電壓節點VPPA的電位與複數個控制訊號的時序圖。 第5圖為本揭露實施例第2圖記憶體裝置離開自更新模式後的第二電壓節點VPPA的電位與複數個控制訊號的時序圖。 第6圖為本揭露實施例第2圖之記憶體裝置的控制流程圖。Figure 1 is a schematic diagram of the leakage current path in the memory device. FIG. 2 is a schematic diagram of a memory device according to an embodiment of the present disclosure. FIG. 3 is a circuit diagram of a switching device and a logic device according to a second embodiment of the present disclosure. FIG. 4 is a timing diagram of the potential of the second voltage node VPPA and the plurality of control signals of the memory device of the second embodiment of the present disclosure. FIG. 5 is a timing diagram of the potential of the second voltage node VPPA and the plurality of control signals after the memory device leaves the self-refresh mode according to the second embodiment of the present disclosure. Figure 6 is a control flow chart of the memory device of the second embodiment of the present disclosure.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124017A TWI669713B (en) | 2018-07-12 | 2018-07-12 | Memory device and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124017A TWI669713B (en) | 2018-07-12 | 2018-07-12 | Memory device and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI669713B true TWI669713B (en) | 2019-08-21 |
TW202006726A TW202006726A (en) | 2020-02-01 |
Family
ID=68316740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107124017A TWI669713B (en) | 2018-07-12 | 2018-07-12 | Memory device and control method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI669713B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208776A (en) * | 1990-07-31 | 1993-05-04 | Texas Instruments, Incorporated | Pulse generation circuit |
US6424585B1 (en) * | 1994-08-04 | 2002-07-23 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device with a voltage down converter stably generating an internal down-converted voltage |
US6434076B1 (en) * | 2001-01-22 | 2002-08-13 | International Business Machines Corporation | Refresh control circuit for low-power SRAM applications |
US20140321226A1 (en) * | 2007-09-14 | 2014-10-30 | Conversant Intellectual Property Management Inc. | Dynamic random access memory and boosted voltage producer therefor |
-
2018
- 2018-07-12 TW TW107124017A patent/TWI669713B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208776A (en) * | 1990-07-31 | 1993-05-04 | Texas Instruments, Incorporated | Pulse generation circuit |
US6424585B1 (en) * | 1994-08-04 | 2002-07-23 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device with a voltage down converter stably generating an internal down-converted voltage |
US6434076B1 (en) * | 2001-01-22 | 2002-08-13 | International Business Machines Corporation | Refresh control circuit for low-power SRAM applications |
US20140321226A1 (en) * | 2007-09-14 | 2014-10-30 | Conversant Intellectual Property Management Inc. | Dynamic random access memory and boosted voltage producer therefor |
Also Published As
Publication number | Publication date |
---|---|
TW202006726A (en) | 2020-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3742191B2 (en) | Semiconductor integrated circuit device | |
US7768859B2 (en) | Dynamic random access memory device and method for self-refreshing memory cells | |
US6504783B2 (en) | Semiconductor device having early operation high voltage generator and high voltage supplying method therefor | |
JP2003077273A (en) | Control method for semiconductor memory, and semiconductor memory | |
JP2002298586A (en) | Data write-in method for semiconductor memory, and semiconductor memory | |
CN102855925B (en) | Self-refreshing control circuit and the memorizer comprising self-refreshing control circuit | |
TWI616882B (en) | Controlling the voltage level on the word line to maintain performance and reduce access disturbs | |
TWI410971B (en) | Static random access memory | |
US9542992B2 (en) | SRAM core cell design with write assist | |
US7307866B2 (en) | Ferroelectric memory and method for reading data from the ferroelectric memory | |
JP3497601B2 (en) | Semiconductor integrated circuit | |
JP4260469B2 (en) | Semiconductor memory device | |
US8750067B2 (en) | Semiconductor device having reset function | |
JP2003196976A (en) | Control device, memory device, and its control method | |
US20150109875A1 (en) | Semiconductor memory device | |
TWI669713B (en) | Memory device and control method thereof | |
US6639862B2 (en) | Semiconductor memory with refresh and method for operating the semiconductor memory | |
CN110797061B (en) | Memory device and control method thereof | |
US10424364B1 (en) | Memory device and control method thereof | |
CN107799137B (en) | Memory storage device and operation method thereof | |
JP2016212934A (en) | Semiconductor device and its control method | |
TWI815481B (en) | Sustainable dram having principle power supply voltage unified with logic circuit | |
WO2004102578A1 (en) | Semiconductor storage device | |
CN222145804U (en) | A control device for sensing power supply voltage of an amplifier | |
KR100557534B1 (en) | Internal power supply voltage control device and its control method |