TWI667793B - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- TWI667793B TWI667793B TW106138596A TW106138596A TWI667793B TW I667793 B TWI667793 B TW I667793B TW 106138596 A TW106138596 A TW 106138596A TW 106138596 A TW106138596 A TW 106138596A TW I667793 B TWI667793 B TW I667793B
- Authority
- TW
- Taiwan
- Prior art keywords
- iii
- semiconductor layer
- doped
- semiconductor
- sidewall
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本發明實施例關於一種半導體裝置。上述半導體裝置包括基板以及設置於基板上之第一III-V族半導體層。第一III-V族半導體層包括鰭片結構,且上述鰭片結構包括頂表面、第一側壁以及相對於上述第一側壁的第二側壁。上述半導體裝置亦包括設置於第一III-V族半導體層上之第二III-V族半導體層。第一III-V族半導體層與第二III-V族半導體層包括相異之材料,且第二III-V族半導體層覆蓋上述鰭片結構的頂表面、第一側壁以及第二側壁,以沿著上述鰭片結構的頂表面、第一側壁以及第二側壁形成異質接合。上述半導體裝置亦包括設置於第二III-V族半導體層上之閘極電極。 Embodiments of the present invention relate to a semiconductor device. The semiconductor device includes a substrate and a first III-V semiconductor layer disposed on the substrate. The first III-V semiconductor layer includes a fin structure, and the fin structure includes a top surface, a first sidewall, and a second sidewall opposite the first sidewall. The above semiconductor device also includes a second III-V semiconductor layer disposed on the first III-V semiconductor layer. The first III-V semiconductor layer and the second III-V semiconductor layer comprise a different material, and the second III-V semiconductor layer covers the top surface, the first sidewall and the second sidewall of the fin structure, A heterojunction is formed along the top surface, the first sidewall, and the second sidewall of the fin structure. The above semiconductor device also includes a gate electrode disposed on the second III-V semiconductor layer.
Description
本發明實施例係有關於一種半導體裝置,且特別有關於一種高電子遷移率電晶體(High electron mobility transistor,HEMT)或高電洞遷移率電晶體(High hole mobility transistor,HHMT)。 Embodiments of the present invention relate to a semiconductor device, and more particularly to a High Electron Mobility Transistor (HEMT) or a High Hole Mobility Transistor (HHMT).
半導體裝置已廣泛地使用於各種電子產品中,舉例而言,諸如高功率裝置、個人電腦、手機、以及數位相機...等。半導體裝置的製造通常是藉由在半導體基板上依序沉積絕緣層或介電層材料、導電層材料以及半導體層材料,接著使用微影製程圖案化所形成的各種材料層,藉以在此半導體基板之上形成電路零件及組件。 Semiconductor devices have been widely used in various electronic products such as, for example, high power devices, personal computers, mobile phones, and digital cameras. The semiconductor device is usually fabricated by sequentially depositing an insulating layer or a dielectric layer material, a conductive layer material, and a semiconductor layer material on a semiconductor substrate, and then patterning the various material layers formed by using a lithography process, whereby the semiconductor substrate is formed thereon. Circuit parts and components are formed on top.
其中,高電子遷移率電晶體或高電洞遷移率電晶體因具有高輸出電壓、高崩潰電壓等優點而被廣泛應用於高功率裝置中。 Among them, high electron mobility transistor or high hole mobility transistor is widely used in high power devices due to its high output voltage and high breakdown voltage.
然而,現有之高電子遷移率電晶體或高電洞遷移率電晶體仍存在一些缺點而非在各方面皆令人滿意。 However, existing high electron mobility transistors or high hole mobility transistors still have some disadvantages and are not satisfactory in all respects.
本發明實施例提供一種半導體裝置。上述半導體裝置包括基板以及設置於上述基板上之第一III-V族半導體層。 上述第一III-V族半導體層包括鰭片結構(fin structure),且上述鰭片結構包括頂表面、第一側壁以及相對於上述第一側壁的第二側壁。上述半導體裝置亦包括設置於上述第一III-V族半導體層上之第二III-V族半導體層。上述第一III-V族半導體層與上述第二III-V族半導體層包括相異之材料,且上述第二III-V族半導體層覆蓋上述鰭片結構的頂表面、第一側壁以及第二側壁,以沿著上述鰭片結構的頂表面、第一側壁以及第二側壁形成異質接合(heterojunction)。上述半導體裝置亦包括設置於上述第二III-V族半導體層上之閘極電極。 Embodiments of the present invention provide a semiconductor device. The semiconductor device includes a substrate and a first III-V semiconductor layer disposed on the substrate. The first III-V semiconductor layer includes a fin structure, and the fin structure includes a top surface, a first sidewall, and a second sidewall opposite to the first sidewall. The semiconductor device further includes a second III-V semiconductor layer disposed on the first III-V semiconductor layer. The first III-V semiconductor layer and the second III-V semiconductor layer comprise a different material, and the second III-V semiconductor layer covers a top surface, a first sidewall, and a second of the fin structure a sidewall to form a heterojunction along a top surface, a first sidewall, and a second sidewall of the fin structure. The semiconductor device also includes a gate electrode disposed on the second III-V semiconductor layer.
本發明實施例亦提供一種半導體裝置之形成方法。上述方法包括提供基板以及形成第一III-V族半導體層於上述基板上。上述第一III-V族半導體層包括鰭片結構,且上述鰭片結構包括頂表面、第一側壁以及相對於上述第一側壁的第二側壁。上述方法亦包括形成第二III-V族半導體層於上述第一III-V族半導體層上。上述第一III-V族半導體層與上述第二III-V族半導體層包括相異之材料,且上述第二III-V族半導體層覆蓋上述鰭片結構的頂表面、第一側壁以及第二側壁,以沿著上述鰭片結構的頂表面、第一側壁以及第二側壁形成異質接合。上述方法亦包括形成閘極電極於上述第二III-V族半導體層上。 Embodiments of the present invention also provide a method of forming a semiconductor device. The above method includes providing a substrate and forming a first III-V semiconductor layer on the substrate. The first III-V semiconductor layer includes a fin structure, and the fin structure includes a top surface, a first sidewall, and a second sidewall opposite to the first sidewall. The above method also includes forming a second III-V semiconductor layer on the first III-V semiconductor layer. The first III-V semiconductor layer and the second III-V semiconductor layer comprise a different material, and the second III-V semiconductor layer covers a top surface, a first sidewall, and a second of the fin structure a sidewall to form a heterojunction along a top surface, a first sidewall, and a second sidewall of the fin structure. The above method also includes forming a gate electrode on the second III-V semiconductor layer.
10‧‧‧空乏型高電子遷移率電晶體 10‧‧‧ Vacant high electron mobility transistor
10’‧‧‧增強型高電子遷移率電晶體 10'‧‧‧Enhanced high electron mobility transistor
100‧‧‧基板 100‧‧‧Substrate
200‧‧‧第一III-V族半導體層 200‧‧‧First III-V semiconductor layer
202‧‧‧鰭片結構 202‧‧‧Fin structure
202T‧‧‧鰭片結構之頂表面 Top surface of the 202T‧‧‧ fin structure
202S1‧‧‧鰭片結構之第一側壁 The first side wall of the 202S1‧‧‧ fin structure
202S2‧‧‧鰭片結構之第二側壁 The second side wall of the 202S2‧‧‧ fin structure
402‧‧‧第二III-V族半導體層 402‧‧‧Second III-V semiconductor layer
404‧‧‧二維電子雲 404‧‧‧Two-dimensional electronic cloud
502‧‧‧絕緣層 502‧‧‧Insulation
504‧‧‧閘極電極 504‧‧‧gate electrode
506‧‧‧源極/汲極電極 506‧‧‧Source/drain electrodes
508‧‧‧第一摻雜III-V族半導體層 508‧‧‧First doped III-V semiconductor layer
20‧‧‧空乏型高電洞遷移率電晶體 20‧‧‧ Vacant high hole mobility transistor
20’‧‧‧增強型高電洞遷移率電晶體 20'‧‧‧Enhanced high hole mobility transistor
600‧‧‧基板 600‧‧‧Substrate
602‧‧‧第一III-V族半導體層 602‧‧‧First III-V semiconductor layer
604‧‧‧鰭片結構 604‧‧‧Fin structure
604T‧‧‧鰭片結構之頂表面 Top surface of the 604T‧‧‧ fin structure
604S1‧‧‧鰭片結構之第一側壁 First side wall of the 604S1‧‧‧ fin structure
604S2‧‧‧鰭片結構之第二側壁 The second side wall of the 604S2‧‧‧ fin structure
606‧‧‧第二III-V族半導體層 606‧‧‧Second III-V semiconductor layer
608‧‧‧第一摻雜III-V族半導體層 608‧‧‧First doped III-V semiconductor layer
610‧‧‧絕緣層 610‧‧‧Insulation
612‧‧‧閘極電極 612‧‧‧gate electrode
614‧‧‧源極/汲極電極 614‧‧‧Source/drain electrodes
616‧‧‧二維電洞雲 616‧‧‧Two-dimensional hole cloud
618‧‧‧第二摻雜III-V族半導體層 618‧‧‧Second-doped III-V semiconductor layer
w‧‧‧寬度 w‧‧‧Width
h‧‧‧高度 H‧‧‧height
t1‧‧‧厚度 t 1 ‧‧‧thickness
X1-X2‧‧‧剖面線 X 1 -X 2 ‧‧‧ hatching
Y1-Y2‧‧‧剖面線 Y 1 -Y 2 ‧‧‧ hatching
以下將配合所附圖式詳述本發明實施例。應注意的是,各種特徵並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本發明實施例 的技術特徵。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It is noted that the various features are not drawn to scale and are merely illustrative. In fact, the size of the components may be enlarged or reduced to clearly show an embodiment of the present invention. Technical characteristics.
第1、2、3、4A、5A圖為一系列之部分立體圖,用以說明本發明第一實施例之高電子遷移率電晶體10的形成方法。 The figures 1, 2, 3, 4A, and 5A are a series of partial perspective views for explaining the formation method of the high electron mobility transistor 10 of the first embodiment of the present invention.
第4B圖係沿著第4A圖之剖面線X1-X2繪示出本發明第一實施例之高電子遷移率電晶體10的製程剖面圖。 Fig. 4B is a cross-sectional view showing the process of the high electron mobility transistor 10 of the first embodiment of the present invention taken along the section line X 1 -X 2 of Fig. 4A.
第5B圖係沿著第5A圖之剖面線Y1-Y2繪示出本發明第一實施例之高電子遷移率電晶體10之部分剖面圖。 Fig. 5B is a partial cross-sectional view showing the high electron mobility transistor 10 of the first embodiment of the present invention taken along the line Y 1 - Y 2 of Fig. 5A.
第5C圖係根據本發明一些實施例繪示出高電子遷移率電晶體10’之部分立體圖。 Figure 5C is a partial perspective view of a high electron mobility transistor 10', in accordance with some embodiments of the present invention.
第5D圖係沿著第5C圖之剖面線Y1-Y2繪示出本發明一些施例之高電子遷移率電晶體10’之部分剖面圖。 5D based on FIG. 5C along line Y 1 -Y 2 of FIG depicts a portion of some of the high electron mobility transistor of embodiment 10 'of a cross-sectional view of the invention.
第6A圖係根據本發明第二實施例繪示出高電洞遷移率電晶體20之部分立體圖。 Figure 6A is a partial perspective view of a high hole mobility transistor 20 in accordance with a second embodiment of the present invention.
第6B圖係沿著第6A圖之剖面線X1-X2繪示出本發明第二實施例之高電洞遷移率電晶體20之部分剖面圖。 Fig. 6B is a partial cross-sectional view showing the high hole mobility transistor 20 of the second embodiment of the present invention taken along the section line X 1 -X 2 of Fig. 6A.
第6C圖係沿著第6A圖之剖面線Y1-Y2繪示出本發明第二實施例之高電洞遷移率電晶體20之部分剖面圖。 Fig. 6C is a partial cross-sectional view showing the high hole mobility transistor 20 of the second embodiment of the present invention taken along the line Y 1 - Y 2 of Fig. 6A.
第6D圖係根據本發明一些實施例繪示出高電洞遷移率電晶體20’之部分立體圖。 Figure 6D is a partial perspective view of a high hole mobility transistor 20', in accordance with some embodiments of the present invention.
第6E圖係沿著第6D圖之剖面線Y1-Y2繪示出本發明一些實施例之高電洞遷移率電晶體20’之部分剖面圖。 Based on a partial sectional view of FIG. 6E Y 1 -Y 2 illustrates a cross-sectional view along the line of FIG. 6D some of the embodiments of the high hole mobility transistor according to the present invention, 20 'of.
以下的揭露內容提供許多不同的實施例或範例以 實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。例如,若是本發明實施例敘述了一第一特徵形成於一第二特徵之上或上方,即表示其可能包含上述第一特徵與上述第二特徵是直接接觸的實施例,亦可能包含了有附加特徵形成於上述第一特徵與上述第二特徵之間,而使上述第一特徵與第二特徵可能未直接接觸的實施例。另外,以下所揭露之不同範例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。 The following disclosure provides many different embodiments or examples to Implement the different features of the case. The following disclosure sets forth specific examples of various components and their arrangement to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if an embodiment of the present invention describes that a first feature is formed on or above a second feature, that is, it may include an embodiment in which the first feature is in direct contact with the second feature, and may also include Additional features are formed between the first feature and the second feature described above, such that the first feature and the second feature may not be in direct contact with each other. In addition, the different examples disclosed below may reuse the same reference symbols and/or labels. These repetitions are not intended to limit the specific relationship between the various embodiments and/or structures discussed.
應可理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。 It will be appreciated that additional operational steps may be performed before, during or after the method, and that in other embodiments of the method, portions of the operational steps may be substituted or omitted.
此外,其中可能用到與空間相關用詞,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相關形容詞也將依轉向後的方位來解釋。 In addition, space-related terms such as "below", "below", "lower", "above", "higher" and similar terms may be used. To facilitate the description of the relationship between one element or feature(s) and another element or feature(s) in the drawings, these spatially related terms include the various orientations of the device in operation or operation, and the description Orientation. When the device is turned to a different orientation (rotated 90 degrees or other orientation), the spatially related adjectives used therein will also be interpreted in terms of the orientation after the turn.
本發明實施例之高電子遷移率電晶體(HEMT)或高電洞遷移率電晶體(HHMT)係包括具有鰭片結構的III-V族半導體層。上述鰭片結構可增加二維電子雲(two-dimensional electron gas,2DEG)或二維電洞雲(two-dimensional hole gas, 2DHG)的面積,因此具有較佳之裝置效能。 The high electron mobility transistor (HEMT) or high hole mobility transistor (HHMT) of the embodiment of the invention includes a III-V semiconductor layer having a fin structure. The above fin structure can increase a two-dimensional electron gas (2DEG) or a two-dimensional hole gas (two-dimensional hole gas). The area of 2DHG) therefore has better device performance.
[第一實施例:高電子遷移率電晶體] [First Embodiment: High Electron Mobility Transistor]
第1圖係為本實施例之高電子遷移率電晶體形成方法之起始步驟的部分立體圖。首先,如第1圖所示,提供基板100。於本實施例中,基板100係為藍寶石基板(sapphire),但本發明並非依此為限。舉例而言,基板100可包括元素半導體,例如:矽或鍺。在一些實施例中,基板100可包括化合物半導體,例如:SiC、GaAs、InAs或InP。在一些實施例中,基板100可包括合金半導體,例如:SiGe、SiGeC、GaAsP或GaInP。在一些實施例中,基板100可為單晶基板、多層基板(multi-layer substrate)、梯度基板(gradient substrate)、其他適當之基板或上述之組合。在一些實施例中,基板100亦可包括絕緣層上半導體(semiconductor on insulator,SOI)基板(例如:絕緣層上矽基板或絕緣層上鍺基板),上述絕緣層上半導體基板可包括底板、設置於上述底板上之埋藏氧化層以及設置於上述埋藏氧化層上之半導體層。 Fig. 1 is a partial perspective view showing the initial steps of the method for forming a high electron mobility transistor of the present embodiment. First, as shown in Fig. 1, a substrate 100 is provided. In the present embodiment, the substrate 100 is a sapphire substrate, but the invention is not limited thereto. For example, the substrate 100 may include an elemental semiconductor such as germanium or germanium. In some embodiments, substrate 100 can include a compound semiconductor such as SiC, GaAs, InAs, or InP. In some embodiments, substrate 100 can include an alloy semiconductor such as SiGe, SiGeC, GaAsP, or GaInP. In some embodiments, the substrate 100 can be a single crystal substrate, a multi-layer substrate, a gradient substrate, other suitable substrates, or a combination thereof. In some embodiments, the substrate 100 may further include a semiconductor on insulator (SOI) substrate (eg, an insulating layer upper germanium substrate or an insulating layer upper germanium substrate), and the insulating layer upper semiconductor substrate may include a bottom plate and a set a buried oxide layer on the bottom plate and a semiconductor layer disposed on the buried oxide layer.
在一些實施例中,基板100可包括緩衝層(未繪示於圖中),以避免或減少因基板100以及其上之半導體層之間的晶格不匹配(lattice mismatch)所產生之缺陷。舉例而言,上述緩衝層可包括AlN、AlGaN、其他適當之材料或上述之組合。 In some embodiments, the substrate 100 can include a buffer layer (not shown) to avoid or reduce defects due to lattice mismatch between the substrate 100 and the semiconductor layers thereon. For example, the buffer layer may include AlN, AlGaN, other suitable materials, or a combination thereof.
接著,如第2圖所示,形成第一III-V族半導體層200於基板100之上。在一些實施例中,第一III-V族半導體層200可包括未摻雜的III-V族半導體材料。舉例而言,在本實施例中,第一III-V族半導體層200係由未摻雜的GaN所形成,但本發明 並非依此為限。在一些其他的實施例中,第一III-V族半導體層200亦可包括AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合。在一些實施例中,可使用分子束磊晶法(molecular-beam epitaxy,MBE)、有機金屬化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、其他適當之方法或上述之組合形成第一III-V族半導體層200於基板100之上。 Next, as shown in FIG. 2, the first III-V semiconductor layer 200 is formed on the substrate 100. In some embodiments, the first III-V semiconductor layer 200 can include an undoped III-V semiconductor material. For example, in the present embodiment, the first III-V semiconductor layer 200 is formed of undoped GaN, but the present invention Not limited to this. In some other embodiments, the first III-V semiconductor layer 200 may also include AlGaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V materials, or combinations thereof. In some embodiments, molecular-beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy can be used. , HVPE), other suitable methods, or a combination thereof, to form the first III-V semiconductor layer 200 over the substrate 100.
接著,如第3圖所示,圖案化第一III-V族半導體層200,以形成一或多個鰭片結構202。舉例而言,可使用低壓化學氣相沉積製程(low-pressure chemical vapor deposition,LPCVD)、電漿輔助化學氣相沉積製程(plasma-enhanced chemical vapor deposition,PECVD)、其他適當的製程或上述之組合於第一III-V族半導體層200上形成包括如氮化矽、氧化矽等材料之硬罩幕層(未繪示於圖中),然後以微影製程(例如:光阻塗佈(resist coating)、軟烘烤(soft baking)、曝光(exposure)、曝光後烘烤(post-exposure baking)、顯影(developing))在上述硬罩幕層上形成圖案化之光阻,然後使用上述圖案化之光阻充當蝕刻罩幕進行蝕刻製程(例如:濕式蝕刻、乾式蝕刻)以圖案化上述硬罩幕層。接著,可使用上述圖案之化硬罩幕層充當蝕刻罩幕進行蝕刻製程(例如:濕式蝕刻、乾式蝕刻)蝕刻第一III-V族半導體層200,以形成一或多個鰭片結構202。舉例而言,上述乾式蝕刻製程可包括電漿蝕刻製程或反應式離子蝕刻製程。 Next, as shown in FIG. 3, the first III-V semiconductor layer 200 is patterned to form one or more fin structures 202. For example, low-pressure chemical vapor deposition (LPCVD), plasma-assisted chemical vapor deposition (PECVD), other suitable processes, or a combination thereof may be used. Forming a hard mask layer (not shown) on the first III-V semiconductor layer 200, including a material such as tantalum nitride, tantalum oxide, etc., and then performing a lithography process (for example, photoresist coating (resist) Coating), soft baking, exposure, post-exposure baking, developing, forming a patterned photoresist on the hard mask layer, and then using the above pattern The photoresist is used as an etch mask for an etching process (eg, wet etching, dry etching) to pattern the hard mask layer. Next, the first III-V semiconductor layer 200 may be etched using an etched mask of the pattern as an etch mask (eg, wet etch, dry etch) to form one or more fin structures 202. . For example, the dry etching process described above may include a plasma etching process or a reactive ion etching process.
應理解的是,為了簡明起見,本實施例係以兩個鰭片結構202為例進行說明,然而本發明並不依此為限,本領域具通常知識者亦可視設計需求形成其他數量的鰭片結構202。 It should be understood that, for the sake of brevity, the present embodiment is described by taking two fin structures 202 as an example. However, the present invention is not limited thereto, and those skilled in the art may also form other numbers of fins according to design requirements. Sheet structure 202.
在一些實施例中,可於基板100上形成隔離結構(未繪示於圖中)。舉例而言,可使用化學氣相沉積法(例如:次常壓化學氣相沉積法(sub-atmospheric chemical vapor deposition,SACVD)、高密度電漿化學氣相沉積法(high-density plasma chemical vapor deposition,HDPCVD)形成介電材料於第一III-V族半導體層200及其鰭片結構202上,接著進行如回蝕刻之製程移除多餘的介電材料,以於鰭片結構202之間形成隔離結構。在一些實施例中,上述隔離結構的頂表面低於鰭片結構202的頂表面202T。舉例而言,上述隔離結構可包括氧化矽、氮化矽、氮碳化矽、碳氮氧化矽其他適當的材料或上述之組合。 In some embodiments, an isolation structure (not shown) may be formed on the substrate 100. For example, chemical vapor deposition (for example, sub-atmospheric chemical vapor deposition (SACVD), high-density plasma chemical vapor deposition (high-density plasma chemical vapor deposition) can be used. , HDPCVD) forms a dielectric material on the first III-V semiconductor layer 200 and its fin structure 202, and then performs an etch-back process to remove excess dielectric material to form isolation between the fin structures 202. In some embodiments, the top surface of the isolation structure is lower than the top surface 202T of the fin structure 202. For example, the isolation structure may include hafnium oxide, tantalum nitride, niobium carbide, niobium oxycarbonate, and the like. Suitable materials or combinations of the above.
請繼續參照第3圖,鰭片結構202可具有頂表面202T、兩相對的第一側壁202S1以及第二側壁202S2。在一些實施例中,於後續的製程中所形成的第二III-V族半導體層(如第4A圖所示之第二III-V族半導體層402)係覆蓋鰭片結構202之頂表面202T、第一側壁202S1以及第二側壁202S2,因此可增加二維電子雲(2DEG)的面積而提升高電子遷移率電晶體的效能,於後文將詳細說明。 Referring to FIG. 3, the fin structure 202 can have a top surface 202T, two opposing first sidewalls 202S1, and a second sidewall 202S2. In some embodiments, the second III-V semiconductor layer (such as the second III-V semiconductor layer 402 shown in FIG. 4A) formed in the subsequent process covers the top surface 202T of the fin structure 202. The first sidewall 202S1 and the second sidewall 202S2 can increase the area of the two-dimensional electron cloud (2DEG) to enhance the performance of the high electron mobility transistor, which will be described in detail later.
如第3圖所示,鰭片結構202具有高度h以及寬度w。在一些實施例中,寬度w與高度h的比值(亦即,w/h)小於0.2,而無法形成二維電子雲於第一側壁202S1以及第二側壁202S2 上。在一些其他的實施例中,寬度w與高度h的比值大於10,而無法形成二維電子雲於頂表面202T上。因此,在本實施例中,寬度w與高度h的比值為0.2至10,以避免上述因寬度w與高度h的比值太大或太小所產生之缺點。舉例而言,高度h可為0.1至2μm,而寬度w可為0.1至2μm。 As shown in FIG. 3, the fin structure 202 has a height h and a width w. In some embodiments, the ratio of the width w to the height h (ie, w/h) is less than 0.2, and the two-dimensional electron cloud cannot be formed on the first sidewall 202S1 and the second sidewall 202S2. on. In some other embodiments, the ratio of width w to height h is greater than 10, and a two-dimensional electron cloud cannot be formed on top surface 202T. Therefore, in the present embodiment, the ratio of the width w to the height h is 0.2 to 10 to avoid the above disadvantages caused by the ratio of the width w to the height h being too large or too small. For example, the height h may be 0.1 to 2 μm, and the width w may be 0.1 to 2 μm.
在一些實施例中,在垂直於鰭片結構202之側壁的方向上,兩相鄰的鰭片結構202之距離(或節距)d可為0.04至10μm。 In some embodiments, the distance (or pitch) d of two adjacent fin structures 202 may be 0.04 to 10 μm in a direction perpendicular to the sidewalls of the fin structure 202.
接著,如第4A及4B圖所示,形成第二III-V族半導體層402於第一III-V族半導體層200上。詳細而言,第4B圖係為沿著第4A圖之剖面線X1-X2所繪示之剖面圖,且剖面線X1-X2係大抵上垂直於鰭片結構202之側壁。 Next, as shown in FIGS. 4A and 4B, the second III-V semiconductor layer 402 is formed on the first III-V semiconductor layer 200. In detail, FIG. 4B is a cross-sectional view taken along section line X 1 -X 2 of FIG. 4A, and the section lines X 1 -X 2 are substantially perpendicular to the side walls of the fin structure 202.
在一些實施例中,第二III-V族半導體層402與第一III-V族半導體層200係包括相異之材料以形成一異質接合,而可於第一III-V族半導體層200中形成二維電子雲404,其可充當高電子遷移率電晶體之載子。在一些實施例中,第二III-V族半導體層402包括未摻雜的III-V族半導體材料。舉例而言,在本實施例中,第二III-V族半導體層402係由未摻雜的AlGaN所形成,因此可與由未摻雜的GaN所形成之第一III-V族半導體層200共同形成一異質接合,但本發明並不依此為限。在一些其他的實施例中,第二III-V族半導體層402亦可包括GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合。舉例而言,可使用分子束磊晶法、有機金屬化學氣相沉積法、氫化物氣相磊晶法、其他適當之方 法或上述之組合形成第二III-V族半導體層402於第一III-V族半導體層200之上。 In some embodiments, the second III-V semiconductor layer 402 and the first III-V semiconductor layer 200 comprise different materials to form a heterojunction, and may be in the first III-V semiconductor layer 200. A two-dimensional electron cloud 404 is formed that can act as a carrier for a high electron mobility transistor. In some embodiments, the second III-V semiconductor layer 402 comprises an undoped III-V semiconductor material. For example, in the present embodiment, the second III-V semiconductor layer 402 is formed of undoped AlGaN, and thus can be formed with the first III-V semiconductor layer 200 formed of undoped GaN. Together, a heterojunction is formed, but the invention is not limited thereto. In some other embodiments, the second III-V semiconductor layer 402 can also include GaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V materials, or combinations thereof. For example, molecular beam epitaxy, organometallic chemical vapor deposition, hydride vapor epitaxy, and other suitable methods can be used. The method or a combination thereof forms a second III-V semiconductor layer 402 over the first III-V semiconductor layer 200.
如第4B圖所示,第二III-V族半導體層402係同時覆蓋第一III-V族半導體層200之鰭片結構202的頂表面202T、第一側壁202S1以及第二側壁202S2。換句話說,相較於傳統之平面裝置,本發明實施例之高電子遷移率電晶體的第二III-V族半導體層402與第一III-V族半導體層200具有較大的接觸面積,因此可增加二維電子雲的面積,使得本發明實施例之高電子遷移率電晶體在操作時可具有較大的電流而提升裝置效能。舉例而言,本發明一些實施例之高電子遷移率電晶體在操作時的電流為傳統平面裝置的2至5倍。 As shown in FIG. 4B, the second III-V semiconductor layer 402 simultaneously covers the top surface 202T, the first sidewall 202S1, and the second sidewall 202S2 of the fin structure 202 of the first III-V semiconductor layer 200. In other words, the second III-V semiconductor layer 402 of the high electron mobility transistor of the embodiment of the present invention has a larger contact area with the first III-V semiconductor layer 200 than the conventional planar device. Therefore, the area of the two-dimensional electron cloud can be increased, so that the high electron mobility transistor of the embodiment of the present invention can have a larger current during operation to improve device performance. For example, high electron mobility transistors of some embodiments of the invention operate at currents that are two to five times greater than conventional planar devices.
在一些實施例中,如第4A、4B圖所示,第二III-V族半導體層402係共形地形成於第一III-V族半導體層200之鰭片結構202之上。換句話說,在此些實施例中,鰭片結構202之間的空間未被第二III-V族半導體層402填滿,因此後續所形成的閘極電極可延伸進入鰭片結構202之間的空間中(如第5A圖所示之閘極電極504),而可增加閘極電極與第二III-V族半導體層402之間的接觸面積,使得閘極電極在裝置操作時能更有效地控制電流。 In some embodiments, as shown in FIGS. 4A and 4B, the second III-V semiconductor layer 402 is conformally formed over the fin structure 202 of the first III-V semiconductor layer 200. In other words, in such embodiments, the space between the fin structures 202 is not filled by the second III-V semiconductor layer 402, so that the subsequently formed gate electrodes can extend between the fin structures 202. In the space (such as the gate electrode 504 shown in FIG. 5A), the contact area between the gate electrode and the second III-V semiconductor layer 402 can be increased, so that the gate electrode can be more effective when the device is operated. Control the current.
在一些實施例中,如第4B圖所示,第二III-V族半導體層402的厚度t1可為0.005至0.1μm。 In some embodiments, as shown in Figure 4B, the thickness of the second III-V semiconductor layer 402 may be t 1 of 0.005 to 0.1μm.
接著,如第5A所示,形成絕緣層502於第二III-V族半導體層402之上,其可保護下方的膜層並提供物理隔離及結構支撐。舉例而言,絕緣層502可包括SiO2、SiN3、SiON、 Al2O3、AlN、聚亞醯胺(polyimide,PI)、苯環丁烯(benzocyclobutene,BCB)、聚苯并噁唑(polybenzoxazole,PBO)、其他絕緣材料或上述之組合。在一些實施例中,可使用化學氣相沉積法(例如:有機金屬化學氣相沉積法)、旋轉塗佈法(spin-coating)、其他適當之方法或上述之組合形成絕緣層502。在一些實施例中,絕緣層502經化學機械研磨(chemical mechanical polishing,CMP)製程而具有平坦的頂表面。 Next, as shown in FIG. 5A, an insulating layer 502 is formed over the second III-V semiconductor layer 402, which protects the underlying film layer and provides physical isolation and structural support. For example, the insulating layer 502 may include SiO 2 , SiN 3 , SiON, Al 2 O 3 , AlN, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole ( Polybenzoxazole, PBO), other insulating materials or combinations of the above. In some embodiments, the insulating layer 502 can be formed using chemical vapor deposition (eg, organometallic chemical vapor deposition), spin-coating, other suitable methods, or a combination thereof. In some embodiments, the insulating layer 502 has a flat top surface via a chemical mechanical polishing (CMP) process.
接著,如第5A所示,形成閘極電極504於第二III-V族半導體層402之上,並於閘極電極504兩側形成源極電極/汲極電極506,以形成本實施例之高電子遷移率電晶體10。在一些實施例中,如第5A圖所示,閘極電極504除了覆蓋鰭片結構202之頂表面202T上的第二III-V族半導體層402,更覆蓋鰭片結構202之側壁202S1與202S2上的第二III-V族半導體層402。換句話說,在此些實施例中,閘極電極504與第二III-V族半導體層402之間的接觸面積較大,使得閘極電極504在裝置操作時能更有效地控制電流。 Next, as shown in FIG. 5A, a gate electrode 504 is formed over the second III-V semiconductor layer 402, and a source/drain electrode 506 is formed on both sides of the gate electrode 504 to form the embodiment. High electron mobility transistor 10. In some embodiments, as shown in FIG. 5A, the gate electrode 504 covers the second III-V semiconductor layer 402 on the top surface 202T of the fin structure 202, and further covers the sidewalls 202S1 and 202S2 of the fin structure 202. The second III-V semiconductor layer 402 is on. In other words, in such embodiments, the contact area between the gate electrode 504 and the second III-V semiconductor layer 402 is relatively large, such that the gate electrode 504 can more effectively control current during device operation.
舉例而言,閘極電極504可包括金屬材料、金屬矽化物、多晶矽、其他適當之導電材料或上述之組合。舉例而言,源極/汲極電極506可包括Ti、Al、Au、Pd、其他適當之金屬材料、其合金、或上述之組合。在一些實施例中,可進行微影製程及蝕刻製程,以於絕緣層502中形成對應於閘極電極504之溝槽以及對應於源極電極/汲極電極506之溝槽,接著以化學氣相沉積法、物理氣相沉積法(例如蒸鍍或濺鍍)、電鍍、原子層沉積法、其他適當之方法或上述之組合於上述溝槽中填入導電材 料以形成閘極電極504以及源極電極/汲極電極506。 For example, the gate electrode 504 can comprise a metal material, a metal telluride, a polysilicon, other suitable conductive materials, or a combination thereof. For example, source/drain electrodes 506 can include Ti, Al, Au, Pd, other suitable metallic materials, alloys thereof, or combinations thereof. In some embodiments, a lithography process and an etch process may be performed to form a trench corresponding to the gate electrode 504 and a trench corresponding to the source/drain electrode 506 in the insulating layer 502, followed by a chemical gas. Phase deposition method, physical vapor deposition method (such as evaporation or sputtering), electroplating, atomic layer deposition, other suitable methods, or a combination thereof, in which the conductive material is filled in the trench The gate electrode 504 and the source/drain electrode 506 are formed.
請參照第5B圖,其係沿著第5A圖之剖面線Y1-Y2繪示出本實施例之高電子遷移率電晶體10的部分剖面圖。詳細而言,剖面線Y1-Y2係垂直於前述之剖面線X1-X2。如第5B圖所示,高電子遷移率電晶體10係為空乏型(depletion mode,亦即normally-on)之半導體裝置,且閘極電極504下方之鰭片結構202可充當一通道區,而閘極電極504兩側之鰭片結構202則可充當源極/汲極區。 Referring to Fig. 5B, a partial cross-sectional view of the high electron mobility transistor 10 of the present embodiment is shown along the section line Y 1 -Y 2 of Fig. 5A. In detail, the hatching line Y 1 -Y 2 is perpendicular to the aforementioned section line X 1 -X 2 . As shown in FIG. 5B, the high electron mobility transistor 10 is a depletion mode (normally-on) semiconductor device, and the fin structure 202 under the gate electrode 504 can serve as a channel region. The fin structure 202 on either side of the gate electrode 504 can serve as a source/drain region.
綜合上述,本實施例之高電子遷移率電晶體係包括具有鰭片結構的III-V族半導體層。上述鰭片結構可增加異質接合的接觸面積,因此可增加二維電子雲的面積而提高裝置效能。 In summary, the high electron mobility electron crystal system of the present embodiment includes a III-V semiconductor layer having a fin structure. The above fin structure can increase the contact area of the heterojunction, thereby increasing the area of the two-dimensional electron cloud and improving the device performance.
以下提供本實施例的一些變化例。在一些實施例中,如第5C、5D圖所示,高電子遷移率電晶體10’之閘極電極504與第二III-V族半導體層402之間更設置有第一摻雜III-V族半導體層508,使得高電子遷移率電晶體10’為增強型(enhanced mode,亦即normally-off)之半導體裝置。 Some variations of this embodiment are provided below. In some embodiments, as shown in FIGS. 5C and 5D, the first doping III-V is further disposed between the gate electrode 504 of the high electron mobility transistor 10 ′ and the second III-V semiconductor layer 402 . The family semiconductor layer 508 is such that the high electron mobility transistor 10' is an enhanced mode (ie, a normally-off) semiconductor device.
在一些實施例中,第一摻雜III-V族半導體層508可包括P型摻雜之III-V族半導體材料,其可包括鎂、其他適當之摻質或上述之組合。舉例而言,在本實施例中,第一摻雜III-V族半導體層508係由P型摻雜之GaN(P-GaN)所形成,但本發明並不依此為限。在一些其他的實施例中,第一摻雜III-V族半導體層508亦可包括P型摻雜之AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合。 In some embodiments, the first doped III-V semiconductor layer 508 can comprise a P-type doped III-V semiconductor material, which can include magnesium, other suitable dopants, or a combination thereof. For example, in the present embodiment, the first doped III-V semiconductor layer 508 is formed of P-doped GaN (P-GaN), but the invention is not limited thereto. In some other embodiments, the first doped III-V semiconductor layer 508 may also include P-type doped AlGaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V families. Material or a combination of the above.
舉例而言,上述摻質在第一摻雜III-V族半導體層508中之摻質濃度可為1E15/cm3至1E20/cm3。 For example, the dopant concentration of the dopant in the first doped III-V semiconductor layer 508 may be 1E15/cm 3 to 1E20/cm 3 .
在一些實施例中,可在形成絕緣層502的步驟之前,使用分子束磊晶法、金屬化學氣相沉積法、氫化物氣相磊晶法、其他適當之方法或上述之組合形成未摻雜之III-V族半導體毯覆層於第二III-V族半導體層402之上,並使用如離子佈植之製程將摻質佈植於上述未摻雜之III-V族半導體毯覆層中以形成一摻雜之III-V族半導體毯覆層,然後圖案化上述摻雜之III-V族半導體毯覆層以形成第一摻雜III-V族半導體層508。舉例而言,上述圖案化製程可包括微影製程、蝕刻製程、其他適當的製程或上述之組合。在一些其他的實施例中,亦可使用原位(in-situ)摻雜之方式形成第一摻雜III-V族半導體層508。 In some embodiments, undoped may be formed using molecular beam epitaxy, metal chemical vapor deposition, hydride vapor epitaxy, other suitable methods, or combinations thereof, prior to the step of forming insulating layer 502. The III-V semiconductor blanket is overlying the second III-V semiconductor layer 402, and the dopant is implanted in the undoped III-V semiconductor blanket layer using a process such as ion implantation. To form a doped III-V semiconductor blanket layer, and then pattern the doped III-V semiconductor blanket layer to form a first doped III-V semiconductor layer 508. For example, the above-described patterning process may include a lithography process, an etching process, other suitable processes, or a combination thereof. In some other embodiments, the first doped III-V semiconductor layer 508 can also be formed using in-situ doping.
由於增強型高電子遷移率電晶體10’亦包括具有鰭片結構的III-V族半導體層,因此其亦具有面積較大之二維電子雲而可提高裝置效能。 Since the enhanced high electron mobility transistor 10' also includes a III-V semiconductor layer having a fin structure, it also has a large-area two-dimensional electron cloud to improve device performance.
[第二實施例:高電洞遷移率電晶體] [Second embodiment: high hole mobility transistor]
第6A、6B、6C圖係繪示出本實施例之空乏型高電洞遷移率電晶體20的部分立體圖及部分剖面圖。詳細而言,第6B圖係為沿著第6A圖之剖面線X1-X2所繪示之空乏型高電洞遷移率電晶體20的部分剖面圖,而第6C圖係為沿著第6A圖之剖面線Y1-Y2所繪示之空乏型高電洞遷移率電晶體20的部分剖面圖。 6A, 6B, and 6C are a partial perspective view and a partial cross-sectional view showing the depletion type high hole mobility transistor 20 of the present embodiment. In detail, FIG. 6B is a partial cross-sectional view of the depletion-type high-porosity mobility transistor 20 taken along the section line X 1 -X 2 of FIG. 6A, and FIG. 6C is along the A partial cross-sectional view of the depleted high-porosity mobility transistor 20 depicted by the section line Y 1 -Y 2 of Figure 6A.
如第6A、6B及6C圖所示,空乏型高電洞遷移率電晶體20可包括基板600、設置於基板600上之第一III-V族半導體 層602、設置於第一III-V族半導體層602上之第二III-V族半導體層606、設置於第二III-V族半導體層606上之第一摻雜III-V族半導體層608、設置於第一摻雜III-V族半導體層608上之絕緣層610、閘極電極612以及設置於閘極電極612兩側之源極/汲極電極614。 As shown in FIGS. 6A, 6B, and 6C, the depletion type high hole mobility transistor 20 may include a substrate 600 and a first III-V semiconductor disposed on the substrate 600. The layer 602, the second III-V semiconductor layer 606 disposed on the first III-V semiconductor layer 602, and the first doped III-V semiconductor layer 608 disposed on the second III-V semiconductor layer 606 The insulating layer 610 disposed on the first doped III-V semiconductor layer 608, the gate electrode 612, and the source/drain electrodes 614 disposed on both sides of the gate electrode 612.
舉例而言,基板600可相同或類似於前述實施例之基板100。舉例而言,絕緣層610可相同或類似於前述實施例之絕緣層502,且可使用相同或類似於前述形成絕緣層502之方式形成絕緣層610。舉例而言,閘極電極612與源極/汲極電極614可相同或類似於前述實施例之閘極電極504與源極電極/汲極電極506,且可使用相同或類似於前述形成閘極電極504與源極電極/汲極電極506之方式形成閘極電極612與源極/汲極電極614。 For example, substrate 600 can be the same or similar to substrate 100 of the previous embodiment. For example, the insulating layer 610 may be the same or similar to the insulating layer 502 of the foregoing embodiment, and the insulating layer 610 may be formed using the same or similar to the foregoing forming the insulating layer 502. For example, the gate electrode 612 and the source/drain electrode 614 can be the same or similar to the gate electrode 504 and the source/drain electrode 506 of the previous embodiment, and the gate can be formed using the same or similar to the foregoing. The gate electrode 612 and the source/drain electrode 614 are formed by the electrode 504 and the source/drain electrode 506.
在一些實施例中,第二III-V族半導體層606與第一III-V族半導體層602係包括相異之材料,以形成一異質接合,且於第二III-V族半導體層606上設置有第一摻雜III-V族半導體層608,以形成二維電洞雲616(如第6A、6B、6C圖所示),其可充當高電洞遷移率電晶體之載子。 In some embodiments, the second III-V semiconductor layer 606 and the first III-V semiconductor layer 602 comprise different materials to form a heterojunction and on the second III-V semiconductor layer 606. A first doped III-V semiconductor layer 608 is provided to form a two-dimensional hole cloud 616 (as shown in Figures 6A, 6B, 6C) that can serve as a carrier for a high hole mobility transistor.
如第6A、6B及6C圖所示,空乏型高電洞遷移率電晶體20之第一III-V族半導體層602亦包括鰭片結構604,且第二III-V族半導體層606以及第一摻雜III-V族半導體層608係覆蓋鰭片結構604之頂表面604T以及兩相對的第一側壁604S1與604S2,因此可增加二維電洞雲616的面積,而提升空乏型高電洞遷移率電晶體20的效能。 As shown in FIGS. 6A, 6B, and 6C, the first III-V semiconductor layer 602 of the depletion-type high-porosity mobility transistor 20 also includes a fin structure 604, and the second III-V semiconductor layer 606 and the A doped III-V semiconductor layer 608 covers the top surface 604T of the fin structure 604 and the opposite first sidewalls 604S1 and 604S2, thereby increasing the area of the two-dimensional hole cloud 616 and enhancing the depletion high hole The efficiency of the mobility transistor 20.
在一些實施例中,第一III-V族半導體層602以及第二III-V族半導體層606各自可包括前述實施例中之未摻雜之III-V族半導體材料(例如:GaN、AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合),而第一摻雜III-V族半導體層608可包括前述實施例中之P型摻雜之III-V族半導體材料(例如:P型摻雜之GaN、AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合)。舉例而言,在本實施例中,第一III-V族半導體層602包括未摻雜的AlGaN,第二III-V族半導體層606包括未摻雜之GaN,而第一摻雜III-V族半導體層608則包括P型摻雜之GaN(P-GaN)。 In some embodiments, each of the first III-V semiconductor layer 602 and the second III-V semiconductor layer 606 may include the undoped III-V semiconductor material in the foregoing embodiments (eg, GaN, AlGaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V materials or a combination thereof, and the first doped III-V semiconductor layer 608 may include the P-type doping in the foregoing embodiment. A hetero-III-V semiconductor material (eg, P-doped GaN, AlGaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V materials, or combinations thereof). For example, in the present embodiment, the first III-V semiconductor layer 602 includes undoped AlGaN, and the second III-V semiconductor layer 606 includes undoped GaN, and the first doped III-V The family semiconductor layer 608 includes P-doped GaN (P-GaN).
在一些實施例中,第一摻雜III-V族半導體層608中之摻質濃度可為1E13/cm3至1E22/cm3。 In some embodiments, the dopant concentration in the first doped III-V semiconductor layer 608 can range from 1E13/cm 3 to 1E22/cm 3 .
在一些實施例中,形成上述III-V族半導體層的步驟可包括分子束磊晶法、金屬化學氣相沉積法、氫化物氣相磊晶法、其他適當之方法或上述之組合形成。舉例而言,可使用離子佈植或原位摻雜之方式形成第一摻雜III-V族半導體層608。 In some embodiments, the step of forming the III-V semiconductor layer described above may include molecular beam epitaxy, metal chemical vapor deposition, hydride vapor epitaxy, other suitable methods, or a combination thereof. For example, the first doped III-V semiconductor layer 608 can be formed using ion implantation or in-situ doping.
在一些實施例中,如第6A及6B圖所示,第二III-V族半導體層606係共形地形成於第一III-V族半導體層602之鰭片結構604上,且第一摻雜III-V族半導體層608亦共形地形成於第二III-V族半導體層606上。換句話說,在此些實施例中,鰭片結構604之間的空間未被第二III-V族半導體層606以及第一摻雜III-V族半導體層608填滿,因此閘極電極612可延伸進入鰭 片結構604之間的空間中而增加閘極電極612與第一摻雜III-V族半導體層608之間的接觸面積,使得閘極電極612在裝置操作時能更有效地控制電流。 In some embodiments, as shown in FIGS. 6A and 6B, the second III-V semiconductor layer 606 is conformally formed on the fin structure 604 of the first III-V semiconductor layer 602, and the first doping A hetero III-V semiconductor layer 608 is also conformally formed on the second III-V semiconductor layer 606. In other words, in such embodiments, the space between the fin structures 604 is not filled by the second III-V semiconductor layer 606 and the first doped III-V semiconductor layer 608, thus the gate electrode 612 Extendable into the fin The area of contact between the gate electrode 612 and the first doped III-V semiconductor layer 608 is increased in the space between the sheet structures 604 such that the gate electrode 612 can more effectively control current during device operation.
綜合上述,本實施例之空乏型高電洞遷移率電晶體係包括具有鰭片結構的III-V族半導體層。上述鰭片結構可增加異質接合的接觸面積,因此可增加二維電洞雲的面積而提高裝置效能。 In summary, the depletion type high hole mobility electro-ecological system of the present embodiment includes a III-V semiconductor layer having a fin structure. The above fin structure can increase the contact area of the heterojunction, thereby increasing the area of the two-dimensional hole cloud and improving the device performance.
以下提供本實施例的一些變化例。在一些實施例中,如第6D、6E圖所示,高電子遷移率電晶體20’之閘極電極612與第一摻雜III-V族半導體層608之間更設置有第二摻雜III-V族半導體層618,使得高電洞遷移率電晶體20’為增強型之半導體裝置。 Some variations of this embodiment are provided below. In some embodiments, as shown in FIGS. 6D and 6E, a second doping III is further disposed between the gate electrode 612 of the high electron mobility transistor 20 ′ and the first doped III-V semiconductor layer 608 . The -V semiconductor layer 618 is such that the high hole mobility transistor 20' is an enhanced semiconductor device.
在一些實施例中,第二摻雜III-V族半導體層618可包括N型摻雜之III-V族半導體材料,其可包括矽、氧、其他適當之摻質或上述之組合。舉例而言,在本實施例中,第一III-V族半導體層602係由未摻雜的AlGaN所形成,第二III-V族半導體層606係由未摻雜之GaN所形成,第一摻雜III-V族半導體層608係由P型摻雜之GaN所形成,而第二摻雜III-V族半導體層618則由N型摻雜之GaN所形成,但本發明並不依此為限。在一些其他的實施例中,第二摻雜III-V族半導體層618亦可包括N型摻雜之AlGaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料或上述之組合。 In some embodiments, the second doped III-V semiconductor layer 618 can comprise an N-type doped III-V semiconductor material, which can include germanium, oxygen, other suitable dopants, or a combination thereof. For example, in the present embodiment, the first III-V semiconductor layer 602 is formed of undoped AlGaN, and the second III-V semiconductor layer 606 is formed of undoped GaN, first The doped III-V semiconductor layer 608 is formed of P-type doped GaN, and the second doped III-V semiconductor layer 618 is formed of N-doped GaN, but the present invention does not limit. In some other embodiments, the second doped III-V semiconductor layer 618 may also include N-type doped AlGaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other suitable III-V families. Material or a combination of the above.
舉例而言,上述摻質在第二摻雜III-V族半導體層618中之摻質濃度可為1E15/cm3至1E20/cm3。 For example, the dopant concentration of the dopant in the second doped III-V semiconductor layer 618 may be 1E15/cm 3 to 1E20/cm 3 .
在一些實施例中,可在形成絕緣層610的步驟之前,使用分子束磊晶法、金屬化學氣相沉積法、氫化物氣相磊晶法、其他適當之方法或上述之組合形成未摻雜之III-V族半導體毯覆層於第一摻雜III-V族半導體層608之上,並使用如離子佈植之製程將上述摻質佈植於上述未摻雜之III-V族半導體毯覆層中以形成一摻雜之III-V族半導體毯覆層,然後圖案化上述摻雜之III-V族半導體毯覆層以形成第二摻雜III-V族半導體層618。舉例而言,上述圖案化製程可包括微影製程、蝕刻製程、其他適當的製程或上述之組合。在一些其他的實施例中,亦可使用原位摻雜之方式形成第二摻雜III-V族半導體層618。 In some embodiments, undoped may be formed using molecular beam epitaxy, metal chemical vapor deposition, hydride vapor phase epitaxy, other suitable methods, or combinations thereof, prior to the step of forming insulating layer 610. The III-V semiconductor blanket is overlying the first doped III-V semiconductor layer 608, and the dopant is implanted on the undoped III-V semiconductor blanket using an ion implantation process. A doped III-V semiconductor blanket coating is formed in the cladding, and then the doped III-V semiconductor blanket layer is patterned to form a second doped III-V semiconductor layer 618. For example, the above-described patterning process may include a lithography process, an etching process, other suitable processes, or a combination thereof. In some other embodiments, the second doped III-V semiconductor layer 618 can also be formed using in-situ doping.
由於增強型之高電洞遷移率電晶體20’亦包括具有鰭片結構的III-V族半導體層,因此其亦具有較大面積之二維電洞雲而可提高裝置效能。 Since the enhanced high hole mobility transistor 20' also includes a III-V semiconductor layer having a fin structure, it also has a large area of a two-dimensional hole cloud to improve device performance.
前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更佳地了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明實施例的發明精神與範圍。在不背離本發明實施例的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。 The foregoing summary of the various embodiments of the invention may be Those skilled in the art will understand that other processes and structures can be readily designed or modified based on the embodiments of the present invention to achieve the same objectives and/or to achieve the embodiments described herein. The same advantages. Those of ordinary skill in the art should also understand that such equivalent structures are not departing from the spirit and scope of the invention. Various changes, permutations, or modifications may be made to the embodiments of the invention without departing from the spirit and scope of the invention.
此外,本揭露之每一請求項可為個別的實施例,且本揭露之範圍包括本揭露之每一請求項及每一實施例彼此 之結合。 In addition, each claim of the disclosure may be an individual embodiment, and the scope of the disclosure includes each of the claims and each embodiment of the disclosure. The combination.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106138596A TWI667793B (en) | 2017-11-08 | 2017-11-08 | Semiconductor device and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106138596A TWI667793B (en) | 2017-11-08 | 2017-11-08 | Semiconductor device and method for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201919240A TW201919240A (en) | 2019-05-16 |
TWI667793B true TWI667793B (en) | 2019-08-01 |
Family
ID=67347843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106138596A TWI667793B (en) | 2017-11-08 | 2017-11-08 | Semiconductor device and method for forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI667793B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150340237A1 (en) * | 2013-12-08 | 2015-11-26 | Iman Rezanezhad Gatabi | Semiconductor Devices with Sharp Gate Edges and Methods to Fabricate Same |
TW201637210A (en) * | 2011-12-19 | 2016-10-16 | 英特爾股份有限公司 | Non-planar Group III nitride transistor |
TW201715616A (en) * | 2015-10-27 | 2017-05-01 | 上海新昇半導體科技有限公司 | Quantum well device and method of forming same |
-
2017
- 2017-11-08 TW TW106138596A patent/TWI667793B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201637210A (en) * | 2011-12-19 | 2016-10-16 | 英特爾股份有限公司 | Non-planar Group III nitride transistor |
US20150340237A1 (en) * | 2013-12-08 | 2015-11-26 | Iman Rezanezhad Gatabi | Semiconductor Devices with Sharp Gate Edges and Methods to Fabricate Same |
TW201715616A (en) * | 2015-10-27 | 2017-05-01 | 上海新昇半導體科技有限公司 | Quantum well device and method of forming same |
Also Published As
Publication number | Publication date |
---|---|
TW201919240A (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201820482A (en) | Semiconductor device manufacturing method | |
CN103972284A (en) | Semiconductor device | |
CN109524460B (en) | High Hole Mobility Transistor | |
CN102769034A (en) | Normally Off High Electron Mobility Transistor | |
TWI676290B (en) | High electron mobility transistor and method for forming the same | |
US10431676B2 (en) | Semiconductor device and method for forming the same | |
US20190181220A1 (en) | Method of forming iii-v on insulator structure on semiconductor substrate | |
CN211125660U (en) | Intermediate structure for fabricating high electron mobility transistor devices | |
US20250212447A1 (en) | Method of forming high electron mobility transistor (hemt) device | |
US20130341640A1 (en) | Semiconductor device and method for manufacturing same | |
CN103296078B (en) | Enhancement mode GaN HEMT device having grid spacer and method for fabricating GaN HEMT device | |
JP2019114581A (en) | Compound semiconductor device and manufacturing method thereof | |
US12336233B2 (en) | GaN-based semiconductor device with reduced leakage current and method for manufacturing the same | |
JP4474292B2 (en) | Semiconductor device | |
US11211331B2 (en) | Semiconductor structure having a via and methods of manufacturing the same | |
CN110875372A (en) | Field effect transistor and manufacturing method | |
US10903350B2 (en) | Semiconductor devices and methods for forming the same | |
CN109801963B (en) | Semiconductor device and method for forming the same | |
TWI667793B (en) | Semiconductor device and method for forming the same | |
CN111223824A (en) | Semiconductor device and method of forming the same | |
TWI732155B (en) | Semiconductor devices and methods for forming the same | |
CN110880532B (en) | High electron mobility transistor and method of forming the same | |
CN114975573B (en) | High electron mobility transistor and manufacturing method thereof | |
US20230282699A1 (en) | Semiconductor device and manufacturing method thereof | |
CN113889412B (en) | Ohmic contact GaN device and preparation method thereof |