TWI650845B - Diode with high static protection capability - Google Patents
Diode with high static protection capability Download PDFInfo
- Publication number
- TWI650845B TWI650845B TW107106655A TW107106655A TWI650845B TW I650845 B TWI650845 B TW I650845B TW 107106655 A TW107106655 A TW 107106655A TW 107106655 A TW107106655 A TW 107106655A TW I650845 B TWI650845 B TW I650845B
- Authority
- TW
- Taiwan
- Prior art keywords
- diffusion region
- diode
- region
- electrostatic protection
- present disclosure
- Prior art date
Links
- 230000003068 static effect Effects 0.000 title description 2
- 238000009792 diffusion process Methods 0.000 claims abstract description 131
- 238000009413 insulation Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000004075 alteration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
一種具有高靜電防護能力之二極體,包含第一導電類型的第一擴散區、第二導電類型的第二擴散區與絕緣區。第一擴散區具有多個凹陷部。絕緣區環繞第一擴散區且與第一擴散區共形。第二擴散區環繞絕緣區。絕緣區用以隔離第一擴散區與第二擴散區。 A diode with high electrostatic protection capability includes a first diffusion region of a first conductivity type, a second diffusion region of a second conductivity type, and an insulation region. The first diffusion region has a plurality of recessed portions. The insulating region surrounds the first diffusion region and is conformal with the first diffusion region. The second diffusion region surrounds the insulation region. The insulation region is used to isolate the first diffusion region from the second diffusion region.
Description
本揭露實施例是有關於一種二極體,且特別是有關於一種具有高靜電防護能力之二極體。 The embodiment of the present disclosure relates to a diode, and more particularly to a diode with high electrostatic protection capability.
靜電對於電子產品的傷害一直是不易解決的問題,尤其是在高頻電路的應用中。為了不影響產品的正常工作性能,電路的輸入輸出接口通常需要靜電保護元件以具有較強的電流洩放能力。現今較為常見的高頻電路,其輸入輸出接口的靜電保護元件多為二極體。當有靜電放電發生時,N型二極體用於洩放從接地端到輸入輸出接口的正向電流,P型二極體用於洩放輸入輸出接口到電源端的正向電流。為了提高二極體自身的電流耐受能力從而提高靜電防護能力,通常需要增大二極體的面積,然而這種作法對於產品的微小化是不利的。 The damage of static electricity to electronic products has always been a difficult problem to solve, especially in the application of high-frequency circuits. In order not to affect the normal working performance of the product, the input and output interfaces of the circuit usually require electrostatic protection components to have a strong current discharge capability. At present, the more common high-frequency circuits, the electrostatic protection components of the input and output interfaces are mostly diodes. When an electrostatic discharge occurs, the N-type diode is used to discharge the forward current from the ground terminal to the input and output interface, and the P-type diode is used to discharge the forward current from the input and output interface to the power terminal. In order to improve the diode's own current withstand ability and thus improve the electrostatic protection ability, it is usually necessary to increase the area of the diode. However, this method is not conducive to miniaturization of the product.
本揭露之目的在於提出一種具有高靜電防護能力之二極體,透過改變二極體之內擴散區的外形來增加P/N 界面的周長從而提高二極體自身的電流耐受能力,不須增加二極體的面積即能使二極體具有高靜電防護能力。 The purpose of this disclosure is to propose a diode with high electrostatic protection ability, which can increase the P / N by changing the shape of the diffusion region inside the diode. The perimeter of the interface improves the current withstand capability of the diode itself, and the diode does not need to increase its area to enable the diode to have high electrostatic protection capabilities.
根據本揭露之上述目的,提出一種具有高靜電防護能力之二極體,包含第一導電類型的第一擴散區、第二導電類型的第二擴散區與絕緣區。第一擴散區具有多個凹陷部。絕緣區環繞第一擴散區且與第一擴散區共形。第二擴散區環繞絕緣區。絕緣區用以隔離第一擴散區與第二擴散區。 According to the above object of the present disclosure, a diode with high electrostatic protection capability is proposed, which includes a first diffusion region of a first conductivity type, a second diffusion region of a second conductivity type, and an insulation region. The first diffusion region has a plurality of recessed portions. The insulating region surrounds the first diffusion region and is conformal with the first diffusion region. The second diffusion region surrounds the insulation region. The insulation region is used to isolate the first diffusion region from the second diffusion region.
在一些實施例中,上述凹陷部之每一者具有U字外形。 In some embodiments, each of the depressions has a U-shape.
在一些實施例中,上述凹陷部之每一者具有圓弧狀外形。 In some embodiments, each of the above-mentioned depressions has a circular arc shape.
在一些實施例中,上述凹陷部兩兩對稱於第一擴散區的相應中心點。 In some embodiments, the recesses are symmetrical to the corresponding center points of the first diffusion region.
在一些實施例中,上述相對於第二擴散區之每一側之第一擴散區之每該側具有相同數量之至少一凹陷部。 In some embodiments, each of the first diffusion regions with respect to each side of the second diffusion region has at least one recessed portion of the same number.
在一些實施例中,上述相對於第二擴散區之至少一組相對側之第一擴散區之相對該側具有相同數量之至少一凹陷部。 In some embodiments, the first diffusion region opposite to the at least one set of opposite sides of the second diffusion region has the same number of at least one recessed portion opposite to the side.
在一些實施例中,上述第一導電類型的第一擴散區為N+型擴散區,第二導電類型的第二擴散區為P+型擴散區。 In some embodiments, the first diffusion region of the first conductivity type is an N + type diffusion region, and the second diffusion region of the second conductivity type is a P + type diffusion region.
在一些實施例中,上述第一導電類型的第一擴散區為P+型擴散區,第二導電類型的第二擴散區為N+型擴散區。 In some embodiments, the first diffusion region of the first conductivity type is a P + type diffusion region, and the second diffusion region of the second conductivity type is an N + type diffusion region.
在一些實施例中,形成絕緣區的方法為局部氧化法(Local Oxidation of Silicon,LOCOS)或淺溝槽隔離(Shallow Trench Isolation,STI)。 In some embodiments, the method of forming the insulating region is a local oxidation method (Local Oxidation of Silicon, LOCOS) or a shallow trench isolation (Shallow Trench Isolation, STI).
在一些實施例中,上述第一擴散區具有平滑外形。 In some embodiments, the first diffusion region has a smooth outer shape.
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, embodiments are described below in detail with reference to the accompanying drawings.
100、200、300、400、500‧‧‧二極體 100, 200, 300, 400, 500‧‧‧ diodes
110、210、310、410、510‧‧‧第一擴散區 110, 210, 310, 410, 510‧‧‧ first diffusion zone
212、312、412、512‧‧‧凹陷部 212, 312, 412, 512‧‧‧ recess
120、220、320、420、520‧‧‧第二擴散區 120, 220, 320, 420, 520‧‧‧ second diffusion zone
130、230、330、430、430‧‧‧絕緣區 130, 230, 330, 430, 430‧‧‧ insulated areas
從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 A better understanding of the aspects of the present disclosure can be obtained from the following detailed description in conjunction with the accompanying drawings. It should be noted that, according to industry standard practice, features are not drawn to scale. In fact, to make the discussion clearer, the dimensions of each feature can be arbitrarily increased or decreased.
[圖1]係繪示其中一種習知二極體的結構示意圖。 [Fig. 1] A schematic structural diagram of one of the conventional diodes.
[圖2]係繪示根據本揭露的第一實施例之二極體的結構示意圖。 [FIG. 2] A schematic structural diagram of a diode according to a first embodiment of the present disclosure.
[圖3]係繪示根據本揭露的第二實施例之二極體的結構示意圖。 3 is a schematic structural diagram of a diode according to a second embodiment of the present disclosure.
[圖4]係繪示根據本揭露的第三實施例之二極體的結構示意圖。 4 is a schematic structural diagram of a diode according to a third embodiment of the present disclosure.
[圖5]係繪示根據本揭露的第四實施例之二極體的結構示意圖。 5 is a schematic structural diagram of a diode according to a fourth embodiment of the present disclosure.
以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。另外,關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 Embodiments of the invention are discussed in detail below. It is understood, however, that the embodiments provide many applicable concepts that can be embodied in a wide variety of specific content. The embodiments discussed and disclosed are for illustration only and are not intended to limit the scope of the invention. In addition, the terms "first", "second", ... and the like used herein do not specifically refer to the order or the order, but merely to distinguish the elements or operations described in the same technical terms.
圖1係繪示其中一種習知二極體100的結構示意圖。習知二極體100包含第一導電類型的第一擴散區110、第二導電類型的第二擴散區120與絕緣區130。絕緣區130環繞第一擴散區110,且第二擴散區120環繞絕緣區130。絕緣區130用以隔離第一擴散區110與第二擴散區120。 FIG. 1 is a schematic structural diagram of a conventional diode 100. The conventional diode 100 includes a first diffusion region 110 of a first conductivity type, a second diffusion region 120 of a second conductivity type, and an insulation region 130. The insulation region 130 surrounds the first diffusion region 110, and the second diffusion region 120 surrounds the insulation region 130. The insulating region 130 is used to isolate the first diffusion region 110 from the second diffusion region 120.
圖2係繪示根據本揭露的第一實施例之二極體200的結構示意圖。二極體200包含第一導電類型的第一擴散區210、第二導電類型的第二擴散區220與絕緣區230。第一擴散區210具有多個凹陷部212。絕緣區230環繞第一擴散區210且與第一擴散區210共形。第二擴散區220環繞絕緣區230。絕緣區230用以隔離第一擴散區210與第二擴散區220。 FIG. 2 is a schematic structural diagram of a diode 200 according to the first embodiment of the present disclosure. The diode 200 includes a first diffusion region 210 of a first conductivity type, a second diffusion region 220 of a second conductivity type, and an insulation region 230. The first diffusion region 210 has a plurality of recessed portions 212. The insulating region 230 surrounds the first diffusion region 210 and is conformal with the first diffusion region 210. The second diffusion region 220 surrounds the insulation region 230. The insulating region 230 is used to isolate the first diffusion region 210 from the second diffusion region 220.
在本揭露的實施例中,上述第一導電類型的第一擴散區為N+型擴散區,第二導電類型的第二擴散區為P+型擴散區,在此情況下,二極體為N型二極體;或者,上述第一導電類型的第一擴散區為P+型擴散區,第二導電類型的第二擴散區為N+型擴散區,在此情況下,二極體為P型二 極體。在本揭露的實施例中,形成絕緣區130的方法為局部氧化法(LOCOS)或淺溝槽隔離(STI)。 In the disclosed embodiment, the first diffusion region of the first conductivity type is an N + type diffusion region, and the second diffusion region of the second conductivity type is a P + type diffusion region. In this case, the diode is an N type. A diode; or, the first diffusion region of the first conductivity type is a P + -type diffusion region, and the second diffusion region of the second conductivity type is an N + -type diffusion region. In this case, the diode is a P-type diffusion region. Polar body. In the embodiment of the present disclosure, a method of forming the insulating region 130 is a local oxidation method (LOCOS) or a shallow trench isolation (STI).
對本揭露的一些實施例而言,相對於第二擴散區之每一側之第一擴散區之每該側具有相同數量之至少一凹陷部。以本揭露的第一實施例為例,如圖2所示,相對於第二擴散區220之每一側(即上側/下側/左側/右側)之第一擴散區210之每該側(即上側/下側/左側/右側)各自具有1個凹陷部212,但本揭露的實施例不限於此。 For some embodiments of the present disclosure, each side of the first diffusion region with respect to each side of the second diffusion region has the same number of at least one recessed portion. Taking the first embodiment of the present disclosure as an example, as shown in FIG. 2, with respect to each side of the first diffusion region 210 on each side of the second diffusion region 220 (ie, upper side / lower side / left side / right side) ( That is, each of the upper side, the lower side, the left side and the right side has one recessed portion 212, but the embodiment of the present disclosure is not limited thereto.
在本揭露的第一實施例中,如圖2所示,凹陷部212之每一者具有U字外形,但本揭露的實施例不限於此,凹陷部之每一者也可以是具有圓弧狀外形。對本揭露的實施例而言,凹陷部兩兩對稱於第一擴散區的相應中心點,以本揭露的第一實施例為例,如圖2所示,凹陷部212兩兩對稱於第一擴散區210的相應中心點。 In the first embodiment of the present disclosure, as shown in FIG. 2, each of the recessed portions 212 has a U-shape, but the embodiment of the present disclosure is not limited thereto, and each of the recessed portions may have a circular arc. Shape. For the embodiment of the present disclosure, the concave portions are symmetrical to the corresponding center points of the first diffusion region. Taking the first embodiment of the present disclosure as an example, as shown in FIG. 2, the concave portions 212 are symmetrical to the first diffusion. The corresponding center point of the area 210.
應注意的是,本揭露並不限定凹陷部相對於第一擴散區的尺寸關係,只要其設計能夠符合二極體之製造工藝,且第一擴散區不會具有過於突出或凹陷的外形從而導致不利於提高二極體的靜電防護能力即可。 It should be noted that this disclosure does not limit the dimensional relationship of the recessed portion with respect to the first diffusion region, as long as its design can conform to the manufacturing process of the diode, and the first diffusion region does not have an overly protruded or recessed shape, resulting in It is not conducive to improving the electrostatic protection ability of the diode.
對本揭露的實施例而言,具有多個凹陷部的第一擴散區是具有平滑的外形,從而使得用來洩放電流的P/N界面不會因為有銳利的轉折從而造成尖端放電或電流集中在尖端,使其不利於提高二極體的靜電防護能力。 For the embodiment of the present disclosure, the first diffusion region having a plurality of recessed portions has a smooth shape, so that the P / N interface used to discharge current will not cause sharp discharge or current concentration due to sharp turns. At the tip, it is not conducive to improving the electrostatic protection of the diode.
請一併參照圖1與圖2,本揭露的第一實施例之二極體200相較於習知二極體100,在保持二極體面積不變 的情況下,透過改變第一擴散區210的外形,來增加P/N界面的周長(意即,在相同單位面積下,電流流經的路徑增加)從而提高二極體200自身的電流耐受能力。 Please refer to FIG. 1 and FIG. 2 together. Compared with the conventional diode 100, the diode 200 of the first embodiment of the present disclosure keeps the diode area unchanged. In the case of changing the shape of the first diffusion region 210 to increase the perimeter of the P / N interface (that is, under the same unit area, the path through which the current flows increases) so as to improve the current resistance of the diode 200 itself. Subject to capacity.
圖3係繪示根據本揭露的第二實施例之二極體300的結構示意圖。二極體300包含第一導電類型的第一擴散區310、第二導電類型的第二擴散區320與絕緣區330。第一擴散區310具有多個凹陷部312。絕緣區330環繞第一擴散區310且與第一擴散區310共形。第二擴散區320環繞絕緣區330。絕緣區330用以隔離第一擴散區310與第二擴散區320。 FIG. 3 is a schematic structural diagram of a diode 300 according to a second embodiment of the present disclosure. The diode 300 includes a first diffusion region 310 of a first conductivity type, a second diffusion region 320 of a second conductivity type, and an insulation region 330. The first diffusion region 310 has a plurality of recessed portions 312. The insulating region 330 surrounds the first diffusion region 310 and is conformal with the first diffusion region 310. The second diffusion region 320 surrounds the insulation region 330. The insulating region 330 is used to isolate the first diffusion region 310 from the second diffusion region 320.
對本揭露的一些實施例而言,相對於第二擴散區之至少一組相對側之第一擴散區之相對該側具有相同數量之至少一凹陷部。以本揭露的第二實施例為例,如圖3所示,相對於第二擴散區320之一組相對側(即左側/右側)之第一擴散區310之相對該側(即左側/右側)各自具有2個凹陷部312,但本揭露的實施例不限於此。 For some embodiments of the present disclosure, the first diffusion region with respect to at least one set of opposite sides of the second diffusion region has at least one recessed portion opposite to the side. Taking the second embodiment of the present disclosure as an example, as shown in FIG. 3, the first diffusion region 310 opposite to the set of opposite sides (ie, left / right) of the second diffusion region 320 is opposite to that side (ie, left / right). ) Each has two recessed portions 312, but the embodiment of the present disclosure is not limited thereto.
在本揭露的第二實施例中,如圖3所示,凹陷部312之每一者具有U字外形,但本揭露的實施例不限於此,凹陷部之每一者也可以是具有圓弧狀外形。對本揭露的實施例而言,凹陷部兩兩對稱於第一擴散區的相應中心點,以本揭露的第二實施例為例,如圖3所示,凹陷部312兩兩對稱於第一擴散區310的相應中心點。 In the second embodiment of the present disclosure, as shown in FIG. 3, each of the recessed portions 312 has a U-shape, but the embodiment of the present disclosure is not limited thereto, and each of the recessed portions may have a circular arc. Shape. For the embodiment of the present disclosure, the concave portions are symmetrical to the corresponding center points of the first diffusion region. Taking the second embodiment of the present disclosure as an example, as shown in FIG. 3, the concave portions 312 are symmetrical to the first diffusion. The corresponding center point of zone 310.
請一併參照圖1與圖3,本揭露的第二實施例之二極體300相較於習知二極體100,在保持二極體面積不變 的情況下,透過改變第一擴散區310的外形,來增加P/N界面的周長從而提高二極體300自身的電流耐受能力。 Please refer to FIG. 1 and FIG. 3 together. Compared with the conventional diode 100, the diode 300 of the second embodiment of the present disclosure keeps the area of the diode unchanged. In the case of changing the shape of the first diffusion region 310, the perimeter of the P / N interface is increased to improve the current tolerance of the diode 300 itself.
圖4係繪示根據本揭露的第三實施例之二極體400的結構示意圖。二極體400包含第一導電類型的第一擴散區410、第二導電類型的第二擴散區420與絕緣區430。第一擴散區410具有多個凹陷部412。絕緣區430環繞第一擴散區410且與第一擴散區410共形。第二擴散區420環繞絕緣區430。絕緣區430用以隔離第一擴散區410與第二擴散區420。 FIG. 4 is a schematic structural diagram of a diode 400 according to a third embodiment of the present disclosure. The diode 400 includes a first diffusion region 410 of a first conductivity type, a second diffusion region 420 of a second conductivity type, and an insulation region 430. The first diffusion region 410 has a plurality of recessed portions 412. The insulating region 430 surrounds the first diffusion region 410 and is conformal with the first diffusion region 410. The second diffusion region 420 surrounds the insulation region 430. The insulating region 430 is used to isolate the first diffusion region 410 and the second diffusion region 420.
對本揭露的一些實施例而言,相對於第二擴散區之每一側之第一擴散區之每該側具有相同數量之至少一凹陷部。以本揭露的第三實施例為例,如圖4所示,相對於第二擴散區420之每一側(即上側/下側/左側/右側)之第一擴散區410之每該側(即上側/下側/左側/右側)各自具有2個凹陷部412,但本揭露的實施例不限於此。 For some embodiments of the present disclosure, each side of the first diffusion region with respect to each side of the second diffusion region has the same number of at least one recessed portion. Taking the third embodiment of the present disclosure as an example, as shown in FIG. 4, with respect to each side of the first diffusion region 410 on each side of the second diffusion region 420 (ie, upper side / lower side / left side / right side) ( That is, each of the upper side / lower side / left side / right side) has two recessed portions 412, but the embodiment of the present disclosure is not limited thereto.
在本揭露的第三實施例中,如圖4所示,凹陷部412之每一者具有圓弧狀外形,但本揭露的實施例不限於此,凹陷部之每一者也可以是具有U字外形。對本揭露的實施例而言,凹陷部兩兩對稱於第一擴散區的相應中心點,以本揭露的第三實施例為例,如圖4所示,凹陷部412兩兩對稱於第一擴散區410的相應中心點。 In the third embodiment of the present disclosure, as shown in FIG. 4, each of the recessed portions 412 has an arc-shaped outer shape, but the embodiment of the present disclosure is not limited thereto. Word shape. For the embodiment of the present disclosure, the concave portions are symmetrical to the corresponding center points of the first diffusion region. Taking the third embodiment of the present disclosure as an example, as shown in FIG. 4, the concave portions 412 are symmetrical to the first diffusion. The corresponding center point of zone 410.
請一併參照圖1與圖4,本揭露的第三實施例之二極體400相較於習知二極體100,在保持二極體面積不變的情況下,透過改變第一擴散區410的外形,來增加P/N界 面的周長從而提高二極體400自身的電流耐受能力。 Please refer to FIG. 1 and FIG. 4 together. Compared with the conventional diode 100, the diode 400 of the third embodiment of the present disclosure can change the first diffusion region by keeping the area of the diode unchanged. 410 form factor to increase the P / N boundary The perimeter of the surface thus improves the current tolerance of the diode 400 itself.
圖5係繪示根據本揭露的第四實施例之二極體500的結構示意圖。二極體500包含第一導電類型的第一擴散區510、第二導電類型的第二擴散區520與絕緣區530。第一擴散區510具有多個凹陷部512。絕緣區530環繞第一擴散區510且與第一擴散區510共形。第二擴散區520環繞絕緣區530。絕緣區530用以隔離第一擴散區510與第二擴散區520。 FIG. 5 is a schematic structural diagram of a diode 500 according to a fourth embodiment of the present disclosure. The diode 500 includes a first diffusion region 510 of a first conductivity type, a second diffusion region 520 of a second conductivity type, and an insulation region 530. The first diffusion region 510 has a plurality of recessed portions 512. The insulating region 530 surrounds the first diffusion region 510 and is conformal with the first diffusion region 510. The second diffusion region 520 surrounds the insulation region 530. The insulating region 530 is used to isolate the first diffusion region 510 and the second diffusion region 520.
對本揭露的一些實施例而言,相對於第二擴散區之至少一組相對側之第一擴散區之相對該側具有相同數量之至少一凹陷部。以本揭露的第四實施例為例,如圖5所示,相對於第二擴散區520之三組相對側(即上側/下側;左上左側/右下右側;右上右側/左下左側)之第一擴散區510之相對該側(即上側/下側;左上左側/右下右側;右上右側/左下左側)各自具有1個凹陷部512,但本揭露的實施例不限於此。 For some embodiments of the present disclosure, the first diffusion region with respect to at least one set of opposite sides of the second diffusion region has at least one recessed portion opposite to the side. Taking the fourth embodiment of the present disclosure as an example, as shown in FIG. 5, with respect to the three opposite sides of the second diffusion region 520 (ie, upper side / lower side; left upper left / right lower right; right upper right / left lower left) The opposite sides of the first diffusion region 510 (ie, upper side / lower side; upper left side / lower right side; upper right side / lower left side) each have a recessed portion 512, but the embodiment disclosed herein is not limited thereto.
在本揭露的第四實施例中,如圖5所示,凹陷部512之每一者具有圓弧狀外形,但本揭露的實施例不限於此,凹陷部之每一者也可以是具有U字外形。對本揭露的實施例而言,凹陷部兩兩對稱於第一擴散區的相應中心點,以本揭露的第四實施例為例,如圖5所示,凹陷部512兩兩對稱於第一擴散區510的相應中心點。 In the fourth embodiment of the present disclosure, as shown in FIG. 5, each of the recessed portions 512 has a circular arc shape, but the embodiment of the present disclosure is not limited thereto, and each of the recessed portions may have a U-shape. Word shape. For the embodiment of the present disclosure, the concave portions are symmetrical to the corresponding center points of the first diffusion region. Taking the fourth embodiment of the present disclosure as an example, as shown in FIG. 5, the concave portions 512 are symmetrical to the first diffusion. The corresponding center point of zone 510.
請一併參照圖1與圖5,本揭露的第四實施例之二極體500相較於習知二極體100,透過改變第一擴散區 510的外形,來增加P/N界面的周長從而提高二極體500自身的電流耐受能力。 Please refer to FIG. 1 and FIG. 5 together. Compared with the conventional diode 100, the diode 500 of the fourth embodiment of the present disclosure is configured to change the first diffusion region. The shape of 510 increases the perimeter of the P / N interface to improve the current tolerance of the diode 500 itself.
綜合上述,本揭露提出一種具有高靜電防護能力之二極體,透過改變二極體之內擴散區的外形來增加P/N界面的周長從而提高二極體自身的電流耐受能力,不須增加二極體的面積即能使二極體具有高靜電防護能力。 To sum up, this disclosure proposes a diode with high electrostatic protection ability. By changing the shape of the diffusion region inside the diode, the perimeter of the P / N interface is increased to improve the current tolerance of the diode itself. It is necessary to increase the area of the diode so that the diode has a high electrostatic protection ability.
以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。 The features of several embodiments are summarized above, so those skilled in the art can better understand the aspects of the present disclosure. Those skilled in the art should understand that they can easily use this disclosure as a basis to design or modify other processes and structures, thereby achieving the same goals and / or achieving the same advantages as the embodiments described herein. . Those skilled in the art should also understand that these equivalent constructions do not depart from the spirit and scope of this disclosure, and that they can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??201710462132.X | 2017-06-19 | ||
CN201710462132.XA CN109148553A (en) | 2017-06-19 | 2017-06-19 | Diode with high antistatic capacity |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201906131A TW201906131A (en) | 2019-02-01 |
TWI650845B true TWI650845B (en) | 2019-02-11 |
Family
ID=64803992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107106655A TWI650845B (en) | 2017-06-19 | 2018-02-27 | Diode with high static protection capability |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109148553A (en) |
TW (1) | TWI650845B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6452236B1 (en) * | 2001-05-31 | 2002-09-17 | Texas Instruments, Incorporated | Channel implant for improving NMOS ESD robustness |
US6459139B2 (en) * | 1999-12-03 | 2002-10-01 | Seiko Epson Corporation | Semiconductor device and method of fabricating the same |
KR20090070463A (en) * | 2007-12-27 | 2009-07-01 | 주식회사 동부하이텍 | Manufacturing Method of Semiconductor Device for Electrostatic Discharge Protection |
CN102893467A (en) * | 2010-05-20 | 2013-01-23 | 株式会社村田制作所 | Esd protection device |
WO2014156803A1 (en) * | 2013-03-27 | 2014-10-02 | 株式会社村田製作所 | Esd protection device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633879A (en) * | 1979-08-29 | 1981-04-04 | Hitachi Ltd | Propective diode |
CN103022015B (en) * | 2012-12-27 | 2015-07-01 | 成都芯源系统有限公司 | Electrostatic discharge protection unit and semiconductor device |
JP2016035952A (en) * | 2014-08-01 | 2016-03-17 | ラピスセミコンダクタ株式会社 | Semiconductor element and semiconductor device |
CN106653747A (en) * | 2016-12-29 | 2017-05-10 | 北京宇翔电子有限公司 | Anti-ESD diode and protection circuit of CMOS integrated circuit comprising same |
-
2017
- 2017-06-19 CN CN201710462132.XA patent/CN109148553A/en active Pending
-
2018
- 2018-02-27 TW TW107106655A patent/TWI650845B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6459139B2 (en) * | 1999-12-03 | 2002-10-01 | Seiko Epson Corporation | Semiconductor device and method of fabricating the same |
US6452236B1 (en) * | 2001-05-31 | 2002-09-17 | Texas Instruments, Incorporated | Channel implant for improving NMOS ESD robustness |
KR20090070463A (en) * | 2007-12-27 | 2009-07-01 | 주식회사 동부하이텍 | Manufacturing Method of Semiconductor Device for Electrostatic Discharge Protection |
CN102893467A (en) * | 2010-05-20 | 2013-01-23 | 株式会社村田制作所 | Esd protection device |
WO2014156803A1 (en) * | 2013-03-27 | 2014-10-02 | 株式会社村田製作所 | Esd protection device |
Also Published As
Publication number | Publication date |
---|---|
TW201906131A (en) | 2019-02-01 |
CN109148553A (en) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6022774B2 (en) | Semiconductor device | |
US9076811B2 (en) | Power semiconductor device and method of manufacturing the same | |
KR200470298Y1 (en) | Termination region trench structure of schottky diode | |
CN101083285A (en) | Semiconductor device | |
JP2017045827A (en) | Semiconductor device | |
CN112242390B (en) | Transient voltage suppression element | |
US9202807B2 (en) | Semiconductor structure for electrostatic discharge protection | |
TWI477018B (en) | Transient voltage suppressor circuit, and diode device therefor and manufacturing method thereof | |
TWI650845B (en) | Diode with high static protection capability | |
CN106129107A (en) | Semiconductor structure, semiconductor subassembly and power semiconductor | |
TW201543687A (en) | Terminal structure of semiconductor element and manufacturing method thereof | |
US12159914B2 (en) | Trench power semiconductor device | |
CN103177958B (en) | A kind of integrated Schottky diode and manufacture method thereof | |
US20140061718A1 (en) | Insulated gate bipolar transistor | |
JP2015176974A (en) | semiconductor device | |
US9184247B2 (en) | Power semiconductor device capable of maintaining a withstand voltage | |
JP2021180310A (en) | Power semiconductor devices and power semiconductor chips | |
US20150364585A1 (en) | Power semiconductor device | |
JP2017079292A (en) | Semiconductor device | |
JP2016225425A (en) | Semiconductor device | |
JP2017045874A (en) | Semiconductor device | |
CN105097889A (en) | Terminal structure of semiconductor element and manufacturing method thereof | |
TWI531041B (en) | Electrostatic discharge protection structure | |
CN109148606B (en) | High voltage components | |
US9472657B2 (en) | Triode |