TWI633729B - High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof - Google Patents
High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof Download PDFInfo
- Publication number
- TWI633729B TWI633729B TW106137979A TW106137979A TWI633729B TW I633729 B TWI633729 B TW I633729B TW 106137979 A TW106137979 A TW 106137979A TW 106137979 A TW106137979 A TW 106137979A TW I633729 B TWI633729 B TW I633729B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- low
- type
- gate
- substrate
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本發明係一種高壓靜電保護電路及其低壓基極觸發靜電電流放電電路,該低壓基極觸發靜電電流放電電路係由複數低壓基板隔離型電晶體串接而成,其加總後崩潰電壓即可適用於高壓系統電源;各低壓基板隔離型電晶體的基極係與該高壓靜電保護電路的一開關電路連接,而不與一基板連接,以改善觸發效率;又各低壓基板隔離型電晶體的汲極係與一閘極的閘極絕緣層側壁保持一間隔,以提高靜電放電耐受度;當靜電發生時,該開關電路觸發各低壓基板隔離型電晶體導通,順利排除靜電電流。The invention relates to a high-voltage electrostatic protection circuit and a low-voltage base-triggered electrostatic current discharge circuit. The low-voltage base-triggered electrostatic current discharge circuit is formed by serially connecting a plurality of low-voltage substrate isolation type transistors, and the total breakdown voltage can be Suitable for high-voltage system power supply; the base of each low-voltage substrate isolation type transistor is connected with a switching circuit of the high-voltage electrostatic protection circuit, and is not connected with a substrate to improve trigger efficiency; and the low-voltage substrate isolation type transistor The gate of the gate is kept at a distance from the sidewall of the gate insulating layer of the gate to improve the electrostatic discharge tolerance; when the static electricity occurs, the switch circuit triggers the isolation of the low-voltage substrate isolation transistor to smoothly eliminate the electrostatic current.
Description
本發明係關於一種高壓靜電保護電路,尤指一種具低壓基極觸發靜電電流放電電路之高壓靜電保護電路。The invention relates to a high voltage electrostatic protection circuit, in particular to a high voltage electrostatic protection circuit with a low voltage base triggering electrostatic current discharge circuit.
在使用高壓電壓源的積體電路中,通常會於該積體電路的輸出、入端設計有一高壓靜電保護電路,防止靜電透過輸出、入端放電至該積體電路的內部,造成電路損壞。In an integrated circuit using a high-voltage voltage source, a high-voltage electrostatic protection circuit is generally designed at the output and the input end of the integrated circuit to prevent static electricity from being transmitted through the output and discharged to the inside of the integrated circuit, thereby causing circuit damage.
請參閱圖7所示,為一常見的高壓靜電保護電路,其包含有一靜電檢測電路50及一高壓的閘極觸發型電晶體60,該閘極觸發型電晶體60係與該靜電檢測電路50並聯,且連接於該高壓電壓源之高、低電壓端HV_VCC、HV_VSS之間;當靜電發生時,由該靜電檢測電路50首先檢知,並透過閘極G觸發該閘極觸發型電晶體60導通,令靜電電流經由該導通的閘極觸發型電晶體60排除。然而,該高壓的閘極觸發型電晶體60本身為高壓MOS元件,故其觸發電壓較高,不易保護內部高壓電路元件,再加上其內阻較高,使得導通後,靜電電流排除速度慢,而有必要進一步改良之。Please refer to FIG. 7 , which is a common high-voltage electrostatic protection circuit including an electrostatic detecting circuit 50 and a high-voltage gate-triggered transistor 60 , and the gate-triggered transistor 60 and the static detecting circuit 50 . Parallel, and connected between the high and low voltage terminals HV_VCC and HV_VSS of the high voltage source; when the static electricity occurs, the static detecting circuit 50 first detects and triggers the gate triggering transistor 60 through the gate G Turning on, the electrostatic current is removed through the turned-on gate trigger type transistor 60. However, the high-voltage gate-triggered transistor 60 itself is a high-voltage MOS device, so the trigger voltage is high, and it is difficult to protect the internal high-voltage circuit components, and the internal resistance is high, so that the static current is eliminated after being turned on. And it is necessary to further improve it.
有鑑於前揭積體電路使用的高壓靜電保護電路的缺點,本發明主要目的係提供一種高壓靜電保護電路及其低壓基極觸發靜電電流放電電路。In view of the shortcomings of the high voltage electrostatic protection circuit used in the foregoing integrated circuit, the main object of the present invention is to provide a high voltage electrostatic protection circuit and a low voltage base triggered electrostatic current discharge circuit.
欲達上述目的所使用的主要技術手段係令高壓靜電保護電路包含有: 一靜電檢知電路; 一低壓基極觸發靜電電流放電電路,係並聯該靜電檢知電路,且由複數低壓基板隔離型電晶體串接而成;其中各該低壓基板隔離型電晶體的基極不與一基板連接,而該低壓基極觸發靜電電流放電電路的一崩潰電壓為該些低壓基板隔離型電晶體之崩潰電壓的加總;其中各該低壓基板隔離型電晶體係於一基板上形成有一閘極、一汲極摻雜區及一源極摻雜區;其中該閘極包含有一閘極絕緣層側壁,而該汲極摻雜區及該源極摻雜區分別位在該閘極二側,且該汲極摻雜區距該閘極最近的一側至該閘極的閘極絕緣層側壁之間保持一間隔;以及 一開關電路,係包含有複數半導體開關元件,係分別連接於該靜電檢知電路及其對應低壓基板隔離型電晶體之間,受該靜電檢知電路觸發而觸發其對應低壓基板隔離型電晶體導通;其中各該半導體開關元件的基極連接至該基板。The main technical means used to achieve the above purpose is to make the high-voltage electrostatic protection circuit include: an electrostatic detection circuit; a low-voltage base-triggered electrostatic current discharge circuit, which is connected in parallel with the electrostatic detection circuit, and is isolated by a plurality of low-voltage substrates. The transistor is connected in series; wherein the base of each of the low-voltage substrate isolation type transistors is not connected to a substrate, and a breakdown voltage of the low-voltage base triggering electrostatic current discharge circuit is a breakdown of the low-voltage substrate isolation type transistors a sum of voltages; wherein each of the low-voltage substrate isolation type electro-crystal system has a gate, a gate doped region and a source doped region formed on a substrate; wherein the gate includes a gate insulating sidewall The drain doping region and the source doping region are respectively located on the two sides of the gate, and the drain doping region is between the side closest to the gate and the sidewall of the gate insulating layer of the gate Maintaining an interval; and a switching circuit comprising a plurality of semiconductor switching elements respectively connected between the electrostatic detecting circuit and the corresponding low-voltage substrate isolation type transistor, and being touched by the static detecting circuit Which corresponds to the low-pressure triggered electrically isolated crystal substrate is turned; group wherein each of the semiconductor switching element is connected to the substrate.
上述本發明高壓靜電保護電路係主要使用低壓基板隔離型電晶體作靜電電流放電路徑,由於各低壓基板隔離型電晶體的崩潰電壓無法適用於高壓系統電源中,故將複數低壓基板隔離型電晶體(例如5V ISO-GRNMOS)予以串連,以構成低壓基極觸發靜電電流放電電路,其崩潰電壓為該些低壓基板隔離型電晶體之崩潰電壓的加總,而可適用於高壓系統電源;然而,為避免各低壓基板隔離型電晶體的汲極對基板的耐壓不足與來自基板的雜訊干擾而誤觸發,其基極不直接與基板連接,但與該開關電路連接;如此,當該靜電檢知電路檢知靜電發生,即可透過觸發該開關電路一併觸發各低壓基板隔離型電晶體導通,順利排除靜電電流;再者,由於各低壓基板隔離型電晶體的汲極摻雜區係與一閘極的閘極絕緣層側壁保持一間隔,其高靜電放電耐受度亦可相對提高。The high-voltage electrostatic protection circuit of the present invention mainly uses a low-voltage substrate isolation type transistor as an electrostatic current discharge path. Since the breakdown voltage of each low-voltage substrate isolation type transistor cannot be applied to a high-voltage system power supply, a plurality of low-voltage substrate isolation type transistors are used. (for example, 5V ISO-GRNMOS) is connected in series to form a low-voltage base-triggered electrostatic current discharge circuit whose breakdown voltage is the sum of the breakdown voltages of the low-voltage substrate isolation transistors, and is applicable to a high-voltage system power supply; In order to avoid false triggering of the low voltage of the low voltage substrate isolation type transistor to the substrate and the noise interference from the substrate, the base is not directly connected to the substrate, but is connected to the switch circuit; When the static detecting circuit detects the occurrence of static electricity, the switching circuit can be triggered to trigger the conduction of the low-voltage substrate isolation type transistors to smoothly eliminate the electrostatic current; further, due to the gate doping region of each low-voltage substrate isolation type transistor It is kept at a distance from the sidewall of the gate insulating layer of a gate, and its high electrostatic discharge tolerance can be relatively increased.
再者,本發明為達成上述目的所使用的主要技術手段係令該低壓基極觸發靜電電流放電電路包含有:複數相互串接的低壓基板隔離型電晶體;其中各該低壓基板隔離型電晶體的基極不與一基板連接,而該低壓基極觸發靜電電流放電電路的一崩潰電壓為該些低壓基板隔離型電晶體之崩潰電壓的加總;其中:各該低壓基板隔離型電晶體係於一基板上形成有一閘極、一汲極摻雜區及一源極摻雜區;其中該閘極包含有一閘極絕緣層側壁,而該汲極摻雜區及該源極摻雜區分別位在該閘極二側,且該汲極摻雜區距該閘極最近的一側至該閘極的閘極絕緣層側壁之間保持一間隔。Furthermore, the main technical means used in the present invention to achieve the above object is that the low-voltage base-triggered electrostatic current discharge circuit comprises: a plurality of low-voltage substrate isolation type transistors connected in series; wherein each of the low-voltage substrate isolation type transistors The base electrode is not connected to a substrate, and a breakdown voltage of the low voltage base triggering electrostatic current discharge circuit is a sum of breakdown voltages of the low voltage substrate isolation type transistors; wherein: the low voltage substrate isolation type electric crystal system Forming a gate, a drain doping region and a source doping region on a substrate; wherein the gate comprises a gate insulating sidewall, and the drain doping region and the source doping region respectively Positioned on the two sides of the gate, and the drain-doped region maintains a space between the side closest to the gate and the sidewall of the gate insulating layer of the gate.
由上述說明可知,本發明的低壓基極觸發靜電電流放電電路為可適用於高壓系統電源中,故將複數低壓基板隔離型電晶體(例如5V ISO-GRNMOS)予以串連,以構成低壓基極觸發靜電電流放電電路,其崩潰電壓為該些低壓基板隔離型電晶體之崩潰電壓的加總;又為避免各低壓基板隔離型電晶體的汲極對基板的耐壓不足與來自基板的雜訊干擾而誤觸發,其基極不直接與基板連接,並令各低壓基板隔離型電晶體的汲極摻雜區係與一閘極的閘極絕緣層側壁保持一間隔,以提高其高靜電放電耐受度。It can be seen from the above description that the low-voltage base-triggered electrostatic current discharge circuit of the present invention is applicable to a high-voltage system power supply, so that a plurality of low-voltage substrate isolation type transistors (for example, 5V ISO-GRNMOS) are connected in series to form a low-voltage base. Triggering an electrostatic current discharge circuit, the breakdown voltage is the sum of the breakdown voltages of the low-voltage substrate isolation type transistors; and avoiding the undervoltage of the low-voltage substrate isolation type transistor to the substrate and the noise from the substrate Interference and false triggering, the base is not directly connected to the substrate, and the drain doping region of each low-voltage substrate isolation type transistor is kept at a distance from the sidewall of the gate insulating layer of a gate to improve its high electrostatic discharge. Tolerance.
本發明係針對高壓靜電保護電路進行改良,以下配合圖式詳細說明本發明高壓靜電保護電路的電路特徵及功效。The present invention is directed to an improvement of a high voltage electrostatic protection circuit. The circuit characteristics and effects of the high voltage electrostatic protection circuit of the present invention will be described in detail below with reference to the drawings.
首先請參閱圖1所示,本發明的一高壓靜電保護電路的第一較佳實施例,其包含有一靜電檢知電路10、一低壓基極觸發靜電電流放電電路20及一開關電路30;其中該低壓基極觸發靜電電流放電電路20係並聯於該靜電檢知電路10,該開關電路30係連接於該靜電檢知電路10及該低壓基極觸發靜電電流放電電路20之間。Referring to FIG. 1 , a first preferred embodiment of a high voltage electrostatic protection circuit of the present invention includes an electrostatic detection circuit 10 , a low voltage base triggered electrostatic current discharge circuit 20 , and a switch circuit 30 ; The low-voltage base-triggered electrostatic current discharge circuit 20 is connected in parallel to the electrostatic detection circuit 10, and the switch circuit 30 is connected between the electrostatic detection circuit 10 and the low-voltage base-triggered electrostatic current discharge circuit 20.
於本實施例,如圖1所示,靜電檢知電路10係包含有一電阻R1、一電容C及一反相器11;其中該電阻R1及電容C相串接,而該反相器11再與串連的電阻R1及電容C並聯,且該反相器11的一輸入端I/P係連接至該電阻R1及電容C的串接節點N1,而其一輸出端O/P則連接至該開關電路30。In this embodiment, as shown in FIG. 1, the electrostatic detecting circuit 10 includes a resistor R1, a capacitor C and an inverter 11; wherein the resistor R1 and the capacitor C are connected in series, and the inverter 11 is further connected. The resistor R1 and the capacitor C are connected in parallel, and an input terminal I/P of the inverter 11 is connected to the series connection node N1 of the resistor R1 and the capacitor C, and an output terminal O/P thereof is connected to The switch circuit 30.
於本實施例,如圖1所示,該電容C係為一第一高壓PMOS電晶體,其閘極G係與一高壓系統電源的低電位端HV_VSS連接;而該反相器11係包含有一第二高壓PMOS電晶體111及一第二高壓NMOS電晶體112,該第二高壓PMOS電晶體111的源極S係與該高壓系統電源的高電位端HV_VCC連接,而該第二高壓NMOS電晶體112的源極S係供該高壓系統電源的低電位端HV_VSS連接,又其閘極G係連接至該第二高壓PMOS元件111的閘極G,並與該反相器11的輸入端I/P連接,又該第二高壓NMOS元件112的汲極D連接至第二高壓PMOS元件的汲極D,並與該反相器11的輸出端O/P連接。In this embodiment, as shown in FIG. 1, the capacitor C is a first high voltage PMOS transistor, and the gate G is connected to the low potential terminal HV_VSS of a high voltage system power supply; and the inverter 11 includes one a second high voltage PMOS transistor 111 and a second high voltage NMOS transistor 112. The source S of the second high voltage PMOS transistor 111 is connected to the high potential terminal HV_VCC of the high voltage system power supply, and the second high voltage NMOS transistor is connected. The source S of the 112 is connected to the low potential terminal HV_VSS of the high voltage system power supply, and the gate G thereof is connected to the gate G of the second high voltage PMOS device 111, and is connected to the input terminal I of the inverter 11 P is connected, and the drain D of the second high voltage NMOS device 112 is connected to the drain D of the second high voltage PMOS device and is connected to the output terminal O/P of the inverter 11.
如圖1所示,於本實施例,該低壓基極觸發靜電電流放電電路20係包含有複數低壓基板隔離型電晶體21,且該些低壓基板隔離型電晶體21相互串接;其中各該低壓基板隔離型電晶體21的基極B不與一基板連接,而與該開關電路30連接。由於該低壓基極觸發靜電電流放電電路20係由該些低壓基板隔離型電晶體21相互串接所構成,故其崩潰電壓即為該些串接之低壓基板隔離型電晶體21之崩潰電壓的加總,而可依據所使用高壓系統電源的電壓範圍,決定該該低壓基極觸發靜電電流放電電路20的崩潰電壓,並由此一崩潰電壓決定串接低壓基板隔離型電晶體21的數量;換言之,串接不同數量即可決定該低壓基極觸發靜電電流放電電路20的觸發電壓V t及崩潰電壓V B,如下表數例所示,其中數據係為該低壓基板隔離型電晶體選用5V隔離型閘極電阻接地NMOS電晶體(Ioslated-Gate Resistance NMOS;ISO-GRNMOS)的電壓數據。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 5V ISO-GRNMOS數量 </td><td> 觸發電壓V<sub>t</sub>(V) </td><td> 崩潰電壓V<sub>B</sub>(V) </td></tr><tr><td> 2 </td><td> 16.1 </td><td> 22 </td></tr><tr><td> 3 </td><td> 25.24 </td><td> 33 </td></tr><tr><td> 4 </td><td> 34.38 </td><td> 44 </td></tr><tr><td> 5 </td><td> 48.53 </td><td> 55 </td></tr><tr><td> 6 </td><td> 60.55 </td><td> 66 </td></tr></TBODY></TABLE>As shown in FIG. 1 , in the embodiment, the low-voltage base-triggered electrostatic current discharge circuit 20 includes a plurality of low-voltage substrate isolation type transistors 21, and the low-voltage substrate isolation type transistors 21 are connected in series; The base B of the low-voltage substrate isolation type transistor 21 is not connected to a substrate but is connected to the switch circuit 30. Since the low-voltage base-triggered electrostatic current discharge circuit 20 is formed by the low-voltage substrate isolation type transistors 21 connected in series, the breakdown voltage is the breakdown voltage of the series low-voltage substrate isolation type transistors 21. Adding, according to the voltage range of the high voltage system power source used, determining the breakdown voltage of the low voltage base trigger electrostatic current discharge circuit 20, and thereby determining the number of the low voltage substrate isolation type transistors 21 connected in series; In other words, the trigger voltage V t and the breakdown voltage V B of the low-voltage base-triggered electrostatic current discharge circuit 20 can be determined by serially connecting different numbers, as shown in the following table, wherein the data is 5V for the low-voltage substrate isolation type transistor. Isolated gate resistor NMOS transistor (Ioslated-Gate Resistance NMOS; ISO-GRNMOS) voltage data. <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td> 5V ISO-GRNMOS Quantity</td><td> Trigger Voltage V<sub>t</ Sub>(V) </td><td> Crash voltage V<sub>B</sub>(V) </td></tr><tr><td> 2 </td><td> 16.1 </td><td> 22 </td></tr><tr><td> 3 </td><td> 25.24 </td><td> 33 </td></tr><tr><Td> 4 </td><td> 34.38 </td><td> 44 </td></tr><tr><td> 5 </td><td> 48.53 </td><td> 55 </td></tr><tr><td> 6 </td><td> 60.55 </td><td> 66 </td></tr></TBODY></TABLE>
於本實施例,再配合圖2所示,各該低壓基板隔離型電晶體21係為一低壓NMOS電晶體,各該低壓NMOS電晶體的半導體結構211係形成於一P型基板212中,該P型基板212係對應各該低壓NMOS電晶體的一元件區域內先形成有一N型深阱213(DEEP N-WELL),再於該N型深阱213中形成有一P型阱214(P-WELL);該各該低壓NMOS電晶體的一汲極摻雜區215、一源極摻雜區216及一基極摻雜區217則分別形成於該P型阱214中;又各該低壓NMOS電晶體的該閘極G係形成於P型阱214上,並位於該汲極摻雜區215及該源極摻雜區216之間;其中該汲極摻雜區215及該源極摻雜區216係分別位於與該閘極G的二側,且該汲極摻雜區215距該閘極G最近的一側至該閘極G的閘極絕緣層側壁218之間保持一間隔d;此外,該源極摻雜區216距該閘極G最近的一側至該閘極G的閘極絕緣層側壁218之間亦可保持一間隔d;該基極摻雜區217則形成於該源極摻雜區216的另一側,以提升觸發效率。又,於低壓基板隔離型電晶體21的半導體結構211中,其汲極摻雜區215與及源極摻雜區216分別上形成有一金屬矽化物215a、216a,且該汲極摻雜區215上的金屬矽化物215a不全面覆蓋該汲極摻雜區215,而僅部分覆蓋該汲極摻雜區215。In this embodiment, as shown in FIG. 2, each of the low-voltage substrate isolation type transistors 21 is a low-voltage NMOS transistor, and the semiconductor structure 211 of each of the low-voltage NMOS transistors is formed in a P-type substrate 212. The P-type substrate 212 is formed with an N-type deep well 213 (DEEP N-WELL) in an element region of each of the low-voltage NMOS transistors, and a P-type well 214 is formed in the N-type deep well 213 (P- WELL); a drain doping region 215, a source doping region 216 and a base doping region 217 of each of the low voltage NMOS transistors are respectively formed in the P-type well 214; and each of the low voltage NMOS The gate G of the transistor is formed on the P-type well 214 and located between the drain doping region 215 and the source doping region 216; wherein the drain doping region 215 and the source doping The region 216 is located on the two sides of the gate G, and the gate doping region 215 is spaced from the side closest to the gate G to the gate insulating layer sidewall 218 of the gate G to maintain a gap d; In addition, the source doping region 216 may also maintain a spacing d between the side closest to the gate G to the gate insulating layer sidewall 218 of the gate G; the base doping region 217 is formed. The other side of the source doping region 216, to improve the efficiency of the trigger. Moreover, in the semiconductor structure 211 of the low-voltage substrate isolation type transistor 21, a metal germanium 215a, 216a is formed on the drain doping region 215 and the source doping region 216, respectively, and the drain doping region 215 is formed. The upper metal halide 215a does not completely cover the gate doped region 215, but only partially covers the gate doped region 215.
因此,各該低壓基板隔離型電晶體21的半導體結構211係形成於該P型基板212的P型阱214中,且該P型阱214係由該N型深阱213包圍,而與該P型基板212隔離,故各該低壓NMOS電晶體21的基極B不與該基板212連接,有效提高該低壓NMOS電晶體的耐壓以及阻隔來自該基板212的干擾,避免誤觸發;又各該低壓NMOS電晶體的汲極摻雜區215及源極摻雜區216分別位在該閘極G的二側,且分別與最近的該閘極G閘極絕緣層側壁218保持一定間隔d,藉由汲極D拉開與該閘極G之多晶矽層的距離,或汲極D及源極S與分別拉開與該閘極G之多晶矽層的距離,來提高靜電放電耐受度。Therefore, the semiconductor structure 211 of each of the low-voltage substrate isolation type transistors 21 is formed in the P-type well 214 of the P-type substrate 212, and the P-type well 214 is surrounded by the N-type deep well 213, and the P The base substrate 212 is isolated, so that the base B of each of the low-voltage NMOS transistors 21 is not connected to the substrate 212, effectively improving the withstand voltage of the low-voltage NMOS transistor and blocking interference from the substrate 212, thereby avoiding false triggering; The drain doping region 215 and the source doping region 216 of the low voltage NMOS transistor are respectively located on two sides of the gate G, and are respectively spaced apart from the nearest sidewall G of the gate G insulating layer 218 by a certain interval d. The electrostatic discharge withstand is improved by the distance D from the drain D and the distance between the polysilicon layer of the gate G, or the distance between the drain D and the source S and the polysilicon layer of the gate G, respectively.
又各該低壓NMOS電晶體的閘極G與其源極S連接,其基極B係連接至該開關電路30,其汲極D係連接至前一級低壓基板隔離型電晶體21的源極S,除了該低壓基極觸發靜電電流放電電路20的第一級低壓NMOS電晶體21的汲極D係連接至該高壓系統電源的高壓端HV_VCC,以及最後一級低壓NMOS電晶體21的源極S連接至該高壓系統電源的低壓端HV_VSS。再者,各該低壓NMOS電晶體的閘極G與該源極S之間可進一步連接有一電阻R2。Further, the gate G of each of the low-voltage NMOS transistors is connected to its source S, the base B thereof is connected to the switch circuit 30, and the drain D is connected to the source S of the low-voltage substrate isolation type transistor 21 of the previous stage. The drain D of the first stage low voltage NMOS transistor 21 of the low voltage base triggered electrostatic current discharge circuit 20 is connected to the high voltage terminal HV_VCC of the high voltage system power supply, and the source S of the last stage low voltage NMOS transistor 21 is connected to The low voltage terminal HV_VSS of the high voltage system power supply. Furthermore, a resistor R2 may be further connected between the gate G of each of the low voltage NMOS transistors and the source S.
於本實施例,如圖1所示,該開關電路30係包含有複數半導體開關元件31,各半導體開關元件31係連接於該靜電檢知電路10及對應低壓基板隔離型電晶體21,並受該靜電檢知電路10觸發而觸發其對應低壓基板隔離型電晶體21導通。各該半導體開關元件31係為一第一高壓NMOS電晶體,以連接至該第一級低壓NMOS電晶體21的第一顆半導體開關元件31為例,如圖3所示,其半導體結構311係成形於該P型基板212中,令其基極B H直接連接至該基板212,其汲極D H形成於一輕摻雜區域NDD中,且該汲極D H係與閘極G H一同連接至該靜電檢知電路10的輸出端O/P,其源極S H則連接至其對應低壓NMOS電晶體的基極B。 In this embodiment, as shown in FIG. 1 , the switch circuit 30 includes a plurality of semiconductor switching elements 31 connected to the static detecting circuit 10 and the corresponding low-voltage substrate isolation type transistor 21, and is subjected to The static detecting circuit 10 is triggered to trigger its corresponding low-voltage substrate isolation type transistor 21 to be turned on. Each of the semiconductor switching elements 31 is a first high voltage NMOS transistor, and is connected to the first semiconductor switching element 31 of the first stage low voltage NMOS transistor 21, as shown in FIG. Formed in the P-type substrate 212, the base B H is directly connected to the substrate 212, the drain D H is formed in a lightly doped region NDD, and the drain D H system is together with the gate G H Connected to the output O/P of the electrostatic detection circuit 10, the source S H is connected to the base B of its corresponding low voltage NMOS transistor.
以上為本發明高壓靜電防護電路的第一較佳實施例的電路圖說明,以下謹進一步說明該高壓靜電防護電路的電路動作。The above is a circuit diagram description of the first preferred embodiment of the high voltage static electricity protection circuit of the present invention. The circuit operation of the high voltage static electricity protection circuit will be further described below.
如圖1所示,當靜電發生時,作為電容C的第一高壓PMOS元件視為短路,將該反相器11的輸入端I/P電壓拉低至該高壓系統電源的低電位HV_VSS;此時,該第二高壓PMOS電晶體111導通,而該第二高壓NMOS電晶體112不導通,故該反相器11的輸出端O/P電壓會拉升至該高壓系統電源的高電位HV_VCC,如此使得該開關電路30的各該第一高壓NMOS電晶體導通,各導通的第一高壓NMOS電晶體會觸發其對應的低壓NMOS電晶體21的基極B,使所有的低壓NMOS電晶體21導通;如此,該低壓基極觸發靜電電流放電電路20即構成一靜電放電電流路俓,順利將靜電電流排除。As shown in FIG. 1, when static electricity occurs, the first high voltage PMOS element as the capacitor C is regarded as a short circuit, and the input terminal I/P voltage of the inverter 11 is pulled down to the low potential HV_VSS of the high voltage system power supply; When the second high voltage PMOS transistor 111 is turned on, and the second high voltage NMOS transistor 112 is not turned on, the output O/P voltage of the inverter 11 is pulled up to the high potential HV_VCC of the high voltage system power supply. Thus, the first high voltage NMOS transistors of the switch circuit 30 are turned on, and the first high voltage NMOS transistors that are turned on trigger the base B of the corresponding low voltage NMOS transistor 21 to turn on all the low voltage NMOS transistors 21. Thus, the low-voltage base-triggered electrostatic current discharge circuit 20 constitutes an electrostatic discharge current path, and the electrostatic current is smoothly eliminated.
請參閱圖4所示,係為本發明之一高壓靜電保護電路的第二較佳實施例,其與第一較佳實施例大致相同,均同樣包含有一靜電檢知電路10、一低壓基極觸發靜電電流放電電路20’及一開關電路30;惟該低壓基極觸發靜電電流放電電路20’係包含有複數低壓基板隔離型電晶體21’,且該些低壓基板隔離型電晶體21’相互串接;各該低壓基板隔離型電晶體21’可為一低壓NMOS電晶體。再配合圖5A及圖5B所示各該低壓NMOS電晶體的半導體結構211’係形成於一P型基板221中,該P型基板221對應各該低壓NMOS電晶體的元件區域內先形成有一N型埋入層222(N+ Buried Layer;NBL),再於該N型埋入層222上再形成有一高壓P型阱223,最後於該高壓P型阱223中形成有一P型阱224;其中該N型埋入層222上方與該高壓P型阱223的外側形成有一高壓N型阱225;該各該低壓NMOS電晶體的一汲極摻雜區215、一源極摻雜區216及一基極摻雜區217係分別形成於該P型阱224中;又各該低壓NMOS電晶體的該閘極G係形成於P型阱224上,並位於該汲極摻雜區215及該源極摻雜區216之間;其中該汲極摻雜區215及該源極摻雜區216係分別位於與該閘極G的二側,該汲極摻雜區215距該閘極G最近的一側至該閘極G的閘極絕緣層側壁218之間保持一間隔d;此外,該源極摻雜區216距該閘極最近的一側至該閘極G的閘極絕緣層側壁218之間亦可保持一間隔d;該基極摻雜區217係形成於該源極摻雜區216的一側,以提升觸發效率。又,於本實施例的各半導體結構211’中,其汲極摻雜區215與及源極摻雜區216分別上形成有一金屬矽化物215a、216a,且該汲極摻雜區215上的金屬矽化物215a不全面覆蓋該汲極摻雜區215,而僅部分覆蓋該汲極摻雜區215。Referring to FIG. 4, it is a second preferred embodiment of the high voltage electrostatic protection circuit of the present invention, which is substantially the same as the first preferred embodiment, and both includes an electrostatic detecting circuit 10 and a low voltage base. The electrostatic current discharge circuit 20' and the switch circuit 30 are triggered; but the low voltage base trigger electrostatic current discharge circuit 20' includes a plurality of low voltage substrate isolation type transistors 21', and the low voltage substrate isolation type transistors 21' are mutually The low voltage substrate isolation type transistor 21' may be a low voltage NMOS transistor. The semiconductor structure 211' of each of the low-voltage NMOS transistors shown in FIG. 5A and FIG. 5B is formed in a P-type substrate 221, and the P-type substrate 221 is formed with a N in the component region of each of the low-voltage NMOS transistors. Forming a buried layer 222 (N+ Buried Layer; NBL), further forming a high voltage P-type well 223 on the N-type buried layer 222, and finally forming a P-type well 224 in the high-voltage P-type well 223; A high-voltage N-type well 225 is formed on the outer side of the high-voltage P-type well 223, and a drain-doped region 215, a source-doped region 216, and a base of each of the low-voltage NMOS transistors. The pole doped regions 217 are respectively formed in the P-type well 224; and the gate G of each of the low-voltage NMOS transistors is formed on the P-type well 224 and located in the drain-doped region 215 and the source Between the doped regions 216, wherein the drain doping region 215 and the source doping region 216 are respectively located on two sides of the gate G, and the drain doping region 215 is closest to the gate G. A gap d is maintained between the sidewalls 218 of the gate insulating layer G of the gate G; furthermore, the source doping region 216 is closest to the gate of the gate to the gate of the gate G A spacing d may also be maintained between the sidewalls 218 of the edge layer; the base doping region 217 is formed on one side of the source doping region 216 to improve the triggering efficiency. Moreover, in each of the semiconductor structures 211' of the present embodiment, a metal germanium 215a, 216a is formed on the drain doping region 215 and the source doping region 216, respectively, and the drain doping region 215 is formed. The metal telluride 215a does not completely cover the drain doped region 215, but only partially covers the drain doped region 215.
因此,各該低壓基板隔離型電晶體21’的半導體結構211係形成於該P型基板221的P型阱224中,且該P型阱224係由該高壓P型阱223、高壓N型阱225及該N型埋入層222所包圍,而與該P型基板221隔離,故各該低壓NMOS電晶體21’的基極B同樣不與該基板221連接,有效提高該低壓NMOS電晶體的耐壓以及阻隔來自該基板221的干擾;又各該低壓NMOS電晶體的汲極摻雜區215及源極摻雜區216分別位在該閘極G的二側,且分別與最近的該閘極G閘極絕緣層側壁218保持一定間隔d,藉由汲極D拉開與該閘極G之多晶矽層的距離,或汲極D及源極S分別與拉開與該閘極G之多晶矽層的距離,來提高靜電放電耐受度。Therefore, the semiconductor structure 211 of each of the low-voltage substrate isolation type transistors 21' is formed in the P-type well 224 of the P-type substrate 221, and the P-type well 224 is composed of the high-voltage P-type well 223 and the high-voltage N-type well. The 225 and the N-type buried layer 222 are surrounded by the P-type substrate 221, so that the base B of each of the low-voltage NMOS transistors 21' is not connected to the substrate 221, thereby effectively improving the low-voltage NMOS transistor. Withstand voltage and block interference from the substrate 221; and the drain doping region 215 and the source doping region 216 of each of the low voltage NMOS transistors are respectively located on two sides of the gate G, and respectively with the nearest gate The sidewall G of the gate G insulating layer 218 is maintained at a certain interval d, and the distance between the gate D and the polysilicon layer of the gate G is pulled by the drain D, or the drain D and the source S are respectively opened and opened by the gate G. The distance of the layers to increase the electrostatic discharge tolerance.
除了第一級低壓NMOS電晶體21’的汲極D係連接至該高壓系統電源的高壓端HV_VCC,以及最後一級低壓NMOS電晶體21’的源極S連接至該高壓系統電源的低壓端HV_VSS之外,各該低壓NMOS電晶體的閘極G與其源極S及基極B連接,該基極B係進一步連接至該開關電路30,其汲極D係連接至前一級低壓基板隔離型電晶體21’的源極S。又,該高壓N型阱225形成有一N型摻雜區225a,與該高壓P型阱223之間形成有一絕緣層225b,各該低壓NMOS電晶體21’的汲極D係進一步連接至該N型摻雜區225a。再者,各該低壓NMOS電晶體的閘極G與該源極S之間可進一步連接有一電阻R2。The drain D of the first stage low voltage NMOS transistor 21' is connected to the high voltage terminal HV_VCC of the high voltage system power supply, and the source S of the last stage low voltage NMOS transistor 21' is connected to the low voltage terminal HV_VSS of the high voltage system power supply. In addition, the gate G of each of the low-voltage NMOS transistors is connected to the source S and the base B thereof, and the base B is further connected to the switch circuit 30, and the drain D is connected to the front-stage low-voltage substrate isolation type transistor. Source S of 21'. Moreover, the high voltage N-well 225 is formed with an N-type doping region 225a, and an insulating layer 225b is formed between the high-voltage N-type well 223, and the drain D of each of the low-voltage NMOS transistors 21' is further connected to the N Type doped region 225a. Furthermore, a resistor R2 may be further connected between the gate G of each of the low voltage NMOS transistors and the source S.
於本實施例,如圖4所示,該開關電路30係包含有複數半導體開關元件31,各半導體開關元件31係連接於該靜電檢知電路10及對應低壓基板隔離型電晶體21’,並受該靜電檢知電路10觸發而觸發其對應低壓基板隔離型電晶體21’導通。各該半導體開關元件31係為一第一高壓NMOS電晶體,以連接至該第一級低壓NMOS電晶體21的第一顆半導體開關元件31為例,如圖6所示,其半導體結構311係成形於該P型基板221中,令其基極B H直接連接至該基板221,其汲極D H形成於一輕摻雜區域NDD中,且該汲極D H係與閘極G H一同連接至該靜電檢知電路10的輸出端O/P,其源極S H則連接至其對應低壓NMOS電晶體的基極B。 In this embodiment, as shown in FIG. 4, the switch circuit 30 includes a plurality of semiconductor switching elements 31, and each of the semiconductor switching elements 31 is connected to the static detecting circuit 10 and the corresponding low-voltage substrate isolation type transistor 21', and Triggered by the electrostatic detecting circuit 10 to trigger the corresponding low-voltage substrate isolation type transistor 21' to be turned on. Each of the semiconductor switching elements 31 is a first high voltage NMOS transistor, and is connected to the first semiconductor switching element 31 of the first stage low voltage NMOS transistor 21, as shown in FIG. Formed in the P-type substrate 221, the base B H is directly connected to the substrate 221, the drain D H is formed in a lightly doped region NDD, and the drain D H is together with the gate G H Connected to the output O/P of the electrostatic detection circuit 10, the source S H is connected to the base B of its corresponding low voltage NMOS transistor.
以上為本發明高壓靜電防護電路的第二較佳實施例的電路圖說明,以下謹進一步說明該高壓靜電防護電路的電路動作。The above is a circuit diagram description of the second preferred embodiment of the high voltage static electricity protection circuit of the present invention. The circuit operation of the high voltage static electricity protection circuit will be further described below.
如圖4所示,當靜電發生時,作為電容C的第一高壓PMOS元件視為短路,將該反相器11的輸入端I/P電壓拉低至該高壓系統電源的低電位HV_VSS;此時,該第二高壓PMOS電晶體111導通,而該第二高壓NMOS電晶體112不導通,故該反相器11的輸出端O/P電壓會拉升至該高壓系統電源的高電位HV_VCC,如此使得該開關電路30的各該第一高壓NMOS電晶體導通,各導通的第一高壓NMOS電晶體會觸發其對應的低壓NMOS電晶體21’的基極B,使所有的低壓NMOS電晶體21’導通;如此,該低壓基極觸發靜電電流放電電路20’即構成一靜電放電電流路俓,順利將靜電電流排除。As shown in FIG. 4, when static electricity occurs, the first high voltage PMOS element as the capacitor C is regarded as a short circuit, and the input terminal I/P voltage of the inverter 11 is pulled down to the low potential HV_VSS of the high voltage system power supply; When the second high voltage PMOS transistor 111 is turned on, and the second high voltage NMOS transistor 112 is not turned on, the output O/P voltage of the inverter 11 is pulled up to the high potential HV_VCC of the high voltage system power supply. Thus, the first high voltage NMOS transistors of the switching circuit 30 are turned on, and the first high voltage NMOS transistors that are turned on trigger the base B of the corresponding low voltage NMOS transistor 21' to make all the low voltage NMOS transistors 21 'Conduction; thus, the low-voltage base trigger electrostatic current discharge circuit 20' constitutes an electrostatic discharge current path, and the electrostatic current is smoothly eliminated.
綜上所述,上述本發明高壓靜電保護電路係主要使用低壓基板隔離型電晶體作靜電電流放電路徑,由於各低壓基板隔離型電晶體的崩潰電壓無法適用於高壓系統電源中,故將複數低壓基板隔離型電晶體予以串連,以構成低壓基極觸發靜電電流放電電路,其崩潰電壓為該些低壓基板隔離型電晶體之崩潰電壓的加總,而可適用於高壓系統電源;然而,為避免各低壓基板隔離型電晶體的汲極對基板的耐壓不足與來自基板的雜訊干擾而誤觸發,其基極不直接與基板連接,但與該開關電路連接;如此,當該靜電檢知電路檢知靜電發生,即可透過觸發該開關電路一併觸發各低壓基板隔離型電晶體導通,順利排除靜電電流;此外,由於各低壓基板隔離型電晶體的汲極摻雜區與一閘極的閘極絕緣層側壁分別間保持一間隔,或汲極及源極摻雜區係分別與一閘極的閘極絕緣層側壁分別間保持一間隔,其高靜電放電耐受度亦可相對提高。In summary, the high-voltage electrostatic protection circuit of the present invention mainly uses a low-voltage substrate isolation type transistor as an electrostatic current discharge path. Since the breakdown voltage of each low-voltage substrate isolation type transistor cannot be applied to a high-voltage system power supply, a plurality of low voltages are used. The substrate-isolated transistors are connected in series to form a low-voltage base-triggered electrostatic current discharge circuit, and the breakdown voltage is a sum of breakdown voltages of the low-voltage substrate isolation transistors, and is applicable to a high-voltage system power supply; however, The anode of each low-voltage substrate isolation type transistor is prevented from being erroneously triggered by the undervoltage of the substrate and the noise interference from the substrate, and the base is not directly connected to the substrate, but is connected to the switch circuit; thus, when the electrostatic inspection Knowing that the circuit detects the occurrence of static electricity, it can trigger the switching circuit to trigger the conduction of the isolation transistors of the low-voltage substrate to smoothly eliminate the electrostatic current; in addition, due to the gate doping region and the gate of each low-voltage substrate isolation type transistor a gate of the gate insulating layer is maintained at a spacing, or a drain and a source doped region are respectively connected to a gate of a gate Edges of each sidewall layers to maintain a spacing between its high ESD tolerance can be relatively increased.
以上所述僅是本發明的實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。The above is only the embodiment of the present invention, and is not intended to limit the scope of the present invention. The present invention has been disclosed by the embodiments, but is not intended to limit the invention, and any one of ordinary skill in the art, In the scope of the technical solutions of the present invention, equivalent modifications may be made to the equivalents of the embodiments of the present invention without departing from the technical scope of the present invention. Any simple modifications, equivalent changes and modifications made to the above embodiments are still within the scope of the technical solutions of the present invention.
10‧‧‧靜電檢知電路
11‧‧‧反相器
111‧‧‧第二高壓PMOS電晶體
112‧‧‧第二高壓NMOS電晶體
20‧‧‧低壓基極觸發靜電電流放電電路
21、21’‧‧‧低壓基板隔離型電晶體
211、211’‧‧‧半導體結構
212‧‧‧基板
213‧‧‧N型深阱
213a‧‧‧N型摻雜區
214‧‧‧P型阱
215‧‧‧汲極摻雜區
215a‧‧‧金屬矽化物層
216‧‧‧源極摻雜區
216a‧‧‧金屬矽化物層
217‧‧‧基極摻雜區
218‧‧‧閘極絕緣層側壁
221‧‧‧基板
222‧‧‧N型埋入層
223‧‧‧高壓P型阱
224‧‧‧P型阱
225‧‧‧高壓N型阱
225a‧‧‧N型摻雜區
225b‧‧‧絕緣層
30‧‧‧開關電路
31‧‧‧半導體開關元件
311‧‧‧半導體結構
50‧‧‧靜電檢測電路
60‧‧‧閘極觸發型電晶體10‧‧‧Electrostatic detection circuit
11‧‧‧Inverter
111‧‧‧Second high voltage PMOS transistor
112‧‧‧Second high voltage NMOS transistor
20‧‧‧Low-voltage base triggered electrostatic current discharge circuit
21, 21'‧‧‧ Low-voltage substrate isolation type transistor
211, 211'‧‧‧ semiconductor structure
212‧‧‧Substrate
213‧‧‧N type deep trap
213a‧‧‧N-doped area
214‧‧‧P-well
215‧‧‧汲polar doped area
215a‧‧‧metal telluride layer
216‧‧‧ source doped area
216a‧‧‧metal telluride layer
217‧‧‧base doping area
218‧‧‧ gate insulation sidewall
221‧‧‧Substrate
222‧‧‧N type buried layer
223‧‧‧High-voltage P-well
224‧‧‧P-type well
225‧‧‧High voltage N-well
225a‧‧‧N-doped area
225b‧‧‧Insulation
30‧‧‧Switch circuit
31‧‧‧Semiconductor switching elements
311‧‧‧Semiconductor structure
50‧‧‧Static detection circuit
60‧‧‧Gate-triggered transistor
圖1:係本發明高壓靜電保護電路的第一較佳實施例的一電路圖。 圖2:係圖1中低壓基極觸發靜電電流放電電路的一半導體結構圖。 圖3:係圖1中低壓基極觸發靜電電流放電電路的其中一半導體元件與一開關電路其中一半導體開關元件的一半導體結構圖。 圖4:係本發明高壓靜電保護電路的第二較佳實施例的一電路圖。 圖5A及5B:係圖4中低壓基極觸發靜電電流放電電路的一半導體結構圖。 圖6:係圖4中低壓基極觸發靜電電流放電電路的其中一半導體元件與一開關電路其中一半導體開關元件的一半導體結構圖。 圖7:係既有高壓靜電保護電路的一電路圖。Figure 1 is a circuit diagram of a first preferred embodiment of the high voltage electrostatic protection circuit of the present invention. Figure 2 is a semiconductor block diagram of the low voltage base triggered electrostatic current discharge circuit of Figure 1. FIG. 3 is a semiconductor structural diagram of one of the semiconductor elements of the low-voltage base-triggered electrostatic current discharge circuit of FIG. 1 and one of the semiconductor switching elements of a switching circuit. Figure 4 is a circuit diagram showing a second preferred embodiment of the high voltage electrostatic protection circuit of the present invention. 5A and 5B are diagrams showing a semiconductor structure of the low-voltage base-triggered electrostatic current discharge circuit of FIG. FIG. 6 is a semiconductor structural diagram of one of the semiconductor elements of the low-voltage base-triggered electrostatic current discharge circuit of FIG. 4 and one of the semiconductor switching elements of a switching circuit. Figure 7: A circuit diagram of a high voltage electrostatic protection circuit.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106137979A TWI633729B (en) | 2017-11-02 | 2017-11-02 | High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106137979A TWI633729B (en) | 2017-11-02 | 2017-11-02 | High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI633729B true TWI633729B (en) | 2018-08-21 |
TW201919295A TW201919295A (en) | 2019-05-16 |
Family
ID=63959953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106137979A TWI633729B (en) | 2017-11-02 | 2017-11-02 | High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI633729B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115566015A (en) * | 2021-08-20 | 2023-01-03 | 台湾积体电路制造股份有限公司 | Semiconductor device and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI455275B (en) * | 2012-03-16 | 2014-10-01 | Vanguard Int Semiconduct Corp | Electrostatic discharge (esd) protection device |
CN104716135A (en) * | 2013-12-17 | 2015-06-17 | 台湾类比科技股份有限公司 | Electrostatic protection circuit |
US20150262992A1 (en) * | 2014-03-14 | 2015-09-17 | Issc Technologies Corp. | Electrostatic discharge protection circuit |
TWI511261B (en) * | 2009-11-04 | 2015-12-01 | Analog Devices Inc | Electrostatic protection device |
-
2017
- 2017-11-02 TW TW106137979A patent/TWI633729B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI511261B (en) * | 2009-11-04 | 2015-12-01 | Analog Devices Inc | Electrostatic protection device |
TWI455275B (en) * | 2012-03-16 | 2014-10-01 | Vanguard Int Semiconduct Corp | Electrostatic discharge (esd) protection device |
CN104716135A (en) * | 2013-12-17 | 2015-06-17 | 台湾类比科技股份有限公司 | Electrostatic protection circuit |
US20150262992A1 (en) * | 2014-03-14 | 2015-09-17 | Issc Technologies Corp. | Electrostatic discharge protection circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201919295A (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11482519B2 (en) | Transient voltage suppressor and method for manufacturing the same | |
JP5242675B2 (en) | ESD protection circuit with reduced trigger voltage | |
US8093623B2 (en) | Semiconductor integrated circuit | |
TWI580001B (en) | Electrostatic discharge protection circuit, structure and manufacturing method thereof | |
US8164872B2 (en) | Power supply clamp circuit | |
US20070158748A1 (en) | Resistor structure for ESD protection circuits | |
US7420252B2 (en) | LDMOS device with improved ESD performance | |
US10262987B2 (en) | Electrostatic discharge protection circuit | |
TWI409938B (en) | Electrostatic discharge protection circuit | |
US11056482B2 (en) | Semiconductor device with electrostatic discharge protection | |
US20150129977A1 (en) | Semiconductor electrostatic discharge protection apparatus | |
US8859361B1 (en) | Symmetric blocking transient voltage suppressor (TVS) using bipolar NPN and PNP transistor base snatch | |
US9613952B2 (en) | Semiconductor ESD protection device | |
US9607980B1 (en) | High voltage transistor | |
US7465994B2 (en) | Layout structure for ESD protection circuits | |
TWI633729B (en) | High-voltage esd protection circuit and a low-voltage-bulk-trigger esd current discharging circuit thereof | |
KR20080003047A (en) | Electrostatic discharge protection element | |
CN109216344B (en) | High-voltage electrostatic protection circuit with low-voltage base electrode triggering electrostatic current discharge circuit | |
US7843009B2 (en) | Electrostatic discharge protection device for an integrated circuit | |
CN109979929B (en) | A high-voltage electrostatic discharge clamp protection element and integrated circuit chip | |
US20180114787A1 (en) | Electrostatic discharge protection device | |
CN109787208B (en) | High-voltage electrostatic protection circuit and low-voltage source electrode triggering electrostatic current discharge circuit thereof | |
US10546849B2 (en) | Semiconductor structure for electrostatic discharge protection | |
TWI647809B (en) | High-voltage esd protection circuit with a low-voltage-bulk-trigger esd current discharging path | |
US20060284256A1 (en) | Layout structure for ESD protection circuits |