[go: up one dir, main page]

TWI629477B - Method for producing a multiphase matrix sensor and sensor thus obtained - Google Patents

Method for producing a multiphase matrix sensor and sensor thus obtained Download PDF

Info

Publication number
TWI629477B
TWI629477B TW105131514A TW105131514A TWI629477B TW I629477 B TWI629477 B TW I629477B TW 105131514 A TW105131514 A TW 105131514A TW 105131514 A TW105131514 A TW 105131514A TW I629477 B TWI629477 B TW I629477B
Authority
TW
Taiwan
Prior art keywords
carbon
porous material
matrix sensor
containing porous
forming
Prior art date
Application number
TW105131514A
Other languages
Chinese (zh)
Other versions
TW201812293A (en
Inventor
李家宏
許景棟
廖育萱
蔡群賢
蔡群榮
李庭鵑
Original Assignee
台灣奈米碳素股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣奈米碳素股份有限公司 filed Critical 台灣奈米碳素股份有限公司
Priority to TW105131514A priority Critical patent/TWI629477B/en
Publication of TW201812293A publication Critical patent/TW201812293A/en
Application granted granted Critical
Publication of TWI629477B publication Critical patent/TWI629477B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一種多相矩陣感測器的製造方法,包含A1至A5步驟:(A1)提供一基板;(A2)於該基板上形成一絕緣層;(A3)於該絕緣層上形成至少一偵測電極;(A4)於該絕緣層上形成一阻隔部,該阻隔部圍繞該偵測電極,且於該偵測電極上形成一容置空間;以及(A5)將一感測部置於該阻隔部內之該容置空間並且形成一反應感測膜,進而得到一多相矩陣感測器。該反應感測膜包括一含碳的多孔材料以及一附著於該含碳的多孔材料的感測材料,且該含碳的多孔材料係以一發泡乳化法製成。A method for manufacturing a multi-phase matrix sensor, comprising the steps A1 to A5: (A1) providing a substrate; (A2) forming an insulating layer on the substrate; (A3) forming at least one detecting electrode on the insulating layer (A4) forming a blocking portion on the insulating layer, the blocking portion surrounding the detecting electrode, and forming an accommodating space on the detecting electrode; and (A5) placing a sensing portion in the blocking portion The accommodating space and a reaction sensing film are formed, thereby obtaining a multi-phase matrix sensor. The reaction sensing film includes a carbon-containing porous material and a sensing material attached to the carbon-containing porous material, and the carbon-containing porous material is produced by a foaming emulsification method.

Description

一種多相矩陣感測器的製造方法及由此所得之感測器Method for manufacturing multiphase matrix sensor and sensor obtained thereby

本發明為有關一種多相矩陣感測器,尤指一種具有低製造成本及簡易製程的多相矩陣感測器。The invention relates to a multi-phase matrix sensor, in particular to a multi-phase matrix sensor with low manufacturing cost and simple process.

多相感測器泛指偵測氣體、液體或固體之物理或化學性質的裝置,當以探測頭偵測到樣品之後,這類裝置會依其設計原理,經由物理或化學變化來進行檢測,進而產生對應該樣品的識別訊號。多相感測器因為靈敏、準確而廣泛應用於醫療、工業、科技、環保等各種領域。Multiphase sensors generally refer to devices that detect the physical or chemical properties of gases, liquids, or solids. When a probe is used to detect a sample, such devices are tested for physical or chemical changes according to their design principles. In turn, an identification signal corresponding to the sample is generated. Multiphase sensors are widely used in various fields such as medical, industrial, scientific, and environmental protection because of their sensitivity and accuracy.

如中華民國發明專利公告第I458464號,提出一種可早期偵測及辨識肺炎種類之呼吸器包含一吐氣端管路及一氣體辨識裝置,該氣體辨識裝置係利用一氣體辨識晶片來分析一病人由該吐氣端管路所呼出的一混合氣體以辨識該病人罹患的肺炎種類,該氣體辨識晶片係包含一感測器陣列、一感測器介面電路、一隨機類神經網路晶片、一記憶體及一微控制器,該微控制器連結該感測器介面電路、該隨機類神經網路晶片及該記憶體並控制其運作。藉此,可早期偵測並辨識肺炎的種類,以提供更有效的治療。For example, the Republic of China Invention Patent Publication No. I458464 proposes that a respirator capable of early detection and identification of pneumonia type includes a spout end line and a gas identification device for analyzing a patient by using a gas identification wafer. a mixed gas exhaled by the exhalation end line to identify the type of pneumonia the patient suffers from, the gas identification chip system comprising a sensor array, a sensor interface circuit, a random neural network chip, and a memory And a microcontroller that couples the sensor interface circuit, the random neural network chip and the memory and controls its operation. In this way, the type of pneumonia can be detected and identified early to provide more effective treatment.

先前技術多採用半導體製程來製造該類感測器陣列,但該類感測器陣列通常架構複雜,加上半導體製程的製造成本高昂,因而限制了該類感測器在商業上的發展。The prior art mostly uses semiconductor processes to fabricate such sensor arrays, but such sensor arrays are often complicated in architecture, and the manufacturing process of semiconductor processes is expensive, thus limiting the commercial development of such sensors.

本發明的主要目的,在於解決習知感測器的感測器陣列架構複雜,且因採用半導體製程而具有於製造時需耗費大量時間以及製造成本較高昂的問題。The main object of the present invention is to solve the problem that the sensor array structure of the conventional sensor is complicated, and the semiconductor process has a large time and high manufacturing cost.

為了達到上述目的,本發明提供一種多相矩陣感測器的製造方法,包含以下步驟:In order to achieve the above object, the present invention provides a method of manufacturing a multi-phase matrix sensor, comprising the steps of:

步驟A1:提供一基板;Step A1: providing a substrate;

步驟A2:於該基板上形成一絕緣層;Step A2: forming an insulating layer on the substrate;

步驟A3:於該絕緣層上形成至少一偵測電極;Step A3: forming at least one detecting electrode on the insulating layer;

步驟A4:於該絕緣層上形成一阻隔部,該阻隔部圍繞該偵測電極,且於該偵測電極上形成一容置空間;以及Step A4: forming a blocking portion on the insulating layer, the blocking portion surrounding the detecting electrode, and forming an accommodating space on the detecting electrode;

步驟A5:將一感測部置於該阻隔部內之該容置空間並形成一反應感測膜,而得到一多相矩陣感測器;Step A5: placing a sensing portion in the accommodating space in the blocking portion and forming a reaction sensing film to obtain a multi-phase matrix sensor;

其中,該反應感測膜包括一含碳的多孔材料以及一附著於該含碳的多孔材料的感測材料,且該含碳的多孔材料是以一發泡乳化法製成。Wherein, the reaction sensing film comprises a carbon-containing porous material and a sensing material attached to the carbon-containing porous material, and the carbon-containing porous material is produced by a foaming emulsification method.

本發明亦關於一種以前述方法製得的多相矩陣感測器。The invention also relates to a multiphase matrix sensor made by the foregoing method.

是以,本發明相較於習知技術所能達到的功效在於:利用本發明的方法所製得的多相矩陣感測器,架構上相對簡單,製造方便,不須採用半導體設備或製程,且投入成本較低,適合大量生產。Therefore, the efficacies achieved by the present invention over the prior art are that the multi-phase matrix sensor fabricated by the method of the present invention is relatively simple in structure and convenient to manufacture, and does not require semiconductor equipment or processes. And the input cost is low, suitable for mass production.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

『圖1』為本發明的多相矩陣感測器的剖面示意圖,該多相矩陣感測器主要包括:一基板10;一絕緣層30,形成於該基板10上;一偵測電極40,形成於該絕緣層30上;一阻隔部50,形成於該絕緣層30上並包括複數個向上延伸的阻隔壁51,該些阻隔壁51圍繞該偵測電極40以在該偵測電極40上形成一容置空間52;以及一感測部60,設置於該容置空間52中並形成一反應感測膜61。1 is a schematic cross-sectional view of a multi-phase matrix sensor according to the present invention. The multi-phase matrix sensor mainly includes: a substrate 10; an insulating layer 30 formed on the substrate 10; a detecting electrode 40, The barrier layer 50 is formed on the insulating layer 30 and includes a plurality of upwardly extending barrier walls 51. The barrier walls 51 surround the detecting electrode 40 on the detecting electrode 40. An accommodating space 52 is formed, and a sensing portion 60 is disposed in the accommodating space 52 to form a reaction sensing film 61.

於一實施例中,當偵測的標的為氣體時,為達靈敏收放氣目標,該多相矩陣感測器更可在該基板10與該絕緣層30之間夾設一加熱層20,透過使該加熱層20加熱至一定溫度以驅出殘留在裝置中的氣體,進而達到除氣(degas)的效果。該加熱層20的材料,只要可以加熱使該加熱層20的溫度高於室溫的材料都可使用,譬如,可由銦錫氧化物形成該加熱層20;而所謂的「一定溫度」可依實際情況斟酌選擇(譬如考慮所使用的材料的加熱溫度範圍),舉例可加熱至30℃至500℃的溫度範圍之間、較佳為加熱至30℃至350℃之間。然而,除氣的方法並不僅限於上述方式,舉例來說,亦可藉由灌入惰性氣體來驅出殘留於裝置中的氣體,同樣也可達到除氣效果。In an embodiment, when the detected target is a gas, the multi-phase matrix sensor can further sandwich a heating layer 20 between the substrate 10 and the insulating layer 30. The degassing effect is achieved by heating the heating layer 20 to a certain temperature to drive out the gas remaining in the apparatus. The material of the heating layer 20 can be used as long as it can be heated so that the temperature of the heating layer 20 is higher than room temperature. For example, the heating layer 20 can be formed of indium tin oxide; the so-called "certain temperature" can be practical. The situation may be selected (for example, considering the heating temperature range of the materials used), for example, it may be heated to a temperature range of 30 ° C to 500 ° C, preferably between 30 ° C and 350 ° C. However, the method of degassing is not limited to the above, and for example, the gas remaining in the apparatus can be driven out by injecting an inert gas, and the degassing effect can also be achieved.

下文將詳細地針對具有上述結構的多相矩陣感測器的製造方法說明。The manufacturing method of the multi-phase matrix sensor having the above structure will be described in detail below.

第一實施例First embodiment

請參考『圖2』的步驟流程示意圖搭配『圖1』的多相矩陣感測器的剖面示意圖,本發明第一實施例的多相矩陣感測器的製造方法包含以下步驟:Please refer to the schematic diagram of the process flow of FIG. 2 in combination with the cross-sectional schematic diagram of the multi-phase matrix sensor of FIG. 1. The manufacturing method of the multi-phase matrix sensor according to the first embodiment of the present invention includes the following steps:

步驟A1:提供一基板10,該基板10的材料可選自玻璃、銦錫氧化物(indium tin oxide, ITO)及聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)或其組合。Step A1: providing a substrate 10, the material of the substrate 10 may be selected from the group consisting of glass, indium tin oxide (ITO), and polyethylene terephthalate (PET) or a combination thereof.

步驟A2:於該基板10上形成一絕緣層30。該絕緣層30的材料可為聚對苯二甲酸乙二酯。於本實施例中,可選擇性地在該基板10的上方先形成一加熱層20後,再形成該絕緣層30,使該加熱層20夾設於該基板10與該絕緣層30之間,該絕緣層30使得該加熱層20的電流無法導通至該基板10上。Step A2: forming an insulating layer 30 on the substrate 10. The material of the insulating layer 30 may be polyethylene terephthalate. In this embodiment, after the heating layer 20 is formed on the substrate 10, the insulating layer 30 is formed, and the heating layer 20 is interposed between the substrate 10 and the insulating layer 30. The insulating layer 30 prevents the current of the heating layer 20 from being conducted to the substrate 10.

步驟A3:於該絕緣層30上形成至少一偵測電極40,該偵測電極40的結構請參考『圖3』。該偵測電極40包括一第一電極401及一第二電極402,該第一電極401包括一第一條狀電極4011及一第一指狀電極4012,該第二電極402包括一第二條狀電極4021及一第二指狀電極4022,該第一條狀電極4011與該第二條狀電極4021沿一第一軸向延伸且平行設置;而該第一指狀電極4012沿一第二軸向自該第一條狀電極4011朝該第二條狀電極4021延伸,該第二指狀電極4022則是沿該第二軸向自該第二條狀電極4021朝該第一條狀電極4011延伸,該第一指狀電極4012與該第二指狀電極4022呈平行且彼此交替排列設置。該第一軸向和該第二軸向相異,具體而言,於本實施例中,該第一軸向和該第二軸向係彼此垂直。該偵測電極40的材料可選自銦錫氧化物、銅、鎳、鉻、鐵、鎢、磷、鈷、銀或其組合。此外,在本發明的多相矩陣感測器中,該偵測電極40的數量可依實際需求調整而無特別限制。舉例來說,該偵測電極40在每個該多相矩陣感測器中的數量可為4個,且依據製程、材料的不同,或者為了達到控制電阻的目的,彼此間的距離會隨之而有不同設計。一般而言,該多相矩陣感測器彼此間可相距1 μm 至750μm,較佳可相距1 μm至30 μm,然本發明並不以此為限。Step A3: Form at least one detecting electrode 40 on the insulating layer 30. For the structure of the detecting electrode 40, refer to FIG. 3 . The detecting electrode 40 includes a first electrode 401 and a second electrode 402. The first electrode 401 includes a first strip electrode 4011 and a first finger electrode 4012, and the second electrode 402 includes a second strip. An electrode 4021 and a second finger electrode 4022, the first strip electrode 4011 and the second strip electrode 4021 are arranged in a first axial direction and parallel; and the first finger electrode 4012 is along a second An axial direction extends from the first strip electrode 4011 toward the second strip electrode 4021, and the second finger electrode 4022 is along the second axial direction from the second strip electrode 4021 toward the first strip electrode The first finger electrode 4012 is parallel to the second finger electrode 4022 and arranged alternately with each other. The first axial direction and the second axial direction are different. Specifically, in the embodiment, the first axial direction and the second axial direction are perpendicular to each other. The material of the detecting electrode 40 may be selected from indium tin oxide, copper, nickel, chromium, iron, tungsten, phosphorus, cobalt, silver or a combination thereof. In addition, in the multi-phase matrix sensor of the present invention, the number of the detecting electrodes 40 can be adjusted according to actual needs without particular limitation. For example, the number of the detecting electrodes 40 in each of the multi-phase matrix sensors can be four, and depending on the process, the material, or the purpose of controlling the resistance, the distance between them will follow. And there are different designs. In general, the multiphase matrix sensors may be spaced apart from each other by 1 μm to 750 μm, preferably from 1 μm to 30 μm, although the invention is not limited thereto.

步驟A4:於該絕緣層30上形成一阻隔部50,該阻隔部50圍繞該偵測電極40,且於該偵測電極40上形成一容置空間52,其中該阻隔部50包括複數個遠離該絕緣層30而向上延伸的阻隔壁51,該阻隔壁51圍繞出該容置空間52。Step A4: forming a blocking portion 50 on the insulating layer 30, the blocking portion 50 surrounding the detecting electrode 40, and forming an accommodating space 52 on the detecting electrode 40, wherein the blocking portion 50 includes a plurality of distances The barrier layer 51 extends upwardly from the insulating layer 30, and the barrier wall 51 surrounds the accommodating space 52.

步驟A5:將一感測部60置於該阻隔部50內之該容置空間52並且形成一反應感測膜61,進而製得一多相矩陣感測器。Step A5: A sensing portion 60 is placed in the accommodating space 52 in the blocking portion 50 and a reaction sensing film 61 is formed, thereby producing a multi-phase matrix sensor.

本實施例中,該反應感測膜61包括一含碳的多孔材料以及一附著於該含碳的多孔材料的感測材料,其中,該含碳的多孔材料係以一發泡乳化法製成,請參考『圖4』的步驟:In this embodiment, the reaction sensing film 61 comprises a carbon-containing porous material and a sensing material attached to the carbon-containing porous material, wherein the carbon-containing porous material is made by a foaming emulsification method. Please refer to the steps in Figure 4:

步驟B1:將一第一溶劑、一第一碳材料以及一第一界面活性劑混合形成一第一分散液。其中,該第一溶劑為水,該第一碳材料可為奈米碳管、石墨烯、奈米碳片或其組合,且該第一介面活性劑可為聚乙烯吡咯烷酮(Poly(vinylpyrrolidone), PVP)、十六烷基三甲基溴化胺(Hexadecyl trimethyl ammonium)、聚丙烯酸鈉(acrylic sodium salt polymer, ASAP)、木質素磺酸鹽(sodium ligninsulfonate)及其木質素衍生物、羧甲基纖維素鈉鹽(carboxymethylcellulose sodium, CMC)、十二烷基硫酸鈉(sodium dodecyl sulfate, SDS)、酯肽、皂素(saponin)、溴化十六烷三甲基銨(hexadecyl trimethyl ammonium bromide)、十二烷基聚氧乙醚硫酸鈉(sodium laureth sulfate, SLES)、聚乙烯共軛高分子(polyethylene conjugated polymer)或其組合,混合之後所形成的該第一分散液具有一介於10 cps至100000cps之間,較佳為2000 cps至50000 cps之間,且更佳為2000 cps至30000 cps的黏度。Step B1: mixing a first solvent, a first carbon material and a first surfactant to form a first dispersion. Wherein, the first solvent is water, the first carbon material may be a carbon nanotube, a graphene, a nano carbon sheet or a combination thereof, and the first surfactant may be polyvinylpyrrolidone (Poly(vinylpyrrolidone), PVP), Hexadecyl trimethyl ammonium, acrylic sodium salt polymer (ASAP), sodium ligninsulfonate and its lignin derivatives, carboxymethyl Carboxymethylcellulose sodium (CMC), sodium dodecyl sulfate (SDS), ester peptide, saponin, hexadecyl trimethyl ammonium bromide, Sodium laureth sulfate (SLES), polyethylene conjugated polymer or a combination thereof, the first dispersion formed after mixing has a range of 10 cps to 100000 cps Preferably, it is between 2000 cps and 50,000 cps, and more preferably from 2000 cps to 30,000 cps.

步驟B2:將一第二溶劑、一第二碳材料以及一第二界面活性劑混合形成一第二分散液。於本實施例中,該第二溶劑為有機溶劑,且可為N-甲基吡咯烷酮(N-methyl-2-pyrrolidone, NMP)、尼龍酸二甲酯(dibasic ester, DBE)、二甲基乙醯胺(dimethyl acetamide, DMAC)、乙醇(ethanol)、甲醇(methanol)、丁酮(butanone)、二乙二醇單丁醚(diethylene glycol monobutyl ether)、酯醇、聚乙二醇(polyethylene glycol, PEG)、甘油(glycerol)、乙二醇(ethylene glycol)、四氫呋喃(tetrahydrofuran, THF)、甲苯(toluene)或其組合。該第二碳材料可為碳管、碳黑、石墨烯、碳片、碳纖維及木質纖維等,而該第二介面活性劑可為聚乙烯吡咯烷酮、醋酸纖維素(cellulose acetate)、乙烯-乙烯醇共聚物(ethylene-vinyl alcohol copolymer, EVOH)、乙基纖維素(ethyl cellulose, EC)、硝化纖維素(Nitrocellulose, NC)、脂肽(acylpeptide)、胜肽(beta-amyloid(1-40)、human galectin-1或human albumin)或其組合。Step B2: mixing a second solvent, a second carbon material and a second surfactant to form a second dispersion. In this embodiment, the second solvent is an organic solvent, and may be N-methyl-2-pyrrolidone (NMP), dibasic ester (DBE), dimethyl Dimethyl acetamide (DMAC), ethanol, methanol, butanone, diethylene glycol monobutyl ether, ester alcohol, polyethylene glycol (polyethylene glycol, PEG), glycerol, ethylene glycol, tetrahydrofuran (THF), toluene or a combination thereof. The second carbon material may be carbon tube, carbon black, graphene, carbon sheet, carbon fiber and wood fiber, and the second surfactant may be polyvinylpyrrolidone, cellulose acetate, ethylene vinyl alcohol. Ethylene-vinyl alcohol copolymer (EVOH), ethyl cellulose (EC), nitrocellulose (NC), acylpeptide, beta-amyloid (1-40), Human galectin-1 or human albumin) or a combination thereof.

步驟B3:將該第一分散液與該第二分散液混合並進行一攪拌製程而形成一第一漿料,以讓該第一分散液、該第二分散液互溶而產生一乳化作用,再將該第一漿料置入一模具之中。該攪拌製程可為葉片攪拌、行星式攪拌、滾筒攪拌、或其他習用的攪拌方法。且當該第一分散液與該第二分散液互溶產生一乳化作用,有助於使該第一碳材料和該第二碳材料內產生孔洞,並同時固定多孔結構。然為了增加孔隙率,此步驟中可進一步加入一打孔劑,可使用之打孔劑並無特別限制,可為聚乙二醇(polyethylene glycerol, PEG)、甘油(glycerol)、乙二醇(ethylene glycerol, EG)、氯化鋰、苯甲酸、草酸、奈丸、酵母粉等。Step B3: mixing the first dispersion liquid with the second dispersion liquid and performing a stirring process to form a first slurry, so that the first dispersion liquid and the second dispersion liquid are mutually soluble to generate an emulsification effect, and then The first slurry is placed in a mold. The agitation process can be blade agitation, planetary agitation, drum agitation, or other conventional agitation methods. And when the first dispersion is mutually miscible with the second dispersion to produce an emulsification, it helps to create pores in the first carbon material and the second carbon material, and at the same time fix the porous structure. However, in order to increase the porosity, a punching agent may be further added in this step, and the puncture agent to be used is not particularly limited, and may be polyethylene glycol (PEG), glycerol or ethylene glycol (polyethylene glycol). Ethylene glycerol, EG), lithium chloride, benzoic acid, oxalic acid, nai pills, yeast powder, etc.

上述步驟B3的該攪拌製程後更可包括步驟B3-1,係對該第一漿料進行一脫泡製程(譬如,真空脫泡製程),使該第一漿料介於0.0001 torr到1 torr之間的壓力、較佳為0.01 torr到1 torr、更佳為0.01 torr到0.1 torr,並持續10分鐘到600分鐘,更佳為持續10分鐘到300分鐘,藉此去除存在於該第一漿料內部的空氣。The stirring process of the above step B3 may further comprise the step B3-1 of performing a defoaming process (for example, a vacuum defoaming process) on the first slurry, so that the first slurry is between 0.0001 torr and 1 torr. The pressure between them is preferably 0.01 torr to 1 torr, more preferably 0.01 torr to 0.1 torr, and is continued for 10 minutes to 600 minutes, more preferably for 10 minutes to 300 minutes, thereby removing the presence of the first slurry. The air inside the material.

步驟B4:對該第一漿料進行一成形製程,使該第一漿料處於一70℃的成形溫度,藉此去除該第一溶劑與該第二溶劑以形成一含碳的多孔材料。該含碳的多孔材料大部分由一樹酯組成。於本實施例中,該成形製程可依實際情況加以選擇而無特別限制,可為一加熱乾燥、一冷凍乾燥或一減壓乾燥,更具體來說,可利用一加熱處理係使該含碳的多孔材料處於一介於40℃至400℃之間的乾燥溫度來進行該成形製程;亦可選擇利用一減壓處理,使該含碳的多孔材料處於一介於0.0001 torr至600 torr之間的壓力,藉此進行該成形製程。於步驟B4之後,更可包含以下步驟B4-1,係對該含碳的多孔材料進行一表面處理製程,如酸化處理、電漿處理、雙氧水處理或高溫改質等,以增加該含碳的多孔材料的活性。Step B4: performing a forming process on the first slurry so that the first slurry is at a forming temperature of 70 ° C, thereby removing the first solvent and the second solvent to form a carbon-containing porous material. The carbon-containing porous material is mostly composed of a resin. In this embodiment, the forming process can be selected according to actual conditions without particular limitation, and can be a heat drying, a freeze drying or a vacuum drying, and more specifically, a heat treatment system can be used to make the carbon. The porous material is subjected to the forming process at a drying temperature of between 40 ° C and 400 ° C. Alternatively, the carbon-containing porous material may be subjected to a pressure between 0.0001 torr and 600 torr by a reduced pressure treatment. Thereby, the forming process is performed. After step B4, the method further includes the following step B4-1, wherein the carbon-containing porous material is subjected to a surface treatment process, such as acidification treatment, plasma treatment, hydrogen peroxide treatment or high temperature modification, to increase the carbon content. The activity of porous materials.

步驟B5:對該含碳的多孔材料進行一第一乾燥製程,使該含碳的多孔材料處於一介於70℃至400℃之間的乾燥溫度。Step B5: performing a first drying process on the carbon-containing porous material such that the carbon-containing porous material is at a drying temperature between 70 ° C and 400 ° C.

以上述步驟B1至B5,藉由改變黏度可製造出厚度不同的該含碳的多孔材料,譬如,當該第一分散液的黏度介於2000 cps至10000 cps之間時,該多孔材料厚度介為0.5公分至4公分之間,可視需求加以調整;此外,是否進行該脫泡製程也會影響譬如孔隙率等特性,進行該脫泡製程所獲得的該含碳的多孔材料,其孔隙率約在20%至50%之間,反之,未進行該脫泡製程所獲得的該含碳的多孔材料,其孔隙率約在40%至80%之間。In the above steps B1 to B5, the carbon-containing porous material having different thicknesses can be produced by changing the viscosity, for example, when the viscosity of the first dispersion is between 2000 cps and 10000 cps, the thickness of the porous material is It is between 0.5 cm and 4 cm, which can be adjusted according to requirements; in addition, whether or not the defoaming process is performed also affects properties such as porosity, and the porosity of the carbonaceous porous material obtained by the defoaming process is about Between 20% and 50%, on the other hand, the carbon-containing porous material obtained without the defoaming process has a porosity of between about 40% and 80%.

簡言之,本發明中的該發泡乳化法,係藉由形成兩種以上的分散液,再將該些分散液混合而進行。舉例來說,於上述實施例中,係形成一第一分散液及一第二分散液,使一第一碳材料和一第二碳材料得以各自在該第一分散液及該第二分散液中充分分散並產生孔洞。隨後,當該第一分散液與該第二分散液混合而產生一乳化作用時,該乳化作用有助於該第一碳材料和該第二碳材料內產生孔洞,同時固定多孔結構,有利其成形。相較於傳統製程,本發明不需要高溫設備就可以進行碳化製程並產生孔隙,可降低製程成本。另一方面,利用乳化產生孔隙能使該含碳的多孔材料具有高導電性以及高比表面積的特性。In short, the foaming emulsification method in the present invention is carried out by forming two or more kinds of dispersion liquids and mixing the dispersion liquids. For example, in the above embodiment, a first dispersion liquid and a second dispersion liquid are formed, so that a first carbon material and a second carbon material are respectively in the first dispersion liquid and the second dispersion liquid. Fully dispersed and created holes. Subsequently, when the first dispersion is mixed with the second dispersion to produce an emulsification, the emulsification contributes to the creation of pores in the first carbon material and the second carbon material, while fixing the porous structure, which is advantageous Forming. Compared with the conventional process, the present invention can perform the carbonization process and generate voids without high-temperature equipment, thereby reducing the process cost. On the other hand, the use of emulsification to generate pores enables the carbon-containing porous material to have high conductivity and high specific surface area characteristics.

步驟B5後進行步驟B6及B7以獲得該反應感測膜61:After step B5, steps B6 and B7 are performed to obtain the reaction sensing film 61:

步驟B6:將一感測材料以及一分散劑混合形成一感測溶液,並將該感測溶液透過一滴定製程而披覆於該含碳的多孔材料的表面,其中,該感測材料於該感測溶液中的重量百分比可介於0.1 wt.%至50 wt.%之間,且該滴定製程可為微量滴定器滴定或噴墨列印滴定。Step B6: mixing a sensing material and a dispersing agent to form a sensing solution, and coating the sensing solution on the surface of the carbon-containing porous material through a custom process, wherein the sensing material is The weight percentage in the sensing solution can be between 0.1 wt.% and 50 wt.%, and the drop custom process can be a micro titrator titration or an inkjet print titration.

於本實施例中,該感測材料可為羧甲基纖維素銨(CMC-NH4)、聚苯乙烯(polystyrene, PS)、聚乙烯己二酸(poly(ethylene adipate))、聚氧化乙烯(poly(ethylene oxide), PEO)、聚己内酯(polycaprolactone)、聚乙二醇、聚乙烯芐基氯(poly(vinylbenzyl chloride), PVBC)、甲基乙烯基醚-馬來酸交替型共聚物(poly(methyl vinyl ether-alt-maleic acide))、乙烯基苯酚-甲基丙烯酸甲酯共聚物(poly(4-vinylphenol-co-methyl methacrylate))、乙基纖維素、偏氯乙烯-丙烯腈共聚物(poly(vinylidene chloride-co-acrylonitrile), PVdcAN)、聚環氧氯丙烷(polyepichlorohydrin, PECH)、聚乙烯亞胺(polyethyleneimine)、胜肽、人體半乳糖凝集、苯乙烯-烯丙醇共聚物(styrene/allyl alcohol copolymer, SAA)、乙烯-醋酸乙烯酯共聚物(poly(ethylene-co-vinyl acetate))、聚異丁烯 (polyisobutylene, PIB)、丙烯腈-丁二烯共聚物 poly(acrylonitrile-co-butadiene)、聚(4-乙烯嘧啶) (poly(4-vinylpyridine))、羥丙甲纖維素(hydroxypropyl methyl cellulose)、聚異戊二烯(polyisoprene)、聚α甲基苯乙烯(poly(alpha-methylstyrene))、3-氯-1,2-環氧丙烷-氧化乙烯共聚物(poly(epichlorohydrin-co-ethylene oxide))、聚乙烯縮丁醛(poly(vinyl butyral-co-vinyl alcohol-vinyl acetate ))、聚苯乙烯(polystyrene, PS)、木質素磺酸鹽(lignin)、脂肽、聚丙酸(poly(vinyl proplonate))、聚乙烯吡咯烷酮、二聚酸-烷基多胺共聚物(poly(dimer acid-co-alkyl polyamine))、聚(4-乙基苯酚)(poly(4-vinylphenol))、聚羥乙基丙烯酸甲酯(poly(2-hydroxyethyl methacrylate))、氯乙烯-乙酸乙烯酯共聚物(poly(vinyl chloride-co-vinyl acetate))、 三醋酸纖維素(cellulose triacetate)、聚(乙烯硬脂酸酯)(Poly(viny stearate))、聚雙酚A碳酸酯(poly(bisphenol A carbonate), PC)、聚偏二氟乙烯(poly(vinylidene fluoride), PVDF)或其組合。In this embodiment, the sensing material may be carboxymethylcellulose ammonium (CMC-NH4), polystyrene (PS), poly(ethylene adipate), polyethylene oxide (polyethylene oxide). Poly(ethylene oxide), PEO), polycaprolactone, polyethylene glycol, poly(vinylbenzyl chloride, PVBC), methyl vinyl ether-maleic acid alternating copolymer (poly(methyl vinyl ether-alt-maleic acide)), poly(4-vinylphenol-co-methyl methacrylate), ethyl cellulose, vinylidene chloride-acrylonitrile Copolymer (poly(vinylidene chloride-co-acrylonitrile), PVdcAN), polyepichlorohydrin (PECH), polyethyleneimine, peptide, human galactose agglutination, styrene-allyl alcohol copolymerization (styrene/allyl alcohol copolymer, SAA), poly(ethylene-co-vinyl acetate), polyisobutylene (PIB), acrylonitrile-butadiene copolymer poly(acrylonitrile- Co-butadiene), poly(4-vinylpyridine), hyprothenol Hydroxypropyl methyl cellulose, polyisoprene, poly(alpha-methylstyrene), 3-chloro-1,2-epoxypropane-ethylene oxide copolymer (poly (epichlorohydrin-co-ethylene oxide), poly(vinyl butyral-co-vinyl alcohol-vinyl acetate), polystyrene (PS), lignosulfonate (lignin), fat Peptide, poly(vinyl proplonate), polyvinylpyrrolidone, poly(dimer acid-co-alkyl polyamine), poly(4-ethylphenol) (poly(diethyl)) 4-vinylphenol)), poly(2-hydroxyethyl methacrylate), poly(vinyl chloride-co-vinyl acetate), cellulose triacetate (cellulose) Triacetate), poly(vinyl stearate), poly(bisphenol A carbonate, PC), poly(vinylidene fluoride, PVDF) Or a combination thereof.

於本實施例中,該分散劑可為水、N-甲基吡咯烷酮、甲乙酮/丁酮(methyl ethyl ketone, MEK)、異丙醇(isopropyl alcohol, IPA)、二甲基乙醯胺(dimethylformamide, DMAC)、乙醇、四氫呋喃、丙二醇甲醚乙脂(propylene glycol monomethyl ether acetate, PMA)、二甲基亞碸(dimethyl sulfoxide, DMSO)或其組合。In this embodiment, the dispersing agent may be water, N-methylpyrrolidone, methyl ethyl ketone (MEK), isopropyl alcohol (IPA), dimethylformamide (dimethylformamide, DMAC), ethanol, tetrahydrofuran, propylene glycol monomethyl ether acetate (PMA), dimethyl sulfoxide (DMSO) or a combination thereof.

步驟B7:對該感測溶液進行一第二乾燥製程,使該感測溶液處於一介於50℃至380℃之間的乾燥溫度,藉此去除該分散劑,使得該感測材料固化於該含碳的多孔材料的表面並形成具有一吸附能力的該反應感測膜61。Step B7: performing a second drying process on the sensing solution, so that the sensing solution is at a drying temperature between 50 ° C and 380 ° C, thereby removing the dispersing agent, so that the sensing material is cured in the containing The surface of the porous material of carbon forms the reaction sensing film 61 having an adsorption capacity.

第二實施例Second embodiment

本發明第二實施例的多相矩陣感測器,其結構與第一實施例相同,不同處在於該反應感測膜61的製造方式,請參考『圖5』的反應感測膜製作步驟流程示意圖及以下步驟說明。The structure of the multi-phase matrix sensor according to the second embodiment of the present invention is the same as that of the first embodiment. The difference lies in the manufacturing method of the reaction sensing film 61. Please refer to the flow of the reaction sensing film manufacturing step in FIG. Schematic and description of the steps below.

步驟C1:將一第一溶劑、一第一碳材料以及一第一介面活性劑混合形成一第一分散液;一第二溶劑、一第二碳材料以及一第二介面活性劑混合形成一第二分散液;以及,將一第三溶劑與一高分子材料混合形成一第三分散液。Step C1: mixing a first solvent, a first carbon material and a first surfactant to form a first dispersion; mixing a second solvent, a second carbon material and a second surfactant to form a first solvent a second dispersion; and mixing a third solvent with a polymer material to form a third dispersion.

於本實施例中,可選擇用來形成該第一分散液與該第二分散液的該第一溶劑、該第一碳材料、該第一介面活性劑、該第二溶劑、該第二碳材料、該第二介面活性劑的成分組成均與第一實施例相同,再此不另贅述。In this embodiment, the first solvent, the first carbon material, the first surfactant, the second solvent, the second carbon used to form the first dispersion and the second dispersion may be selected. The composition of the material and the second surfactant is the same as that of the first embodiment, and will not be further described herein.

關於該第三分散液,其中,該第三溶劑可為水、N-甲基吡咯烷酮、尼龍酸二甲酯、二甲基乙醯胺、酯醇、聚乙二醇、甘油或其組合。而該高分子材料可為聚偏二氟乙烯、聚四氟乙烯(polytetrafluoroethene, PTFE)、聚丙烯腈(polyacrylonitrile, PAN)、酚醛樹酯(phenolic resins)、BT樹酯(bismaleimide Triazine Resin)、鋁凝膠、二氧化矽凝膠、導電高分子、聚乙二醇、偶氮化合物、磺醯類化合物、亞硝基化合物、碳酸鹽或其組合。Regarding the third dispersion, the third solvent may be water, N-methylpyrrolidone, dimethyl nylon, dimethylacetamide, ester alcohol, polyethylene glycol, glycerin or a combination thereof. The polymer material may be polyvinylidene fluoride, polytetrafluoroethene (PTFE), polyacrylonitrile (PAN), phenolic resins, BT resin (bismaleimide Triazine Resin), aluminum. Gel, cerium oxide gel, conductive polymer, polyethylene glycol, azo compound, sulfonium compound, nitroso compound, carbonate or a combination thereof.

步驟C2:進行一攪拌製程以混合該第一分散液、該第二分散液以及該第三分散液,進而形成一第二漿料,並將該第二漿料置入一模具中。與第一實施例相同,本實施例中可透過葉片攪拌、行星式攪拌或是滾筒攪拌等進行該攪拌製程,並可加入打孔劑來增加孔隙率,混合後的該第二漿料具有一介於10 cps至100000 cps之間,較佳為2000 cps至50000 cps之間,且更佳為2000 cps至30000 cps的黏度。除此之外,該攪拌製程完畢後,更可包括步驟C2-1,係對該第二漿料進行一脫泡製程(譬如,真空脫泡製程),使該第二漿料介於0.0001 torr到1 torr之間的壓力、較佳為0.01 torr到1 torr、更佳為0.01 torr到0.1 torr,並持續10分鐘到600分鐘,藉此去除存在於該第二漿料內部的空氣。Step C2: performing a stirring process to mix the first dispersion liquid, the second dispersion liquid, and the third dispersion liquid to form a second slurry, and placing the second slurry into a mold. As in the first embodiment, in the embodiment, the stirring process can be performed by blade stirring, planetary stirring or drum stirring, and a pore punching agent can be added to increase the porosity, and the mixed second slurry has a medium. It is between 10 cps and 100,000 cps, preferably between 2000 cps and 50,000 cps, and more preferably between 2000 cps and 30,000 cps. In addition, after the stirring process is completed, the step C2-1 may be further included, and the second slurry is subjected to a defoaming process (for example, a vacuum defoaming process), so that the second slurry is between 0.0001 torr. The pressure between 1 torr, preferably 0.01 torr to 1 torr, more preferably 0.01 torr to 0.1 torr, and for 10 minutes to 600 minutes, thereby removing air present inside the second slurry.

步驟C3:對該第二漿料進行一成形製程,使該第二漿料處於70℃的成形溫度,藉此去除該第一溶劑、該第二溶劑以及該第三溶劑,進而形成一含碳的多孔材料。該含碳的多孔材料大部分由樹酯組成。於此實施例中,該成形製程可為加熱乾燥、冷凍乾燥或減壓乾燥,更具體來說,可利用一加熱處理係使該含碳的多孔材料處於一介於40℃至400℃之間的乾燥溫度來進行該成形製程;亦可選擇利用一減壓處理,使該含碳的多孔材料處於一介於0.0001 torr至600 torr之間的壓力,藉此來進行該成形製程。於該步驟C3之後,更可以包含步驟C3-1,係對該含碳的多孔材料進行一表面處理製程,如酸化處理、電漿處理、雙氧水處理或高溫改質等,以增加該含碳的多孔材料的活性。Step C3: performing a forming process on the second slurry, so that the second slurry is at a forming temperature of 70 ° C, thereby removing the first solvent, the second solvent and the third solvent, thereby forming a carbonaceous Porous material. The carbon-containing porous material is mostly composed of a resin. In this embodiment, the forming process may be heat drying, freeze drying or reduced pressure drying. More specifically, the heat treatment system may be used to place the carbon containing porous material between 40 ° C and 400 ° C. The forming process is carried out by drying the temperature; the forming process may be carried out by subjecting the carbon-containing porous material to a pressure of between 0.0001 torr and 600 torr by a reduced pressure treatment. After the step C3, the step C3-1 may further comprise performing a surface treatment process, such as acidification treatment, plasma treatment, hydrogen peroxide treatment or high temperature modification, on the carbon-containing porous material to increase the carbon content. The activity of porous materials.

步驟C4:對該含碳的多孔材料進行一第三乾燥製程,使該含碳的多孔材料處於一介於70℃至400℃之間的乾燥溫度。Step C4: performing a third drying process on the carbon-containing porous material such that the carbon-containing porous material is at a drying temperature between 70 ° C and 400 ° C.

步驟C5:將一感測材料以及一分散劑混合形成一感測溶液,並將該感測溶液透過一滴定製程而披覆於該含碳的多孔材料之一表面,其中該感測材料於該感測溶液中的重量百分比介於0.1 wt.%至50 wt.%之間,另外該滴定製程可為微量滴定器滴定或噴墨列印滴定。於本實施例中,該感測材料及該用來分散該感測材料的分散液與第一實施例相同,故不再另行贅述。Step C5: mixing a sensing material and a dispersing agent to form a sensing solution, and coating the sensing solution on a surface of one of the carbon-containing porous materials through a custom process, wherein the sensing material is The weight percentage in the sensing solution is between 0.1 wt.% and 50 wt.%, and the custom flow can be a micro titrator titration or an inkjet print titration. In the present embodiment, the sensing material and the dispersion for dispersing the sensing material are the same as those of the first embodiment, and therefore will not be further described.

步驟C6:對該感測溶液進行一第四乾燥製程,使該感測溶液處於一介於50℃至380℃之間的乾燥溫度,以去除該分散劑,使該感測材料固化於該含碳的多孔材料之一表面並形成具有一吸附能力的該反應感測膜61,從而得到一多相矩陣感測器。Step C6: performing a fourth drying process on the sensing solution, so that the sensing solution is at a drying temperature between 50 ° C and 380 ° C to remove the dispersing agent, and curing the sensing material to the carbon-containing material. One of the porous materials is surfaced and formed with the reaction sensing film 61 having an adsorption capacity, thereby obtaining a multiphase matrix sensor.

補充說明的是,於元件或步驟前面的序數,譬如「第一」、「第二」等,係為了方便說明,以使本領域具有通常知識者能夠更加理解本發明,序數「第一」、「第二」等並非意圖限制使用的順序或者內容。舉例來說,「第一乾燥製程」與「第二乾燥製程」代表進行兩次乾燥製程,其製程的條件或內容可彼此相同或彼此不同;同樣的,「第一溶劑」和「第二溶劑」僅用於代表在不同步驟均有使用溶劑,溶劑的種類可彼此相同或不同。In addition, the ordinal numbers preceding the elements or steps, such as "first", "second", etc., are for convenience of description, so that those skilled in the art can understand the present invention more, the ordinal number "first", "Second" and the like are not intended to limit the order or content of use. For example, the "first drying process" and the "second drying process" represent two drying processes, and the conditions or contents of the processes may be the same or different from each other; similarly, the "first solvent" and the "second solvent" It is only used to represent the use of solvents in different steps, and the types of solvents may be the same or different from each other.

於實際應用時,請參考『圖1』,該感測部60的該反應感測膜61用於吸附一待測物並與該偵測電極40進行一物性反應,使該偵測電極40產生一對應該待測物的識別訊號。另外,於本發明中,該偵測電極40除了以上實施例舉例之外,尚可採用一霍爾感測器,當該反應感測膜61吸附該待測物後進行該物性反應,再藉由該霍爾感測器量測該反應感測膜61因一霍爾效應而產生的一載子濃度,使該霍爾感測器產生一對應該待測物的識別訊號。於本發明中,可配合使用需求而採用不同的偵測單元及偵測手段,並不以本發明之舉例為限。In the actual application, please refer to FIG. 1 , the reaction sensing film 61 of the sensing unit 60 is configured to adsorb a sample to be tested and perform a physical reaction with the detecting electrode 40 to generate the detecting electrode 40 . A pair of identification signals that should be tested. In addition, in the present invention, the detecting electrode 40 can be used in addition to the above embodiment, and a Hall sensor can be used. When the reaction sensing film 61 adsorbs the object to be tested, the physical reaction is performed, and then the borrowing is performed. A Hall sensor detects a carrier concentration generated by the Hall effect due to a Hall effect, so that the Hall sensor generates a pair of identification signals that should be tested. In the present invention, different detecting units and detecting means can be used in accordance with the requirements of the present invention, and are not limited to the examples of the present invention.

本發明中,由於該多相矩陣感測器分別具有吸附液體、氣體或固體,故可將複數該多相矩陣感測器呈一陣列或一圖案排列,亦可將複數該多相矩陣感測器以同一基板製作而成,於本實施例中,複數該多相矩陣感測器可採8×4的陣列排列,彼此間較佳地相距100 μm,使偵測面積大幅提升而提高採樣率,以達到快速及精準的偵測效果。此外,於本發明中,可透過一晶片擷取該識別訊號,並配合演算法來辨別液體、氣體、固體或混合物,例如類神經演算法(Artificial Neural Network,簡稱ANN)。In the present invention, since the multi-phase matrix sensor respectively has adsorption liquid, gas or solid, the plurality of multi-phase matrix sensors can be arranged in an array or a pattern, and the multi-phase matrix sensing can also be performed. The device is fabricated on the same substrate. In this embodiment, the plurality of multi-phase matrix sensors can be arranged in an array of 8×4, preferably spaced apart from each other by 100 μm, so that the detection area is greatly improved and the sampling rate is increased. For fast and accurate detection. In addition, in the present invention, the identification signal can be captured through a chip, and the algorithm can be used to distinguish a liquid, a gas, a solid or a mixture, such as an Artificial Neural Network (ANN).

綜上所述,本發明具有以下特點:In summary, the present invention has the following features:

一、利用本發明之方法所得到的該多相矩陣感測器,係具備架構簡單之優點,且不須使用半導體製程或薄膜技術,製造方便且成本較低,適合大量生產。1. The multiphase matrix sensor obtained by the method of the invention has the advantages of simple structure, does not need to use semiconductor process or thin film technology, is convenient to manufacture and has low cost, and is suitable for mass production.

二、本發明的該多相矩陣感測器之該含碳的多孔材料係包含碳材料而製成,故具有不易生鏽、結構強健及高穩定等優點。2. The carbon-containing porous material of the multi-phase matrix sensor of the present invention is made of a carbon material, so that it has the advantages of being less rusting, robust in structure, and high in stability.

三、本發明的該多相矩陣感測器之該反應感測膜係透過一滴定製程而將該感測材料披覆於該含碳的多孔材料之該表面並且具有該吸附能力,由於該含碳的多孔材料具有較大的比表面積,因此相對披覆於該含碳的多孔材料之該表面的該反應感測膜亦具有較大的比表面積,故該吸附能力優於傳統習知的感測器。3. The reaction sensing film of the multiphase matrix sensor of the present invention is coated with the sensing material on the surface of the carbon-containing porous material through a custom process and has the adsorption capability, The porous material of carbon has a large specific surface area, and therefore the reaction sensing film that is relatively coated on the surface of the carbon-containing porous material also has a large specific surface area, so the adsorption capacity is superior to the conventional one. Detector.

四、本發明可藉由形成相異的該反應感測膜分別偵測氣體、液體或固體而使該多相矩陣感測器具有偵測多樣性,以提高偵測結果的準確性。4. The present invention can detect the diversity of the multi-phase matrix sensor by forming different reaction sensing films to detect gas, liquid or solid, so as to improve the accuracy of the detection result.

五、本發明的該第一分散液與該第二分散液混合時將產生一乳化作用,該乳化作用有助於在該第一碳材料和該第二碳材料內產生孔洞,並同時固定多孔結構,有利其成形,與傳統製程相較下,本發明不需要高溫設備即可進行碳化製程並產生孔隙,可以降低製程成本。5. The first dispersion of the present invention, when mixed with the second dispersion, will produce an emulsification which facilitates the creation of voids in the first carbon material and the second carbon material while simultaneously fixing the porous The structure is advantageous for its forming. Compared with the conventional process, the present invention can perform the carbonization process and generate voids without high-temperature equipment, and can reduce the process cost.

以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

A1、A2、A3、A4、A5:步驟 B1、B2、B3、B3-1、B4、B4-1、B5、B6、B7:步驟 C1、C2、C2-1、C3、C3-1、C4、C5、C6:步驟 10:基板 20:加熱層 30:絕緣層 40:偵測電極 401:第一電極 4011:第一條狀電極 4012:第一指狀電極 402:第二電極 4021:第二條狀電極 4022:第二指狀電極 50:阻隔部 51:阻隔壁 52:容置空間 60:感測部 61:反應感測膜A1, A2, A3, A4, A5: Steps B1, B2, B3, B3-1, B4, B4-1, B5, B6, B7: Steps C1, C2, C2-1, C3, C3-1, C4, C5, C6: Step 10: Substrate 20: Heating layer 30: Insulating layer 40: Detection electrode 401: First electrode 4011: First strip electrode 4012: First finger electrode 402: Second electrode 4021: Second strip Shape electrode 4022: second finger electrode 50: barrier portion 51: barrier wall 52: accommodation space 60: sensing portion 61: reaction sensing film

『圖1』,為本發明一實施例的多相矩陣感測器的剖面示意圖。 『圖2』,為本發明第一實施例的步驟流程示意圖。 『圖3』,為本發明一實施例的偵測電極示意圖。 『圖4』,為本發明第一實施例的反應感測膜製作步驟流程示意圖。 『圖5』,為本發明第二實施例的反應感測膜製作步驟流程示意圖。FIG. 1 is a schematic cross-sectional view of a multi-phase matrix sensor according to an embodiment of the present invention. FIG. 2 is a schematic flow chart showing the steps of the first embodiment of the present invention. FIG. 3 is a schematic diagram of a detecting electrode according to an embodiment of the invention. FIG. 4 is a schematic flow chart showing the steps of the reaction sensing film manufacturing process of the first embodiment of the present invention. FIG. 5 is a schematic flow chart showing a step of preparing a reaction sensing film according to a second embodiment of the present invention.

Claims (9)

一種多相矩陣感測器的製造方法,包含有以下步驟:步驟A1:提供一基板;步驟A2:於該基板上形成一絕緣層;步驟A3:於該絕緣層上形成至少一偵測電極;步驟A4:於該絕緣層上形成一阻隔部,該阻隔部圍繞該偵測電極,且於該偵測電極上形成一容置空間;以及步驟A5:將一感測部置於該阻隔部內之該容置空間並且形成一反應感測膜,而得到一多相矩陣感測器;其中,該反應感測膜包括一含碳的多孔材料以及一附著於該含碳的多孔材料之感測材料,該含碳的多孔材料係以一發泡乳化法製成,該發泡乳化法含有以下步驟:步驟B1:將一第一溶劑、一第一碳材料以及一第一界面活性劑混合形成一第一分散液,其中該第一溶劑為水,該第一介面活性劑為選自於由聚乙烯吡咯烷酮、十六烷基三甲基溴化胺、聚丙烯酸鈉、木質素磺酸鹽及其木質素衍生物、羧甲基纖維素鈉鹽、十二烷基硫酸鈉、酯肽、皂素、溴化十六烷三甲基銨、十二烷基聚氧乙醚硫酸鈉及聚乙烯共軛高分子所組成之群組;步驟B2:將一第二溶劑、一第二碳材料以及一第二界面活性劑混合形成一第二分散液,其中該第二溶劑為選自於由N-甲基吡咯烷酮、尼龍酸二甲酯、二甲基乙醯胺、乙醇、甲醇、丁酮、二乙二醇單丁醚、酯醇、聚乙二醇、甘油、乙二醇、四氫呋喃及甲苯所組成之群組,該第二介面活性劑為選自於由聚乙烯吡咯烷酮、醋酸纖維素、乙烯-乙烯醇共聚物、乙基纖維素、硝化纖維素、脂肽及胜肽所組成之群組; 步驟B3:將該第一分散液與該第二分散液混合並進行一攪拌製程而形成一第一漿料,以讓該第一分散液、該第二分散液互溶而產生一乳化作用,再將該第一漿料置入一模具之中;步驟B4:對該第一漿料進行一成形製程,以去除該第一溶劑與該第二溶劑,而形成該含碳的多孔材料;以及步驟B5:對該含碳的多孔材料進行一乾燥製程。 A method for manufacturing a multi-phase matrix sensor includes the following steps: Step A1: providing a substrate; Step A2: forming an insulating layer on the substrate; Step A3: forming at least one detecting electrode on the insulating layer; Step A4: forming a blocking portion on the insulating layer, the blocking portion surrounding the detecting electrode, and forming an accommodating space on the detecting electrode; and step A5: placing a sensing portion in the blocking portion The accommodating space and forming a reaction sensing film to obtain a multi-phase matrix sensor; wherein the reaction sensing film comprises a carbon-containing porous material and a sensing material attached to the carbon-containing porous material The carbon-containing porous material is prepared by a foaming emulsification method, and the foaming emulsification method comprises the following steps: Step B1: mixing a first solvent, a first carbon material and a first surfactant to form a a first dispersion, wherein the first solvent is water, and the first surfactant is selected from the group consisting of polyvinylpyrrolidone, cetyltrimethylammonium bromide, sodium polyacrylate, lignosulfonate and Lignin derivative, carboxymethyl a group consisting of cellulose sodium salt, sodium lauryl sulfate, ester peptide, saponin, cetyltrimethylammonium bromide, sodium lauryl polyoxyether sulfate, and polyethylene conjugated polymer; Step B2: mixing a second solvent, a second carbon material and a second surfactant to form a second dispersion, wherein the second solvent is selected from the group consisting of N-methylpyrrolidone and dimethyl nylon a group consisting of dimethylacetamide, ethanol, methanol, methyl ethyl ketone, diethylene glycol monobutyl ether, ester alcohol, polyethylene glycol, glycerin, ethylene glycol, tetrahydrofuran and toluene, the second interface The active agent is selected from the group consisting of polyvinylpyrrolidone, cellulose acetate, ethylene-vinyl alcohol copolymer, ethyl cellulose, nitrocellulose, lipopeptide and peptide; Step B3: mixing the first dispersion liquid with the second dispersion liquid and performing a stirring process to form a first slurry, so that the first dispersion liquid and the second dispersion liquid are mutually soluble to generate an emulsification effect, and then Putting the first slurry into a mold; Step B4: performing a forming process on the first slurry to remove the first solvent and the second solvent to form the carbon-containing porous material; and the step B5: performing a drying process on the carbon-containing porous material. 如申請專利範圍第1項所述之多相矩陣感測器的製造方法,其中該第一碳材料為選自於由奈米碳管、石墨烯及奈米碳片所組成之群組;該第二碳材料為選自於由碳管、碳黑、石墨烯、碳片、碳纖維及木質纖維所組成之群組;且該感測材料係擇自於羧甲基纖維素銨、聚苯乙烯、聚乙烯己二酸、聚氧化乙烯、聚己內酯、聚乙二醇、聚乙烯芐基氯、甲基乙烯基醚-馬來酸交替型共聚物、乙烯基苯酚-甲基丙烯酸甲酯共聚物、乙基纖維素、偏氯乙烯-丙烯腈共聚物、聚環氧氯丙烷、聚乙烯亞胺、胜肽、人體半乳糖凝集、苯乙烯-烯丙醇共聚物、乙烯-醋酸乙烯酯共聚物、聚異丁烯、丙烯腈-丁二烯共聚物、聚(4-乙烯嘧啶)、羥丙甲纖維素、聚異戊二烯、聚α甲基苯乙烯、3-氯-1,2-環氧丙烷-氧化乙烯共聚物、聚乙烯縮丁醛、聚苯乙烯、木質素磺酸鹽、脂肽、聚丙酸、聚乙烯吡咯烷酮、二聚酸-烷基多胺共聚物、聚(4-乙基苯酚)、聚羥乙基丙烯酸甲酯、氯乙烯-乙酸乙烯酯共聚物、三醋酸纖維素、聚(乙烯硬脂酸酯)、聚雙酚A碳酸酯及聚偏二氟乙烯所組成的群組。 The method for manufacturing a multiphase matrix sensor according to claim 1, wherein the first carbon material is selected from the group consisting of a carbon nanotube, a graphene, and a nano carbon sheet; The carbon material is selected from the group consisting of carbon tubes, carbon black, graphene, carbon sheets, carbon fibers, and wood fibers; and the sensing material is selected from the group consisting of carboxymethyl cellulose ammonium, polystyrene, Polyethylene adipate, polyethylene oxide, polycaprolactone, polyethylene glycol, polyvinyl benzyl chloride, methyl vinyl ether-maleic acid alternating copolymer, vinyl phenol-methyl methacrylate copolymerization , ethyl cellulose, vinylidene chloride-acrylonitrile copolymer, polyepichlorohydrin, polyethyleneimine, peptide, human galactose agglutination, styrene-allyl alcohol copolymer, ethylene-vinyl acetate copolymerization , polyisobutylene, acrylonitrile-butadiene copolymer, poly(4-vinylpyrimidine), hypromellose, polyisoprene, polyalphamethylstyrene, 3-chloro-1,2-ring Oxypropane-ethylene oxide copolymer, polyvinyl butyral, polystyrene, lignosulfonate, lipopeptide, polypropionic acid, polyethyl b Pyrrolidone, dimer acid-alkyl polyamine copolymer, poly(4-ethylphenol), polyhydroxyethyl methacrylate, vinyl chloride-vinyl acetate copolymer, cellulose triacetate, poly(ethylene stearic acid A group consisting of esters, polybisphenol A carbonates, and polyvinylidene fluoride. 如申請專利範圍第1項所述之多相矩陣感測器的製造方法,其中於步驟B3和步驟B4之間更包括一步驟B3-1:對該第一漿料進行一脫泡製程,該脫泡製程係使該第一漿料處於一介於0.0001torr到1torr之間的壓力。 The method for manufacturing a multi-phase matrix sensor according to claim 1, wherein a step B3-1 is further included between the step B3 and the step B4: performing a defoaming process on the first slurry, The defoaming process is such that the first slurry is at a pressure of between 0.0001 torr and 1 torr. 如申請專利範圍第1項所述之多相矩陣感測器的製造方法,其中於步驟B4和步驟B5之間更包括一步驟B4-1:對該含碳的多孔材料進行一增加活性的 表面處理製程,該表面處理製程擇自於一酸化處理、一電漿處理、一雙氧水處理以及一高溫改質處理。 The method for manufacturing a multiphase matrix sensor according to claim 1, wherein a step B4-1 is further included between the step B4 and the step B5: increasing the activity of the carbon-containing porous material. In the surface treatment process, the surface treatment process is selected from an acidification treatment, a plasma treatment, a hydrogen peroxide treatment, and a high temperature modification treatment. 如申請專利範圍第1項所述多相矩陣感測器的製造方法,其中該乾燥製程係使該含碳的多孔材料處於一介於70℃至400℃之間的乾燥溫度。 The method of manufacturing a multiphase matrix sensor according to claim 1, wherein the drying process is such that the carbon-containing porous material is at a drying temperature of between 70 ° C and 400 ° C. 如申請專利範圍第1項所述之多相矩陣感測器的製造方法,其中該成形製程為一加熱處理或一減壓處理。 The method for manufacturing a multiphase matrix sensor according to claim 1, wherein the forming process is a heat treatment or a pressure reduction process. 如申請專利範圍第6項所述多相矩陣感測器的製造方法,其中該加熱處理係使該含碳的多孔材料處於一介於40℃至400℃之間的乾燥溫度。 The method of manufacturing a multiphase matrix sensor according to claim 6, wherein the heat treatment is such that the carbon-containing porous material is at a drying temperature of between 40 ° C and 400 ° C. 如申請專利範圍第6項所述多相矩陣感測器的製造方法,其中該減壓處理係使該含碳的多孔材料處於一介於0.0001torr至600torr之間的壓力。 The method of manufacturing a multiphase matrix sensor according to claim 6, wherein the reduced pressure treatment causes the carbonaceous porous material to be at a pressure of between 0.0001 torr and 600 torr. 一種多相矩陣感測器,係以申請專利範圍第1至8項任一項之方法製得。 A multiphase matrix sensor is produced by the method of any one of claims 1 to 8.
TW105131514A 2016-09-30 2016-09-30 Method for producing a multiphase matrix sensor and sensor thus obtained TWI629477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105131514A TWI629477B (en) 2016-09-30 2016-09-30 Method for producing a multiphase matrix sensor and sensor thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105131514A TWI629477B (en) 2016-09-30 2016-09-30 Method for producing a multiphase matrix sensor and sensor thus obtained

Publications (2)

Publication Number Publication Date
TW201812293A TW201812293A (en) 2018-04-01
TWI629477B true TWI629477B (en) 2018-07-11

Family

ID=62639183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131514A TWI629477B (en) 2016-09-30 2016-09-30 Method for producing a multiphase matrix sensor and sensor thus obtained

Country Status (1)

Country Link
TW (1) TWI629477B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129573A1 (en) * 2003-09-12 2005-06-16 Nanomix, Inc. Carbon dioxide nanoelectronic sensor
TW200730822A (en) * 2005-10-31 2007-08-16 Hewlett Packard Development Co Sensing system
US20160104554A1 (en) * 2014-10-09 2016-04-14 Washington State University Functionalized porous polymer nanocomposites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129573A1 (en) * 2003-09-12 2005-06-16 Nanomix, Inc. Carbon dioxide nanoelectronic sensor
TW200730822A (en) * 2005-10-31 2007-08-16 Hewlett Packard Development Co Sensing system
US20160104554A1 (en) * 2014-10-09 2016-04-14 Washington State University Functionalized porous polymer nanocomposites

Also Published As

Publication number Publication date
TW201812293A (en) 2018-04-01

Similar Documents

Publication Publication Date Title
EP3348582B1 (en) Carbon nanotube dispersion liquid and manufacturing method thereof
CN103515564B (en) A kind of composite diaphragm and preparation method thereof
CN103746085B (en) A kind of coating composite diaphragm and preparation method thereof
EP3355392B1 (en) Carbon nanotube dispersion liquid and manufacturing method thereof
Yang et al. Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel via freeze drying
CN105762317B (en) A kind of preparation method of the inorganic composite separator of water-soluble polymer auxiliary
CN104051687B (en) A kind of porous septum, its preparation method and lithium ion battery
CN109786623A (en) Improve the method and polymer coating diaphragm of polymer coating diaphragm ionic conductivity
KR20150032895A (en) Adhesive layer, layer and composition
JP5449314B2 (en) Electrolyte membrane and membrane-electrode assembly
TW200839233A (en) Hydrogen gas sensor
CN102779965A (en) Lithium ion battery diaphragm with hydrophilic cross-linking surface layer and manufacture method of lithium ion battery diaphragm
TW201208179A (en) Microporous composite film with high thermostable organic/inorganic coating layer
EP2884512A1 (en) Capacitor
CN112086611B (en) Composite diaphragm and preparation method and application thereof
CN104014333A (en) Preparation method of carbon film coated platinum/graphene catalyst
CN111755650B (en) Preparation method for grafting modified lithium battery diaphragm by using ultraviolet radiation, lithium battery diaphragm and application of lithium battery diaphragm
CN110520382A (en) Carbon material and its manufacturing method, electricity storage device electrode material and electrical storage device
Zhu et al. Ultra‐stable, highly proton conductive, and self‐healing proton exchange membranes based on molecule intercalation technique and noncovalent assembly nanostructure
TWI629477B (en) Method for producing a multiphase matrix sensor and sensor thus obtained
JP2008260678A (en) Carbon film, carbon fiber, or mesoporous carbon material and methods for producing them
JP2016173979A (en) Process for producing ion exchange thin films with field induced and preferentially oriented textures
CN104502420A (en) Humidity-sensitive composite membrane, preparation method of humidity-sensitive composite membrane and humidity sensor
Chang et al. A novel, stretchable, silver‐coated polyolefin elastomer nanofiber membrane for strain sensor applications
EP4443631A1 (en) Composite separator, electrochemical apparatus, and terminal device