TWI624145B - Energy adapter with primary side & secondary side synchronization tracking function - Google Patents
Energy adapter with primary side & secondary side synchronization tracking function Download PDFInfo
- Publication number
- TWI624145B TWI624145B TW105126007A TW105126007A TWI624145B TW I624145 B TWI624145 B TW I624145B TW 105126007 A TW105126007 A TW 105126007A TW 105126007 A TW105126007 A TW 105126007A TW I624145 B TWI624145 B TW I624145B
- Authority
- TW
- Taiwan
- Prior art keywords
- energy
- switch
- input
- power
- module
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 claims abstract description 44
- 239000000284 extract Substances 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 4
- 238000003306 harvesting Methods 0.000 abstract description 19
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 14
- 230000009471 action Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from AC input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
- H02M7/2195—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
一種具一二次同步追蹤功能的能量轉換器,其可包含能量擷取模組、變壓模組及整流模組。能量擷取模組可包含一扼流器及一對功率開關,扼流器可儲存交流電源輸入之能量,而該些功率開關可切換以擷取交流電源輸入之能量以儲備一次側輸入能量。變壓模組可將一次側輸入能量耦合至變壓模組之二次側以產生轉換能量。整流模組可將轉換電壓訊號整流為直流輸出能量,並可輸出直流輸出能量至負載。其中,該功率開關可根據交流電源輸入之能量之波形及負載之需求切換以使一次側輸入能量之大小能追蹤直流輸出能量之大小以達到同步,使能量轉換器可達到真實功因。 An energy converter with one-second synchronous tracking function may include an energy harvesting module, a transformer module and a rectifier module. The energy harvesting module can include a choke and a pair of power switches. The choke can store the energy of the AC power input, and the power switches can be switched to extract the energy of the AC power input to reserve the primary input energy. The transformer module can couple the primary side input energy to the secondary side of the transformer module to generate conversion energy. The rectifier module can rectify the converted voltage signal into DC output energy, and can output DC output energy to the load. Among them, the power switch can be switched according to the waveform of the input energy of the AC power supply and the demand of the load, so that the magnitude of the primary input energy can track the magnitude of the DC output energy to achieve synchronization, so that the energy converter can achieve the real power factor.
Description
本發明係有關於一種轉換器,特別是一種能量轉換器,其具一二次同步傳輸與追蹤功能。 The invention relates to a converter, especially an energy converter, which has the functions of one-time and two-time synchronous transmission and tracking.
請參閱第1A圖、第1B圖、第1C圖及第1D圖,係為習知技藝之返馳式(Flyback)轉換器之電路拓撲、電壓波形圖及電路圖。如第1A圖所示,目前,大部份的AC/DC電源轉換器的架構主要是以返馳式轉換器為主,雖然如此,習知技藝之返馳式轉換器卻存在著不少令人垢病的缺點有待改進。 Please refer to FIG. 1A, FIG. 1B, FIG. 1C and FIG. 1D, which are the circuit topology, voltage waveform diagram and circuit diagram of the flyback converter of the conventional technology. As shown in Figure 1A, at present, most of the AC / DC power converter architecture is mainly based on the flyback converter. However, there are many orders for the flyback converter of the conventional technology. The shortcomings of scaling disease need to be improved.
第1A圖之電路中點Ta的電壓波形則如第1B圖所示,其中線段Am為視波器所量測得到的電壓波形,而曲線Ar則為點Ta實際的電壓波形。如第1B圖所示,當時間處於圖中虛線的部份時,直流輸入能量較低(僅靠電容來補償,故為虛功),因此若負載L此時要求較高的功率,功率開關S1則需要根據負載L的要求快速的切換以提升電流,藉此滿足負載L要求的功率,而產生電源電壓/電流配比不當因素。 The voltage waveform at the point Ta in the circuit of FIG. 1A is shown in FIG. 1B, where the line segment Am is the voltage waveform measured by the visualizer, and the curve Ar is the actual voltage waveform at the point Ta. As shown in Figure 1B, when the time is in the dotted part of the figure, the DC input energy is low (only compensated by the capacitor, so it is virtual work), so if the load L requires higher power at this time, the power switch S1 needs to switch rapidly according to the requirements of the load L to increase the current, thereby satisfying the power required by the load L, and generating an inappropriate factor of the power supply voltage / current ratio.
第1A圖之電路中點Tb的電壓波形則如第1C圖所示,由圖中虛線的區域可以看出,當直流輸入能量的電壓較低,若負載L此時要求較高的功率,功率開關S1則需要根據負載L的要求快速的切換以提升電流,因此產生較密的波形,如此會使虛功的成份大幅提高,且使總諧波失真上升、功 率因數下降,並產生嚴重的電磁干擾。 The voltage waveform at the point Tb in the circuit of Figure 1A is shown in Figure 1C. As can be seen from the dotted area in the figure, when the voltage of the DC input energy is low, if the load L requires higher power at this time, the power The switch S1 needs to switch rapidly according to the requirements of the load L to increase the current, so a dense waveform is generated, which will greatly increase the component of the virtual power and increase the total harmonic distortion, the power The rate factor drops and produces serious electromagnetic interference.
如第1D圖所示,習知技藝之返馳式轉換器1利用濾波器F1、F2將交流電源AC輸入之能量進行濾波,再透過橋式整流器BD將濾波後之交流電源AC輸入之能量進行整流而產生直流輸入能量,再透過變壓器T及功率開關S1將直流輸入能量由一次側耦合至二次側產生直流輸出能量,最後直流輸出能量透過二極體D輸入至負載L。 As shown in FIG. 1D, the flyback converter 1 of the prior art uses filters F1 and F2 to filter the AC input energy of the AC power supply, and then uses the bridge rectifier BD to filter the filtered AC power input energy The rectification generates DC input energy, and then the DC input energy is coupled from the primary side to the secondary side through the transformer T and the power switch S1 to generate DC output energy, and finally the DC output energy is input to the load L through the diode D.
由上述可知,習知技藝之返馳式轉換器1包含橋式整流器BD、變壓器T及功率開關S1等等元件,而這些元件會產生元件損耗(Component loss)、傳導損耗(Conduction loss)、切換損耗(Switching loss)、諧波失真(THDI)及電磁干擾(EMI),而為了要降低這些效應,習知技藝之返馳式轉換器1需要設置濾波器F1、F2以改善電磁干擾及傳導損耗,但濾波器F1、F2體積較大,因此也會產生嚴重的空間損耗,且上述元件均會增加習知技藝之返馳式轉換器1的成本。此外,習知技藝之返馳式轉換器1之一次側需要設置輸入電容C1~C3及熱敏電阻PTC,而二次側也需要設置整流二極體D及輸出電容C4~C6,更降低效率;然而,這些元件不但會影響返馳式轉換器1的使用壽命,也會進一步增加返馳式轉換器1的成本。各元件的缺點如表1所示:
請參閱第1E圖及第1F圖,係為習知技藝之順向式轉換器(Forward converter)之電路拓撲及電路圖。如第1E圖所示,順向式轉換器2為另一種常用的AC/DC電源轉換器架構。 Please refer to FIG. 1E and FIG. 1F, which are circuit topologies and circuit diagrams of forward converters of conventional technology. As shown in FIG. 1E, the forward converter 2 is another commonly used AC / DC power converter architecture.
如第1F圖所示,習知技藝之順向式轉換器2係利用濾波器F1、F2將交流源AC輸入之能量進行濾波,再透過利用橋式整流器BD將濾波後之交流源AC輸入之能量進行整流而產生直流輸入能量,再透過變壓器T及功率開關S1將直流輸入能量由一次側耦合至二次側產生直流輸出能量,最後直流輸出能量透過整流二極體D及扼流器CH輸入至負載L。 As shown in FIG. 1F, the conventional converter 2 of the conventional technique uses the filters F1 and F2 to filter the energy of the AC source AC input, and then uses the bridge rectifier BD to input the filtered AC source AC The energy is rectified to generate DC input energy, then the DC input energy is coupled from the primary side to the secondary side through the transformer T and the power switch S1 to generate DC output energy, and finally the DC output energy is input through the rectifier diode D and the choke CH To load L.
同樣的,習知技藝之習知技藝之順向式轉換器2也包含輸入電容C1~C3、濾波器F1、F2、橋式整流器BD、變壓器T、功率開關S1、整流二極體D及輸出電容C4~C6等等元件,因此也會有相同的缺點,各元件的缺點如表2所示:
請參閱第1G圖~第1I圖,其係為各種習知技藝之返馳式轉換器1之各項計算數據,而LLC的計算方式也相似,故不在此重覆說明。 Please refer to Figure 1G ~ Figure 1I, which are the calculation data of the flyback converter 1 of various conventional techniques, and the calculation method of LLC is also similar, so it will not be repeated here.
如第1G圖所示,其中,此電路之直流轉換比(DC transfer)為(2Pout×LpF/Vin);最大切換電壓(Max switch voltage)為Vin+Vout×(Np/Ns);最大濾波電壓(Max rectifier voltage)為Vout+(Vin×Np/Nsec);而切換利用率(Switch utilization ratio)為D/2×(1+Vout/Vin×Np/Nsec)。DC As shown in Figure 1G, where the DC transfer ratio (DC transfer) of this circuit is (2Pout × LpF / Vin); the maximum switch voltage (Max switch voltage) is Vin + Vout × (Np / Ns); the maximum filter voltage (Max rectifier voltage) is Vout + (Vin × Np / Nsec); and the switching utilization rate ( Switch utilization ratio) is D / 2 × (1 + Vout / Vin × Np / Nsec). DC
如第1H圖所示,其中,此電路之直流轉換比為(2Pout×LpF/Vin);最大切換電壓為Vin;最大濾波電壓為Vout+(Vin×Ns/Np);而切換利用率為D/4。 As shown in Figure 1H, where the DC conversion ratio of this circuit is (2Pout × LpF / Vin); the maximum switching voltage is Vin; the maximum filtering voltage is Vout + (Vin × Ns / Np); and the switching utilization rate is D / 4.
如第1I圖所示,其中,此電路之直流轉換比為(2Pout×LpF/Vin);最大切換電壓為Vin;最大濾波電壓為Vout+(Vin×Ns/Np);而切換利用率為D/4。 As shown in Figure 1I, where the DC conversion ratio of this circuit is (2Pout × LpF / Vin); the maximum switching voltage is Vin; the maximum filtering voltage is Vout + (Vin × Ns / Np); and the switching utilization rate is D / 4.
請參閱第1J圖~第1L圖,其係為各種習知技藝之順向式轉換器2之各項計算數據。 Please refer to Figure 1J ~ Figure 1L, which are the calculation data of the forward converter 2 of various conventional techniques.
如第1J圖所示,其中,此電路之直流轉換比為Ns/Np×D;最大切換電壓為2×Vin;最大濾波電壓為Vin×Ns/Np;而切換利用率為Vout/2Vin×(Ns/Np)。 As shown in Figure 1J, where the DC conversion ratio of this circuit is Ns / Np × D; the maximum switching voltage is 2 × Vin; the maximum filtering voltage is Vin × Ns / Np; and the switching utilization rate is Vout / 2Vin × ( Ns / Np).
如第1K圖所示,其中,此電路之直流轉換比為Ns/Np×D;最大切換電壓為Vin;最大濾波電壓為Vin×Ns/Np;而切換利用率為Vout/2Vin×(Ns/Np)。 As shown in Figure 1K, where the DC conversion ratio of this circuit is Ns / Np × D; the maximum switching voltage is Vin; the maximum filtering voltage is Vin × Ns / Np; and the switching utilization rate is Vout / 2Vin × (Ns / Np).
如第1L圖所示,其中,此電路之直流轉換比為2Ns/Np×D;最大切換電壓為Vin;最大濾波電壓為2Vin×Ns/Np;而切換利用率為Vout/2Vin×(Ns/Np)。 As shown in Figure 1L, where the DC conversion ratio of this circuit is 2Ns / Np × D; the maximum switching voltage is Vin; the maximum filtering voltage is 2Vin × Ns / Np; and the switching utilization rate is Vout / 2Vin × (Ns / Np).
因此,如何提出一種轉換器,能夠有效改善習知技藝之轉換器具有嚴重的元件損耗、傳導損耗、切換損耗、空間損耗、諧波失真、電磁干擾及高成本的情況已成為一個刻不容緩的問題。 Therefore, how to propose a converter that can effectively improve the situation of converters with serious components loss, conduction loss, switching loss, space loss, harmonic distortion, electromagnetic interference, and high cost in the conventional art has become an urgent issue.
有鑑於上述習知技藝之問題,本發明之其中一目的就是在提供一種轉換器,以解決習知技藝之轉換器具有嚴重的元件損耗、傳導損耗、切換損耗、空間損耗、諧波失真、電磁干擾及高成本的問題。 In view of the above-mentioned problems of the conventional art, one of the objects of the present invention is to provide a converter to solve the problem that the conventional art of the converter has serious component losses, conduction losses, switching losses, space losses, harmonic distortion, electromagnetic Problems of interference and high cost.
根據本發明之其中一目的,提出一種具一二次同步追蹤功能的能量轉換器,其可直接擷取交流電源輸入之能量,能量轉換器可包含能量擷取模組、變壓模組及整流模組。能量擷取模組可包含第一扼流器及一對功率開關,第一扼流器可儲存交流電源輸入之能量,而該些功率開關可切換以擷取交流電源輸入之能量以儲備一次側輸入能量。變壓模組可將一次側輸入能量耦合至變壓模組之二次側以產生轉換能量。整流模組可將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載。該些功率開關可根據交流電源輸入之能量之波形及負載之需求切換以使一次側輸入能量之波形能追蹤直流輸出能量之波形以達到同步。 According to one of the objects of the present invention, an energy converter with a secondary synchronous tracking function is proposed, which can directly extract energy input from an AC power source. The energy converter may include an energy extraction module, a voltage transformation module and a rectifier Module. The energy harvesting module can include a first choke and a pair of power switches. The first choke can store the energy of the AC power input, and the power switches can be switched to extract the energy of the AC power input to reserve the primary side Input energy. The transformer module can couple the primary side input energy to the secondary side of the transformer module to generate conversion energy. The rectifier module can rectify the converted energy into DC output energy, and can output DC output energy to the load. The power switches can be switched according to the waveform of the input energy of the AC power source and the demand of the load so that the waveform of the primary input energy can track the waveform of the DC output energy to achieve synchronization.
根據本發明之其中一目的,再提出一種具一二次同步追蹤功能的能量轉換器,其可直接擷取交流電源輸入之能量,能量轉換器可包含能量擷取模組、變壓模組及整流模組。能量擷取模組可包含至少四對功率開關,該些功率開關可切換以擷取交流電源輸入之能量。變壓模組可接收交流電源輸入之能量以儲備一次側輸入能量,並可將一次側輸入能量耦合至變壓模組之二次側以產生轉換能量。整流模組可將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載。其中,該些功率開關可根據交流電源輸入之能量之波形及負載之需求切換以使一次側輸入能量之波形能追蹤直流輸 出能量之波形以達到同步。 According to one of the objects of the present invention, an energy converter with a secondary synchronous tracking function is further proposed, which can directly extract energy input from an AC power source. The energy converter may include an energy extraction module, a transformer module and Rectifier module. The energy harvesting module may include at least four pairs of power switches that can be switched to harvest energy input from the AC power source. The transformer module can receive the energy input from the AC power supply to reserve the primary input energy, and can couple the primary input energy to the secondary side of the transformer module to generate conversion energy. The rectifier module can rectify the converted energy into DC output energy, and can output DC output energy to the load. Among them, the power switches can be switched according to the waveform of the energy input by the AC power supply and the demand of the load so that the waveform of the input energy at the primary side can track the DC output Waveform of energy to achieve synchronization.
承上所述,依本發明之具一二次同步追蹤功能的能量轉換器,其可具有一或多個下述優點: As mentioned above, the energy converter with a secondary synchronous tracking function according to the present invention may have one or more of the following advantages:
(1)本發明之一實施例中,能量轉換器之一次側可不需要使用熱敏電阻(PTC Thermistor)、濾波器、橋式整流器及輸入電容等元件,故可延長使用壽命,且降低能量轉換器元件損耗、傳導損耗、切換損耗、諧波失真、空間損耗及成本,更可提升其功率因數進而提高總效率。 (1) In one embodiment of the present invention, the primary side of the energy converter does not need to use components such as thermistors (PTC Thermistor), filters, bridge rectifiers and input capacitors, so it can extend the service life and reduce energy conversion The component loss, conduction loss, switching loss, harmonic distortion, space loss and cost can increase its power factor and thus improve the overall efficiency.
(2)本發明之一實施例中,能量轉換器之一次側可透過追蹤交流電壓訊號之大小同步地快速切換該些功率開關來擷取交流電壓訊號的能量以獲得對應交流電壓訊號之大小的電流,且能量轉換器之二次側更可根據電流回授訊號及電壓回授訊號決定輸出至負載之電壓,故可有效地降低諧波失真,並提升功率因數。 (2) In one embodiment of the present invention, the primary side of the energy converter can quickly switch the power switches by tracking the size of the AC voltage signal to extract the energy of the AC voltage signal to obtain the corresponding size of the AC voltage signal Current, and the secondary side of the energy converter can also determine the voltage output to the load according to the current feedback signal and the voltage feedback signal, so it can effectively reduce harmonic distortion and improve power factor.
(3)本發明之一實施例中,能量轉換器可提供同步追蹤功能,使由變壓器之一次側輸入之一次側輸入能量之波形與由變壓器二次側輸出之直流或脈動直流輸出能量之波形同步,故可大幅地提升功率因數。 (3) In one embodiment of the present invention, the energy converter can provide a synchronous tracking function to make the waveform of the primary input energy input from the primary side of the transformer and the DC or pulsating DC output energy waveform output from the secondary side of the transformer Synchronous, it can greatly improve the power factor.
(4)本發明之一實施例中,能量轉換器之二次側可選擇性地使用輸出電容及整流二極體等元件,故可進一步降低能量轉換器的成本。 (4) In one embodiment of the present invention, the secondary side of the energy converter can selectively use components such as output capacitors and rectifier diodes, so the cost of the energy converter can be further reduced.
(5)本發明之一實施例中,輸入能量轉換器之一次側的訊號為交流訊號,因此不需要執行類共振模式(QR mode),因此效率較高。 (5) In one embodiment of the present invention, the signal input to the primary side of the energy converter is an AC signal, so there is no need to execute a QR mode, so the efficiency is higher.
(6)本發明之一實施例中,能量轉換器之一次側可不需要設置橋式整流器及電容,故可降低成本及提升效率。 (6) In an embodiment of the present invention, the primary side of the energy converter may not need to be provided with a bridge rectifier and a capacitor, so the cost and efficiency can be reduced.
(7)本發明之一實施例中,能量轉換器之一次側可包含扼流器,其可做為緩衝電路,使能量轉換器之一次側的電壓降低,故能量轉換器之變壓模組之一次側之匝數與二次側的匝數可以很接近,且一次側之匝數與二次側 的匝數均可降低,使能量轉換器的效率提升,不會因太細而導致一次側線圈斷裂,故可增加良率。 (7) In one embodiment of the present invention, the primary side of the energy converter may include a choke, which can be used as a buffer circuit to reduce the voltage on the primary side of the energy converter, so the transformer module of the energy converter The number of turns on the primary side and the number of turns on the secondary side can be very close, and the number of turns on the primary side and the secondary side The number of turns can be reduced, so that the efficiency of the energy converter is improved, and the primary coil will not be broken because it is too thin, so the yield can be increased.
(8)本發明之一實施例中,能量轉換器包含複數個的功率開關,其中一部份功率開關在交流電源輸入能量為正半周時切換,而另外一部份功率開關在交流電源輸入能量為負半周時切換,且交流電源輸入能量本來就是逐漸由小變大或逐漸由大變小,而不會有突升或突降的情況,故能量轉換器可在與直接與交流電源連結的情況下正常工作,故不易損壞,提升使用壽命。 (8) In one embodiment of the present invention, the energy converter includes a plurality of power switches, some of the power switches are switched when the input energy of the AC power supply is a positive half cycle, and the other part of the power switches are inputted by the AC power supply It is switched when it is negative half cycle, and the input energy of the AC power supply is gradually changed from small to large or gradually from large to small, and there will be no sudden rise or fall, so the energy converter can be connected directly to the AC power supply. Under normal circumstances, it is not easy to damage and increase the service life.
1‧‧‧返馳式轉換器 1‧‧‧Flyback converter
2‧‧‧順向式轉換器 2‧‧‧ Forward converter
3‧‧‧能量轉換器 3‧‧‧Energy converter
31‧‧‧能量擷取模組 31‧‧‧Energy extraction module
32‧‧‧變壓模組 32‧‧‧Transformer module
33‧‧‧整流模組 33‧‧‧rectifier module
34‧‧‧控制模組 34‧‧‧Control module
35‧‧‧電流回授模組 35‧‧‧ Current feedback module
36‧‧‧電壓回授模組 36‧‧‧Voltage feedback module
AC‧‧‧交流電源 AC‧‧‧AC power supply
CH、CH1、CH2‧‧‧扼流器 CH, CH1, CH2 ‧‧‧ choke
SW1‧‧‧第一開關 SW1‧‧‧ First switch
SW2‧‧‧第二開關 SW2‧‧‧Second switch
PS1~PS4、S1~S2、PS1’、PS1”、PS2’、PS2”、PS3’、PS3”、PS4’、PS4”‧‧‧功率開關 PS1 ~ PS4, S1 ~ S2, PS1 ’, PS1”, PS2 ’, PS2”, PS3 ’, PS3”, PS4 ’, PS4” ‧‧‧‧Power switch
L‧‧‧負載 L‧‧‧load
T‧‧‧變壓器 T‧‧‧Transformer
CT‧‧‧控制器 CT‧‧‧Controller
SR‧‧‧分流電阻 SR‧‧‧Shunt resistance
OP‧‧‧運算放大器 OP‧‧‧Operational amplifier
VR‧‧‧電壓調節器 VR‧‧‧Voltage regulator
BD‧‧‧橋式整流器 BD‧‧‧Bridge Rectifier
F1、F2‧‧‧濾波器 F1, F2‧‧‧ filter
C、C1~C6‧‧‧電容 C, C1 ~ C6‧‧‧Capacitance
R‧‧‧電阻 R‧‧‧Resistance
D‧‧‧二極體 D‧‧‧Diode
Fuse‧‧‧保險絲 Fuse‧‧‧Fuse
PTC‧‧‧熱敏電阻 PTC‧‧‧Thermistor
ZD‧‧‧稽納二極體 ZD‧‧‧Inspect Diode
PWM‧‧‧脈波寬度調變控制器 PWM‧‧‧Pulse Width Modulation Controller
Ta、Tb‧‧‧節點 Ta, Tb‧‧‧ Node
A‧‧‧電壓波形 A‧‧‧Voltage waveform
B‧‧‧充電週期 B‧‧‧Charge cycle
第1A圖~第1D圖係為習知技藝之返馳式轉換器之電路拓撲、電壓波形圖及電路圖。 Figures 1A to 1D are circuit topologies, voltage waveforms, and circuit diagrams of flyback converters of conventional technology.
第1E圖~第1F圖係為習知技藝之順向式轉換器(Forward converter)之電路拓撲及電路圖。 Figures 1E to 1F are circuit topologies and circuit diagrams of forward converters of conventional technology.
第1G圖~第1I圖係為習知技藝之返馳式轉換器之電路拓撲圖。 Figures 1G to 1I are circuit topological diagrams of flyback converters of conventional technology.
第1J圖~第1L圖係為習知技藝之順向式轉換器之電路拓撲圖。 Figures 1J to 1L are circuit topological diagrams of conventional converters of conventional technology.
第2圖係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之電路圖。 FIG. 2 is a circuit diagram of a first embodiment of an energy converter with a secondary synchronous tracking function of the present invention.
第3A圖~第3C圖係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之電路動作。 FIGS. 3A to 3C are circuit operations of the first embodiment of the energy converter with a secondary synchronous tracking function according to the present invention.
第4圖係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之能量追蹤示意圖。 FIG. 4 is a schematic diagram of energy tracking of a first embodiment of an energy converter with a secondary synchronous tracking function according to the present invention.
第5圖係為本發明之具一二次同步追蹤功能的能量轉換器之第二實施例之電路圖。 FIG. 5 is a circuit diagram of a second embodiment of the energy converter with a secondary synchronous tracking function of the present invention.
第6A圖~第6B圖係為本發明之具一二次同步追蹤功能的能量轉換器之第二實施例之電路動作。 6A to 6B are circuit operations of the second embodiment of the energy converter with a secondary synchronous tracking function of the present invention.
以下將參照相關圖式,說明依本發明之具一二次同步追蹤功能的能量轉換器之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。 The following will describe an embodiment of an energy converter with a secondary synchronous tracking function according to the present invention with reference to related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same symbols.
請參閱第2圖,其係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之電路圖;第2圖舉例說明了本發明之具一二次同步追蹤功能的能量轉換器之一種較佳的電路結構,其同時包含典型返馳器轉換器及典型順向式轉換器的特徵。 Please refer to FIG. 2, which is a circuit diagram of the first embodiment of the energy converter with a secondary synchronous tracking function of the present invention; FIG. 2 illustrates an example of the energy conversion with a secondary synchronous tracking function of the present invention A preferred circuit structure of the converter includes the characteristics of a typical flyback converter and a typical forward converter.
如圖所示,能量轉換器3可包含能量擷取模組31、變壓模組32、整流模組33、控制模組34、電流回授模組35、電壓回授模組36。 As shown in the figure, the energy converter 3 may include an energy harvesting module 31, a transformer module 32, a rectifier module 33, a control module 34, a current feedback module 35, and a voltage feedback module 36.
能量擷取模組31可與交流電源AC及變壓模組32連結,變壓模組32可與整流模組33連結,整流模組33可透過第二扼流器(choke)CH2與電流回授模組35連結,電流回授模組35與電壓回授模組36可同時與負載L及控制模組34連結,控制模組34則可與能量擷取模組31及整流模組33連結。 The energy harvesting module 31 can be connected to the AC power supply AC and the transformer module 32, the transformer module 32 can be connected to the rectifier module 33, and the rectifier module 33 can be connected to the current through the second choke CH2 The feedback module 35 is connected. The current feedback module 35 and the voltage feedback module 36 can be connected to the load L and the control module 34 at the same time. The control module 34 can be connected to the energy harvesting module 31 and the rectifier module 33 .
關於能量擷取模組31,其可以包含第一扼流器CH1及一對該些功率開關PS1-PS2;在較佳的實施例中,該些功率開關PS1-PS2可為金氧半場效電晶體,而各個該功率開關PS1-PS2的方向可相反;第一扼流器CH1可儲存交流電源AC輸入之能量,並透過控制器CT切換該些功率開關PS1-PS2以擷取交流電源AC之能量以儲備一次側輸入能量。 Regarding the energy harvesting module 31, it may include a first choke CH1 and a pair of the power switches PS1-PS2; in a preferred embodiment, the power switches PS1-PS2 may be gold-oxygen half field effect power The direction of each of the power switches PS1-PS2 can be reversed; the first choke CH1 can store the energy of the AC power AC input, and switch the power switches PS1-PS2 through the controller CT to extract the AC power AC Energy is used to reserve the primary input energy.
關於變壓模組32,其可為變壓器T;變壓器T可將一次側輸入能量由變壓器T之一次側耦合至變壓器T之二次側以產生轉換能量;而在其它較 佳的實施例中,變壓模組32也可為交換式電源供應器(鐵粉心變壓器)或線性電源供應器(矽鋼片變壓器)。 Regarding the transformer module 32, it can be a transformer T; the transformer T can couple the primary side input energy from the primary side of the transformer T to the secondary side of the transformer T to generate conversion energy; In a preferred embodiment, the transformer module 32 may also be a switched power supply (iron powder core transformer) or a linear power supply (silicon steel sheet transformer).
關於整流模組33,其可包第一開關SW1及第二開關SW2,透過切換第一開關SW1及第二開關SW2,整流模組33可將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載L;其中,本說明書所述之直流輸出能量可指恆定直流輸出能量或脈動直流輸出能量,如三角波、方波、整流後的弦波等;在較佳的實施例中,第一開關SW1及第二開關SW2可為金氧半場效電晶體或二極體。 As for the rectifier module 33, it can include the first switch SW1 and the second switch SW2. By switching the first switch SW1 and the second switch SW2, the rectifier module 33 can rectify the converted energy into DC output energy and can output DC output Energy to load L; where, the DC output energy described in this specification can refer to constant DC output energy or pulsating DC output energy, such as triangular wave, square wave, rectified sine wave, etc .; in a preferred embodiment, the first The switch SW1 and the second switch SW2 may be metal oxide half field effect transistors or diodes.
關於電流回授模組35,其可包含分流電阻(Shunt resistor)SR及運算放大器OP;電流回授模組35可根據負載L之電流提供電流回授訊號。 As for the current feedback module 35, it may include a shunt resistor SR and an operational amplifier OP; the current feedback module 35 may provide a current feedback signal according to the current of the load L.
關於電壓回授模組36,其可包含電壓調節器VR;電壓回授模組36可根據負載L之電壓提供電壓回授訊號。 As for the voltage feedback module 36, it may include a voltage regulator VR; the voltage feedback module 36 may provide a voltage feedback signal according to the voltage of the load L.
關於控制模組34,其可包含控制器CT,在較佳的實施例中,控制器CT可包含光耦合器及微控制器(MCU),其中,微控制器(MCU)可接收電流回授訊號及電壓回授訊號以控制第一開關SW1及第二開關SW2,而光耦合器則可直接連結至該些功率開關PS1-PS2以控制該些功率開關PS1-PS2;控制器CT可根據電流回授模組35之電流回授訊號及電壓回授模組36之電壓回授訊號判斷負載L的需求,並可根據交流電源AC輸入之能量之波形及負載L的需求切換該些功率開關PS1-PS2以擷取交流電源AC輸入之能量以儲備一次側輸入能量,並在變壓器T將一次側輸入能量耦合至變壓器T之二次側產生轉換能量後切換第一開關SW1及第二開關SW2將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載L,藉此可使一次側輸入能量之波形之大小能追蹤直流輸出能量之波形之大小以達到同步狀態,來控制第一扼流器CH1充電的時間長短以調整輸出能量之大小,使能量轉 換器可達到真實功因。 Regarding the control module 34, it may include a controller CT. In a preferred embodiment, the controller CT may include an optical coupler and a microcontroller (MCU), wherein the microcontroller (MCU) may receive current feedback The signal and voltage feedback signal to control the first switch SW1 and the second switch SW2, and the optocoupler can be directly connected to the power switches PS1-PS2 to control the power switches PS1-PS2; the controller CT can be based on the current The current feedback signal of the feedback module 35 and the voltage feedback signal of the voltage feedback module 36 determine the demand of the load L, and can switch the power switches PS1 according to the waveform of the AC input energy and the demand of the load L -PS2 captures the AC input energy of the AC power supply to reserve the primary input energy, and after the transformer T couples the primary input energy to the secondary side of the transformer T to generate conversion energy, the first switch SW1 and the second switch SW2 are switched The converted energy is rectified into DC output energy, and the DC output energy can be output to the load L, by which the size of the waveform of the primary input energy can track the size of the waveform of the DC output energy to achieve a synchronized state to control the first The length of time that a choke CH1 charges to adjust the size of the output energy, so that the energy transfer The converter can achieve real power.
透過上述的設計,能量轉換器之一次側不需要使用熱敏電阻、濾波器、橋式整流器及輸入電容等元件,故可延長使用壽命,且降低能量轉換器元件損耗、傳導損耗、切換損耗、諧波失真、空間損耗及成本,更可提升其功率因數進而提高總效率。 Through the above design, the primary side of the energy converter does not need to use thermistors, filters, bridge rectifiers and input capacitors, etc., so it can extend the service life and reduce the energy converter component losses, conduction losses, switching losses, Harmonic distortion, space loss, and cost can further increase its power factor and thus improve overall efficiency.
又,能量轉換器之一次側可透過追蹤交流電源AC輸入之能量之大小同步地快速切換該些功率開關PS1-PS2來擷取交流電源AC輸入之能量以獲得對應交流電源AC輸入之能量之大小的電流,且能量轉換器之二次側更可根據電流回授訊號及電壓回授訊號決定輸出至負載之電壓,如此可使一次側輸入能量之波形之大小能追蹤直流輸出能量之波形之大小以達到同步狀態,故可有效地降低諧波失真,並提升功率因數。 In addition, the primary side of the energy converter can quickly switch the power switches PS1-PS2 synchronously by tracking the amount of energy of the AC input of the AC power source to extract the energy of the AC input of the AC power source to obtain the corresponding energy of the AC input of the AC power source Current, and the secondary side of the energy converter can determine the voltage output to the load according to the current feedback signal and the voltage feedback signal, so that the waveform of the primary input energy can track the size of the DC output energy In order to achieve synchronization, it can effectively reduce harmonic distortion and improve power factor.
另外,本發明之一實施例中,能量轉換器之二次側可不需要使用輸出電容及整流二極體等元件,故可進一步降低能量轉換器的成本。 In addition, in one embodiment of the present invention, the secondary side of the energy converter does not need to use components such as output capacitors and rectifier diodes, so the cost of the energy converter can be further reduced.
此外,本發明之一實施例中,輸入能量轉換器之一次側的訊號為交流訊號,因此不需要執行類共振模式(QR mode),因此效率較高,且由於能量轉換器包含複數個的功率開關,其中一部份功率開關在交流電源輸入能量為正半周時切換,而另外一部份功率開關在交流電源輸入能量為負半周時切換,且交流電源輸入能量本來就是逐漸由小變大或逐漸由大變小,而不會有突升或突降的情況,故能量轉換器可在與直接與交流電源連結的情況下正常工作,不需要針對因應極度之轉換特別採用特殊元件或補償元件。 In addition, in one embodiment of the present invention, the signal input to the primary side of the energy converter is an AC signal, so there is no need to perform a QR mode, so the efficiency is higher, and because the energy converter contains a plurality of power Switch, one part of the power switch is switched when the AC power input energy is positive half cycle, and the other part of the power switch is switched when the AC power input energy is negative half cycle, and the AC power input energy is gradually changed from small to large or It gradually changes from large to small without sudden rise or fall, so the energy converter can work normally when it is directly connected to the AC power supply, and no special components or compensation components are needed for extreme conversion .
再者,由於習知技藝之返馳式轉換器之輸入電壓極高,因此其變壓器之一次側及二次側需要有較高的匝數比,因此變壓器的體積較大,且由於一次側需要有較高的匝數,故繞線需要很細,因此容易斷裂而發生故障。相反的,本實施例之能量轉換器之能量擷取模組可包含扼流器,其可發揮 緩衝的作用,因此能量轉換器之變壓器之一次側及二次側不需要有很高的匝數比,故變壓器的體積較小且不容易故障。由上述可知,本發明實具進步性之專利要件。 Furthermore, because the input voltage of the flyback converter of the conventional technology is extremely high, the primary side and the secondary side of the transformer need to have a high turns ratio, so the transformer is large in size, and because the primary side requires There is a high number of turns, so the winding needs to be very thin, so it is easy to break and malfunction. On the contrary, the energy harvesting module of the energy converter of this embodiment may include a choke, which can play The effect of buffering, therefore, the primary side and secondary side of the transformer of the energy converter need not have a high turns ratio, so the transformer is small and not easy to fail. From the above, it can be seen that the invention has progressive patent requirements.
請參閱第3A圖至第3C圖,其係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之電路動作;第3A圖至第3C圖舉例說明了能量轉換器3各階段的電路動作,為了使第3A圖至第3C圖更為清楚,部份元件在這些圖式中省略。 Please refer to FIGS. 3A to 3C, which are circuit operations of the first embodiment of the energy converter with a secondary synchronous tracking function of the present invention; FIGS. 3A to 3C illustrate the energy converter 3 by way of example For the circuit operation at each stage, in order to make FIGS. 3A to 3C clearer, some elements are omitted in these drawings.
能量轉換器3在交流電源AC輸入之能量處於正半周時可重覆執行四個電路動作,即一次側之第一階段電路動作Tpp1、一次側之第二階段電路動作Tpp2、二次側之第一階段電路動作Tsp1及二次側之第二階段電路動作Tsp2。如第3A圖所示,能量轉換器3執行一次側之第一階段電路動作Tpp1,此時控制器CT可導通該些功率開關PS1-PS2,第一扼流器CH1可由交流電源AC輸入之能量擷取能量並儲存能量,此時電流的方向如圖中箭頭所示。 The energy converter 3 can repeatedly perform four circuit operations when the energy input from the AC power supply is in the positive half cycle, namely the first-stage circuit operation T pp1 on the primary side, the second-stage circuit operation T pp2 on the primary side, and the secondary side The first stage circuit action T sp1 and the second stage circuit action T sp2 on the secondary side. As shown in FIG. 3A, the energy converter 3 performs the first-stage circuit operation T pp1 on the primary side. At this time, the controller CT can turn on the power switches PS1-PS2, and the first choke CH1 can be input by the AC power supply AC. Energy extracts energy and stores energy. The direction of the current is shown by the arrow in the figure.
如第3B圖所示,能量轉換器3可執行一次側之第二階段電路動作Tpp2,此時控制器CT可切斷該些功率開關PS1-PS2,此時第一扼流器CH1可釋放儲存的能量,並由變壓器T將能量由一次側耦合至二次側;能量轉換器3則可執行二次側之第一階段電路動作Tsp1,此時控制器CT可導通第一開關SW1,而第二開關SW2則可維持切斷的狀態以對二次側產生的能量進行整流並輸出至負載,而第二扼流器CH2則可儲存能量,此時電流的方向如圖中箭頭所示。 As shown in FIG. 3B, the energy converter 3 can perform the second-stage circuit action T pp2 on the primary side. At this time, the controller CT can turn off the power switches PS1-PS2, and the first choke CH1 can be released. The stored energy is coupled by the transformer T from the primary side to the secondary side; the energy converter 3 can perform the first-stage circuit action T sp1 on the secondary side. At this time, the controller CT can turn on the first switch SW1, The second switch SW2 can maintain the cut-off state to rectify the energy generated on the secondary side and output to the load, while the second choke CH2 can store energy, and the direction of the current is shown by the arrow in the figure .
如第3C圖所示,能量轉換器3可執行二次側之第二階段電路動作Tsp2,此時控制器CT可導通第二開關SW2,並切斷第一開關SW1,而第二扼流器CH2則可釋放儲存的能量,此時電流的方向如圖中箭頭所示。 As shown in FIG. 3C, the energy converter 3 can perform the second-stage circuit action T sp2 on the secondary side. At this time, the controller CT can turn on the second switch SW2 and turn off the first switch SW1, and the second choke The CH2 device can release the stored energy. At this time, the direction of the current is shown by the arrow in the figure.
在交流電源AC輸入之能量處於正半周時,能量轉換器3則可重覆執行 一次側之第一階段電路動作Tpp1、一次側之第二階段電路動作Tpp2、二次側之第一階段電路動作Tsp1及二次側之第二階段電路動作Tsp2,透過不斷的切換該些功率開關PS1-PS2以輸出能量至負載。 When the AC input energy is in the positive half cycle, the energy converter 3 can repeatedly perform the first-stage circuit operation T pp1 on the primary side, the second-stage circuit operation T pp2 on the primary side, and the first stage on the secondary side The circuit action T sp1 and the second-stage circuit action T sp2 on the secondary side output energy to the load by continuously switching the power switches PS1-PS2.
值得注意的是,當控制器CT切斷第一開關SW1並導通第二開關SW2時,控制器CT可先切斷第一開關SW1,再經過延遲時間後才導通第二開關SW2;同樣的,當控制器CT切斷第二開關SW2並導通第一開關SW1時,控制器CT可先切斷第二開關SW2,再經過延遲時間後才導通第一開關SW1,如此可防止能量轉換器3因第一開關SW1及第二開關SW2同時短路而造成損壞。 It is worth noting that when the controller CT turns off the first switch SW1 and turns on the second switch SW2, the controller CT can turn off the first switch SW1 first, and then turn on the second switch SW2 after a delay time; similarly, When the controller CT turns off the second switch SW2 and turns on the first switch SW1, the controller CT can turn off the second switch SW2 first, and then turn on the first switch SW1 after a delay time, thus preventing the energy converter 3 from The first switch SW1 and the second switch SW2 are short-circuited at the same time, causing damage.
能量轉換器3可在交流電壓訊號處於負半周時可重覆執行四個電路動作,即一次側之第一階段電路動作Tpn1、一次側之第二階段電路動作Tpn2、二次側之第一階段電路動作Tsn1及二次側之第二階段電路動作Tsn2,透過不斷的切換該些功率開關PS1-PS2以輸出能量至負載,由於能量轉換器3在交流電壓訊號處於負半周時的電路動作與能量轉換器3在交流電壓訊號處於正半周時的電路動作相似,故不在此多加贅述。 The energy converter 3 can repeatedly perform four circuit operations when the AC voltage signal is in the negative half cycle, namely, the first-stage circuit operation T pn1 on the primary side, the second-stage circuit operation T pn2 on the primary side, and the second a phase of circuit operation and a second phase T sn1 circuit operation of the secondary side of T sn2, continuously through the plurality of switching power switches PS1-PS2 to output energy to the load, since the energy converter 3 is in the AC voltage signal at the negative half cycle The circuit operation is similar to that of the energy converter 3 when the AC voltage signal is in the positive half cycle, so it will not be repeated here.
請參閱第4圖,其係為本發明之具一二次同步追蹤功能的能量轉換器之第一實施例之示意圖,第4圖舉例說明了能量擷取模組3由交流電壓訊號擷取能量之示意圖,本實施例以電壓值為110V及頻率為60Hz的交流電壓訊號為例。 Please refer to FIG. 4, which is a schematic diagram of a first embodiment of an energy converter with a secondary synchronous tracking function according to the present invention. FIG. 4 illustrates an example in which the energy harvesting module 3 harvests energy from an AC voltage signal For the schematic diagram, this embodiment takes an AC voltage signal with a voltage value of 110 V and a frequency of 60 Hz as an example.
如圖所示,曲線A為交流電源AC輸入之能量之電壓波形;每一個方塊B代表能量轉換器3之扼流器CH1在交流電源AC輸入之能量為正半周時的每一個充電週期;每一個方塊C的每一個區塊代表能量轉換器3之扼流器CH1在交流電源AC輸入之能量為負半周時的每一個充電週期。 As shown in the figure, curve A is the voltage waveform of the AC input energy of the AC power supply; each square B represents each charging cycle of the choke CH1 of the energy converter 3 when the AC input energy of the AC power supply is a positive half cycle; Each block of a block C represents each charging cycle of the choke CH1 of the energy converter 3 when the energy input from the AC power supply is negative half cycle.
由圖中可知,當交流電源AC輸入之能量愈接近其峰值電壓時,能量擷 取模組31可擷取較多的能量,由上述可很明顯看出,控制器CT可追蹤交流電源AC輸入之能量,為達輸出平衡,一次側扼流器CH1充電時間可以增減。 It can be seen from the figure that when the energy input from the AC power source is closer to its peak voltage, the energy The extraction module 31 can extract more energy. It can be clearly seen from the above that the controller CT can track the energy input of the AC power supply. To achieve output balance, the charging time of the primary choke CH1 can be increased or decreased.
舉例而言,控制器CT可在交流電源AC輸入之能量之大於其峰值電壓(155.54V)的40%(63V)時才同步地切換能量擷取模組31之該些功率開關PS1-PS2以擷取交流電源AC輸入之能量,以確保能擷取足夠的能量,而在交流電源AC輸入之能量之絕對值低於其峰值電壓的40%時,控制器CT則不會對能量擷取模組31之該些功率開關PS1-PS2進行切換。 For example, the controller CT can synchronously switch the power switches PS1-PS2 of the energy harvesting module 31 when the energy of the AC power input is greater than 40% (63V) of its peak voltage (155.54V) Extract the energy of the AC input of the AC power supply to ensure that enough energy can be extracted. When the absolute value of the AC input energy of the AC power supply is lower than 40% of its peak voltage, the controller CT will not capture the energy. The power switches PS1-PS2 of the group 31 are switched.
本實施例中,交流電源AC輸入之能量之電壓值為110V,頻率為60Hz,而該些功率開關PS1-PS2的切換頻率為100KHz,故每半周的周期為1/120=8.33ms,因此,當交流電源AC輸入之能量處於正半周時,該些功率開關PS1-PS2的切換次數約為8.33ms*100KHz=833.3次;同樣的,當交流電源AC輸入之能量處於負半周時,該些功率開關PS1-PS2的切換次數約為833.3次;故該些功率開關PS1-PS2在正半周及負半周的切換次數總共為1666次/秒。 In this embodiment, the AC input energy has a voltage value of 110V and a frequency of 60Hz, and the switching frequency of these power switches PS1-PS2 is 100KHz, so the cycle per half cycle is 1/120 = 8.33ms, therefore, When the AC input energy of the AC power supply is in the positive half cycle, the switching times of the power switches PS1-PS2 are about 8.33ms * 100KHz = 833.3 times; similarly, when the AC input energy of the AC power supply is in the negative half cycle, the power The switching times of the switches PS1-PS2 are about 833.3 times; therefore, the switching times of the power switches PS1-PS2 in the positive half cycle and the negative half cycle are 1666 times / second in total.
若變壓器T之一次側匝數為30,而一次側匝數為25,而輸出電壓為50V,而輸出電流為10A,當該些功率開關PS1-PS2開始擷取交流電源AC輸入之能量(即交流電源AC輸入之能量之絕對值等於其峰值電壓的40%時),交流電源AC輸入之能量為63V,因此二次側的電壓為63V*25/30=52.5V。 If the number of primary turns of the transformer T is 30, and the number of primary turns is 25, and the output voltage is 50V, and the output current is 10A, when the power switches PS1-PS2 start to extract the AC input AC energy (ie When the absolute value of the AC input energy of the AC power supply is equal to 40% of its peak voltage), the AC input energy of the AC power supply is 63V, so the voltage on the secondary side is 63V * 25/30 = 52.5V.
由於已知L=VLT/△IL;其中,L為扼流器CH1的電感量,T為扼流器CH1的充電時間,△IL為扼流器CH1的瞬間最大電流,VL為扼流器CH1充電時的壓差。 Since L = V L T / △ I L is known ; where L is the inductance of choke CH1, T is the charging time of choke CH1, △ I L is the instantaneous maximum current of choke CH1, V L The voltage difference when charging the choke CH1.
因此VL=2.5V,故該些功率開關PS1-PS2的工作周期為50/52.5=95.24%。而若輸出電流為10A,則漣波電流(RippleCurrent)為10A*25%=2.5A;故 △IL=2.5A+2.5A=5A;因此,在不考慮氣隙及變壓器T的大小的前提下,由於該些功率開關PS1-PS2的基本切換周期為1/100KHz,故T為該些功率開關PS1-PS2的基本切換周期乘以該些功率開關PS1-PS2的工作周期,即T=1/100KHz*95.24%=9.5us,因此由L=VLT/△IL可得知L為4.75uH。 Therefore, V L = 2.5V, so the duty cycle of these power switches PS1-PS2 is 50 / 52.5 = 95.24%. If the output current is 10A, the ripple current (RippleCurrent) is 10A * 25% = 2.5A; so △ I L = 2.5A + 2.5A = 5A; therefore, without considering the air gap and the size of the transformer T Next, since the basic switching period of the power switches PS1-PS2 is 1 / 100KHz, T is the basic switching period of the power switches PS1-PS2 times the duty cycle of the power switches PS1-PS2, that is, T = 1 /100KHz*95.24%=9.5us, so from L = V L T / △ I L we can know that L is 4.75uH.
當交流電源AC輸入之能量之絕對值等於其峰值電壓155.67V時,因此二次側的電壓為155.67V*25/30=129.725V,而由上述可知,T=L*△IL/VL,故T=0.183us。由上述可明顯看出,當交流電源AC輸入之能量愈高,扼流器CH1的充電時間T愈短;反之,當交流電源AC輸入之能量愈低,扼流器CH1的充電時間T愈長,使輸出至負載L之電壓保持在50V或需要的範圍內。 When the absolute value of the AC input energy is equal to its peak voltage of 155.67V, the secondary voltage is 155.67V * 25/30 = 129.725V, and from the above, T = L * △ I L / V L , So T = 0.183us. It can be clearly seen from the above that the higher the AC input energy of the AC power supply, the shorter the charging time T of the choke CH1; conversely, the lower the AC input energy of the AC power supply, the longer the charging time T of the choke CH1 To keep the voltage output to the load L within 50V or the required range.
由上述可知,能量轉換器3可有效追蹤交流電源AC輸入之能量,並在交流電源AC輸入之能量之電壓大於其峰值電壓的一定比例時,同步地切換能量擷取模組31之該些功率開關PS1-PS2以擷取交流電源AC輸入之能量,上述的同步機制能確保能量擷取模組31能有效追蹤交流電源AC輸入之能量,並由交流電壓訊號擷取足夠的能量。 As can be seen from the above, the energy converter 3 can effectively track the AC input energy of the AC power supply, and when the voltage of the AC input energy of the AC power supply is greater than a certain percentage of its peak voltage, synchronously switch the power of the energy harvesting module 31 The switches PS1-PS2 are used to capture the AC input energy of the AC power supply. The above synchronization mechanism can ensure that the energy extraction module 31 can effectively track the AC input energy of the AC power supply and extract sufficient energy from the AC voltage signal.
除此之外,能量轉換器3更可有效追蹤負載L端的電壓及電流,並同步地切換能量擷取模組31之該些功率開關PS1-PS2。如第2圖所示,控制器可根據電流回授模組35之電流回授訊號及電壓回授模組36之電壓回授訊號同步地切換該些功率開關PS1-PS2以擷取交流電源AC輸入之能量以儲備一次側輸入能量,並可由變壓器T轉換一次側輸入能量以產生轉換能量,並可再透過第一開關SW1及第二開關SW2將轉換能量整流為直流輸出能量以輸出至負載L。(本說明書中各實施例之電路可包含減振器,即snubber,然為了使圖式更為簡明,故不多贅述。) In addition, the energy converter 3 can effectively track the voltage and current at the end of the load L, and synchronously switch the power switches PS1-PS2 of the energy harvesting module 31. As shown in FIG. 2, the controller can synchronously switch the power switches PS1-PS2 according to the current feedback signal of the current feedback module 35 and the voltage feedback signal of the voltage feedback module 36 to extract AC power AC The input energy is used to reserve the primary input energy, and the primary input energy can be converted by the transformer T to generate converted energy, and the converted energy can be rectified into DC output energy through the first switch SW1 and the second switch SW2 to output to the load L . (The circuit of each embodiment in this specification may include a shock absorber, ie snubber, but in order to make the diagram more concise, it will not be repeated here.)
舉例而言,當負載L在電量不足時,此時其電壓約為8V,而當控制器 CT切換該些功率開關PS1-PS2由導通狀態進入切斷狀態時,由於負載L在處於低電壓的狀態,故在負載L端會產生較大的電壓差,如此會瞬間產生較大的電流,此時控制器CT則可以由電流回授訊號偵測到此時的電流已過大,因此控制器CT會立即導通該些功率開關PS1-PS2;而在該些功率開關PS1-PS2導通後,此時控制器CT可由電壓回授訊號偵測到此時輸出至負載L端的電壓不足,故控制器CT又會立即切斷該些功率開關PS1-PS2。 For example, when the load L is insufficient, the voltage is about 8V, and when the controller When the CT switches the power switches PS1-PS2 from the on state to the off state, since the load L is in a low voltage state, a large voltage difference will be generated at the load L terminal, which will generate a large current in an instant. At this time, the controller CT can detect that the current is too large from the current feedback signal, so the controller CT will immediately turn on the power switches PS1-PS2; and after the power switches PS1-PS2 are turned on, this At this time, the controller CT can detect that the voltage output to the load L terminal is insufficient by the voltage feedback signal, so the controller CT will immediately turn off the power switches PS1-PS2.
舉例而言,若在負載L經過一定時間的充電且電壓已上升12V,此時負載L的電壓已接近充電完成的14V,因此當控制器CT切換功率開關PS由導通狀態進入切斷狀態時,由於負載L並非是處於低電壓的狀態,故在負載L端不會出現明顯的電壓差,如此該些功率開關PS1-PS2的切換頻率則可以降低或停止。 For example, if the load L has been charged for a certain period of time and the voltage has risen by 12V, then the voltage of the load L is close to 14V after charging, so when the controller CT switches the power switch PS from the on state to the off state, Since the load L is not in a low-voltage state, no obvious voltage difference will appear at the end of the load L, so that the switching frequency of the power switches PS1-PS2 can be reduced or stopped.
由上述可知,控制器CT可透過電流回授模組35之電流回授訊號及電壓回授模組36之電壓回授訊號同時追蹤負載L之電壓及電流,並同步地改變該些功率開關PS1-PS2的切換頻率,來控制扼流器CH1充電的時間長短以調整輸出能量之大小,因此可有效地減少諧波失真,提升功率因數。 As can be seen from the above, the controller CT can simultaneously track the voltage and current of the load L through the current feedback signal of the current feedback module 35 and the voltage feedback signal of the voltage feedback module 36, and simultaneously change the power switches PS1 -The switching frequency of PS2 is used to control the charging time of choke CH1 to adjust the output energy, so it can effectively reduce harmonic distortion and improve power factor.
請參閱第5圖,其係為本發明之具一二次同步追蹤功能的能量轉換器之第二實施例之電路動作;第5圖舉例說明了本發明之具一二次同步追蹤功能的全橋式能量轉換器之一種較佳的電路結構。 Please refer to FIG. 5, which is the circuit operation of the second embodiment of the energy converter with a secondary synchronous tracking function of the present invention; FIG. 5 exemplifies the full range of the invention with a secondary synchronous tracking function. A better circuit structure of the bridge energy converter.
如圖所示,能量轉換器3可包含能量擷取模組31、變壓模組32、整流模組33、控制模組34、電流回授模組35、電壓回授模組36。 As shown in the figure, the energy converter 3 may include an energy harvesting module 31, a transformer module 32, a rectifier module 33, a control module 34, a current feedback module 35, and a voltage feedback module 36.
能量擷取模組31可與交流電源AC及變壓模組32連結,變壓模組32可與整流模組33連結,整流模組33可透過扼流器CH1與電流回授模組35連結,電流回授模組35與電壓回授模組36可同時與負載L及控制模組34連結,控制模組34則可與能量擷取模組31及整流模組33連結。 The energy harvesting module 31 can be connected to the AC power supply AC and the transformer module 32, the transformer module 32 can be connected to the rectifier module 33, and the rectifier module 33 can be connected to the current feedback module 35 through the choke CH1 The current feedback module 35 and the voltage feedback module 36 can be simultaneously connected to the load L and the control module 34, and the control module 34 can be connected to the energy harvesting module 31 and the rectifier module 33.
關於能量擷取模組31,其可包含四對功率開關PS1~PS4,第一對功率開關PS1包含開關PS1’及PS1”且開關PS1’及PS1”方向相反,第二對功率開關PS2包含開關PS2’及PS2”且開關PS2’及PS2”方向相反,第三對功率開關PS3包含開關PS3’及PS3”且開關PS3’及PS3”方向相反,第四對功率開關PS4包含開關PS4’及PS4”且開關PS4’及PS4”方向相反;控制器CT切換四對功率開關PS1~PS4以擷取交流電源AC之能量。 Regarding the energy harvesting module 31, it may include four pairs of power switches PS1 ~ PS4, the first pair of power switches PS1 includes switches PS1 'and PS1 "and the switches PS1' and PS1" are in opposite directions, and the second pair of power switches PS2 includes switches PS2 'and PS2 "and switches PS2' and PS2" are in opposite directions, the third pair of power switches PS3 include switches PS3 'and PS3 "and switches PS3' and PS3" are in opposite directions, and the fourth pair of power switches PS4 include switches PS4 'and PS4 "And the switches PS4 'and PS4" are in opposite directions; the controller CT switches the four pairs of power switches PS1 ~ PS4 to extract the AC power AC energy.
關於變壓模組32,其可為變壓器T;變壓器T可接收交流電源AC之能量,並儲存一次側輸入能量,並可將一次側輸入能量由變壓器T之一次側耦合至變壓器T之二次側以產生轉換能量。 Regarding the transformer module 32, it can be a transformer T; the transformer T can receive the AC power AC energy and store the primary input energy, and can couple the primary input energy from the primary side of the transformer T to the secondary of the transformer T Side to generate conversion energy.
關於整流模組33,其可包第一開關SW1及第二開關SW2,透過切換第一開關SW1及第二開關SW2,整流模組33可將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載L。 As for the rectifier module 33, it can include the first switch SW1 and the second switch SW2. By switching the first switch SW1 and the second switch SW2, the rectifier module 33 can rectify the converted energy into DC output energy and can output DC output Energy to load L.
關於電流回授模組35,其可包含分流電阻(Shunt resistor)SR及運算放大器OP;電流回授模組35可根據負載L之電流提供電流回授訊號。 As for the current feedback module 35, it may include a shunt resistor SR and an operational amplifier OP; the current feedback module 35 may provide a current feedback signal according to the current of the load L.
關於電壓回授模組36,其可包含電壓調節器VR;電壓回授模組36可根據負載L之電壓提供電壓回授訊號。 As for the voltage feedback module 36, it may include a voltage regulator VR; the voltage feedback module 36 may provide a voltage feedback signal according to the voltage of the load L.
關於控制模組34,其可包含控制器CT,在較佳的實施例中,控制器CT可包含光耦合器及微控制器(MCU),其中,微控制器(MCU)可接收電流回授訊號及電壓回授訊號以控制第一開關SW1及第二開關SW2,而一次側與二次側之間的橋樑為光耦合器,光耦合器則可直接連結至四對功率開關PS1~PS4以控制四對功率開關PS1~PS4;控制器CT可根據電流回授模組35之電流回授訊號及電壓回授模組36之電壓回授訊號判斷負載L的需求,並可根據交流電源AC輸入之能量之波形及負載L的需求切換四對功率開關PS1~PS4以擷取交流電源AC輸入之能量以儲備一次側輸入能量至變壓 器T,並在變壓器T將一次側輸入能量耦合至變壓器T之二次側產生轉換能量後切換第一開關SW1及第二開關SW2將轉換能量整流為直流輸出能量,並可輸出直流輸出能量至負載L,藉此可使一次側輸入能量之波形之大小能追蹤直流輸出能量之波形之大小以達到同步狀態,使能量轉換器可達到真實功因。 Regarding the control module 34, it may include a controller CT. In a preferred embodiment, the controller CT may include an optical coupler and a microcontroller (MCU), wherein the microcontroller (MCU) may receive current feedback The signal and voltage feedback signals control the first switch SW1 and the second switch SW2, and the bridge between the primary side and the secondary side is an optocoupler, which can be directly connected to four pairs of power switches PS1 ~ PS4. Control four pairs of power switches PS1 ~ PS4; the controller CT can determine the demand of the load L according to the current feedback signal of the current feedback module 35 and the voltage feedback signal of the voltage feedback module 36, and can be input according to the AC power supply AC The waveform of the energy and the demand of the load L switch the four pairs of power switches PS1 ~ PS4 to capture the energy input from the AC power supply to reserve the primary input energy to the transformer After the transformer T couples the primary input energy to the secondary side of the transformer T to generate converted energy, the first switch SW1 and the second switch SW2 are switched to rectify the converted energy into DC output energy, and the DC output energy can be output to The load L can make the waveform of the input energy on the primary side track the magnitude of the waveform of the DC output energy to achieve a synchronized state, so that the energy converter can achieve a real power factor.
透過上述的設計,能量轉換器之一次側不需要使用熱敏電阻、濾波器、橋式整流器及輸入電容等元件,故可延長使用壽命,且降低能量轉換器元件損耗、傳導損耗、切換損耗、諧波失真、空間損耗及成本,更可提升其功率因數進而提高總效率。 Through the above design, the primary side of the energy converter does not need to use thermistors, filters, bridge rectifiers and input capacitors, etc., so it can extend the service life and reduce the energy converter component losses, conduction losses, switching losses, Harmonic distortion, space loss, and cost can further increase its power factor and thus improve overall efficiency.
又,能量轉換器之一次側可透過追蹤交流電源AC輸入之能量之大小同步地快速切換四對功率開關PS1~PS4來擷取交流電源AC輸入之能量以獲得對應交流電源AC輸入之能量之大小的電流,且能量轉換器之二次側更可根據電流回授訊號及電壓回授訊號決定輸出至負載之電壓,如此可使一次側輸入能量之波形之大小能追蹤直流輸出能量之波形之大小以達到同步狀態,故可有效地降低諧波失真,並提升功率因數。 In addition, the primary side of the energy converter can quickly switch four pairs of power switches PS1 ~ PS4 synchronously by tracking the magnitude of the AC input energy of the AC power supply to extract the energy of the AC input of the AC power supply to obtain the corresponding energy of the AC input of the AC power supply Current, and the secondary side of the energy converter can determine the voltage output to the load according to the current feedback signal and the voltage feedback signal, so that the waveform of the primary input energy can track the size of the DC output energy In order to achieve synchronization, it can effectively reduce harmonic distortion and improve power factor.
請參閱第6A圖及第6B圖,其係為本發明之具一二次同步追蹤功能的能量轉換器之第二實施例之電路圖;第6A圖及第6B圖舉例說明了全橋式能量轉換器3各階段的電路動作,為了使第6A圖及第6B圖更為清楚,部份元件在這些圖式中省略。 Please refer to FIG. 6A and FIG. 6B, which is a circuit diagram of a second embodiment of the energy converter with a secondary synchronous tracking function of the present invention; FIGS. 6A and 6B illustrate the full-bridge energy conversion In order to make Figs. 6A and 6B clearer, the circuit operation of each stage of the device 3 is omitted in these drawings.
能量轉換器3在交流電源AC輸入之能量處於正半周時可重覆執行四個電路動作,即一次側之第一階段電路動作Tpp1、一次側之第二階段電路動作Tpp2、二次側之第一階段電路動作Tsp1及二次側之第二階段電路動作Tsp2,如第3A圖所示,能量轉換器3執行一次側之第一階段電路動作Tpp1,此時控制器CT可以導通二對功率開關PS1及PS4,變壓器T可由交流電源AC 輸入之能量擷取能量並儲存能量,並將能量由一次側耦合至二次側;接著,能量轉換器3可以執行一次側之二次側之第一階段電路動作Tsp1,此時控制器CT可導通第一開關SW1,而第二開關SW2則可維持切斷的狀態以對二次側產生的能量進行整流並輸出至負載,此時電流的方向如圖中箭頭所示。 The energy converter 3 can repeatedly perform four circuit operations when the energy input from the AC power supply is in the positive half cycle, namely the first-stage circuit operation T pp1 on the primary side, the second-stage circuit operation T pp2 on the primary side, and the secondary side The first stage circuit action T sp1 and the second stage circuit action T sp2 on the secondary side, as shown in FIG. 3A, the energy converter 3 performs the first stage circuit action T pp1 on the primary side, at which time the controller CT can Turn on the two pairs of power switches PS1 and PS4, the transformer T can extract energy from the AC power input and store energy, and couple the energy from the primary side to the secondary side; then, the energy converter 3 can perform the secondary of the primary side The first stage circuit action T sp1 on the side , at this time, the controller CT can turn on the first switch SW1, and the second switch SW2 can maintain the off state to rectify the energy generated on the secondary side and output it to the load. The direction of the current is shown by the arrow in the figure.
如第6B圖所示,能量轉換器3可執行一次側之第二階段電路動作Tpp2,此時控制器CT可切斷二對功率開關PS1、PS4,並導通二對功率開關PS2、PS3;接著,能量轉換器3可同時執行二次側之第二階段電路動作Tsp2,此時控制器CT可導通第二開關SW12,而第一開關SW1則可維持切斷的狀態以對二次側產生的能量進行整流並輸出至負載,此時電流的方向如圖中箭頭所示。 As shown in FIG. 6B, the energy converter 3 can perform the second-stage circuit action T pp2 on the primary side. At this time, the controller CT can turn off the two pairs of power switches PS1 and PS4 and turn on the two pairs of power switches PS2 and PS3; Then, the energy converter 3 can simultaneously execute the second-stage circuit action T sp2 on the secondary side. At this time, the controller CT can turn on the second switch SW12, and the first switch SW1 can maintain the off state to control the secondary side. The generated energy is rectified and output to the load. At this time, the direction of the current is shown by the arrow in the figure.
同樣的,當控制器CT需切斷第一開關SW1並導通第二開關SW2時,控制器CT可先切斷第一開關SW1,再經過延遲時間後才導通第二開關SW2;同樣的,當控制器CT需切斷第二開關SW2並導通第一開關SW1時,控制器CT可先切斷第二開關SW2,再經過延遲時間後才導通第一開關SW1,如此可防止能量轉換器3因第一開關SW1及第二開關SW2同時短路而造成損壞。同樣的,四對功率開關PS1~PS4的切換也存在延遲時間,以防止四對功率開關PS1~PS4同時導通,使能量轉換器3因該些功率開關PS1~PS4同時短路而造成損壞。 Similarly, when the controller CT needs to turn off the first switch SW1 and turn on the second switch SW2, the controller CT can turn off the first switch SW1 first, and then turn on the second switch SW2 after a delay time; similarly, when When the controller CT needs to turn off the second switch SW2 and turn on the first switch SW1, the controller CT can turn off the second switch SW2 first, and then turn on the first switch SW1 after a delay time, thus preventing the energy converter 3 from The first switch SW1 and the second switch SW2 are short-circuited at the same time, causing damage. Similarly, there is a delay time for the switching of the four pairs of power switches PS1 ~ PS4 to prevent the four pairs of power switches PS1 ~ PS4 from turning on at the same time, so that the energy converter 3 is damaged due to the short circuit of the power switches PS1 ~ PS4.
能量轉換器3可在交流電壓訊號處於負半周時可重覆執行四個電路動作,即一次側之第一階段電路動作Tpn1、一次側之第二階段電路動作Tpn2、二次側之第一階段電路動作Tsn1及二次側之第二階段電路動作Tsn2,透過不斷的切換四對功率開關PS1-PS4以輸出能量至負載,由於能量轉換器3在交流電壓訊號處於負半周時的電路動作與能量轉換器3在交流電壓訊號處 於正半周時的電路動作相似,故不在此多加贅述。 The energy converter 3 can repeatedly perform four circuit operations when the AC voltage signal is in the negative half cycle, namely, the first-stage circuit operation T pn1 on the primary side, the second-stage circuit operation T pn2 on the primary side, and the second a phase of circuit operation and a second phase T sn1 circuit operation of the secondary side of T sn2, continue through four pairs of switching power switches PS1-PS4 to output energy to the load, since the energy converter 3 is in the AC voltage signal at the negative half cycle The circuit operation is similar to that of the energy converter 3 when the AC voltage signal is in the positive half cycle, so it will not be repeated here.
承上所述,依本發明之具一二次同步追蹤功能的能量轉換器,其可具有一或多個下述優點: As mentioned above, the energy converter with a secondary synchronous tracking function according to the present invention may have one or more of the following advantages:
(1)本發明之一實施例中,能量轉換器之一次側可不需要使用熱敏電阻(PTC Thermistor)、濾波器、橋式整流器及輸入電容等元件,故可延長使用壽命,且降低能量轉換器元件損耗、傳導損耗、切換損耗、諧波失真、空間損耗及成本,更可提升其功率因數進而提高總效率。 (1) In one embodiment of the present invention, the primary side of the energy converter does not need to use components such as thermistors (PTC Thermistor), filters, bridge rectifiers and input capacitors, so it can extend the service life and reduce energy conversion The component loss, conduction loss, switching loss, harmonic distortion, space loss and cost can increase its power factor and thus improve the overall efficiency.
(2)本發明之一實施例中,能量轉換器之一次側可透過追蹤交流電壓訊號之大小同步地快速切換該些功率開關來擷取交流電壓訊號的能量以獲得對應交流電壓訊號之大小的電流,且能量轉換器之二次側更可根據電流回授訊號及電壓回授訊號決定輸出至負載之電壓,故可有效地降低諧波失真,並提升功率因數。 (2) In one embodiment of the present invention, the primary side of the energy converter can quickly switch the power switches by tracking the size of the AC voltage signal to extract the energy of the AC voltage signal to obtain the corresponding size of the AC voltage signal Current, and the secondary side of the energy converter can also determine the voltage output to the load according to the current feedback signal and the voltage feedback signal, so it can effectively reduce harmonic distortion and improve power factor.
(3)本發明之一實施例中,能量轉換器可提供同步追蹤功能,使由變壓器之一次側輸入之一次側輸入能量之波形與由變壓器二次側輸出之直流或脈動直流輸出能量之波形同步,故可大幅地提升功率因數。 (3) In one embodiment of the present invention, the energy converter can provide a synchronous tracking function to make the waveform of the primary input energy input from the primary side of the transformer and the DC or pulsating DC output energy waveform output from the secondary side of the transformer Synchronous, it can greatly improve the power factor.
(4)本發明之一實施例中,能量轉換器之二次側可選擇性地使用輸出電容及整流二極體等元件,故可進一步降低能量轉換器的成本。 (4) In one embodiment of the present invention, the secondary side of the energy converter can selectively use components such as output capacitors and rectifier diodes, so the cost of the energy converter can be further reduced.
(5)本發明之一實施例中,輸入能量轉換器之一次側的訊號為交流訊號,因此不需要執行類共振模式(QR mode),因此效率較高。 (5) In one embodiment of the present invention, the signal input to the primary side of the energy converter is an AC signal, so there is no need to execute a QR mode, so the efficiency is higher.
(6)本發明之一實施例中,能量轉換器之一次側可不需要設置橋式整流器及電容,故可降低成本及提升效率。 (6) In an embodiment of the present invention, the primary side of the energy converter may not need to be provided with a bridge rectifier and a capacitor, so the cost and efficiency can be reduced.
(7)本發明之一實施例中,能量轉換器之一次側可包含扼流器,其可做為緩衝電路,使能量轉換器之一次側的電壓降低,故能量轉換器之變壓模組之一次側之匝數與二次側的匝數可以很接近,且一次側之匝數與二次側 的匝數均可降低,使能量轉換器的效率提升,不會因太細而導致一次側線圈斷裂,故可增加良率。 (7) In one embodiment of the present invention, the primary side of the energy converter may include a choke, which can be used as a buffer circuit to reduce the voltage on the primary side of the energy converter, so the transformer module of the energy converter The number of turns on the primary side and the number of turns on the secondary side can be very close, and the number of turns on the primary side and the secondary side The number of turns can be reduced, so that the efficiency of the energy converter is improved, and the primary coil will not be broken because it is too thin, so the yield can be increased.
(8)本發明之一實施例中,能量轉換器包含複數個的功率開關,其中一部份功率開關在交流電源輸入能量為正半周時切換,而另外一部份功率開關在交流電源輸入能量為負半周時切換,且交流電源輸入能量本來就是逐漸由小變大或逐漸由大變小,而不會有突升或突降的情況,故能量轉換器可在與直接與交流電源連結的情況下正常工作,故不易損壞,提升使用壽命。 (8) In one embodiment of the present invention, the energy converter includes a plurality of power switches, some of the power switches are switched when the input energy of the AC power supply is a positive half cycle, and the other part of the power switches are inputted by the AC power supply It is switched when it is negative half cycle, and the input energy of the AC power supply is gradually changed from small to large or gradually from large to small, and there will be no sudden rise or fall, so the energy converter can be connected directly to the AC power supply. Under normal circumstances, it is not easy to damage and increase the service life.
可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請貴局核准本件發明專利申請案,以勵創作,至感德便。 It can be seen that the present invention has achieved the desired effect under the breakthrough of the previous technology, and it is not easy to think about by those who are familiar with the art. Its progress and practicality have obviously met the patent application requirements. I filed a patent application in accordance with the law, and urge your office to approve this application for a patent for invention in order to encourage creation and reach a sense of virtue.
以上所述僅為舉例性,而非為限制性者。其它任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。 The above is only an example, not a limitation. Any other modifications or changes made without departing from the spirit and scope of the present invention should be included in the scope of the attached patent application.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126007A TWI624145B (en) | 2016-08-12 | 2016-08-12 | Energy adapter with primary side & secondary side synchronization tracking function |
CN201710685534.6A CN107733265B (en) | 2016-08-12 | 2017-08-11 | Energy converter with one-time and two-time synchronous tracking function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105126007A TWI624145B (en) | 2016-08-12 | 2016-08-12 | Energy adapter with primary side & secondary side synchronization tracking function |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201806304A TW201806304A (en) | 2018-02-16 |
TWI624145B true TWI624145B (en) | 2018-05-11 |
Family
ID=61205026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105126007A TWI624145B (en) | 2016-08-12 | 2016-08-12 | Energy adapter with primary side & secondary side synchronization tracking function |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107733265B (en) |
TW (1) | TWI624145B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW501336B (en) * | 1999-10-21 | 2002-09-01 | Sony Corp | Switching power supply apparatus |
TW588497B (en) * | 2002-07-30 | 2004-05-21 | Delta Electronics Inc | Synchronous rectifier of intermittent control and its control method |
TW200729686A (en) * | 2005-12-28 | 2007-08-01 | Sanken Electric Co Ltd | Switching power supply device |
TWM336457U (en) * | 2008-01-15 | 2008-07-11 | Hipro Electronics Taiwan Co Ltd | Power supply with zero switching voltage |
TW201308851A (en) * | 2011-05-26 | 2013-02-16 | Hitachi Comp Peripherals Co | Power supply apparatus |
TWM461256U (en) * | 2012-11-29 | 2013-09-01 | Univ Nat Kaohsiung 1St Univ Sc | Without bridge, isolation type power factor corrector |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834685B2 (en) * | 1988-05-30 | 1996-03-29 | 株式会社ユアサコーポレーション | Switching regulator |
US5321235A (en) * | 1991-06-04 | 1994-06-14 | Sanyo Electric Co., Ltd. | Half-bridge converter switching power supply for magnetron |
JPH08228484A (en) * | 1995-02-21 | 1996-09-03 | Nippon Electric Ind Co Ltd | Phase control smr converter |
JPH09285129A (en) * | 1996-04-08 | 1997-10-31 | Kansai Electric Power Co Inc:The | Harmonic current inhibit circuit |
EP1202440B1 (en) * | 2000-10-17 | 2006-12-20 | Omron Corporation | Snubber circuit and power converter using the same |
JP5895319B2 (en) * | 2012-01-18 | 2016-03-30 | 九州電力株式会社 | SMR converter |
-
2016
- 2016-08-12 TW TW105126007A patent/TWI624145B/en not_active IP Right Cessation
-
2017
- 2017-08-11 CN CN201710685534.6A patent/CN107733265B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW501336B (en) * | 1999-10-21 | 2002-09-01 | Sony Corp | Switching power supply apparatus |
TW588497B (en) * | 2002-07-30 | 2004-05-21 | Delta Electronics Inc | Synchronous rectifier of intermittent control and its control method |
TW200729686A (en) * | 2005-12-28 | 2007-08-01 | Sanken Electric Co Ltd | Switching power supply device |
TWM336457U (en) * | 2008-01-15 | 2008-07-11 | Hipro Electronics Taiwan Co Ltd | Power supply with zero switching voltage |
TW201308851A (en) * | 2011-05-26 | 2013-02-16 | Hitachi Comp Peripherals Co | Power supply apparatus |
TWM461256U (en) * | 2012-11-29 | 2013-09-01 | Univ Nat Kaohsiung 1St Univ Sc | Without bridge, isolation type power factor corrector |
Also Published As
Publication number | Publication date |
---|---|
CN107733265A (en) | 2018-02-23 |
CN107733265B (en) | 2020-04-14 |
TW201806304A (en) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9912231B2 (en) | Digital AC/DC power converter | |
TWI542127B (en) | Active buck power factor correction device | |
TWI511435B (en) | AC - DC power converter | |
WO2015180290A1 (en) | Switch power source and method for controlling switch power source | |
TWI489762B (en) | High efficiency AC - DC voltage conversion circuit | |
TWI437410B (en) | Buck power factor correcting systems | |
TWI492502B (en) | Passive power factor correction circuit | |
JP2015035851A (en) | Switching power supply device | |
CN111064369A (en) | switching power supply circuit | |
CN103795237A (en) | Bridge-free voltage reduction APFC circuit | |
TW201524095A (en) | Power factor correction circuit of power converter | |
JP2014075943A (en) | Converter and bidirectional converter | |
CN100514807C (en) | EMI-reducing single-stage power factor correcting circuit | |
US20150303813A1 (en) | Ac-to-dc power converting device | |
JP2017005861A (en) | Resonance type bidirectional dc/dc converter | |
US20120236608A1 (en) | Flux Converter with Power Factor Correction | |
WO2013036734A2 (en) | Isolated switch-mode dc/dc converter with sine wave transformer voltages | |
JP7352327B1 (en) | Resonant current controlled DC power supply | |
TWI624145B (en) | Energy adapter with primary side & secondary side synchronization tracking function | |
KR20090102949A (en) | Dc/dc converter with multi-output | |
TWI485961B (en) | A common-core pfc resonant converter | |
CN210007624U (en) | high transformation ratio bidirectional half-bridge current-doubling converter | |
JP3874291B2 (en) | Power supply | |
TWI528702B (en) | High power factor and high step-down ac-dc converter | |
KR100965245B1 (en) | Serial DC / DC Converters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |